ORACLE

Oracle® Call Interface
Programmer's Guide,

10g Release 2 (10.2)
B14250-02

November 2005

Oracle Call Interface Programmer's Guide, 10g Release 2 (10.2)
B14250-02

Copyright © 1996, 2005, Oracle. All rights reserved.

Primary Author: Jack Melnick

Contributors: ~ A. Ahluwalia, G. Arora, A. Beguelin, A. Bande, D. Banerjee, S. Banerjee, M. Bastawala, E.
Belden, N. Bhatt, James Feng Cao, Yujie Cao, S. Chandrasekar, Thomas H. Chang, D. Chatterjee, D. Chiba, L.
Chidambaran, Chi Ching Chui, D. Frumkin, S. Gollapudi, Wenyun. He, Min-Hank Ho, N. Ikeda, Toliver Jue,
R. Kasamsetty, S. Kotsovolos, S. Krishnaswamy, S. Lari, Geoff Lee, N. Lewis, Chao Liang, E. Miner, S.
Mishra,, K. Mohan, Valarie Moore, J. Narasinghanallur, E. Paapanen, R. Phillips, R. Pingte, T. Pulkita, V.
Raja, D. Saha, S. Seshadri, B. Sinha, H. Slattery, Steven Sun, K. Surlaker, B. Thome, P. Tyagi, S. S. Vemuri, R.
Vissapragada, Wei Wang, Daniel M. Wong, Mingkang Xu, Jianping Yang, Michael Yau

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software—Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Contents

PUROIACE ... e e s XXXV
J AN Lo = V< T SST SRR XXXV
Documentation AccesSibilitycccociiiiiiiiiiiiiiiiii e XXXV
Related DOCUITIEIESooviiiviieeieceeeeeeeee ettt ettt et e e et e esaeeateeeseeenseesaseessesesessnseeseessesenseesseeanns XXXVi
(@03 4 T£=3 015 (o) o - I R U RRRURURRRRRRRRRRt XXXVii

What's New in Oracle Call INterface? ... XXXiX
New Features in Oracle Call Interface Release 10.2oooouvevieeiieieeeeieeeeeeeeee et XXXiX
New Features in Oracle Call Interface Release 10.1ooovviiioieiiiiieeeeeeeeeeeeeeeee et ee e e seaeeea xli

1 Introduction and Upgrading

OVEIVIEW OF OCT ...ttt ettt ettt et et e e te et e e se e beeaeeseeaaesseeraesteessesbeensessaeasenseenns 1-1
Advantages Of OCL.........cccccuiiiiiiieee e 1-2
Building an OCT APPLCation.........c.oiiurieieiicie et 1-2
PartS Of OC ..ottt ettt ettt ettt ete et e e beesaeere e b e baesbeebeeaseessenseeseenseesseseessenseeneas 1-2
Procedural and Non-Procedural EIEMENLScccceecieiriiiniiniinienieieeeteieese e ssessesesaeneas 1-3
ODBJeCt SUPPOTE ..ot 1-3
SQL STALEIMENES. ... vetieiietieteettee ettt sttt ettt et e e a e te s at et e st e beebeenteestenbeeatensesntensesneenseeneas 1-4

Data Definition Language..........ccccoveiiiiiiiiiiiiiiiiiicc s 1-5
CONLLOL SEALEIMENTS ...vevveiiievieieeiieieeeete ettt ettt et e b e re e s e s beesbesbeessesbsessesseensesseessenseenns 1-5
Data Manipulation Languagecccceeiuiiiiiiiiiiiiiiiiiicessessessssseesess s 1-5
QUETIES . ..couveeeeeieeteie ettt e et et et esteese e beesaesseesbesbee st e seessessaessesseessesseessesseessesseessasseassansenssensennes 1-6
PL/SQL ettt ettt ettt ettt ateteetseteeteeteeteebeeteeteete s eatesserseasetsetsereetans 1-6
Embedded SQLooiieeeeeeeeeee ettt ettt ettt b e et bt be et e b e aaeereenns 1-7
Special OCI/SQL TEIIMNSc.cuviiiiiiiiiiiiiiiii s s 1-7
Encapsulated INterfaces...........cccocviiiiiiiiiiiiiiiiiii s 1-8
Simplified User Authentication and Password Management..............cccccceeuiiiiiiiiniciieennns 1-8
Extensions to Improve Application Performance and Scalabilityccccooeeiiiiiiiininnns 1-8
OCT ODbJect SUPPOTT ...oviiiiiiiciiicicc s 1-9
Client-Side Object Cache.........ccccuiuiiiiiiiiiiiciiiicccc s 1-9
Associative and Navigational Interfacesccccoveveiiiiiiiiiiiicc 1-10
OCI Runtime Environment for Objects...........cccccoviiiiiiiiiiiiiiiice 1-10
Type Management, Mapping and Manipulation Functions.............cccccccevvvvnnnnnnnnnnnnes 1-10
Object Type Translator ... 1-11
OCI Support for Oracle Streams Advanced QUEUINGcccovvvvviiiiiiiiiniiiiie 1-11

XA LIDIary SUPPOTIT ...cocveviiiiiiiiiiiciciciceicc s 1-11

Compatibility and Upgrading ... 1-12
Simplified Upgrading of Existing OCI Release 7 Applications.........ccccccccevuvuverirrrncrnncnccnee 1-12
Statically-Linked and Dynamically-Linked Applications..........c.cccoovriiiiiiiciciiiiiiiinen, 1-12
Obsolete OCT ROULINESc.couvviiiiiiiiiiiiiiiiiii s 1-13
OCI Routines NOt SUPPOTLEAc.ceucuimiuiuiiiiiiiiiieieieicicieeieeieeeeeeee e 1-14
Compatibility Between Different Releases of OCI and Serversccooovreieiniicicnninnnen, 1-15
Upgrading OCL.........couiiiiec e 1-15

Adding Post-release 7.x OCI Calls to 7.x Applicationscccccceeueuerereureeerieicenirieeeeenne 1-15

OCT INStant CLieNt ..ottt 1-16
Benefits of Instant CLENt ... 1-16
OCI Instant Client Installation Processccoovviiiriiiiiiiiiicccee, 1-17
When to Use Instant CLHeNt..........cccooviiiiiiiiii s 1-18
Patching Instant Client Shared Libraries on Linux or UNIX.......ccccocooiiiiiiie, 1-18
Regeneration of Data Shared Library and Zip Filescccccccoeivininnnnnnnnncnercenes 1-19
Database Connection Strings for OCI Instant Client ..o, 1-19

Examples of Instant Client Connect Identifiers.............cooooeiii 1-20
Environment Variables for OCI Instant Client ..., 1-21
Instant Client Light (ENglish)ccoiiiiiiii 1-22

Globalization Settings.........ccociueiiiiiiic 1-22

Operation of Instant Client Lightccccccoiiiiiiiiiiiiccccceeceees 1-23

Installation of Instant Client Lightccocooiiiiii 1-23
SDK for Instant CHEnNtccoiiiiiiiiiiiiiic s 1-24

OCI Programming Basics

Overview of OCI Programming ... s 2-1
HEAART FALES ...ttt ettt et st e e st e se s st e s e s st e s e ess et aensesseensesseessesasensesnsensenseens 2-2
OCI Program SErUCEULE..........ccccoiiiiiiiiii e 2-2
OCT Data SEIUCEUTESoeovieeiieiieeiieeieeet et ete et eee e sttt e e e s teesteessaesbeessseesseessseesseeseeesseesssessseesssesssesnses 2-3
5 3 U I LT TSRS 2-4
Allocating and Freeing Handles ..o 2-5
Environment Handle ..ottt ettt et a e vttt ereeneas 2-5
EITOT HANALE ...ttt ettt sttt st e e eseesessasbessessessesseseasaasessensens 2-6
Service Context and Associated Handlescccceevieeirciinieniiniciecece et 2-6
Statement, Bind, and Define Handlescc.ooovioiiioiiieieeeceee ettt 2-7
DESCIIDE HANAIEevovieieiieiietieieiesteeetete ettt ettt ettt testesse st e s essessessessessessasassessensens 2-7
Complex Object Retrieval Handle............ccooviiiiiiiiiiiiiiiiiicc e, 2-8
Thread Handle ...ttt ettt et et e aeere e b e evaeabeeaeeseetsabeennesseeneas 2-8
Subscription Handle ... 2-8
Direct Path HANAIESc.ooovieiiiieieiiceceees ettt et ste e s e e s veesa e be e s e ssaessenseesaesseeneas 2-8
Connection POOl HANALEoouiiiieiiiiieieecieee ettt ettt ettt et ebe e v esbaereeneereennas 2-8
HaANAIe ATITIDULES ...eouieiieiieiciieieieietetet ettt ettt ettt ess e bt stesestessessessesbessessessessessassasassensens 2-8
OCT DESCIIPLOTS ...t 2-9
SNAPShOt DESCIIPLOT. ..ot s 2-10
LOB and BFILE LOCAtOTS.....ccccieiiiiiiieiiriiriitiieteieteteseeaeeessesssssessessessessessessessesssssssessessessessessenses 2-11
Parameter DeSCIiPLOr.......oiiiieiicicc s 2-12
ROWID DESCIIPLOTviviiiiiiiiiiteticticsc s 2-12

Date, Datetime, and Interval Descriptors ..o 2-12

Complex Object DeSCIiptOr........ccciiiiiici e 2-12
Advanced Queuing DeSCIIPLOTSc.ccccuiuiuiuiiiiimiiiiiiciceieieee et 2-12
User Memory ALlOCAtiON..........coviiiiiiicieci 2-13
OCI Programming StePsS..........ccooviiiiiiiiiiiiiiicc e 2-13
OCI Environment Initialization ..o 2-14
Creating the OCI ENVIIONMENtcovoiiiiiiiiiiicic e 2-14
Allocating Handles and DeScriptorscooiiueioiiicicieiiccc e 2-14
Application Initialization, Connection, and Session Creation.............ccccccceuvureeeeurererereeeeerunenes 2-15
Single User, Single CONNECHONc.viiiiiiiiiei s 2-15

Client Access Through a ProXy ... 2-15
Non-Proxy Multiple Sessions or CONNECHONS........c.cceueuiueueueiiiiieieiceceeieeeeeeeeeeenees 2-17
Example of Creating and Initializing an OCI Environment...........ccccooeveiiiiiiiinciennnes 2-18
Processing SQL Statements in OClLL...........c.cooiiiiiiiii e 2-19
Commit 0r ROIIDACK ..o 2-19
Terminating the Application...........ccccoooiiiiiiiiii s 2-19
Error Handling in OCT ...t 2-20
Return and Error Codes for Data...........cccoviiiiiiiiiniiicccc e 2-21
Functions Returning Other Values..............coooiiiiiiiii 2-22
Additional Coding Guidelines.............cccooviiiiiiiiiiiiiniiiiiiii s 2-22
Parameter TYPES......cociiiiiiiiiiiiiicc s 2-22
Address Parameters...........ccceveiiiiiiiiiiiiiiiiii s 2-22

Integer Parameters...........oocciiiiiiiiiiii s 2-22
Character String Parameters............ccoceueuiiuiuiiiiiiiiieieeeeeee e sesaes 2-22
Inserting Nulls into @ ColUMIN..........cooiiiiiiiii e 2-22
Indicator Variables............cciiiiiiiii s 2-23
INPUL .o s 2-23

OULPUL o 2-23
Indicator Variables for Named Data Types and REFs..........c.ccccoooiniiiiiciiiiiic 2-24
CanCeling Callsc.c.ccuiuiuiiiciceeece s 2-24
Positioned Updates and Deletesccoviviiiiiiiiiiiiiiiiiiiiiiiiee s 2-25
RESEIVEA WOTAS ...ttt 2-25
Oracle Reserved NamMeSPaCESc.cccuruiiiiiiiiiiiiiiciciicicicieieeee e 2-26
Nonblocking Mode in OCT ..o 2-26
Setting Blocking MOdes...........cccciuiiiiiiiiiiiiiiiiiii s 2-27
Cancelling a Nonblocking Call ... 2-27
Using PL/SQL in an OCI Program ... s 2-27
OCI Globalization SUPPOIL..........cccccoiiiiiiiiiiii e 2-28
Client Character Set Control from OCl..........cccooiiiiiiiiiiniiiii e, 2-28
Code Example for Character Set Control in OCl..........cccoooviviviiiiniiiiiicn, 2-29
Character Control and OCI INterfacesccccciiuiiiiiiiiiiiiiiiecceeeees 2-29
Character Length Semantics in OCIc.ccccciiuiiiiiiiiiiiicceeeeeeeeeeeeeeeeeeeees 2-30
Character Set SUPPOTt in OCT.......coiiiiiiiiiiii s 2-30
Other OCI Globalization Support FUNCHONSccccoiiiiiiiiiiiicciccccceeees 2-30
Getting Locale Information in OCT ... 2-30
Example of Getting Locale Information in OCT.........ccccccoiiviiiiiniiiiiin, 2-31
Manipulating Strings in OCL.........cccccciiiiiiiiiiii s 2-31

vi

Example of Manipulating Strings in OCL............coooiiiiiiiiiii 2-32

Example of Classifying Characters in OCIcccoouiiiiiiii 2-32
Converting Character Sets in OCcccioiiiiiiiiiieceeeee e nenens 2-33
Example of Converting Character Sets in OCT ... 2-33
OCI Messaging FUNCHONS ..ottt 2-34
Example of Retrieving a Message from a Text Message File..........ccccccccociiiiiiiiiicinnee. 2-34
IMSGEN UHILILY «.vovviviiiicicicci s 2-35
BNF Syntax of IMSZENc.ccvuiiiiiiiiiiiiiiiiiiiiiic s 2-35
Guidelines for Text Message Filesc.ccooeiriiiiinniiccccceee s 2-35
Example: Creating a Binary Message File from a Text Message File...........cccccccocunn. 2-35
Datatypes
Oracle DatatyPes ..o s 3-1
Using External Datatype Codes........cccccoviiiiniiininiiiiiiiiiiisnns 3-3
Internal DatatyPes.........ccccooiiiiiiiiiiiiii 3-3
LONG, RAW, LONG RAW, VARCHAR?.......ccccviriririiiiiiiiinsseesssssssnnes 3-4
Character Strings and Byte ATTays ... 3-4
UROWID ..ottt st sas s 3-5
BINARY_FLOAT and BINARY_DOUBLE........cccoooviiiiiiiiiiniiincscnnas 3-5
External Datatypes ... s 3-6
VARCHARZ ...t 3-8
INPUL .o 3-8
OUEPUL s 3-8
INUMBER ... 3-9
INTEGER ..o s b 3-9
FLOAT .ot 3-10
STRING ..ottt 3-10
INPUL .o s 3-10
OUEPUL s 3-10
VARNUM ..ottt bbb 3-11
LONG ...t 3-11
VARCHAR ..ottt 3-11
DATE. ... 3-11
RAW oo 3-12
VARRAW ..ottt 3-13
LONG RAW ..ottt 3-13
UNSIGNED ... s 3-13
LONG VARCHAR ..ottt ettt st 3-13
LONG VARRAW ..ot 3-13
CHAR ..o 3-13
INPUL .o 3-13
OUEPUL s 3-14
CHARZ ..ot 3-14
Named Datatypes: Object, VARRAY, Nested Table...........cccccceeueiiiiiiiiiiiiiiiiiiicciee, 3-15
REF ..o 3-15
ROWID DSCIIPIOLcviviiiiiiiieiiieicieieteieieee s 3-15
LOB DeSCIIPLOTcuiiiiieiiicicicct s 3-16

BLOB ... 3-17

CLOB....ooit s 3-17
INCLOB ..ot 3-18
Datetime and Interval Datatype Descriptors........cccouoiiieioioiiiiiiicicccec 3-18
ANSIDATE ..ot 3-18
TIMESTAMP ...t 3-18
TIMESTAMP WITH TIME ZONE........ccceoiiiiiiiiiiiiniienice e 3-18
TIMESTAMP WITH LOCAL TIME ZONEccccoooiiiiiiiiieciea 3-18
INTERVAL YEAR TO MONTH ..o 3-19
INTERVAL DAY TO SECONDcocoiiiiiiiiiiiiiiiic s 3-19
Avoiding Unexpected Results Using Datetime..........cccccceeueueiineiiiiinciiicrcecenes 3-19

Native Float and Native Double ... 3-19

C Object-Relational Datatype Mappings.........ccccceueerueueieiicieieiiieie s 3-20
Data CONVEISIONScoouimiiiiiiiiiiiiccctctcctc ettt sa sttt a et s e st tenes 3-20
Data Conversions for LOB Datatype Descriptors ..., 3-21
Data Conversions for Datetime and Interval Datatypescccccoovoieiiiiiiiciiiicc, 3-22
AsSIgNMENt INOLESoviiiiiiiii s 3-22

Data Conversion Notes for Datetime and Interval Typescccooeiieiiiiiciciiiiccines 3-23
Datetime and Date Upgrading Rulesccccooiiiiiiiiiiicc e, 3-23
Pre-9.0 Client with 9.0 01 Later Server ..o 3-23

Pre-9.0 Server with 9.0 or Later Client..........cccccoveeiiiniieiiiiiiniiciccccecs 3-23

Data Conversion for BINARY_FLOAT and BINARY_DOUBLE in OCI..........cccccccevununnnnnne. 3-23
TYPECOAES.......ooiiiiiii s 3-24
Relationship Between SQLT and OCI_TYPECODE Valuesccccccceviniiiininniiininncnene. 3-26
Definitions in oratypes.n.........ccocooiiiiiiii 3-27

Using SQL Statements in OCI

Overview of SQL Statement Processing..............ccccccceuiuiiiiiiiiiiiiiiiiiiies 4-1
Preparing Statements..............ccocoooiiiiiiiiiii e 4-3
Using Prepared Statements on Multiple Servers..........ooiiiiiiiiiiiiiicccceens 4-4
Binding Placeholders in OCIccccoiiiiiiiiiii s 4-4
Executing Statements..............ccocoooiiiiiiiiiii e 4-5
Execution SNapshoOtscccciiiiiiiiiiiiiicc s 4-6
Execution Modes of OCISMEEXECULE() ...euveveveririeririeirieirieinietrieeseesiete ettt e 4-6
Batch EITOr MOde ... 4-7
Example of Batch Error Mode...........coooiiiiiiiiiiiiiccccea 4-8
Describing Select-1ist TEEIMSccccoviiiiiiiiiiiiiiiii e 4-9
IMPLCIt DESCIIDE ... s 4-10
Explicit Describe of QUETIEScccoiviiiiiiiiiiiiiiiiicc s 4-11
Defining Output Variables in OCIccccccoiiiiiiiininiiiiiiiiiiis s 4-12
Fetching Results............ccooiiiiiiiiiiii s 4-12
Fetching LOB Dataccciuiiiiiiieicci e 4-13
Setting Prefetch COUNL.........ccccoiiiiiiiic s 4-13
Scrollable Cursors in OCL.............coiiiiiiiccc et 4-14
Increasing Scrollable Cursor Performanceccocoeeiieicciciciccceccec s 4-15
Example of Access on a Scrollable CUTISOT............ooviieiiiiieiiicce e 4-15

vii

5 Binding and Defining in OCI

Overview of Binding in OCT..............cccooiiiiiiii s 5-1
Named Binds and Positional Binds............cccoveiiiiiiiiiiniiicnee, 5-2
OCT Array INterfaceccueviiiiciic e 5-3
Binding Placeholders in PL/SQL........cccccocoiiiiiiiiiiiiiiiiinns 5-3
Steps Used in OCT BINAINGc.cveuiuiiiiiiiiiiiiccreeeeceeee e 5-4
PL/SQL Block in an OCI PTrOgramcccoveiiiieiiiiiiiiiiiiinieceeesesessss e 5-5
Advanced Bind Operations in OClL.............cccccoviniiiniiiii s 5-6
BINAING LIOBS......cuiiiiiiiiiicicceccee et 5-7
Binding LOB LOCAtOTScoueiiiiiiiiiicieie e 5-7
Restrictions on Binding LOB LOCAtOrS..........cccoueviiiiiiiiciec s 5-8
Binding LOB Data.....c.cccccuiuiiiiiiiiiieiiiiieeiieceieee e 5-8
Restrictions on Binding LOB Data..........cccouiriiiiiiii s 5-9
Examples of Binding LOB Dataccoceueiiiiieiiiiccec e 5-9
Binding in OCI_DATA_AT_EXEC MoOde......ccccceceuiuimimimiiiiimiieieicieieeeieeeeeeeeeeienene e 5-12
Binding REF CURSOR Variables...........cccooiiiiiiiiiiicii i 5-12
Overview of Defining in OCI..............ccooiiiiiiiii e 5-12
Steps Used in OCT DEfINING........cceueueuimiuiiiiiiiiiieieieieieicieieeeeeceeieieeeie e eseeees 5-13
Advanced OCI DefiNes.........cccociiiiiiiiiiiiiiiiiiie s 5-14
Advanced Define Operations in OCI..............cccccoviiiiiiiiiiii s 5-14
Defining LOB Output Variablescccooiiiiiiiiiieicreccereeceeeeeeeeeee s 5-14
Defining LOB LOCAtOTS.........coviiiieiiiciici it 5-15
Defining LOB Datalc.ooiuiiiiiicie et 5-15
Examplel: Defining LOBs Before EXeCUtion.........c.cccccccuciciiicciciiiicccceccceceeenenens 5-15
Example2: Defining LOBs after EXeCutionccccoevieioiiiiiiiiiiieccce 5-16
Defining PL/SQL Output Variables...........ccccoooiiiiiiie 5-16
Defining for a Piecewise FEtChccccciiiiiiiiiiiiiicccccccec s 5-16
Binding and Defining Arrays of Structures in OCIccocoiiiiiiiiiiii 5-16
SKip Parameters.........ccucueiiiuiieiiicicie ettt 5-17
Skip Parameters for Standard AITays ... 5-18
OCI Calls Used with Arrays of SLIUCUTESccovueiiiuriiiriiicic s 5-18
Arrays of Structures and Indicator Variablesc.ooooiiii, 5-18

DML with RETURNING Clause in OCIccccooviiiiiiiiiiiieenceescscn e 5-18
Using DML with RETURNING CIaUSEcoovurieiiiiiniiiinieiecie i 5-19
Binding RETURNING...INTO variables..........ccccccceoeuiiiiiiiinniiiiiiiiiiininnnnnnecaes 5-19
OCT Error Handlingc.cccoceueiiiiiiiiiieceeeeeeeee et eees 5-20
DML with RETURNING REF...INTO Clause in OCTccccocoeivivnimiiiiiiniiicnen, 5-20

Binding the Output Variable............cccccciiiiiiiiiiiiicceees 5-20
Additional Notes About OCI Callbackscccoviiiiiiiiiiiiiiie, 5-21
Array Interface for DML RETURNING Statements in OCL..........c.ccooviiiiiniiiiiiiniieiene, 5-22

Character Conversion in OCI Binding and Definingc.ccccooiiiiiiin, 5-22

Choosing Character Set..........cccccuiuiuiiiiiiiiecceeiece e 5-22
Character Set Form and ID ..o 5-22
Implicit Conversion Between CHAR and NCHARcccccooooiiiiiiiiicece 5-23

Setting Client Character Sets in OCT ..o 5-23

Using OCI_ATTR_MAXDATA_SIZE Attribute........cccccooivviviiniiiiiieccn, 5-24

Using OCI_ATTR_MAXCHAR_SIZE Atribute.........cccoouviviuiieiriicieriicrcceeeseceeseeeennee 5-24

viii

Buffer Expansion During OCIL BInding..........cccceuiiiiiiiiiiiiiici 5-25

IN BINAS ...t 5-25
Dynamic SQL......ccoiiiiiiiiiiiiii s 5-25

Buffer Expansion During INSErtsccccoiiiiiiiiiiiiic 5-25
Constraint Checking During Defining..........cccoooiriiiiiiiiiccccc 5-26
Dynamic SQL SELECES.......c.cuiuimiimiiiiiiieeeiiccctce ettt 5-26

Return Lengthis ... 5-26
General Compatibility Issues for Character Length Semantics in OCL.............c.cccceviininnnn 5-26
Code Example for Inserting and Selecting Using OCI_ATTR_MAXCHAR_SIZE 5-26

Code Example for UTF-16 Binding and Defining...........ccccoooiiiiiiiiiiiicc 5-27
PL/SQL REF CURSORSs and Nested Tables in OCT...........cccccooiiirinininienieeeeeeceieee e 5-28
Runtime Data Allocation and Piecewise Operations in OCIcccooevineiniiniinccncnnenens 5-29
Valid Datatypes for Piecewise Operations.........c.cccocoueviiiiiniiiiiiiiiiicieceeeeeeeeeeesenenes 5-30
Types of Piecewise OPerationsccccueiiirieiiiiicicieiccec e 5-30
Providing INSERT or UPDATE Data at RUNtIMEcccccoccuiiiiiiiiiiiiiiicccceeeeeeenes 5-31
Performing a Piecewise Insert or Update.........c.cooiiiiiiiiiiiiiiiiii 5-31
Piecewise Operations with PL/SQL........ccccccccoiiiiiiiiiiiiiis 5-33
Providing FETCH Information at RUNtime..........ccccccciveiiiiiiiiiicceccceceeceeeees 5-33
Performing a Piecewise Fetchoooviiiiiiiii 5-33
Piecewise Binds and Defines for LOBScccccocviiiiiiiiiiiiiics 5-34

6 Describing Schema Metadata

Using OCIDeSCIibeANY()........cccvvviiiiiiiiiiiiiiiiiiiiii s 6-1
Limitations on OCIDeSCIIDEANY () ...c.c.cueueueuimrieiiiiieieieieicieieieieieieiereeeeeeee e 6-2
Notes on Types and AttribULES ..ot 6-3

Datatype COodes ..o e 6-3
DESCIIDING TYPES....vvviiiiiiiicieicieccce ettt 6-3
Note on Implicit and Explicit Describesccooviuiiiiiiiiiiiiiiiiiiiiiiicicicceeas 6-3
Note on OCI_ATTR_LIST_ARGUMENTS........ccoeititreieteieteieeteteeeestereste et sse e sns 6-3

Parameter AIIDULES...........cooooieiieieeeeeee ettt st ae s e e s e ess e se e s e nseensenseens 6-4
Table OF VIEW ParametersS.......ccccveviieieriieeeciecieieeteieettesteetesaeestesseesaesseesaesseessesseessessasssessesssessenses 6-5
Procedure, Function, Subprogram Attributes ..o 6-6
Package AttTIDULESc.cciuiuiuiiiiiiiciicce et 6-6
Type AHTIDULES ... 6-7
Type Attribute AtrIDULESc.oiuiiiiiiiiii e 6-8
Type Method AtIIDULESc.cooviiiiciic e 6-9
COlleCtiON ATEIIDULES.....cveceieiieeieticieteeeeste ettt et e e e et e e e e sae e s e seessesseessensaessessesseessensees 6-10
SYNONYM ALITIDULES ...t 6-11
SEQUENCE AITIDULES ...ttt 6-11
COIUMN ALEIIDULES ...oovveieeieceieie ettt ettt e s e e e st e e ae s beess e ssessesseessesseessesseessensees 6-12
Argument and Result Attributes ... 6-13
LAST ALEIIDULES .evevevitiieeteeete ettt ettt stese et e et e eseebessessesbessessessessaseasansensersensensas 6-14
SChEMA AEIIDULES ...ttt ettt ete b e s se e besbeessesssessesseesseeseessesseessensees 6-15
Database ATIDULESceeouiiiiiiiceeeeeeee ettt ettt et ettt e be et e ba e beersenseesaeeseersensensean 6-15
RULE AEIIDULES. ..ottt ettt ettt eetesb e e b e s besbessessessessessessessesansansesensensas 6-16
RULE SEt AEIIDULES ...ttt sttt e st ese e b e s sa e st e eseesaesreessennnas 6-16
Evaluation Context AHTIDULESc.oouieiiiiiiiiceececeeet ettt ettt eve s eaeeaeas 6-17

8

Table ALLAS AETIDULES ...cccuvviiieeeee et e et ear e e et e s saaeesaaeseneeeennnees 6-17

Variable Type AtribUtes.........oooruiiiiii 6-17
Name Value Attributes..........coooiiiiiiiii e 6-18
Character Length Semantics Support in Describing ..o, 6-18
Implicit DeSCIIDING.......cuoviieciice 6-18
EXPLiCit DESCIIDINGoviiiiiiiiiiiiciciecccceece ettt 6-19
Client and Server Compatibility Issues for Describingcccccuevoiiiiiiiiiiiciiiiics 6-19
Examples Using OCIDescribe ANy ()cccooiiiiiiiiiiiiiiiiiiiccceee e 6-19
Retrieving Column Datatypes for a Table........c.ccccccceuririiiiiiniiicccceccereeeeeeeeeees 6-19
Describing the Stored Procedurecooiiiioiiiciii 6-21
Retrieving Attributes of an Object Typeccooueviiiiiii e, 6-22
Retrieving the Collection Element's Datatype of a Named Collection Typecccccceueuueee. 6-24
Describing with Character Length Semantics..........cccoiieioiiiiiniii 6-25

LOB and BFILE Operations

Using OCI Functions for LOBS...........ccccccooiiiiiiii s 7-1
Creating and Modifying Persistent LOBsccccccocoiiiiiiiiiiis 7-2
Associating a BFILE in a Table with an Operating System File............ccccccccooiiiiinnn 7-2
LOB Attributes of an Object ... 7-3
Writing to a LOB Attribute of an Object ..., 7-3
Transient Objects with LOB Attributes.........ccccceiiiiiiiiiiiicccceceeceeeeeeeeee e 7-3
Array Interface for LOBS..........ccocooiiiiiiiiic e 7-4
Using LOBs of Size Greater than 4 GB ..., 7-4
New Functions for the Increased LOB SizZesccoovviiiiiinininininiicciccne 7-5
Compatibility and Migration...........cceeiiiiiiiiiiici e 7-6
LOB and BFILE Functions in OC..............cccccoiiiiiiiiisns 7-8
Improving LOB Read/Write Performance...........c.cccoocieueiiiiiiieiiecceeeeeeeeneienenenenennes 7-8
Using Data Interface FOr LOBS ..o 7-8

Using OCILobGetChunkSize().........ccceuiuiuiiiiiiiiiiiiiiiiiiiiiiiiciccice e 7-9

Using OCILObWItE APPENA2().....cuvuuimimimimiiiiiiiiiiiiciciciecieieieieiee et sesenese s seneaeaenenes 7-9

Using OCILobArrayRead() and OCILobArrayWrite().........cocovvvivvivinininininininiininne, 7-9

LOB Buffering FUNCLIONSccccceuiiiiiiiiiiiiiiiiicci s 7-9
Functions for Opening and Closing LOBs..........cccccciiiiiiiiceeeeeeieeeeeeeeeeenenenes 7-10
Restrictions on Opening and Closing LOBs...........cccoooiiiiii 7-10

LOB Read and Write Callbacks.........ccciivieiiiinniiiiiiiciciieiccereeieereee s 7-11
The Callback Interface for Streaming...........cccccocceucueiecicieeiccceeeeeee s 7-11
Reading LOBs using Callbacksccoceueiiiiiiiiiiiiciciii s 7-11
Writing LOBs using Callbacks ... 7-13
Temporary LOB SUPPOTt........ccocoiiiiiiiiiiiiic s 7-14
Creating and Freeing Temporary LOBs.........cccccooiiiiii 7-15
Temporary LOB DUrations ... 7-15
Freeing Temporary LOBS.........ccccoooiiiiiiiiiiicc s 7-16
Take Care When Assigning POINters...........coooeueiiiiieiiiici e 7-16
Temporary LOB EXamplecccccoeuiiiiiiiiiiiiiiiiiiicc s 7-16

Managing Scalable Platforms
OCI Support for Transactionscccciiiiiiiiiiiiiii s 8-1

Levels of Transactional Complexity............cccooiiiiiiiiiiniiiii s 8-2

Simple Local Transactionscccoirieieiiicieie ettt 8-2
Serializable or Read-Only Local Transactions............cccccececiiiccecieecmeeeereeeneenenenenenas 8-2
Global TranSaCtioNScccuiuiuiiiiiiiiiiiii s 8-2
Transaction Identifiers ... 8-2
Attribute OCI_ATTR_TRANS_NAMEcccccoiviiiiiie s 8-3
Transaction Branches.............cccoiiiiiiic s 8-3
Branch States.........cccovviiiiiii s 8-4
Detaching and Resuming Branches..............cccccocciiiiiiiiiiiieiceeeeeneeeieenenenenenas 8-4
Setting Client Database Nameccooeuiiiiiiiii e 8-5
One-Phase Versus Two-Phase Commit........cccccccoiiiiiiiiiiiiniiiiiiiceens 8-5
Preparing Multiple Branches in a Single Message..........c.cccoeeueueuiicurviniiinnvrirreeeeenne 8-6
Transaction EXAMPLES.........cccciiiiiiiiiiiiiiiiiicicc s 8-6
Initialization Parameters ... 8-6
Update Successfully, One-Phase COMMUL.........cccocoeuiuiiimiiieiiiiieicicieeieeeeeieeeeeeeeeeeeenas 8-6
Start a Transaction, Detach, Resume, Prepare, Two-Phase Commit.........cccccccevuriiiiinnnnne. 8-6
Read-Only Update Fails...........ccoooiiiii e 8-7
Start a Read-Only Transaction, Select and Commit.........cccccceueueuiiiiniiniinniiirrerenee 8-7
Password and Session Management ..o 8-7
OCI Authentication Managementcceueiiruiieiiiiicie e 8-7
OCI Password Management...........cccccueueriririiinireriniieiesreeeeeseseseseeeees s 8-9
Secure External Password StOre...........cccoviiiiiiiiiiiiiiiinii 8-9
OCI Session Management.........cccceueiiieiiiiieiiiieii s 8-9
Middle-Tier Applications in OCL.............ccouiiiiiiiiiiicccee e 8-10
OCI Attributes for Middle-Tier Applicationsccceeveveviieiiieiiiiiniiiiccc 8-11
OCI_CRED_PROXY ..ottt 8-11
OCI_ATTR_PROXY_CREDENTIALS........cceviiiiriiiiiniiiin s 8-11
OCI_ATTR_DISTINGUISHED_NAME........cccccecoiiininiiiiiiissnnes 8-11
OCILATTR_CERTIFICATEcocoiiiiiiiiiiciiicict s 8-11
OCI_ATTR_INITIAL_CLIENT_ROLEScceiiiiiiiiininiiiiciiessceecsi s 8-12
OCI_ATTR_CLIENT_IDENTIFIER.cccecoiiiiiiiiiiiniiiiiiicsssnsennes 8-12
OCI_ATTR_PASSWORD......cocoiiieiiiiicieiriicrncsie e 8-13
OCI Middle-Tier EXampPLecccccuiiiiiiiiiiiiiiicicicieieieecteeeeeeeeieeee e eaeeeaees 8-13
End-to-End Application Tracing ..o 8-15
OCI_ATTR_COLLECT_CALL_TIMEc.coiiiiiiiiiciiniiieirreiseisisecie s 8-15
OCIATTR_CALL_TIME......ciiiiiiiiiiiiiictc s 8-15
Attributes for End-to-end Application Tracing..........ccocoevvviviiiviniiiiiiniienes 8-16
Externally Initialized Context in OCT ... 8-16
Externally Initialized Context Attributes in OCT..........ccccccciiiiiiiiiiiiceecceeeeeeeees 8-16
OCILATTR_APPCTX_SIZE ...ttt 8-16
OCIL_ATTR_APPCTX_LIST ...ttt 8-16
Session Handle Attributes Used to Set an Externally Initialized Context....................... 8-17
Using OCISessionBegin() with an Externally initialized Context............cccocoeviieriiiininnnne. 8-17
Client Application COneXt.............cccoiiiiiiiiiiiiii e 8-19
Multiple SET OPerations.......cccccceucucuiuimeiiiiiiiicieieieieiciceieieieieeteieeeie e seseeseees 8-20
CLEAR-ALL Operations Between SET Operationscccceveueieeneieiiiiiiieieeieeiecceeennens 8-20
Network Transport and PL/SQL on Client Namespace..........ccccoeevevveniniiceieinecneeececnnee, 8-20

xi

9 OCI Programming Advanced Topics

Overview of OCI Multithreaded Development................ccccccooiiiiiiinii, 9-1
Advantages of OCI Thread Safetyccccciiiiiiiiicccceeeceeeeeeeeeeeeee e 9-2
OCI Thread Safety and Three-Tier Architecturesccoooiieieiiiieiiicc 9-2
Implementing Thread Safety ..., 9-2
Mixing 7.x and Later Release OCI Callscccccecuiiuiiiiiieieieciiieieiciceeeeiereneeeeneeeieeeeeeenes 9-3
The OCIThread Packagecccccooviiiiiiiiiiiiiiiiiiic e 9-3
Initialization and Termination ... 9-4
OCIThread COnteXtcoevriviiiiiiiiiiie e 9-5
Passive Threading Primitives...........ccoooooiiiiiiiii 9-5
OCITRIEadMULEXcvviiiiiiiii s 9-5
OCITRIEAAKEY ...ttt 9-6
OCIThreadKeyDestFUNC.........c.coiiiiiiii e 9-6
OCIThreadld.........cccoouiiiiiiiiiiiiiiii s 9-6
Active Threading PrimitivVes..........cccociiiiiiiiiiiiiiccccececeee e enenennes 9-7
OCIThreadHandleccooviiiiiiiiiiiiiii s 9-7
Connection Pooling in OCl ... s 9-7
OCI Connection Pooling CONCEPLS........ccocueueueuimiueiiicieicieieieieieieieieeeieieeeeeseeeeneeseeeseeese s 9-7
Similarities and Differences from Shared Server ..o, 9-8
Stateless Sessions Versus Statefull SeSSioNS...........ccouevirieiiiiiiciccicc 9-8
Multiple Connection POOLScccccciiiiiiiiiiicccccee e 9-8
Transparent Application FailoVer ... 9-9
OCI Calls for Connection POOINGcceiiuiiiiiiiiicie e 9-9
Allocate the Pool Handle ... s 9-9
Create the Connection Pool ... 9-10
Logon to the Database............cooiiiiiii 9-11
Deal with SGA Limitations in Connection POOLNEc.ccccccceueiiciiiiiieiiccececeeee 9-12
Logoff from the Databasec..cccoouiueiiiiiiciiiicicc s 9-12
Destroy the Connection POOL.............cooiiiiiiiii s 9-13
Free the Pool Handlecoviiiiiiiiiiic s 9-13
Examples of OCI Connection POOLNG..........ccviiiiiiiimiiiiiiiiicicicc s 9-13
Session Pooling in OCT ... 9-13
Functionality of OCI Session POOLNGcccouviviriiiiiiiririiiicrcccr s 9-14
Homogeneous and Heterogeneous Session POOIS ..., 9-14
Using Tags in Session POOIS..........ccccciiiiiiiiiiic s 9-14
OCI Handles for Session POOLNG.........c.cccccucuiuimiuiiiiiiiiiiiieieieiciccieieeeieeeeeeeeeeeeeeeeeseeeesee s 9-14
OCISPOOL ..ottt 9-14
OCTAUNINTO ..t 9-15
Using OCI SeSSi0n POOLNGc.cucuiuiiuimiiiiiiiiicicieiciecicieeeeeeieie et seeees 9-15
OCI Calls for Session POOLNG..........cccoviiiiiiiiiiiiiiiis e 9-16
Allocate the Pool Handleccoociiniiiiiiiiiiincciecee et 9-16
Create the POOI SESSIONccveviiiiiiiiiiciiic e 9-16
Logon to the Database............ccoiiiiiiiiiiiiii s 9-16
Logoff from the Databasecccccccviiiiiiiiiiiiiies 9-17
Destroy the Session PooL..........cccccciiiiiiiiiiiecceeeeeeee e 9-17
Free the Pool Handleccoooviiiiiiiiiiiiicc s 9-17

Example of OCI Session POOLNG..........cccociuiiiiiiiiiiiiiiiiiiiicc s 9-17

Xii

When to Use Connection Pooling, Session Pooling, or Neithercccccccoovninnnnnnn 9-17

Functions for Session Creation...........ccciiiiiiiiiiiiiiii s 9-18
Choosing Between Different Types of OCI SeSSIONSc.cccuiuemeuiiemceucuciiieieiciceieeieeeeeeneees 9-19
Statement Caching in OCL.............cocoiiiiiiiii e 9-20
Statement Caching without Session Pooling in OCT..........cccoooiiiiiiiiiiie, 9-20
Statement Caching with Session Pooling in OCT............cccccovvviiinnnirrrrccerreeeeeees 9-21
Rules for Statement Caching in OCT..........c.cooiiiiiiiiii 9-21
OCI Statement Caching Code Exampleccooiiiiiicc 9-22
User-Defined Callback Functions in OClI ..o 9-23
Registering User Callbacks in OCTcooiiiiiiiiiiiiiiccc e 9-23
OCIUserCallbackRegistercceuiiiiiiieiiiciec s 9-24

User Callback FUNCHONcouiviiiiiiiii s 9-24
UserCallback Control FIOWccoiiiiiiiiiiiicc s 9-25
UserCallback for OCIEITOIGEL()c.evveuerueuerieririerinieiinieienieienteresteieseeieseeieseeseseeseseese s saeseneene 9-26

Errors from Entry Callbacks........ccccoocviiiiiiiiiiiiiiicccccccece s 9-26
Dynamic Callback Registrations.............ccooirieiiiiiiiiiiiiicic 9-26
Loading Multiple PACKageSscccoeiiriieiiicieie it 9-26
Package FOIMAtcccciuiiiiiiiiiccccccccee e 9-27

User Callback Chainingcooeiiiiiiiiieiiiicice s 9-28
Accessing Other Data Sources Through OCLL.........cccoooiiiiii 9-28
Restrictions on Callback FUNCHONSccooviiiiiiiiiiic 9-28
Example of OCT Callbacks.........cccciiiiiiiiiiiiiiiiiiiicii s 9-29

OCI Callbacks from External Procedures...........ccccoiiiiiiiiiininininiiiiiiccceceeens 9-30
Transparent Application Failover Callbacks in OCIcccoecniinininnineieeeeeeeeenene 9-30
Failover Callback OVeIrVIEW ..ottt s 9-31
Failover Callback Structure and Parameters...........ccccccovvviviiiiiiiiiiiii 9-31
Failover Callback RegiStrationccccovueuiiiiriririniiiiiiicccrrcc s 9-32
Failover Callback EXampleccoouiiiiiiiiiiiiiiicccc s 9-32
Part 1: Failover Callback Definitionccccoceiiiiiiiiiiiiiiicccccccees 9-32

Part 2: Failover Callback Registration...........ccccccceuviriiiininriiniiirccecececcreeceeeeeees 9-33

Part 3: Failover Callback Unregistrationccccovvvviiiiiniiniiiicccccc 9-34
Handling OCI_FO_ERRORccccceieirimiiiiririiiieieinitieerieesie ettt 9-34
HA Event Notification...........cccoooiiiii s 9-36
OCIEvent Handle...........cooiiiiiiiiiic s 9-36
OCI Failover for Connection and Session POOIS............cccccccciiiiiiiiiiiiicceeeeeees 9-37
OCI Failover for Independent CONNECIONScccuiuiemiuiuiueuiieieieieeeceeieieereieieeieneeereeenees 9-37
Event Callbackccvieiiiiiiiiiiiiicicc s 9-37
Custom Pooling: Tagged Server Handles...........cccccoiuiiiiiiiiiiiiiiiiiiiiccnccccccees 9-38
Event Notification EXample........cccoociiiiiiiiiiiiccccceeeieee e 9-38
Determining Transparent Application Failover (TAF) Capabilities..........cccocovvverririrninnnnnee. 9-39
OCI and Streams Advanced QUEUING...........ccccocciiiiiiiiiiiiiic e 9-39
OCI Streams Advanced Queuing FUNCHONScccciiiiiiiiiiicccccceccceeeeceees 9-40
OCI Streams Advanced Queuing Descriptors..........coovriiiiiiiiciiiiiiiiecccceees 9-40
Streams Advanced Queuing in OCI Versus PL/SQL.........ccccccooiiiiiiiiiiiiiciine, 9-40
Buffered MeSSAZINGc.ccceuiuiiiiiiiiiiriiiciicieceeeeee s 9-44
Enqueue Buffered Messaging Example..........c.cccoovvviniiiniiiniians 9-44

Array Enqueue Buffered Messaging Exampleccccocovvinininninniiinnnne, 9-45

xiii

10

Xiv

Dequeue Buffered Messaging Example..........ccccccoeeiiiniiiiiiiiics 9-45

Array Dequeue Buffered Messaging Examplecoooiiiiiiiic 9-46
Publish-Subscribe Notification in OCI ... 9-47
Publish-Subscribe Registration Functions in OCl ..o, 9-48
Publish-Subscribe Register Directly to the Database............ccccooeiniiiiiiniiiiic 9-48

Open Registration for Publish-Subscribe ... 9-49

Using OCI to Open Register with LDAP........cccoooiiiiiiii 9-50

Setting QOS, Timeout Interval, Namespace, and Port Numberccccccevvvviiiinininnnnn. 9-51

OCI Functions Used to Manage Publish-Subscribe Notification.........c.cccccccccceuiuecnnnnne. 9-52
Notification Callback in OCI ..o s 9-52
Notification Procedure ..o 9-53
Publish-Subscribe Direct Registration Example........cccccccoccuiiieiiiiiiiiiiceeccciceeeeeeenens 9-53
Publish-Subscribe LDAP Registration Example...........ccoooooiiiiiiiiiiiic, 9-58
Database Change Notification.............ccooovviiiiiiiii 9-61
Registering for Database Change NoOtificationcccccccoccciciiiinniniiirrrcerreeerenes 9-61
Subscription Handle Attributes for Change Notificationccooovoiiiiiiiiciiiiice, 9-62
Change Notification Descriptorcouiiireiiiiiiciice 9-63
Database Change Notification EXxample ... 9-64
Database Startup and ShutdoOWn ... 9-72
Examples of Startup and Shutdown in OCI...........cccooiiiiiii e, 9-73

OCI Object-Relational Programming

OCT ODBJeCt OVEIVIEWouiiiiiiiiiiiiiici et 10-1
Working with Objects in OCI ... 10-2
Basic Object Program SErUCHUIEccoueviiiieiieici 10-2
Persistent Objects, Transient Objects, and Values...........cccooiriiiiiiiiiiccc e 10-3
Persistent ODJECtc.c.cuiuiuiiiiiiiccec e 10-4
Transient ODJECtS.........coiiiiiiiii s 10-4

VALUES ..ot s 10-5
Developing an OCI Object Application ... 10-5
Representing Objects in C ApPlicationscccoevvviiiiiieiiiiiiiiiiics 10-5
Initializing Environment and Object Cache...........cccccccoviiiiiiiiiiiiiiiiicince, 10-7
Making Database CONNMECHIONS.........ccccuiuiiuiiiiiiiieiecceeeeeeee et senenens 10-7
Retrieving an Object Reference from the Server ..., 10-7
PInning an ODBJECtc.cciuiiiiiiiiiiiiiiiiicc s 10-8
ATTAY PN 10-9
Manipulating Object AttriDULeScccvviviviiiiiiiiiiiiec s 10-9
Marking Objects and Flushing Changes.............cccceceviviiiininninnninincccceceees 10-10
Fetching Embedded ODbJectsc.cccoeiiiiiiiiiiiiiiicccccrrccere s 10-11
Object Meta-AttribUtes ..o 10-12
Persistent Object Meta-Attributes...........ccceviiiiiieiiiiccc e 10-12
Additional Attribute FUNCHONSccooiviiiiiiiicc 10-15
Transient Object Meta-Attributes ... 10-15
Complex Object Retrieval ..o 10-15
Prefetching ODJECESc.ccviiiiiiiiciriicicccerce e 10-17
Implementing Complex Object Retrieval in OClcccccovvviiiiiniiniiiine 10-17

COR PrefetChing.......c.ccvvviiiiiiiiiiiiiiiiiiciiciiic e 10-18

11

Q@) 2 1 4113 7= Vel < PR RR 10-18

Example 0f COR......couiiviiiiiiiic s 10-19

OCI Versus SQL Access to ODJECES ..o 10-20

Pin Count and UNpPInning..........coeeueiiiiieieiiieieiccie i 10-21
NULL INdicator SLIUCUTE......c.cuvviiiiiiiiiiciii e 10-22
Creating ODbJECES ..o 10-24
Attribute Values of New ODbjJectsccovviiiiiiiiiiiniiiiiiiiccccs 10-24

Freeing and Copying ObJECtSc.eviiuriiiiiiiieiicci e 10-25
Object Reference and Type Reference.........c.ccccccciciiiiiiiniiiiiccccceeeeeeeeeeeeeeeses s 10-26
Creating Objects Based on Object Views or User-Defined OIDs............ccccoovviiiiiiiinnnnes 10-26
Error Handling in Object Applications...........c.oocruiioiiiicieiiccecce 10-27
Type INheritance ... 10-27
SUbSHHULADILILYvveeei e 10-28
NOT INSTANTIABLE Types and Methods...........ccccccovvviinninniniiiiin 10-28
OCI Support for Type INheritance.........c.cccccucceiiiiriiiiicerreeeeeeree s 10-29
OCIDESCIIDEANY () cv.vvvveviriiiiciciciiice s 10-29

Bind and Define FUNCHONScccooviiiiiiiiiiiiiiiiiiics 10-29
OCIODbjeCtGEtTYPEREL() . ..vevvviieiieicicieieieieicceireee e 10-29
OCIODJECHCOPY (). veverererrrerererereriieieieieieie ettt 10-29
OCICOIASSIGNEIEM() ...ttt 10-30
OCICOHAPPENA()...vvvieriiiierirreeerer et 10-30
OCICOIGELEIBIN() .ttt sttt ettt sttt s st sttt et et eseeaeaee 10-30

OTT Support for Type Inheritanceoooeiiiiiiie 10-30
Type EVOIULION ... s 10-30

Object-Relational Datatypes in OCI

Overview of OCI Functions for Objects.............cccoviiiiniiiiiiiiii 11-1
Mapping Oracle Datatypes t0 Cccccoiiiiiiniiiiiiii s 11-2
OCI Type Mapping Methodologycccueiirrieiiiiiiiiec 11-3
Manipulating C Datatypes with OCIcccccviiiiiiiiiiis 11-3
Precision of Oracle Number Operations............cccviuiieiiiiiiiiiiiiiiiiecceeee s 11-4
Date (OCIDALE)cucueuiiiiciiiiiceee ettt ettt et 11-5
Date EXAMPLe.....c.ooviiiiiiiiiiiiiiii s 11-5
Datetime and Interval (OCIDateTime, OCIInterval)cccccooeviieiiiiiieciiiciece e 11-6
Datetime FUNCIONScoviiuiiiiiiiciiciiccc e 11-7
Datetime EXamPIe......ccciiiiiiiiiiicecccceeeeeeee ettt s 11-8
Interval FUNCHONScouiviiiiiiiiiiicicicic s 11-9
Number (OCINUMDET)c.ccocuriiiiiiieieiireeetee ettt ettt 11-9
OCINUMDET EXAMPIES ... 11-10
Fixed or Variable-Length String (OCIString)ccoviiinniiiiiiiiicc 11-12
StrinNg FUNCHONS.cvviiiiiicc e 11-12
SHANG EXAMPLE ..ot 11-12
RAW (OCTRAW) ...oviiiniiiiiiititiiictci ettt s s s s s et s s s et s b sa sttt ss st st s sttt 11-13
RAW FUNCHONS ..ot 11-13
RaW EXAINPLE ... 11-13
Collections (OCITable, OCIArray, OCIColl, OCIIter)ccccceviririiiininiiiiiniiiciicccies 11-13
Generic Collection FUNCHONS.c.cieiiiriiiiriiecitcieerece et 11-14

XV

12

XVi

Collection Data Manipulation FUNCIONS..........ccccoviviiiiiniiiiii 11-14

Collection Scanning FUNCHONS ..ot 11-15
Varray/Collection Iterator EXamplecccooviiiinninnnr e 11-15
Nested Table Manipulation FUNCIONS..........ccccovviiiiiiiiiiiii 11-16
Nested Table Element Orderingcccccooirieiiiiiiiiiicee s 11-16

Nested Table LOCAIOTScoviiiiiiiiiiiiic s 11-17
Multilevel Collection TYPeS..........cccociiiiiiiiiiiiiiiiiiici s 11-17
Multilevel Collection Type EXample...........ccoouoiiiiiiiiiiiiciiccecc 11-18
REF (OCTRES) ..ottt e 11-18
REF Manipulation FUNCHONS..........cccoviiiiiiiiiiiiic e 11-18
REF EXQAMIPLE ..ottt 11-19
Object Type Information Storage and ACCeSs..............ccceiviviiiiiiiniiiiiiiiies 11-19
DesCriptor ODJECESucviviviiiiiiiiieiicicccc 11-19
AnyType, AnyData and AnyDataSet Interfaces..............cccccoooiiiiiiniin, 11-20
TYPE INTETTACES ...t 11-20
Creating a Parameter Descriptor for OCIType Calls.........cccooeueiirieieiiiiiciiicce 11-21
Obtaining the OCIType for Persistent Typesccccceueoiireiiiniiiiiiccecce 11-22

TYPE ACCESS CallS.....ooiiiiii e 11-22
Extensions to OCIDeSCIIbEANY ()ccovveviviiiiiiiiiiiiiiiiiiiiini e 11-23
OCTAnyData INterfacescooiiriiiiicii 11-23
NCHAR Typecodes for OCIAnyData FUNCHONSccccceuvirieiiiiiiriiiirrrcceeeeeereeeees 11-24
OCIAnyDataSet INterfaces...........ocoeuvvueiieiniiiiieiicc e 11-24
Binding Named Datatypes ... 11-25
Named Datatype Bindscccooouiiiiiiiiiiir e 11-25
BINding REFS......cooiiiiiiiii e 11-25
Information for Named Datatype and REF Binds..........ccoooovoiiiiiiiiicc 11-26
Information Regarding Array Binds ..o 11-26
Defining Named Datatypes ..o 11-26
Defining Named Datatype Output Variablescccooooiiiiie, 11-26
Defining REF Output Variables ... 11-27
Information for Named Datatype and REF Defines, and PL/SQL OUT Binds................... 11-27
Information About Array Defines..........ccccccciiiiiiiiiiiiiiniiiics 11-28
Binding And Defining Oracle C Datatypes............cccccoceiiiniiiiininniiicias 11-28
Bind and Define EXamples...........cccccoviiiiiiiiniiiiiiiiiiiii s 11-30
Salary Update EXamMPILEsccccciiiiiiiiiiiiiiiiiiiiiinccess e 11-31
Method 1 - fetch, CONVETt, ASSIGNcucuiuiuiiiiiiiiiiiiiiciciccreec s 11-32
Method 2 - fetch, @SSIGNcccuiuiiieiicicc s 11-32
Method 3 - direct FEEChc.veuiiiiciicccccc e 11-33
SUMMATY ANd NOTES ..o 11-33
SQLT_NTY Bind/Define EXamplecccocccoiimiiniiiniiinincnenetneeeeeeeeereeere e eeene 11-33
SQLT_NTY Bind EXamplecccccoviviiiiiiiiiiiiiiiiiiiiiiii s 11-33
SQLT_NTY Define EXample.......cccccuiiiiiiiiiiiiiiiiiieeceereeeeeieeeeieeee e 11-34

Direct Path Loading

Direct Path Loading OVerview ... 12-1
Datatypes Supported for Direct Path Loadingc.ccccceveieiniiiiiiiiiiiic 12-2
Direct Path Handles........c.ccoiiiiiiiiiiiiceteceetetceseeeeee et 12-3

) D) N=Tel o i U W @0) 415 s SRR 12-3

OCI Direct Path Function Context...........cocoviiinniiiiiiiiinins 12-4
Direct Path Column Array and Direct Path Function Column Arraycccccceueuvveeenee. 12-4
Direct Path Streamcooiviiiiiiiiic s 12-5
Direct Path Interface FUNCHONSccccoiviiiiiiiiiii s 12-5
Limitations and Restrictions of the Direct Path Load Interfacecccccocouovivviiiiiinnnnnnn, 12-6
Direct Path Load Example for Scalar COlUMNSccccoevevviiiiiniiiciiiiiie 12-7
Data Structures Used in Direct Path Loading Exampleccooooiiiiniiiieiiniics 12-7
Outline of an Example of a Direct Path Load for Scalar Columnscccccccceuruvueueuennnne. 12-9
Using a Date Cache in Direct Path Loading of Dates in OCIc.c.ccooiriiiiiiiiiiiine, 12-11
OCI_ATTR_DIRPATH_DCACHE_SIZE........ccccesiiiiiriinininiiecisiicesnessecenes 12-12
OCI_ATTR_DIRPATH_DCACHE_NUMcccceviiiiriiiiiininisceesicennnnas 12-12
OCI_ATTR_DIRPATH_DCACHE_MISSESccccoovvmviiiiniiiiiiiicnnccs 12-12
OCI_ATTR_DIRPATH_DCACHE_HITScccoviiiiiiiiiiiicsiceeesieees 12-12
OCI_ATTR_DIRPATH_DCACHE_DISABLEccceceiviiiiiiniiicccceais 12-12
Direct Path Loading of Object Types ... 12-12
Direct Path Loading of Nested Tablesc.cooiiiiiiiiiicc 12-13
Describing a Nested Table Column and Its Nested Table............cccooeoiiiiiiiiinncncnes 12-13
Direct Path Loading of Column Objectsccccoiiiiiiiiiii e, 12-14
Describing a Column Object...........ooiiiiiiiiec s 12-14
Allocating the Array Column for the Column Objectccccevuviiiivinniinniirrrcaes 12-15
Loading Column Object Data into the Column Arrayccccooveeieiniicicieiiiceice 12-15
OCI_DIRPATH_COL_ERROR......c.cceioiiiiriiiiiiiiiieiiee i 12-16
Direct Path Loading of SQL String COIUMINScccccviiiiiiiiiciciicceceecnceneieeeenenes 12-16
Describing a SQL String COIUMNcoviiiiiiiiiicce s 12-17
Allocating the Column Array for SQL String Columns...........ccccoveieiiieiiiciciiiiccieae 12-18
Loading the SQL String Data into the Column Arrayccccocevevvvvvrnnnrnnreeeenes 12-18
Direct Path Loading of REF COIUMINScccccvviiiimiiiiiiiiccsssennne 12-19
Describing the REF COIUMI........c.cvoiiiiii s 12-19
Allocating the Column Array for a REF Column.........ccccccoeiiiiiiinniinccrcrecees 12-21
Loading the REF Data into the Column Array ..o 12-21
NOT FINAL Object and REF COIUMNS........ccocouviviriiiiiiiiiiiiinciinic e 12-22
Inheritance Hierarchy Diagramccccoceviiiiiiiirininiiinncrre e 12-22
Describing a Fixed, Derived Type to be Loadedccccooiiiiiiiii 12-23
Allocating the ColuMN ATTaYcccccciiiiiiiiiiiiiiiiicr s 12-23
Loading the Data into the Column ATTayccccccecirririririrnrieeeeeeeereeeeeeeeseeenes 12-23
Direct Path Loading of Object Tables..........ccoouoiiiiiiiiiiiiiie 12-23
Describing an Object Table..........cccccciiiiiiiiiiiiiiiiiiiii s 12-23
Allocating the Column Array for the Object Table...........cccocooeiiiiiiniiiiiiiciiceenes 12-24
Loading Data into the Column Array........ccooooeueveiiiiiioiiiiec e 12-24
Direct Path Loading a NOT FINAL Object Table.........cccoovviiiiiiiniiiiiiicceccece, 12-24
Describing a NOT FINAL Object Table.........ccciiiiiiiiiiiciiciiccccccceeceeenenes 12-24
Allocating the Column Array for the NOT FINAL Object Tablecccoevvviiiininnns 12-24
Direct Path Loading in Piecesccccoooiiiiiiiiiiiiiiice e 12-25
Loading Object Types N PIECES........cccocuimimiimiiiiiiiieiciciciccceieeee et 12-25
Direct Path Context Handles and Attributes for Object Types..........cccooviiiiiiiiiiiiennn. 12-26
Direct Path Context Attributes..........cccooviiiiiiiiiiii e 12-26

xvii

OCI_ATTR_DIRPATH_OBJ_CONSTR.....cccectrtetrieiinierirerinretnreeneenieeereesreseeeeeneeeneneene 12-26

Direct Path Function Context and Attributescccooviiiiiiiiiiiicce 12-26
OCI_ATTR_DIRPATH_OBJ_CONSTR.......cccoitrriimimiriirininiiinicecce s 12-26
OCLATTR_UNAME ... s 12-26
OCIL_ATTR_DIRPATH_EXPR_TYPEccceoiuiiiiiiiiiiiiicncene s 12-27
OCIATTR_NUML_COLS......cootiiiiiiinieinics s 12-28
OCLATTR_NUM_ROWSciiiiiiiiiniiiii s 12-29

Direct Path Column Parameter Attributes............cccooeiiiiiiiiiiiiiiie 12-29
OCILATTR_UNAME ... 12-30
OCI_ATTR_DIRPATH_SID ...ttt 12-31
OCI_ATTR_DIRPATH_OIDooiiiiiiiiiciriiiisiiciiisie i 12-32

Direct Path Function Column Array Handle for Non-scalar Columnsc.ccceevvvreencnce. 12-32
OCIL_ATTR_NUM_ROWS AHIIDULEoviviiiiiiiiciicans 12-32

13 Object Advanced Topics in OCI

The Object Cache and Memory Management...............cccocovvvviiniiiiiiiiiiinics 13-1
Cache Consistency and CORerency............ocooeueieiiicieiiiiccece e 13-3
Object Cache Parameters...........ccociiiiuiiiiiiicecceeeee e eeeees 13-4
Object Cache OPerations. ... 13-4

Pinning and UNpPInmingcooeiiiiiiceeee ittt 13-4
FIOEINE ... s 13-4
Marking and Unmarkingcccceueuiiimirieiiieieeeci et 13-5
FIUSIING ..o 13-5
RETESIINE ...ttt 13-5
Loading and Removing Object COPIeSscoccueveiiiiriiiiiciecici e 13-5
Pinning an Object COPY ..ot 13-5
Unpinning an ObJect COPY ...t seseseseseaenens 13-7
Freeing an Object COPYooriiiiieiiicicie s 13-7
Making Changes to Object COPIes........ccocueiiiiiiiciiiiicicic e 13-7
Marking an ObJECt COPYc.cueueueuruimiueirieieiiieieieieieiciete ettt eeees 13-7
Unmarking an Object CopPYccoieiiiiiieic s 13-8
Synchronizing Object Copies With SEIVer ... 13-8
Flushing Changes t0 SETVETc.cciiiiiiiiiiiicccceeree et enenees 13-8
Refreshing an Object COPYcvvirieiiiiiicieiect s 13-9
ODbjeCt LOCKING ..ot 13-10
LOCK OPHONS.oviiiiiciiciccr sttt 13-10
Locking Objects For Update...........ccccoeiviiiiiiiiiniiiiiiiii v 13-10
Locking with the NOWAIT OpHion.......cccooiviiiiiiniiiiiiiicccccccicceceenennes 13-10
Implementing Optimistic LOCKINGc.cccceiiiiiiiiriiiiiiiiccrcrecre s 13-11
Commit and Rollback in Object Applicationsc.cccovvviiiniiiiiiiiiccccccccne 13-11
ODbject DUTAtIONovviiiiiiiiiic e 13-11
Durations EXampPLeccoeeiiiiiiiiiiiiincrr e 13-12
Memory Layout of an INStancec.oceuieiieiiiieiiiice e 13-13

ODbject NavIGation ... 13-14
Simple Object NavIGationccccccceuiuiuiiiiiiiiiieiieiereee e 13-14

OCI Navigational FUNCHONS ..o 13-15
Pin/Unpin/Free FUNCHONS.........cccciiiiiiiiiiiiiiic e 13-15

xviii

14

Flush and Refresh FUNCHONScocuvviiieieieieeeeeeeeeeeeee et e senae e s enes 13-16

Mark and Unmark FUNCHONScccovviviiiiiiiiiiiiicce 13-16
Object Meta-Attribute Accessor FUNCHONS.........c.cccoccuciciiiiiiiciccccceeeeeeseee e 13-16
Other FUNCHONScviiiiiiiiii s 13-16
Type Evolution and the Object Cache.............ccccooiiiiiiiiiiie, 13-17
OCT SUPPOTt O XIML......ooeiiiiiiiiiiiieereeree ettt 13-17
XML CONEEXE ..ottt 13-18
XML Data 0n the SEIVET ..o 13-18
Using OCI XML DB FUNCHONSccuiuiiiiiiiiiiiiic s 13-18
Using the Object Type Translator with OCI

OTT OVEIVIEW ..ottt 14-1
What Is the Object Type Translator?.............ccccccooiiiiiiiiiiiiniii s 14-2
Creating Types in the Databasecccoooiiiii 14-4
INVOKING OTT ..ot 14-4
Command LINe.......cociiiiiiiiiiiiii e 14-4
Configuration File ... 14-4
INTYPE FAle .ot 14-4

The OTT Command LiNe...........cccccooioiiiiiiiiiiiii s 14-5
OTT Command Line Invocation Example............ccoooeuiiiiiiiiiiiiccc e 14-5
OTT o 14-5
USERID ...t 14-5
INTYPE ..o bbb 14-5
OUTTYPE ..o 14-5

CODE ...ttt 14-5

HFILE ..ot bbb 14-6
INITEILE.......oiiiiiiieeiiceec s e 14-6

The INtype File ..o 14-6
OTT Datatype Mappings.........cccccovvieiiiiniiiiiciiinecee ettt aene s 14-8
Mapping Object Datatypes t0 C.....c.cccciuiiiiiiiiiiciiiciceicceeeeeee e aenas 14-8
OTT Type Mapping EXample........ccccoviiiiiiiniiiiiiiiiiiii s 14-10
INUIL INAICATOT SEEUCESeeviiiiicicicieictc ettt 14-12
OTT Support for Type Inheritanceccccceciiiiiniiierre s 14-13
Substitutable Object Attributes........cccccvviiiiiiiiiiii 14-15

The Outtype File.........ccoooiiiiiiiiiii e 14-15
Using OTT with OCI Applications...........cccoviiiiiiiiiiiiiiiii s 14-16
Accessing and Manipulating Objects with OCIccccooiiiiiiiiiie 14-17
Calling the Initialization FUNCHOMN..........cccoviiiiiiiiiiiiccc e 14-18
Tasks of the Initialization FUNCHON ... 14-19
OTT Ref@IONCE ... 14-19
OTT Command Line SYNtaX.......cccoeeuvviriiiiiiiiiiiiiiiiiiiin s 14-20
OTT Parameters........ccoeuiiiiiiiiiiiiiiiiiici e 14-21
USERID.....oiiiiiiiii s 14-21
INTYPE ..ot 14-21
OUTTYPE ..ot 14-22

CODE ...t 14-22
INITEILE ..ottt 14-22

Xix

HFILE ... 14-23
CONEFIG ..ottt 14-23
ERRTYPE ...t 14-23
CASE .. 14-23
SCHEMA _NAMES ..o 14-24
TRANSITIVE ..ot 14-24
URL bbb 14-24
Where OTT Parameters Can APPEAr ... esesesenesenenenens 14-24
Structure of the Intype File ..o 14-25
Intype File Type Specificationsocoeueiiiiiieieiiiiccc s 14-25
Nested Included File Generation........c.cccouiiiiiiiiiiiiiicc s 14-26
SCHEMA_NAMES USAZEcoovrimiiiiiiiiiiiniiiiisisc s sssssssss s 14-28
Example: Schema_Names USage.........cccooueuiiirieiniiiiciciicciee s 14-29
Default Name Mappingcccceeirrriiiirnnnnrrreer st 14-30
OTT Restriction on File Name COmpPariSOmn..........ccveeieieieiiiiieinieieiiiieeesesensees 14-31

15 OCI Relational Functions

Introduction to the Relational FUNCHONS...........ccooiiiiiiiiiiiiieeeeeeeeeeeee e 15-1
Conventions fOr OCT FUNCHONSecueiiieieieiiiieiesie sttt ettt ettt st sttt s e ebe s 15-1
PUTPOSE ... s 15-1
SYTEAX ..ttt 15-1
PaT@IMELETS ...ttt et bbbt et b et h et she et st e e sae s 15-1
COMMNIMIEIIES ...ttt ettt ettt ettt ettt b bbb bbb et et et et ebeebeebesbeebeebenbenaennen 15-2
REEUITIS -ttt ettt et bt et st et s bt et e s bt e e e sbeesaesaeeaesuees 15-2
EXAIMNPLE .o 15-2
Related FUNCHOMNSveieiiieiiieiieieieieeie ettt ettt b et b et se e b be e ene 15-2
Calling OCT FUNCHONSvuiuiiiiiicictct ittt 15-2
Server Round Trips for LOB FUNCHONScocouiiiiiiiic e 15-2

Connect, Authorize, and Initialize FUNCHONScccoooiiiiiiiiiicec e 15-3
OCTAPPCEXCLEATALL) ..vvvivieiiciieieicicieee s 15-4
OCTAPPCEXSEL() vttt 15-5
OCICONNECHONPOOICTEAE() .vevvevrerrerieererierieieririeestestestessessestestessesteseeseesessessessessessessessessessessesseses 15-7
OCIConNectioNPo0IDESIIOY()ovveviviriririiiriiiiiiiiiiciicitieit s 15-9
OCTDBSNULAOWIN() c.evenveveneerenierenteieniestrtes ettt sttt sttt ettt et bbbt eb st e bt st e st sebebesessenessens 15-10
OCIDBSLATUP() «.vcvvvvriniiiiieiiiisiicc s 15-12
OCTENVCTEALE() veuveneententeteieeiteteete ettt sttt et ettt ettt sttt et et e b et et e e e bt e bt e b e sbe st e b et et et et et ebeebeebenee 15-13
OCTENVINE().1vvevrveveieeirieisieristerestestetestesetesessesestesessesessesessesassesassesessesassesessessssessssesssesssessssesessenes 15-16
OCTENVINISCIEALE() ..vvevreereerrrierirrirsesiestestetesteseesessessessessessessessessessesesssssessessessessessessessessessesessassenss 15-18
OCTINTHATZE() +evvevenerrenerreirieirieietesteetetetetetetestetestesessesesesesesessesessesesesesesesseneaseneesenssesessesessenes 15-22
OCTLOGOLE() - veevvirireieteeriiicie ettt 15-24
OCTILOZON() «vvrvvviniiiiinciiiic st 15-25
OCILOZONZ() w.vvvriieieieieieieieiesee et s s aeni 15-27
OCTSEIVETALEACK(). . vvevevteeeirieiirietrie ettt ettt ettt ettt sttt bbbt se s 15-30
OCISEIVEIDELACKH() . vevvevverierieieieietietestet et ettt ettt b e b e b e sestesaeseesesseesessessessessessesseseasensenes 15-32
OCISeSSIONBEZIN()....cvovevivieiireiiiicicicictc st 15-33
OCTSESSIONENA() «.venveviniriieiiieierieerie ettt ettt ettt ettt ettt ettt b ettt s b s bens 15-36

XX

OCTISESSIONGEL() ..veneenienienteieeieeteetertee ettt ettt ettt st s b e b sttt e e et e st e st e besbesbeebe st e se et et entebeebebenee 15-37

OCTSESSIONPOOICTEALE() -..vevvveeivenirreieieieietet ettt ettt et eb ettt et bt sa et ae st sbe e seaesenes 15-40
OCISesSiONPOOIDESLIOV().....vverveiiririirireririresieeeerese ettt 15-43
OCISESSIONREIEASE() -vvvenvenienteniriiriintintirtertete ettt ettt ettt st te st et et et bt eb e besbe st e b e b eaeneebebenee 15-44
OCTTEIMINATE() c-vververeierinierinteiirtetertee ettt ettt ettt ettt b et b bbb bt eb et e st st ebebesesenensenes 15-46
Handle and Descriptor FUNCLIONSccooiiiiiiiiiiiiicceeeeceeeeee e 15-47
OCTAIIIGEE() c-vevenveverererierirterirteserteststestetestetestetestetestese st eseneesestesensesensesensesessesenseseasenesenesesersesesenes 15-48
OCTATIISEL() euvevenrererieririeieieirtetstetetetetetetestesestesestesesesessesassesessesarsesesesesessasaseasessesessnsessnsaseseses 15-50
OCIDESCIIPLOTALLOC().cvvvevevvmeuemiieicicieieieieteetete ettt 15-51
OCIDeSCIIPLOTETEE() ...ttt 15-53
OCTHANAIEATIOC() -ttt ettt ettt et eb ettt sttt se et sae st b esbesesens 15-54
OCTHANAIEFTEE() c.vevvevieereeeeeieiietieistiietestetetestesestte e ssestessessessessesseseessessesessessessessessessessessesensensenns 15-55
OCTPATAIMGEL() c-veuvemeeneereemerieeteeter ettt ettt ettt bttt ettt et et e bt e bt e b sbe st e st e st e ne e st esteneebeebebenee 15-56
OCTPATAMISEL() ..evvenereeereieieietetetertesentes ettt sttt ettt ettt eb et be bbb bt eb et e bt st ebebesensenensenes 15-58
Bind, Define, and Describe FUNCHONSooooviiiiiiiieiiceeeec e ene e e enes 15-59
OCIBINAATTayOfStruct() ..cveveveviieiiiiiciciciciciic s 15-60
OCIBINABYINAIME() ... 15-61
OCIBINABYPOS() «..evevvvieeiieieiririeieirieirieiseeesis ettt 15-65
OCIBINADYNAMUEC() cv.vovevevevivireieiiieieieieieiieiseee s 15-69
OCIBINAODIECE() ..vvvvviviiieiiiiiiei bbb 15-72
OCIDefiN€ATTAYOLSEIUCE() ..vvvevvrieirieirieeeirreeeceerr e 15-74
OCIDefiNeBYPOS()cveviveiiiiiriiiiiiciiicciic s 15-75
OCIDefineDYNamiC()cciviviiiiiiiiiiiiiiiiiiii s 15-79
OCIDEfINEODIECL().....vvvevereeeiririceeieieerece et 15-81
OCIDESCIIDEAINY () ...vevvveviieieiciicicicietc s 15-83
OCIStMEGEBINAINTO()..veveveverirerieieieieieieietet et etest ettt eressesesae e s e sesesesesseseesessesessssasenseses 15-86

16 More OCI Relational Functions

Introduction to the Relational FUNCHONS...........cccooiiiiiiiiiiee e 16-1
Conventions fOr OCT FUNCHONSccveveieieiiiiieieiesiestetetetesteeeeseesesseesessessessessessessessessesessessenses 16-1
PUIPOSE ..ottt 16-1
SYINEAX .ttt 16-1
= =N 411 = S ST 16-2
COIMIMENES ...uvieivieiieteeiteste ettt ete st et e s e ebe s e ebeeteessaeseesseeseessessaessesssassesssesseessansaessensesssenseessesseessenses 16-2
REEUITIS .ttt et s e et e bt e s be e tae et e e saseesbeesbaeesbaesseesssaassaenseesnsaeseennss 16-2
EXQIMIPLE ... 16-2
Related FUNCHONScovieieiicieie ettt ettt s re s s ae e ae s te e e ss e baesaessaeseessesseessanneas 16-2
Calling OCT FUNCHONSccuimiiiiiiiiiiiiiiciiiiiciccie s 16-2
Server Round Trips for LOB FUNCONSccoueviuiiiiririiiiiircccceecreeesee s 16-2

Statement FUNCHONScoooviiiiiieeeceee ettt ettt sae et e s e s te e b e baessesseesseesnensenns 16-3
OCTSEMEEXECULE() .. cvvveveneieniieiirieteietei ettt ettt ettt bbbttt b et b et b st e b st e b e b b e ene 16-4
OCTISEMEFETCN() 1.vtveeviiiieieieieteteteteese ettt et et et e e eseeseesessessessessessessessessassessasesssnsensessensenses 16-7
OCTSEMEFETCNZ() ..ttt ettt ettt sb e bbbttt e e et e e st e b besbesbeaan 16-8
OCTStMEGELPIECEINTO() ... euvvirveeiieiirieirieirie ettt ettt ettt ettt ettt s s nes 16-10
OCISEMEPTEPATE()....cvvviiiiiiciiiiii e 16-12
OCISEMEPTEPATE2()....vvviiiiiciiiiiiic e 16-14
OCTSEMEREIEASE() .nveveneveniereieriteierteitste sttt sttt sttt et ettt ettt b et eb st et s b eseabesebesensenn 16-16

XXi

XXii

OCTISEMESEIPIECEINTO() . ueueeetrteriieiieierieteetet ettt et ettt e be b e 16-17

LOB FUNCHONS ...ttt et b et b ettt e sbe et e sbe et e s bt e besbeenbe s bt eaesbeens 16-19
OCIDUrationBegin().........ccceeiiiriiiiiiiiiiiiiiiii e 16-22
OCTIDUTratioNENA() c.veeeieieeeiieieeeeeee ettt ettt st ettt et ebe b e 16-23
OCILODAPPENA() ..viviiimiiiiiiiiciicrit s 16-24
OCILODATITAYREAA() ..vovveriiieiiicicicieeeee et 16-26
OCILODATITAYWIILE() ..vevevveviviiiiiciciciciciciccc s 16-30
OCILODASSIZN()...vcviviiiiiiiiciicii s 16-34
OCILODCRATSEFOITIN) .vevvevveereeierieietietisiistesteteteteteseesassessessessessessessesseseesessessessessessessessessessesenss 16-36
OCTLODCRATSELIA() -vnteueemeeneeieeterieeieeiertetet ettt ettt et st sb s bbb e e ebe b e 16-37
OCTLODCIOSE() cvvuveveverervererieririertssentesestesessesesesessesessesessesessesassesessessssessssessssessesensesessesensesessssessssenes 16-38
OCILODCOPY() cvevvevvrrmeeeeemeieiririeeeieieeriseseeeseses sttt 16-39
OCILODCOPYZ() cvvrveverererereieieieieieieieisieietcee et 16-41
OCILobCreateTempPOrary ()coceerueueiieieieieicieie ittt 16-42
OCILobDisableBUfering().......ccccoeeueurururieiiiiiririreciirrrseeeserreresee e 16-44
OCILObENableBuffering() ... 16-45
OCTLODETASE() v.veuveuevenerieeeieietenteientetetet ettt sttt test et st ettt et b et bt eb et e st st e st bebebesessenensens 16-46
OCTLODETASE2() +vvvevvevieereieeierieresiesiesietestestesseseesessessassessessessessessessessessasessessessessessessessessesseseesessenss 16-48
OCTLODFIIECIOSE() .. vuteuteneeuerierierienieniesteteteteit ettt sttt et ee ettt et e bt et s bt sbesbe st e se e e et et eseebesbenee 16-49
OCTLODFIIECIOSEAIL() c.vevveveerevenieieieieieieieietetestesestesessesesesesesessesasessssesessessssessssessesessesessesessesenes 16-50
OCTLODFIIEEXISES() 1.veveveveriererieieieeetessissessessessessestestesassessessessessessessessessessesessessessessessesseseesensenss 16-51
OCTLODFIIEGEINAINE() -vuveuevteuerieriinieniintetetet ettt ettt sttt ettt et saesbesbe st st e e et et e e ebeebenee 16-52
OCILODFILEISOPEN()....vcviviuiiiiiiiiiiiiiiiiiiiiiiiciini s 16-54

OCILODFILEOPEN()....vviiiiiiciiieieicieicieieieieeeieie ettt 16-55
OCTLODFIIESEINAIMIE() -.vueeververreriirieniententetetet ettt sttt ettt ettt st sbe b st se et et et e e ebeebenee 16-56
OCTLODFIUSHBULLET() -ttt ettt ettt st 16-57
OCILODFreeTemMPOTATY() ...cvcveveveveueieieirieeeiieeieirieeeesereseeeeeeses et 16-58
OCILODGELCRUNKSIZE() «.vveeveeverreriirierienteieietetei ettt sttt sttt ettt sb e se et sae e 16-59
OCILObGEtLENGI()ovevviiiiiiiiiciiiciiciciccc e 16-60
OCILODGELLENGEN2() ... 16-61
OCILobGetStorageLimit()......cccoeiiiiiiiiiiiiiiiiiii e 16-62
OCILODISEQUAL()....cveveveieiiiiiiiiiciciciicirrc e 16-63
OCILODISOPEIN() -ttt 16-64
OCILODISTEMPOTATY() ..vcveveveveviviiiiiieieiiiiiiciicici s 16-65
OCILODLOAAFIOMEFILE() .cuveveveeirienirienirieirietetetetete ettt ettt ettt sttt sttt eae s 16-66
OCILOBLOAAFIOMEFILE2() ...uvevveeierierieiieiiiiieiesieteetetesessessessessessessessessesseseessesessessessessessessessessesenns 16-68
OCILObLOCAtOTASSIZI() cv.vvvvviiiieieieicieicieieei e 16-69
OCTLOBLOCAtOTISINIE() .veuvevieeiirieiirieirieirie ettt ettt 16-71
OCILODOPEI) ..ttt 16-72
OCTLODREAA() ..+ euvevervevenveririeririeresientstestetestesestetestesestesenessestesastesessesensesensesensesesesessesensesesessesenessenes 16-74
OCTLODREAAZ() +.uvevenveviieririeririerisieteiestssetssessesestesessesessesessesessesessessssesessesessessssessssesessessssessssessssenes 16-78
OCTLODTIIIN() tvtutetetereierinieririetistetsietete ettt ettt te sttt ettt s e te s e e s et esesbesesseneasenesenessenessenes 16-82
OCTLODTTIMZ2() c.tentetetenteteeeieet ettt ettt ettt bttt ettt et et s bt sb e b e st e st e e et et e s ebeebenee 16-83
OCTLODWITEE() cvvvevivevirierisieeisiestetetetestetetesessesetesesesesesessesassesassesessesesesesasessessesessesessesessssesessanes 16-84
OCTLODWITLE2() c.vvenveviieiiieriiet ettt ettt ettt ettt ettt s ettt s e es st et sb et bes e benessenessens 16-88
OCILObWIEAPPENA() ..vovvvriiiiiciiiiciic s 16-92
OCILObWItE APPENA2() ...t 16-95

Streams Advanced Queuing and Publish-Subscribe Functions.............c.ccccooviiiiiiinnnns 16-98

OCTAQDEG() covvvveririeiiiiieieiirie ettt bbb 16-99
OCTAQDEGATITAY()...vveniniiiriniiiiiiieiisicc e 16-101
OCTAQENG() «vrvverererermrerererererisiseseses sttt ettt ettt sttt 16-103
OCTAQENGATTAY () c1vrvevveseerieieiieicie ettt ettt 16-105
OCTAQLISTEN()cvvevenereerereeirenrereietreeieieetresnereetesseseseatseesesestessesesestsseseseseesenesesesesesescsssseneseessenen 16-107
OCTAQLISEENZ()..cvenvrvvevenereeierererinieteietsteteteesesteresetstetesesesessebes et sesesesesassesesesesseseseneseseseseessenen 16-108
OCISubscriptionDisable()cccociiiiiiiiiniiiiiiii e 16-110
OCISubscriptioNENabLe()c.ccovvveveiieiriiiiiiicrccrrere e 16-111
OCISUBSCIIPHONPOSL() ..ot 16-112
OCISubscriptionReGISter()cvvurueiiicieieieeicie e 16-114
OCISubscriptioNUNREZISTET()cuvuviiiiiiiiiiiiiiiiiiiciicc e 16-116
Direct Path Loading FUNctions ... 16-117
OCTDIIPAtRADOTE() veveveueveveriiririeteerirteieteests ettt et ettt ettt ettt sttt st bbbt setenen 16-118
OCIDirPathColArrayENtryGet()c.cceueuememeieiiicicieieiieieieieeeieeeeeeirieeeee e 16-119
OCIDirPathColArray EntrySet()ccooieueieiiiicieiiicie 16-120
OCIDirPathColArrayROWGEL()....c.cveveviiiiiiiiiiiiiiiiiiiciiiii s 16-122
OCIDirPathCOlAITaYRESE().....cvcvemriereieieieiiieieicieicieieieee ettt eas 16-123
OCIDirPathColArrayTOStIeamI()cecevevevereiiiiiiiiiiiiiiiiiciercce s 16-124
OCIDiIrPathDataSave()c.coeeeeveverereririereiiririeieteestsieietesestsieteest st tese et b besese st bebesesesbeseseessesenen 16-126
OCIDIrPathFINISI() . .vevveveeieieiniiiiisiisiesieieietetetee et te st st b essesae e esaeseesessassessessessessassessesanses 16-127
OCIDirPathFIUShROW () ...ccueeuteuiriiriintinienieieietete ettt ettt et enes 16-128
OCIDirPathLoadStreami()coeeevereriererieninieinieirienenieteieter ettt ese st b e beseeseseesenees 16-129
OCIDIrPathPrePare()ccceeeueueueuemiuemeieieiereieieieieieieieteieiereseseaeeese e esesssasesesesessseseseseaes 16-130
OCIDirPathStreamBReESEL()coveeeuteereririenierieieertet ettt sttt et sttt ettt sbe bbbt eeaenes 16-131
Thread Management FUNCHONS.............ccccooiiiiiiie 16-132
OCITRIEAACIOSE() vvvevvevrerrereeriererrirrisressessessessestestessesessessessessessessessessessessssessessessessessessessessessesenses 16-133
OCITRIEAACTEALE() -v.vvveeueeueetirierierienterieste ettt ettt sttt ettt ettt b e sbesbe e b e sbe st et e s et eneebebes 16-134
OCIThreadHandleGet().......coveerueeriererienirieinieirieenteeeieteietet ettt sttt saesenees 16-135
OCIThread HNADESIIOY() ...cvoveveeeiririririiririreriserecrree et 16-136
OCIThread HNdINIE() .. cveoveeeteiriniinterteneeete ettt ettt et sttt ebeenes 16-137
OCIThreadIdDeStrOY()ccveveveuririiiiiiiiiiiiiiiciiricirr s 16-138
OCITRIEAAIAGEL() ..vevvemenrerevieiririeieieinierereererte ettt ese ettt se e ses et aeseneeenenen 16-139
OCITRIEAATATNIL() +uveuveutemeeneerteierterieet ettt sttt ettt et et e be b sbe st st be et e st et eneebeebes 16-140
OCITRrEadIdINUIL() ..veveeeeeeeieiririeteer ettt ettt ettt ettt be ettt ese e sessena 16-141
OCITRreadIdSame().....cceeveeeieererrirririesieietestesteetsessessessessessessesseseessasessessessessessessessessessessesenses 16-142
OCITRIEAATIASEL() .. veveverenvererereririereierinieiereentstereestste ettt sreseset st bebe e bbbt saesesesesessesenesenensenen 16-143
OCIThreadIdSEtNULL()ceveveveueeririeieieieietee ettt ettt ettt bt b s et aebesenesenas 16-144
OCITRIEAAINIL() cveuvevverreerererieieirestisrestestestesestesteeaesesseesessessessessessessessaseasessessessassessessessessessesenses 16-145
OCITRIEAAISMULEI() +.nveuveneeneenteierierient ettt ettt ettt b e st s b st et ene b ebes 16-146
OCTTRIEAATOIN() veveveverenerienirieierieierte sttt ettt st ettt ettt b st be st b st b et b st e st st eseseebensebeneen 16-147
OCIThreadKeyDEStIOY () ...c.cveurueereeururirieiiiririrerireseseresesieesise st 16-148
OCIThreadKeyGet()......cooveviviriiiiniiiiiiiiiiciiccc s 16-149
OCIThreadKeyINit()......ccceoeueueuriiiiiiiiiiiiiiiiiiiiiicr s 16-150
OCITRIeadKeySet()......cvevevrueeririeiriiiriririrrere ettt 16-151
OCIThread MuteXACQUITE()covvviuiuiiiiiiiiiiiiiciiii s 16-152
OCIThreadMuteXDEeStrOy()cevvvruririiiiiiiiiiiiiiiiiiiiiiin e 16-153

xXiii

OCIThreadMUteXINTE() .eoveeveeeeeeeieeeierieeteetee ettt sttt ettt ettt seeaeaas 16-154

OCIThreadMUteXRELEASE() .. .cveververerueririeiinieiirieiirteieriei ettt et es et b aes et seeenes 16-155
OCIThreadProCeSSINGt()....ccvecveeveieieiririisiisterteieteteteeterestessessessesesseseeseesesseasessessessessessessasseses 16-156
OCITRIEAATEITIN() ..uveuteuteuteieeiieterte ettt ettt ettt bbbt e bt e e et e st e bt saeebeebesbe st et et e e eneenis 16-157
Transaction FUNCHIONScocoiiiiiiiiiee ettt ettt 16-158
OCITranSCOMIMIL() c.veveerrerreererieriereeteseesteseesteseesesseesesseesesseessesssessesseessesseessesssessesssessessseses 16-159
OCITTanSDEtaACK() .. .covereereeieieiieeeee ettt ettt et ettt et eas 16-162
OCITTansFOIget()coveviuiiiiiiiiiiiiiiciiiiiii s 16-163
OCITransMUltiPrepare() ... 16-164
OCITransPrepare() ..o 16-165
OCITTanSROIDACK() «.eveuerreerieirienieieieieieietet ettt ettt ettt ettt s ettt sbe st sesenaes 16-166
OCTTTANSSEATT() -vevveeeveveererrieierteiestertestesteseestesseesesseessesseessesssessesssessesssessesssensesssessesnsensesssenses 16-167
Miscellaneous FUNCHONSc..ccuoiiiiiiiiiit ettt sttt ettt 16-173
O CTBIEAK(). . vevvevereereneerenieretereseressesessesessesesseseeseseesessesessssessesessesensasessesensesensessssessssessssessssessssasssses 16-174
OCTCHENEVEISION() c-vevrenrereieierieieeterteetestesstessestessestesseestessesssessesssessesssessesssessesssessesssessesssenses 16-175
OCTEITOTGEL() ettt ettt sttt ettt a ettt bbbt b et et et et et e bt eb e e bt sbe e b e be st e st et et et eneenis 16-176
OCTLAATOSVECEX() c.veuvemeeeeneeniereeieeieeteete sttt e et te et et e bt s besbestebesbe b et eneeaeeaeebesbessessensanseneeneenis 16-178
OCIPassWOIrdCRANGE()......c.cveurueuemrueeririiieiriririeieireeriseetee st 16-179
OCTPING (). vvvrerereriiririsiiiiie s 16-181
OCTRESEL() -vvvevveverrereiererieristesertesestesestesessestsseseesestesessesessesansesensesessesensesensesensesessesessessasessssesessassases 16-182
OCIROWIATOCRAT()..vvevteeeeererieririesiesiesieteieteeeseeeeesessessessessessessessessessessasessesseesessessessessessessesseses 16-183
OCTISEIVETVEISION().euveueenteneeuiereriesieetestestentetetestestestebe st e besbesbeste b e be st et esteaesae e bt ebesbestensenseneeneenas 16-184
OCTISVCCEXTOLAA() cvenveneeeeneenieteeie ettt sttt ettt ettt st e et e e et e st et e st ebeebesbe st e nsenseneeneenis 16-185
OCTUSEICalIDACKGEL() ..vevvevveeieereeierinrieiesiesiesrestesiessessesteseesessessessessessessessessessessessssessessessessessesseses 16-186
OCIUserCallbackRegister()........ccouurururueieiimeiiieieiiieieieieieieieieeeee e 16-188

17 OCI Navigational and Type Functions

Introduction to the Navigational and Type Functions..............c.cccccocvniiiiinniiinii 17-1
Object Types and Lifetimescccooiiiiiiiicicc 17-1
TEIMINOLOZY ...ttt 17-3
Conventions for OCI FUNCHONScooiviviimiiiiiiiiciiiic s 17-3
PUIPOSE ..o 17-3
SYIMEAX ottt 17-3
COMIMENLS ..ottt 17-3
Parameters.......c.ooiiiiiiiiiciccc e 17-3
REEUINIS .. 17-3
Related FUNCHONScciviiiiiiiiiiciic s 17-4
Navigational Function Return Values............ccoooviiiiiiiiiiiccce e, 17-4
Server Round Trips for Cache and Object FUNCHONS..........cccouvueiriiiiiiiiirccrcceecne 17-4
Navigational Function Error Codes ... 17-4

OCI Flush or Refresh FUNCHONSccooiiiiiiiiiiicicceeeeee et 17-6
OCICACHEFIUSI() c.vevvevvenieeieiieeieiietet ettt ettt et e et e e seetessessessessessessessessesaessasessensensesensensas 17-7
OCTCAChERETESI() ...vvveeiieeiieiieieieieieee ettt ettt ettt et be e b e e e se s ese s eseneeseneens 17-9
OCIODJECEFIUSR()....vviiiiiciiiiic e 17-11
OCIODJECERELTESN() ..ot 17-12

OCI Mark or Unmark Object and Cache Functions..............ccccccoviiiinniiiinniiiinicccns 17-14
OCTICAChEUNMATK() 1.vtuvviieiiieiirieerietrte ettt ettt b ettt ettt st sttt sb et se s 17-15

XXiv

OCIODbjectMarkDelete() ... 17-16

OCIObjectMarkDeleteByRef()cccovuviiiiiiiiiiiiiiiiiiiiiiiiii e 17-17
OCIODbjectMarkUpdate().......ccevueuerruriririiieiirirericecererrresr et 17-18
OCIODJECtUNMATK() ...t 17-19
OCIObjectUnmarkByRef()ccouieuiiiiiiiiiiiiiiiiiiecccce s 17-20
OCI Get Object Status FUNCEIONS............coiiiiiiiiiiiic e 17-21
OCIODJECEEXISES() ..vuvevviuiiiiiiiiiiiiicici it 17-22
OCIODbjectGEtPTOPEILY()....cvivivviiiiiiiiiiiiiiiiiccic e 17-23
OCIODJECHISDITLY() -.vvvvevvvremeieieieieieieieieieieee ettt 17-26
OCIODJeCtISLOCKEA() «..vvvvviiiiiiiiiiiiccit s 17-27
OCI Miscellaneous Object FUNCLIONScoiiiiiiiiiiiiiiice 17-28
OCIODIECHCOPY() - --vevevrreremerereiririreeisieereseeeeeses sttt et nene 17-29
OCIODJECHGEEALLT() ... 17-31
OCIODJECtGELINA() ..o 17-33
OCIODbjectGetODJECEREL()vvvvriiicieieieicieieeeecerr et 17-34
OCIODbjectGetTYPeREf()cuvviviiiriiiiiiiiiicic s 17-35
OCTODJECLLOCK() ..vvvviiiiiicisiiic bbb 17-36
OCIODbjeCtLOCKINOWAIL()vviiiiiciiiieeciceec st 17-37
OCTODJECENEW () ..t 17-38
OCTODJECESEEALLL() ...t 17-41
OCI Pin, Unpin, and Free FUNCHIONSc.c.cccooiiiiiiiiiicece e 17-43
OCTCACREFTEE() -eeuteueeveeteeteriirieetetete ettt ettt ettt s be bbb st et et et e bt e bt ebesbeebebe e 17-44
OCICAChEUNPIN() cvvvviiiiiiiiiiiciciiii s 17-45
OCIODJECEATTAYPIN() -.vevovevvereiieieieieicieieieiete ettt 17-46
OCIODJECEETEE()cuvviiiiiiciiciici s 17-48
OCTODJECPIN() .ot 17-50
OCIODbjectPINCOUNRESEL()vovevvriieiiieicirirericeeere e 17-52
OCIODJECtPINTADBIE() ..o 17-53
OCIODJECtUNPIN() ..ottt 17-55
OCI Type Information Accessor FUNCions ... 17-57
OCITypeArrayByName().......ccoourueieiiiiieieieicicie et 17-58
OCITypeAITayByRef().....cocviiiiiiiiiiiiciiiiiiciciic e 17-60
OCITYPeBYNAME() ...ccveviuiiiiiiiiiiiiiiiiic e 17-62
OCITYPEBYRES() ..evoeviiicit e 17-64

18 OCI Datatype Mapping and Manipulation Functions

Introduction to Datatype Mapping and Manipulation Functionsccccocoooiiniinn, 18-1
Conventions for OCI FUNCHONScccoiniiieiiiniiicerreccte ettt 18-1
PUIPOSE ..o s 18-1
SYTEAX ..ttt 18-1
COMMUMEIES ...ttt 18-2
Parameters.......ceveiiiiieieieieree s 18-2
REEUINIS ..ottt 18-2
Related FUNCHONSc.cuiiiieiiiiicct ettt 18-2
Datatype Mapping and Manipulation Function Return Values............c.ccccocevvinvnnnnnnene. 18-2
Functions Returning Other Values............coooiiiiiii 18-2
Server Round Trips for Datatype Mapping and Manipulation Functions...........ccccoeoccuc.... 18-3

XXV

XXVi

EXAQMIPLES ..ottt s 18-3

OCI Collection and Iterator FUNCHONS............oooiiiiiieieieieee ettt 18-4
OCICOHAPPENA() ..ttt eees 18-5
OCICOILASSIGI() +.vevvvrereririteieieieteeietete ettt 18-6
OCICOHASSIGNEIEIMN() ..ottt 18-7
OCICOIGEIEIEIMN() v.vevireieieiieiieteiteeteteeertetestestestesbesesbessessesteseeseessssessessassessessessessessassessesessensenses 18-8
OCICOUGEtEIEMATITAY()...voveveveverireieieieiiieiiieieeiisies s 18-10
OCTCOIISLOCATOT() c.veveuvveeenieeririetrieirieirteetstet ettt ettt et ettt b e bt ebe s bbb besessesensenes 18-11
OCTCOIMEX() +ververereerereerinterirterestetrteststestrseststestssestesestssestesestesentesensesensesensesesesesesensesensesessensasenes 18-12
OCTCOIISIZE() vvevenerrenerrenirieririesteiesteietetetetestetestesetesesesestesassesessesensesersesenseseaseseasenssesesasessanessenes 18-13
OCTCOITIIM() vt vevteveriererieiereriereesesteretesessesessesestesessesessesessesassesasesassesssesessessssensasessesensesessssessssenes 18-15
OCTIEEITTEATE() c+vevverveenrerreeiesreeieetesteetesteestessestesesseesesssesesssenseassesseessessesssessesssensesssessessesssensennes 18-16
OCTIEEIDELELE() .ottt ettt ettt ettt et et eb e b st e e b et et e beebe b e 18-17
OCTHErGEECUITEINE() .euveveveeiteeirieirieirietet ettt ettt ettt bttt beb s bttt be e b eaeebenensenes 18-18
OCTIEEITNIE() +euvevervenereenieieirieirtet ettt ettt ettt ettt b et e bbbt s e b eseebe st st et beneabenessenessenes 18-19
OCTIEEIINEXE() « ettt ettt ettt ettt ettt ettt bbbt ettt s e st e bt e bt e b e s b et et et et et eateneebeebeebenee 18-20
OCTIEEIPTEV() «vevevveveieviieririeteietesteesteststesteteseeteeesesteseseesassesassesassesassesansesensesesesesessnsesssessssessssenes 18-21

OCI Date, Datetime, and Interval FUNCHONSooooviieoiiiiieeee e 18-22
OCIDateAddDAYS() ...cveveveveveririiiiiiiiiiiiii st 18-24
OCIDate AAAMONENS()euvevereririeiirieiirieirtctrtct ettt ettt ettt b sttt et sesbese e s 18-25
OCIDAtEASSIZN() ..ecuvvviniiiiiiiiiiiiii s 18-26
OCTDAECRECK() w.nveuteuteiieieeieeieeieeeeee ettt ettt b e bbbt et et e e et ebe e 18-27
OCIDateCOmMPATE() .. .vvviiiiiiiiiiiiii e 18-29
OCIDateDaysBetWeen()ccocvuvuiiiiiiiiiiiiiiiiiiiiicc e 18-30
OCTDAtEFTOMTEXE() +uveuveueeueereeierieeiintertert ettt ettt sttt ettt ettt e bt ebe b st se e b et et e e ebeebenae 18-31
OCTIDAtEGEDALE() ... vevenveveeererererieierietrieiirtei sttt ettt ettt ettt et bt es st be st et besebesessenensenes 18-32
OCTIDAtEGELITIIME() «.veevvenvreeieerieierieieeeeteeterte st eresste e sseessesseessesseassesseessesseessesseessesseensesssensensennes 18-33
OCIDateLastDay()......cccoevuereririiniiiiiiiiiiiiiciici s 18-34
OCIDateNexXtDaY()oveviviveiiiiiiiiiiiiiiiiiiii e 18-35
OCTIDAtESEEDIALE() -.euveevvenrrenierrieiirieeieeteteetertesteteseesesseesesseessesseessesseessesseessesseensesseensesssensensesnes 18-36
OCTDAtESEETIME() ..veueeuteueeierienierterteetertet ettt ettt sttt ettt ettt et sbe bbb e se e e et et e sbeebenae 18-37
OCIDAteSYSDAtE()ovvvviiiiiiiiiiiciirrr e 18-38
OCTDAETOTEXL() cvveuveevrerieeieriieieriteteresteseete st et e e este e esesseessesseaseessesssesseensessesssessesnsensesssensennes 18-39
OCIDateTIMEASSIGN() ..voveveveveririiiiiieiiiiieiee s ea s seaeaa 18-41
OCIDAtETIMECRECK() c.veveuvereneeririeiirieiiriei ettt ettt ettt ettt ettt bbb s b s 18-42
OCIDateTimeCompPare().......cccvveuiiiiiiiiiiiiiieci s 18-44
OCIDateTIMECONSIUCE() c.veeveererrertirterietetetet ettt sttt ettt ettt sae bbb se et et e ebe b e 18-45
OCIDAtETIMECONVETL() .cuveverreririenerienirieirtetrtet ettt sttt ettt ettt bt s b et et seb et ebesbesessens 18-47
OCIDateTimeFromAITay()ccccovuimiiiiiniiiiiiiiiiic e 18-48
OCIDateTImMEFTOMTEXE() «..ceveererreriirienieieietetetet ettt ettt ettt ebe e 18-49
OCIDAtETIMEGEEDALE() .cuvveuvererererienirieiirieitrtet ettt ettt sttt bbb sttt et st b et ebentesens 18-51
OCIDAtETIMEGELTIME() .evvevrerreiieiereeieriereeseeteseetesteetesseessesseestessesnsesseessessesnsessesnsesseensensesnes 18-52
OCIDateTimeGetTimeZoneNAME()ccuetetririreriirienienieteteteteit ettt sttt ettt ebe b e 18-53
OCIDateTimeGetTimeZoneOS SEL()cvueiririrerireririeieieieierteiete ettt nes 18-54
OCIDateTimeINtervalAdd() .oo.eoveeveieieieirirtieeietete ettt ettt see e esessessessessensansans 18-55
OCIDateTimeINtervalSub()......cccceeeeririirieieieeteer ettt 18-56
OCIDAtETIMESUDEIACE().. e veveverereetrieirietrietet ettt ettt ettt ettt ettt et st ettt b et eb e ssens 18-57

OCIDateTimeSysTimeStamp()cccocevurieriiiriiiiiiiiieiincc s 18-58

OCIDateTIMETOATITAY() c.vovvveiiiiiiiiiiiiiiiciiis e 18-59
OCIDAtETIMETOTEXE() .euveeeverrerierieeierieiiereerte st etese e et etesseesesseeseesseeaesseessesseensessesssanseensensennes 18-60
OCIDAteZONETOZONE(). .. ceveeverreiiriiieientetete ettt sttt sttt ettt b e sbe st be st se et et eseebeebe e 18-62
OCTINEEIVALAAA() cveveviveririerieierieieietetetete et etetete et ssese st sesesessesesseseesesesseseseseesensesessesesssessseses 18-63
OCIINEETVAIASSIZIN().cv.vevevvrerereiieieieieieieieeeee ettt 18-64
OCTINEEIVAICRECK() vneevtenteiteiteiee ettt ettt sttt se ettt be b b ee 18-65
OCIntervalCompare()cccovviriiiiininiiiiiii s 18-67
OCTINEEIVAIDIVIAE() .evvevvevrerieereirrieristisiesieiesteteteeteeeseesessessessessesseseessesseseesessessessessessessesseseesensenns 18-68
OCIInterval FromINUMDET() ..c..couertiriirieieieieietei ettt ettt sttt 18-69
OCTINtErValFTOMTEXE()..coveuerreeirreiirieirieirieirtctetetetest ettt b ettt sttt ettt sa et b e senes 18-70
OCTIINEErVAIFTOMTZ() .vvevvevieiieiieiieiiteieietetete et e et ss et esae e esesseesessessessessessesaessessesensensenes 18-72
OClIntervalGetDaySecond ()ccouviiieiiiininiiiiiiiiic e 18-73
OClIntervalGetYearMONtI()coceereireuirieiinieirieireeretre ettt ettt ns 18-74
OCINtErvalMULLIPLY () «.vvvveieieieieicicieieeieeeeeeeeeeeereee et 18-75
OClIntervalSetDaySecond() ... 18-76
OClIntervalSetYearMoOnth()cccoevrerrerriirieienieeeee ettt ettt 18-77
OCTINEEIVAISUDIIACE() vevvevvevveereieieieieiistesiesiet et ete e e e ste e stesbessesteseesseseesessessessessessessessessasensensenes 18-78
OCTIINtErvalTONUMDET() -...eeuteuiriiriietiieieeet ettt ettt st ettt 18-79
OCTINLEIVAITOTEXE() .eveverveuerreeirieirieirietrietet ettt ettt st eb ettt bttt bt sb et saesesbesesesensenes 18-80
OCI NUMBER FUNCHOIS. ..ottt ettt ettt sttt sae ettt eneeseebesbeebebenee 18-82
OCTIINUMDETADS() vttt ettt ettt st bt et et et e st e bt ebeebeebenbe e 18-84
OCTINUMDBETAAA().enveviveriieririeiirieieieteietetetetetetestese st e sessesessesessesessesessesesseseseseesessesessssessssesssseses 18-85
OCINUMDETATCCOS().vevvevverrerrerrereerieessesreesessessessessessessessessesassessassessessessessessassessessessssassessessessessass 18-86
OCTIINUMDETATCSITI() c.vtevtevteeteiertentetet ettt ettt sttt e sbe st et et et e st e bt e besbesee st e st e st eseenteneeseebebenee 18-87
OCINUMDBETATCTAN() c.veveveviieiirieiirtetrietrietrt ettt ettt bbbttt sttt bt se et be st b sesbenensenes 18-88
OCINUMDBETATCTANZ() «vevvevveeieiiriieiieiiteieieteteeeeteessestessessessessesseseesseseesessessessessessessessessessesensenns 18-89
OCINUMDEIASSIGII() «.vveveveriiiieieiiieieiereieiee e 18-90
OCTINUMDBETCEII() . cnvveveveieriietinietertetrte sttt ettt ettt ettt ettt eb e bttt se bbb s esesenes 18-91
OCINUMDETICTINP() --vvveeeenreeeiriieeeirieirieeeeee sttt 18-92
OCTINUIMDETCOS() -vtveveeverterienteientetetete ettt st et te st et e st et e st e st e st saesbeebe st e ste st e b et eseebeebesbesbebenee 18-93
OCTNUMDETIDEC() .nevenevenirteieteteiertei sttt ettt ettt sttt ettt sttt b et b bbbt b bbb senes 18-94
OCINUMDETIDIV() 1vevvevieiieiieiieiieiirisieietetetete et etts e e st bessessessesseseeseaseesessessessessessessessessesessensenes 18-95
OCINUMDBETEXP() ..uvvviiiiiiiiciiiiiicinirc s 18-96
OCTINUMDBETIFLOOT() 1eeveuveviieiiieiirieitrie ettt sttt ettt ettt et eb ettt sesenes 18-97
OCINUMDBEIFIOMINT() c.vovvevieiieiieiieiiriiieieteiei ettt e se e e et te st ee e esaesessessessessesaessessessesensensenes 18-98
OCINUMDErFromREaI()ceuteueriiriiniiieieietet ettt sttt st sttt 18-99
OCINUMDBETFIOMTEXE() .euvveveviieririeirieirieirietetet sttt ettt ettt et eb e st st saebesaenenees 18-100
OCINUMDETHYPCOS() «.vevevvvviiiiiriririeiieiriririsee sttt 18-101
OCINUMDBEIrHYPSIN() cvveveveveviieiiieiiiiriieiiiecc s 18-102
OCINUMDBErHYPTAN() ...vvvviiiiiiiciriiicircr s 18-103
OCINUMDETINC() c1vevvevreiieieieieiresistesee et et eeae e e e steste e sse s esseseessesaeseasessessassessessassassassesanses 18-104
OCINUMDETTNEPOWET() «..evetetiiiieieieteteiteite ettt sttt ettt et sb e s st be st et e et ene b enes 18-105
OCTNUMDBETTSINT() ..ttt sttt ettt sttt b st b st ebe e bt eb e 18-106
OCINUMDETISZETO() cvvevveveereerirririerieieieieietetsstesessessessessessessessessessessasessessessessessessessessessessesenses 18-107
OCTIINUMDETLIN() ¢ttt sttt et ettt b e s bbb be st et e s et eneebebes 18-108
OCINUMDEILOG() ..vvvvviiiieiiiiiiririnir s 18-109

XXVii

XXViii

OCINUMDETMOM() <+ttt ettt ettt ettt bt sttt et ettt ae bt e b sbe st e st e sbeneeneenes 18-110

OCTNUMDBEIIMUL() 1vvevinveviieeiietirteesieieteteteeetetetetesestesessesessesessesessesesesensesesseseasessasessssassssesesses 18-111
OCINUMDEINEG() ..vvevvrireieieieieieicieieteeeee ettt 18-112
OCINUMDETPOWET () .ottt ettt ettt bttt ettt besbesbesbesbesaenaens 18-113
OCTNUMDBEIPTEC() -nvvenveviieiiieiirietrieertc ettt et ettt ettt ettt b et et bebesaesenes 18-114
OCINUMDBEIROUNA() .. cvvevverierieiieiiiiieiesierieietetesteetetseseeesessessessessessessessessesesseasessessessessessessesseses 18-115
OCTINUMDETSEEPI() .ottt ettt ettt be st st be s be e et et et et e st e bt saesbesbesbeseeaeenis 18-116
OCTINUMDEISEEZEIO() c.vevvveererenrerenieieiereiesetesestesessesessesessesessesessesassessssessssesessessesessesessesessesasseses 18-117
OCINUMDETISIIL() 1.veveierierieiieeeieieise sttt ete et eseesessessessessessessessesseseeseesessessessessessessesseses 18-118
OCINUMDEISIGI() cv.vvviveieriiiieiiiiieieiee s 18-119
OCTNUMDEISIN() 1.veveviveririeeirieieteteieteietetetesetesetesessesesesessesessesessesesesessessesessesessesessesessesesesses 18-120
OCINUMDETSGIL() v.vvveviiereieirieieieieieieteeeee ettt 18-121
OCTINUMDETSUD() -ttt ettt ettt ettt be bbb esbenaeneenis 18-122
OCTNUMDBEITAN() c+nvvenrereiereieierteentetrtei sttt sttt ettt ettt b et b et bbbt ebe s esesbesesesessenennen 18-123
OCINUMDEITOIN() veuvevverierieeieieieieisestestebetestetetesteseesessessessessessessessesseseessesessessessessessessesseses 18-124
OCINUMDETITOREAL() -euveueeueeuietirierieetesiesietetet ettt ettt ettt et sttt se e s e e ens 18-125
OCINUMbEIrTOREAIAITAY() . .cvovivvviiiiiiiiiiiiiciiii s 18-126
OCINUMDEITOTEXL() cvevververeeeierieierieisisiistestetetetetestertssessessessessessessessesseseasessessessessessessessesseses 18-127
OCINUMDETTIUNC() +nveuveneeneeniererieriestestest ettt ettt et sttt esbesbestesbestestestest et saeebesbesbesaensenseneeneenes 18-129
OCT RaW FUNCHOMS ...ttt ettt et et st s et sate b st enaes 18-130
OCTRAWAILOCSIZE() vevverververeerierrereerieesessessessessessessessessessesessessessessessessessessessessesessessessessessessesseses 18-131
OCIRaWASSIZNBYLES()oueeiviiieiicieici s 18-132
OCIRaWASSIZNRAW () ..eoveieciieiiicieieieccee it 18-133
OCTRAWPEL() c-eveuervenerieieietetetetert ettt ettt ettt et ettt ettt et eb et b e b e st s e s e et ese st eneasenebenessenesan 18-134
OCTRAWRESIZE() +-vveuveneemeemerueriintenieriestestet et ettest et sttt et sb et be st et et et et e st sbe e bt sbesbesbesbe st et enseneeneenas 18-135
OCTRAWSIZE() +vevvevenrerenieririerintererteissesestesesseseesestssessesesessassesessesensesessesensesensesessesessesesessssessssesssses 18-136
OCT Ref FUNCHIONS....c..couiiiiiiieieteieteteteteieee ettt ettt ettt ettt b e bt st sbe st et ae e et eaeneeneenes 18-137
OCIREFASSIZI()...vviviviiiiniiiiic s 18-138
OCTRELCIEAT() v.vvrveveverirreririeirieteteteietetestesestesestesetesesesessesessesesesensesessesessesessesessessssessssessssesesses 18-139
OCTREFTOMHEX() v.vvevvevieeeerierierieiesteetestesiestessestestesaesaesessessessessessessessessessessessassesessessessessessessesseses 18-140
OCTREFHEXSIZE() +.vvvevevenirienerienirieisieisieteseeesetetetesessesessesessesessesessesensesessesessesesseseasensesesessesessen 18-141
OCIREfISEQUAL() «.vvvviiiiiiciiiciiccciccc s 18-142
OCTRELISNUIL() .+ttt ettt ettt ettt sttt ettt et b e e bbbt b et e st st ese b eseasenessenesen 18-143
OCTRETOHEX() +evvevevererenirienirieirietsietstetetetesetetetesessesessesesesessesesseseasenesseseesenessensesensesensesesessen 18-144
OCIT String FUNCHONS ..o s 18-145
OCISINGALOCSIZE() vevvvveeririeiririririererr et 18-146
OCISINGASSIZI) cvvovveveieiereieieieieieeee s 18-147
OCIStringASSIGNTEXL()vvveviiiiiiiiiiiicicirr s 18-148
OCTISNGPIL() c..vcvciiiicicc s 18-149
OCISENGRESIZE()....cvviviiiiciiiiiicicc e 18-150
OCISINGSIZE() ... 18-151
OCT Table FUNCHOMS ...c..c..ooviiiiiiiieieteteteeee ettt ettt sttt n e eneenes 18-152
OCITADIEDELELE() ... vttt ettt ettt b e s sttt e e enis 18-153
OCTTADIEEXISES() +.vevevevertriemirieririeirieirtetrteet ettt ettt ettt et b bbbt b bt se st e st be s bebessesenen 18-154
OCITADIEFITSE() c.veuvervenieieierieieieeeetietestestess e este e stesseseesessessessessessessessessesseseaseesessessessensessessesseses 18-155
OCTITADIELASL() «.veuveeeeeteieeeieeteeie ettt ettt ettt ettt ettt be st sbe st be st e st et et e e eneens 18-156
OCTTADIENEXE() cuvvereereieririeiirtertrteeriet ettt ettt ettt b ettt b e bbb b b et s et sbe st sbe st besessesensen 18-157

OCTITADIEPTEV() ..ttt sttt sttt ettt b e sbe sttt se et et et ebeebebes 18-158
OCTITADIESIZE() .. venveneeneenteneeieetteteete ettt ettt ettt ettt e be s be st et et et et eseebeebeste b esseseententeneeneesenes 18-159

19 OCI Cartridge Functions

Introduction to External Procedure and Cartridge Services Functionscccocccoeiiins 19-1
Conventions fOr OCT FUNCHONSc.evveuirieirieiirieirieiieieteietete ittt ene 19-1
PUTPOSE ..ottt 19-1
SYIUAX 1ttt s 19-2
PaTaMELETS ... ettt ettt ettt b e b saeebes 19-2
COIMUMEIES ...ttt ettt et b et b ettt a ettt be b seebemeene 19-2
RETUITIS ...ttt st sttt st b e b saenen 19-2
Related FUNCHONSveieeiieiiieiiieteie ettt ettt ettt b et b et b et b e ene 19-2
REEUIN COAES ...ttt ettt ettt ne 19-2
With_COontext TYPec.ovoiieieiee e 19-2

Cartridge Services — OCI External Proceduresccccocoooiiiniiiiiniiiniicce, 19-3
OCIExtProc AllocCalIMEmMOIY() ...cveveveverereieiiiiieieieieieieieieeieteie et 19-4
OCIEXtPrOCRAISEEXCP() . ..vvivviiiiiiiiiiiiiiiciiicc s 19-5
OCIExtProcRaisSeEXCPWItRIMSZ() ...cvvmmimimiiiiieiiicieicicicieieicieieicteieie e 19-6
OCTEXEPTOCGEIENV() vttt ettt ettt sttt ettt et aes 19-7

Cartridge Services — MemoOTry ServVices.............ccoiiiiiiiiiiiiiiiiiiiie e 19-8
OCIDUrationBegin().........ccceiviiiriimiiiiiiiiiiiiiic s 19-9
OCTIDUTratioNENA() c.veueeueemeeieeiieieeeeeetee ettt ettt et sb e sttt ebt bbb b e 19-10
OCIMEMOIYATLOC() cevveiiieerieteieicie ettt et 19-11
OCIMEeMOTYRESIZE() ..oviviiiiiiiniiiiiiic e 19-12
OCIMEMOIYFIEE() ...vvviviiiiiiicicicicc s 19-13

Cartridge Services — Maintaining Context.............cccoooiiiiiiiii, 19-14
OCTICONEXISEEVAIUE() c.vvvevrevrerierirrieiiiirieieteteteetecestestes e ssessessesseseesseseesessessessessessessessessessesansenes 19-15
OCICONIEXEGEEVAIUE() -nveveenteniriiniieteiesieeete ettt ebe et s ettt 19-16
OCTCONEXECLEATVALUE() ..vvvvveeeveuieieieieieieietctet ettt ettt ettt b e nes 19-17
OCIContextGenerateKey() ... 19-18

Cartridge Services — Parameter Manager Interface.............cccocoooiiiiiiins 19-19
OCTEXETACHINIE() c-vververerrenerieiirtetirteitrtet ettt ettt et ettt ettt b et bbbt ebess et sebebeseabesensens 19-20
L@ Q1 25T =Tt ol =3 ' o1 1SS 19-21
OCTEXITACERESEL() . nvevevteneeierieetenteetetetete ettt ettt st st sttt et ettt e besb e st et e st e se e s et eneebeebenbenee 19-22
OCIExtractSetNUMKEYS() ...ccovvvviririiiiiiiiiiic e 19-23
OCIEXTTactSEtKeY ()cveviiiiuiiiiiiiciiiiiicic e 19-24
OCITEXTractFrOMEFILE() ...eeueeuieuieiiriiriieieeeete ettt ettt sttt 19-26
OCTEXTACFTOMSEI() .c.veveeeeiieiiieiirtetrtetste ettt ettt et b ettt ettt st et b et b et be s sens 19-27
L@ @ 1 25T =Tt ol o a1) PRSP 19-28
OCTEXETaCtTOBOOL() .. cevteuteueeieeteienteteeteete ettt ettt st st et et s b b 19-29
OCTEXETACETOSEL() . euvveneeveniereieteteterteitsteiert ettt sttt sttt ettt ettt b e bbb bt et sesebesebesensenes 19-30
OCIEXtractTOOCIINUIN() c.vveveenrereeeteeeeestesteseesseesesseesesseesesseessesseessessssssesseessesssessessessessssssessesnes 19-31
OCTEXITACETOLIST() c-vueevteutetteieetetentetetet ettt sttt ettt ettt sttt et e st ebe b b ee 19-32
OCTEXraCtFIOMLIST() c.veverveutrienirienirieirietrietst ettt ettt es et ettt bbbt es s bbb b esesenes 19-33

Cartridge Services — File I/O Interface ... 19-34
OCTFILEINIL() covnvvveveirrereieirinietceerteiei sttt ettt sttt sttt sttt ettt bebesesesaebesesenennen 19-35
OCTFILETEIIIN() vttt ettt ettt ettt ettt sttt et ettt et bbbt bbb eb st et bebe b s eabesensenes 19-36

XXiX

OCTHIEOPEN() ..t 19-37

OCTFILECLOSE() vvvvemevenerreeereierenteienteserteserteststet st te st sest et es et bbbt seb et es e st ese st esesbesebenessenensens 19-39
OCTFIIEREAA() ..vvenereerereeiirieieicirisietcittrteteci ettt ettt sttt st saene bt sesaebeseseneenen 19-40
OCTFIIEWTILE() +.vevenerervereeeinieieieirtsieieitresteieseit sttt bttt sttt st se s b esese st b sesesesbebesenesseseseseneneanen 19-41
OCTFIIESEEK() ..ttt ettt ettt ettt b ettt ettt b etttk bttt bebe et ebe 19-42
OCTFILEEXISTS() +vvevvevrereeereeeisiieressessessessestessessessesessessassessessessessessessessessesessessessessessessessessessesensessenss 19-44
OCTFileGetLength()cccoceeveviiiiiiiiiiiiiiiiiicii s 19-45
OCTFIIEFIUSI() ..ttt ettt ettt sttt sttt bbbt b bt ebe 19-46
Cartridge Services — String Formatting Interface..............cccccconiiininn 19-47
OCTFOTMATINTE() s+ttt ettt sttt ettt ettt be et s besb e b e st e se e e et et e beebesbe e 19-48
OCTFOIMATEITI() +euvvenveveeereiererteierieitrteetrt ettt sttt sttt ettt b bbbt eb st ese st e st besebesessenensenes 19-49
OCTFOrmatString () ...o.evevvvriiiiiiiiiiiii e 19-50
FOImat MOAIfIETS. ..c..c.evueuirieiriciiriceriertcrtc ettt ettt ettt sttt 19-562
FOTmMAat COES....cuuiuiiiiiiiieiiciecee ettt ettt ettt et ettt b e se e 19-53
EXAIMIPLE ... 19-55

20 OCI Any Type and Data Functions

Introduction to Any Type and Data Interfaces..............ccccoooeiiiiniiiiinniin 20-1
Conventions fOr OCT FUNCHONSc.cvvetrieuirieirieinieinieinietnetereee ettt seee s seene 20-1
PUIPOSE ..ottt s 20-1
SYIMEAX ottt 20-1
Parameters.....cc.oouiiiiiiiiiici e 20-1
COMUIMEIIES ...ttt ettt ettt a et s bbb sttt eue bt sae b e b sbesaesnen 20-2
Function RetUIn ValUes.......co.covviiiiiiiiiieieeeeeeceeree e 20-2

OCI Type Interface FUNCHONScocoiiiiiii e 20-3
OCITYPEAAAALLI() ..t 20-4
OCITypeBeginCreate()cccvviiiiiiiiiiiiiiicic s 20-5
OCITypeENdCreate()cccevvveueuiiiriiiieieieieiiieieieieieeieee s 20-6
OCITypeSetBUiltin)ccocevviviiiiiiiiiiiiiiiiii s 20-7
OCITYPeSetCOLLECHION()cuvummmiuiiireieieiiicieieieieieieieie ettt seeeees 20-8

OCI Any Data Interface FUNCHONSccocoiiiiiiii e 20-9
OCTANYDAtAACCESS()....vvvviiiiiiiiiiiricicire e 20-10
OCIANYDataAttrGet() ...coveveveeiiiiiciiiiicci e 20-12
OCIANYDAtaAISEt() ..ovoveviviviieieicicicieiecc e 20-15
OCIANnyDataBeginCreate()coovvviiriiiiiiiiiiiiicccec e 20-17
OCIANYDataColLAAAELEIMN()uvvviiiiiiiic e 20-19
OCIANYDataCollGetELEM()c.oveveviveieiiieiiiiieiciciiicitcc s 20-21
OCIANYDataCONVETt()c.cveviuiiiiiiiiciiiiiiicrc e 20-23
OCIANYDataDESLIOY().....coviviviiiiiiiiiiiiicicic e 20-25
OCIANnyDataENdCreate().......cccoviviiiiiiiiiiiiciciciiiiccc e 20-26
OCIANYDataGetCUurr AHINUIN() ...c.cevvveiiiiiciciiiicicrrer s 20-27
OCIANYDataGetTyPe() .vcveveriiriiiiiiiiiiciciiiiic e 20-28
OCIANYDataISNUIL()....cveviviviieieiicicicccccc e 20-29
OCIANnyDataTypeCodeToSqLt()......cccovuiriiiiiiiiiiiiiiiiiiciicicicrrc s 20-30

OCI Any Data Set Interface FUNctions..............cccccccoovviiiiiniiiiiiiicca 20-31
OCIAnyDataSetAddINStance()........cocouvvviririiiiiniiiiii e 20-32
OCIAnyDataSetBeginCreate().........cccovriiiiniiiiiiiiiiiiiiirsn e 20-33

XXX

21

OCIANYDataSetDEStrOY()cceeviveviieiiiiiiiiiiiiiciiicicini e 20-34

OCIAnyDataSetEndCreate()..........cccevviviiiiiiiniiiiiiiniiiiniiin e 20-35
OCIANyDataSetGetCount()ccoviviiiiiiiiiiiiiiiiicc e 20-36
OCIAnyDataSetGetINStance()ccoevevvviiiieieiiiiiciiiii s 20-37
OCIANYDataSetGetTyPe()ccoovvvviiviriiiiiiiiiiiiiiciiii e 20-38

OCI Globalization Support Functions

Introduction to Globalization Support in OCI ... 21-1
Conventions fOr OCT FUNCHONSc.evveuirieirieiirieirieiirieteieteie ettt st ene 21-1
PUIPOSE ..ottt e 21-1
SYIUAX 1ttt s 21-1
PaTaMELETS ... ettt ettt ettt b e b saeebes 21-1
COMNIMEIIES ..ttt ettt ettt ettt ettt e b e bt e bt e bt e be b e sb et e b e st et e st eat e st ebeeb e e bt sbe b e besbesbeebes 21-2
RETUITIS -ttt ettt ettt st b et e bt e st e bt et e s bt e st e sbeebesaeenbenbeas 21-2
Related FUNCHOMNSviieiiieiiieiiieteee ettt sttt ettt bbbt be e be e ene 21-2

OCT LOCAle FUNCHONS ..ottt ettt ettt st et e et ebe b sbesbesbebensens 21-3
OCINISCharSetIdTONAIME() ..c.veveeveverreririeririeiirieiirieitrtetsietr ettt ettt ee e naene 21-4
OCINISCharSetNamMETOLA() ..evevereieieieieiresieestestestert et etesteseeseeseeseesessessessessessessessessesseseasenses 21-5
OCINISEnvironmentVariableGet()ceverererinirienienteieieeeeeieeiesie ettt 21-6
OCTINISGEEINEO() - envevenreneieriteiiieitrtetrtete ettt ettt ettt b bbbt be bbb b sesbeneene 21-8
OCINISNUMETICINTOGEL() cvvevvevrerirrirririiriesiesieieieteeetetestessessessessestesseseeseeseasessessessessessessessesensenns 21-11

OCI Locale-Mapping FUNCHON ... 21-12
OCINISNAMEMAP()...vvvviiiiiiiiiiiiii s 21-13

OCI String Manipulation FUNctionscccccoooiiiiii 21-14
OCIMultiByteInSizeToWideChar() ... 21-16
OCIMultiByteStrCaseCONVerSion()ccooeeeuiiiiiiiiiiniiiiiiiiiniss s 21-17
OCIMULBYLESEICAL() ..vovovevvereieiieieicieieieieiciceteeeie ettt 21-18
OCIMUltiByteStremp() c.vovveveveiiiciiiciciciicci s 21-19
OCIMULtBYESEICPY (). vvvveiriiiiiieiiriiii e 21-20
OCIMULtBYLESEIIEN().c..evvvvemeiieicicicieieieiceeie ettt 21-21
OCIMUltiByteStrNcat()......coeveveviveiiiiieieiiiiiiciic e 21-22
OCIMUultiByteStrNCmP()cocveveviiiiiiiiiiiiiiiiiircn e 21-23
OCIMULtIBYLESIINCPY () «.vvvvreeieieieieirieieieecrireere et 21-25
OCIMultiByteStrnDisplayLength()cocococeiiiririiiiici s 21-26
OCIMultiByteToOWideChar()cccceueuriririiiiiriiiiiiiiisisr e 21-27
OCIWideCharInSize TOMUItBYLE()cvoveviureriiiiiiiciicccccccciccccece e 21-28
OCIWideCharMultiByteLength()cccocoviviiiiininiiiiiiiiicc e 21-29
OCIWideCharStrCaseCONVErSION().....coceeruererrererreririeeriesirieeriestsrestssestesetsseeesestesestesessesessesenes 21-30
OCTWIdECRATSEICAL() vovvevverrereirirririisieriesietetetetee st esestessessessessessessesseseesessessessessessessessessesensenss 21-31
OCTWIdeCharStICRT()e.eeveeueererienieteetetete ettt ettt sttt sb e sttt et ebe b e 21-32
OCIWideCharStICIP()....cvoveveuveviiiiiiiiiiiiiiiiirir e 21-33
OCIWIdeCRAISIICPY() «.vvvveeireiriiirirereirieerer sttt 21-34
OCTWIdeCRATrSEIIEN() ...eeueeveeieeteriinteieietetete ettt ettt sb e sb sttt e e e be b e 21-35
OCTWIECRATSEINCAL() ...euveviveriieiirieirieerietrt ettt ettt ettt et ettt et b st s et s b esesenes 21-36
OCIWideCharSEINCIP() «..cvevevvereeeririreriirieerrerereec st 21-37
OCIWideCharStINCPY (). ceveveverireieiiieieiiiiiiiisi s 21-39
OCTWIdECRATSEITCRT() «.vevevieeeiieiirieirie ettt ettt ettt ens 21-40

XXXi

22

XXXii

OCTIWIideCharTOLOWET() «..coueeverieriinieieieteiteieeieet ettt sttt ettt st sttt sbe b e 21-41

OCIWideCharTOMUIBYLE()cvcueviriiiiiiiiiciciicecsce s 21-42
OCIWideCharTOUPPET()cceuvururiririririririeirrerereesree ettt 21-43
OCI Character Classification FUNCHIONScccooiiiiiiiiiiiiiiii et 21-44
OCTIWideCharISAINUIM() ...ccovevereieieieieieeeterestetesteestesessesesseressesaesessesesessessesensesensesensesensesensesenes 21-45
OCIWideCharISAIPRA() ...c.ceueueieieicicieeeecereeeee e 21-46
OCTIWIideCharISCNELL() .eceeeeeereeieierieeetet ettt ettt et e ebe b e 21-47
OCIWideCharISDIZIt()coceuriiiiiieiiiiiiiiiici e 21-48
OCIWideCharIsSGIraphi()cccoeeueueueieiririeieiiiririrreerrereee st 21-49
OCTIWIideCharISLOWET() ...c.ceeererueriirierieieieteteitet ettt ettt ettt st sttt ettt ebe b e 21-50
OCTWiIdeCRATISPIINE()..euveveereverrereriereiereriererterestesesteessesessesessesessessesessesessssessesensesessesessesessesensesenes 21-51
OCTIWIideCRATISPUNCE() vovvevveereieieieierististeteteeetetestesaseseessessessessessesseseesassessessessessessessessessesenss 21-52
OCIWideCharlIsSingleByte().......cococueuiiurieiiiciiec e 21-53
OCIWideCharIsSPace()cccoovvuriiiiiiiniiiiiiiiiiiiicic s 21-54
OCIWideCharISUPPET()c.ceueueueieiiiiieirieieiiicieirieeeieireeereseee s 21-55
OCIWideCharIsXdigit()cccooeveviiriiieiiiiiiiiiiiiic e 21-56
OCI Character Set Conversion FUNCHONS.cccocoieiriiniiiniincncenceneercenice et 21-57
OCICharSetConversionlsReplacementUsed()cccoeueueuruvereririrrnininrnrcsrre e 21-58
OCICharSetTOUNICOAE() -c..eeveererreruinienieieteteteitettetestt sttt ettt ettt st sbe e st se e et et et ebe b e 21-59
OCINISCharSEtCONVETT() ..c.veveeverertereriererieririeterterertesertesereertrsesestesessestssestssesessestssesessesessessesensesenes 21-60
OCTUNICOAETOCRATSE() ..vvevveererierieiieririisieiesieteetetesessessessessessessessesseseesessessessessessessessessessesessenns 21-62
OCI Messaging FUNCHONS ...t 21-63
OCIMESSAGECLOSE()...vuvoveeereriiiicictete ettt ettt a b 21-64
OCIMESSAZEGEL() ...vvvvvviniiiiciiiiic s 21-65
OCIMESSAGEOPEI()...vuviviviiiiiiiiiiiiii st s s aeaeaas 21-66

OCI XML DB Functions

Introduction to XML DB Support in OClL...........cccooiiiiiiiiccene 22-1
Conventions for OCI FUNCHONScoieieiiiiieiticieieeeereetete ettt e et aeste e veersesveesnesaeennas 22-1
PUTPOSE ..o s 22-1
SYTAX ..ttt 22-1
B U= U0 1 £ = T USROS 22-1
COIMUIMENES ...eeventieiieteeiieseete et et e st e e st esbesseeteesees s eeseessesstessesssessesnsessesssenseensenseessenseensesseensesseensesnen 22-2
FUunction REtUIT VAIUES.......c.coouiiiiiieieicteseeceeest ettt ettt ae st et ae e s sa et e esaeseeseesaesnnas 22-2

OCI XIML DB FUNCHONSc.uoiiiieiiieieeciteeteeiteete et e etteesteestteesteesseessseesssesssaesssasssssssessssesssessssesssesssees 22-3
OCIXMIDDFEIEEXIMICEX() cvevevverrerrerreieieisissistesessessessessessessessessessssssssssessessessessessessessessessesessensenses 22-4
OCIXMIDDBINIEXINICEX() c.veuvenrenieieiienieiieesieet ettt ettt sttt st sttt et e be e b sae s 22-5

Handle and Descriptor Attributes

COMNVEINLIONS.ooctiiiieiieticiete et et te e e testeettesteestesteessesseessesseessasseassaasaasseaseessessaesseaseessesssessanssensenssensenss A-2
Environment Handle AttriDUtes...........ocooiiiiiiiiiicececeeceeeeeeet ettt e A-2
Error Handle ABITDULEScocvovieeieieeeeeeee ettt e s e se s e e s e ensesesnnensenns A-8
Service Context Handle AEIDULEScooiiiiiieieecececeeeeeeee et rees A-8
Server Handle AtIIDULESccveoiieiiiiieeeee ettt et v ettt rs et ere e neens A-10

Authentication Information Handle...........cocuviriiiiiniininieieieieeeeeeeese st A-12

User Session Handle AEIDULESc.coueeveiieieiieieceeeeeteete ettt e et e e s e sseeae e esaesnnas A-12
Administration Handle AtrIDULesc.cooovieviiiiiiiicceeeeeeeeee ettt e A-18

Connection Pool Handle AHIIDULEScoovviiiieiiieiece e s A-18

Session Pool Handle Attributes ... A-20
Transaction Handle Attributes...............cccoiiiii A-22
Statement Handle Attributes ... A-22
Bind Handle Attributes...............cccooiiiiiiiiiiii e A-28
Define Handle Attributes............ccococoooiiiiiiii A-31
Describe Handle Attributes ... A-32
Parameter Descriptor Attributes ... A-33
LOB Locator AtrbDUtes ... A-33
Complex Object Atributes.............cooiiiiiiii e A-33
Complex Object Retrieval Handle Attributesccooovoiiiiiiiiiii e, A-34
Complex Object Retrieval Descriptor Attributes.........cccccceeiciciiiiiiiiiicccceccereecnes A-34
Streams Advanced Queuing Descriptor Attributes...............ccocoooiiiiiii A-34
OCTAQEngOptions Descriptor Attributes ..o A-35
OCIAQDeqOptions Descriptor Attributes...........cocoeiviviiiiiiiiiiiiiiiicces A-36
OCIAQMsgProperties Descriptor Attributes..........ccoeeeiiiiiinii A-39
OCIAQAgent Descriptor Attributes ..., A-43
OCIServerDNs Descriptor Attributes ... A-44
Subscription Handle Attributes ..ot A-44
Change Notification Atributes.........c.oooiiiiiii e A-48
Change Notification Descriptor Attributescoovveevveiiirniiceccrcecee e A-49
Direct Path Loading Handle Attributes..............ccccocoiviiiiiiii A-51
Direct Path Context Handle (OCIDirPathCtx) Attributes........coceceeveuerueuenieerercnenenenenrerennenenne A-51
Direct Path Function Context Handle (OCIDirPathFuncCtx) Attributes..........cccceeevevrennnnn. A-56
Direct Path Function Column Array Handle (OCIDirPathColArray) Attributes A-57
Direct Path Stream Handle (OCIDirPathStream) Attributes........cccccoeeveeenenncnncrncrcnnecnn A-58
Direct Path Column Parameter AttribUtescccoccuieiiiniiciiiirceeererecre e A-59
Accessing Column Parameter Attributesooooiiiiii A-59

Process Handle Attributes ... A-63
Event Handle Attributes ... A-65

OCI Demonstration Programs

OCI Function Server Round Trips

Overview of Server ROUNd THIPS......cccoeiriiiriiiriiiiiecceeeeeeee et C-1
Relational Function ROUNd TriPS ... C-1
LOB Function Round TIPScccccoiiiiiiniiiiciceeee e C-3
Object and Cache Function Round Trips........ccccccooiviiiniiiiiiiiiiiiiis C-4
Describe Operation RoOund TIPS ... s C-5
Datatype Mapping and Manipulation Function Round Tripsccccooooiiiiii, C-6
Any Type and Data Function Round Trips........ccccoceiviiiiiiniiiiiccces C-6
Other Local FUNCLIONSccocooiiiiiiiiiiii s C-6

Getting Started with OCI for Windows

What Is Included in the OCI Package for Windows?..............cccccciiviiiiininiiiinniciiccce, D-1
Oracle Directory Structure for Windows.................cccccoiiiiiiiiiicccceeeeeeeees D-1

XXXxiii

Sample OCI Programs for Windows ..o D-2

Compiling OCI Applications for Windows.............cccccceiiiiiiiiiiiiiicceees D-2
Linking OCI Applications for Windowscccoviiiniiiiiaes D-3
OCLIID oo s D-3
Client DLL Loading When Using Load Library()ccccceoeeiieininiinicceeccecee D-3
Running OCI Applications for Windows..............ccccooviiniiiniiiie D-3
The Oracle XA LIDIary ... s D-3
Compiling and Linking an OCI Program with the Oracle XA Library........c.ccccocoeviorriennnnnnee. D-4
Using XA Dynamic Registration...........ccoceeiiviiiiiiiiiiiiiiicccenes D-4
Adding an Environmental Variable for the Current Sessionccoooeveiniiiiiiiiinnnnn. D-4
Adding a Registry Variable for All SeSSions............cccoeueieiiiicieiiiicicic e, D-4
Adding a Registry Variable:cccccccoiiiiiiiiiicccceceeeee s D-5

XA and TP Monitor INformation ... D-5
Using the Object Type Translator for Windows..............ccccccvvviiiiiiiiinn D-5

Index

XXXiV

Audience

Preface

The Oracle Call Interface (OCI) is an application programming interface (API) that
allows applications written in C or C++ to interact with one or more Oracle database
servers. OCI gives your programs the capability to perform the full range of database
operations that are possible with an Oracle database server, including SQL statement
processing and object manipulation.

This guide is intended for programmers developing new applications or converting
existing applications to run in the Oracle environment. This comprehensive treatment
of OCI will also be valuable to systems analysts, project managers, and others
interested in the development of database applications.

This guide assumes that you have a working knowledge of application programming
using C. Readers should also be familiar with the use of Structured Query Language
(SQL) to access information in relational database systems. In addition, some sections
of this guide also assume a knowledge of the basic concepts of object-oriented
programming.

See Also:

s For information about SQL, refer to the Oracle Database SQL
Reference and the Oracle Database Administrator’s Guide

» For information about basic Oracle concepts, see Oracle
Database Concepts.

s For information about the differences between the Standard
Edition and the Enterprise Edition and all the features and
options that are available to you, see Oracle Database New
Features.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

XXXV

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (ITTY) access to Oracle Support Services

within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents

XXXVi

Many of the examples in this book use the sample schemas, which are installed by
default when you select the Basic Installation option with an Oracle Database
installation. Refer to Oracle Database Sample Schemas for information on how these
schemas were created and how you can use them yourself.

Printed documentation is available for sale in the Oracle Store at
http://oraclestore.oracle.com/
To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

http://www.oracle.com/technology/membership/

If you already have a user name and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://www.oracle.com/technology/documentation/

The Oracle Call Interface Programmer’s Guide does not contain all information that
describes the features and functionality of OCI in the Standard Edition and the
Enterprise Edition products.

Oracle C++ Call Interface

For C++ programmers, the Oracle C++ Call Interface provides OCI functionality for
C++ programs and lets you manipulate database objects (of user-defined types) as
C++ objects.

Other Sources of Information about OCI
For other sources of information about OCI:

See Also:

For information about the C++ Call interface, refer to Oracle
C++ Call Interface Programmer'’s Guide.

For more information about cartridge services, and the OCI
calls pertaining to development of data cartridges, refer to
Oracle Database Data Cartridge Developer’s Guide.

For more information about OCI calls pertaining to National
Language and Globalization Support, see Oracle Database
Globalization Support Guide.

For more information about OCI calls pertaining to Advanced
Queuing, see Oracle Streams Advanced Queuing User's Guide and
Reference.

For information about using OCI with the XA library, see Oracle
Database Application Developer’s Guide - Fundamentals.

For more information about using OCI calls to manipulate
LOBs, including code examples, see Oracle Database Application
Developer’s Guide - Large Objects.

For a more detailed explanation of object types, see Oracle
Database Application Developer’s Guide - Object-Relational
Features.

Further Sources of Information About Oracle Database
» Oracle Database Installation Guide for Microsoft Windows (32-Bit)

» Oracle Database Release Notes for Microsoft Windows (32-Bit)

» Oracle Enterprise Manager Administrator’s Guide

m Oracle Database Net Services Administrator’s Guide

m Oracle Database New Features

» Oracle Database Concepts

» Oracle Database Reference

» Oracle Database Error Messages

Conventions

The following text conventions are used in this document:

Convention

Meaning

boldface

italic

monospace

Boldface type indicates graphical user interface elements associated

with an action, or terms defined in text or the glossary.

Italic type indicates book titles, emphasis, or placeholder variables for

which you supply particular values.

Monospace type indicates commands within a paragraph, URLs, code

in examples, text that appears on the screen, or text that you enter.

XXXVii

XXXViii

What's New in Oracle Call Interface?

The following sections describe the new features in this Oracle Call Interface manual:
= New Features in Oracle Call Interface Release 10.2

s New Features in Oracle Call Interface Release 10.1

New Features in Oracle Call Interface Release 10.2

= Instant Client Light (English) further reduces the footprint of Instant Client.

See Also: '"Instant Client Light (English)" on page 1-22

= Database startup and shutdown can now be done from OCI.

See Also: "Database Startup and Shutdown" on page 9-72

= You can obtain the client library version at compile-time and runtime.

See Also: "OCIClientVersion()" on page 16-175

= A new user handle session attribute, OCI_ATTR_CURRENT_SCHEMA, which has
the same functionality as the SQL command ALTER SESSION SET
CURRENT__SCHEMBA, is described in "OCI_ATTR_CURRENT_SCHEMA" on
page A-15.

= OCIDirPathFlushRow () was deprecated. There are small changes in the Direct
Path interfaces that are in the following sections:

See Also:

s "OCI_DIRPATH_COL_ERROR" on page 12-16

s "Direct Path Loading of SQL String Columns" on page 12-16
s "OCIDirPathColArrayToStream()" on page 16-124

= "OCIDirPathLoadStream()" on page 16-129

s OCI clients can register for Real Application Clusters (RAC) high availability
events and decide on actions for each event.

See Also:
= "HA Event Notification" on page 9-36
= "Event Handle Attributes" on page A-65

XXXiX

= Restrictions on selecting remote LOB data defined as character or raw datatypes
by means of the data interface are eased.

See Also: "Creating and Modifying Persistent LOBs" on page 7-2
and the subsequent sections

s Two new functions read and write LOB data for multiple locators in one server
round trip.
See Also:
s "OCILobArrayRead()" on page 16-26
s "OCILobArrayWrite()" on page 16-30
s "Using OCILobArrayRead() and OCILobArrayWrite()" on
page 7-9

= For NCHAR literal support in OCI, new values of the parameter mode
(OCI_NCHAR_LITERAL_REPLACE_ON and
OCI_NCHAR_LITERAL_REPLACE_OFF) in the following functions control N'
substitution:
See Also:
s "OCIEnvCreate()" on page 15-13

= "OCIEnvNIsCreate()" on page 15-18

= The Notifications Enhancement project improves event notification.

See Also:
= "Publish-Subscribe Notification in OCI" on page 9-47

= "Subscription Handle Attributes” on page A-44 for new
attributes OCI_ATTR_SUBSCR_PORTNO,
OCI_ATTR_SUBSCR_QOSFLAGS,
OCI_ATTR_SUBSCR_TIMEOUT

= Buffered messaging is now supported within the Streams Advanced Queueing
capability.
See Also:
= '"Buffered Messaging" on page 9-44 for concepts

= "Streams Advanced Queuing and Publish-Subscribe Functions"
on page 16-98 for the function reference pages

= "OCIAQListen2()" on page 16-108 for a new function
= "Streams Advanced Queuing Descriptor Attributes" on

page A-34

= Database change notification enables client applications to receive notifications
when the result set of a registered query has changed.

See Also:

s "Database Change Notification" on page 9-61

= "Change Notification Attributes" on page A-48

= "Change Notification Descriptor Attributes" on page A-49

= Asynchronous commit allows the programmer greater control by using new
values for the f1ags parameter when making calls to OCITransCommit ():

See Also: "OCITransCommit()" on page 16-159

s An Oracle wallet is a secure software container used to store authentication and
signing credentials.

See Also: "Secure External Password Store" on page 8-9

= Application context enables developers to define, set, and access application
attributes.

See Also: "Client Application Context" on page 8-19

= Proxy access for a single client can be set using various connect strings.

See Also: "Client Access Through a Proxy" on page 2-15

m OCIPing () is used to confirm that the server connection and the server are active.
It also can be used to flush all the pending OCI client-side calls to the server.

See Also: "OCIPing()" on page 16-181

= Windows NT is no longer supported for OCI. The only Microsoft Visual C++
releases supported for the current OCI release are 7.0 and higher.

See Also: Appendix D, "Getting Started with OCI for Windows"

s Transparent Application Failover (TAF) is enabled for connection pooling.

See Also: "Transparent Application Failover" on page 9-9

»s OCI Scrollable Cursors now works for remote mapped queries. Transparent
Application Failover (TAF) works with OCI Scrollable cursors.

See Also: "Scrollable Cursors in OCI" on page 4-14

New Features in Oracle Call Interface Release 10.1

= Native float and double are supported.

See Also:
= "BINARY_FLOAT and BINARY_DOUBLE" on page 3-5
= "Native Float and Native Double" on page 3-19

" OCIDescribeAny () supports rules, rule sets, and evaluation contexts.

xli

xlii

See Also: "Rule Attributes" on page 6-16, and so on

s The OCI Instant Client capability simplifies OCI installation and saves disk space
for application deployment.

See Also: "OClI Instant Client" on page 1-16

» Additional information on upgrading to a new release of OCI is available.

See Also: "Compatibility and Upgrading” on page 1-12

A new discussion describes when to use session pooling or connection pooling.

See Also: "When to Use Connection Pooling, Session Pooling, or
Neither" on page 9-17

= Batch array enqueue and dequeue functions and attributes have been added.

See Also:
= "OCI and Streams Advanced Queuing" on page 9-39

= "Streams Advanced Queuing and Publish-Subscribe Functions"
on page 16-98

= "Streams Advanced Queuing Descriptor Attributes" on
page A-34

= LOBs can be of greater size than 4 GB. There are several new LOB functions whose
names end in "2" that handle LOBs greater and smaller than 4 GB, and replace
deprecated LOB functions without "2".

See Also:
= "Using LOBs of Size Greater than 4 GB" on page 7-4
s "LOB Functions" on page 16-19

= Database Globalization Support is now described in this manual.

See Also:
= "OCI Globalization Support" on page 2-28
= "OCI Globalization Support Functions" on page 21-1

= Statement Caching has been enhanced.

See Also: "Statement Caching in OCI" on page 9-20

= Windows documentation is now included in this guide.

See Also: Appendix D, "Getting Started with OCI for Windows"

There is OCI support for the unified C API which is used for XMLType columns in

tables (and XML documents).

See Also:
s "OCI Support for XML" on page 13-17
s Chapter 22, "OCI XML DB Functions"

There are new or modified functions.

See Also:
s "OCICollGetElemArray()" on page 18-10
s "OCINumberToRealArray()" on page 18-126

New modes OCI_BIND_SOFT and OCI_DEFINE_SOFT are documented.

See Also:

= "OCIBindByName()" on page 15-61
= "OCIBindByPos()" on page 15-65

= "OCIDefineByPos()" on page 15-75

New attributes for end-to-end application tracing are described.

See Also:
= "End-to-End Application Tracing" on page 8-15
= "User Session Handle Attributes" on page A-12

New attributes for Direct Path are described.

See Also:

s "Direct Path Context Handle (OCIDirPathCtx) Attributes" on
page A-51

s "Direct Path Context Handle (OCIDirPathCtx) Attributes" on
page A-51

xliii

xliv

1

Introduction and Upgrading

This chapter contains these topics:
» Overview of OCI

s Compatibility and Upgrading
s OCI Instant Client

Overview of OCI
The Oracle Call Interface (OCI) is an application programming interface (API) that lets

you create applications that use function calls to access an Oracle database server and
control all phases of SQL statement execution. OCI supports the datatypes, calling
conventions, syntax, and semantics of C and C++.

See Also:

» Oracle C++ Call Interface Programmer’s Guide

= "Related Documents" on page xxxvi

OCI provides:

s Improved performance and scalability through the efficient use of system memory
and network connectivity

= Consistent interfaces for dynamic session and transaction management in a
two-tier client/server or multitier environment

= N-tier authentication
s Comprehensive support for application development using Oracle objects
m Access to external databases

= Applications that support an increasing number of users and requests without
additional hardware investments

OClI lets you manipulate data and schemas in an Oracle database using C
programming language. It provides a library of standard database access and retrieval
functions in the form of a dynamic runtime library (OCI library) that can be linked in
an application at runtime.

OCI has many new features that can be categorized into several primary areas:
= Encapsulated or opaque interfaces, whose implementation details are unknown

= Simplified user authentication and password management

Introduction and Upgrading 1-1

Overview of OCI

= Extensions to improve application performance and scalability
= Consistent interface for transaction management

s OCI extensions to support client-side access to Oracle objects

Advantages of OCI

OCI provides significant advantages over other methods of accessing an Oracle
database:

= More fine-grained control over all aspects of application design
= High degree of control over program execution

s Use of familiar third generation language programming techniques and
application development tools, such as browsers and debuggers

= Connection pooling, session pooling, and statement caching that enable building
of scalable applications

= Support of dynamic SQL

= Availability on the broadest range of operating systems of all the Oracle
programmatic interfaces

= Dynamic binding and defining using callbacks
= Description functionality to expose layers of server metadata
= Asynchronous event notification for registered client applications

= Enhanced array data manipulation language (DML) capability for array inserts,
updates, and deletes

= Ability to associate commit requests with executes to reduce round trips
= Optimization of queries using transparent prefetch buffers to reduce round trips

s Thread safety which eliminates the need for mutual exclusive locks (mutexes) on
OCI handles

Building an OCI Application

You compile and link an OCI program in the same way that you compile and link a
non-database application. There is no need for a separate preprocessing or
precompilation step.

Oracle supports most popular third-party compilers. The details of linking an OCI
program vary from system to system. On some operating systems, it may be necessary
to include other libraries, in addition to the OCI library, to properly link your OCI
programs. See your Oracle system-specific documentation and the installation guide
for more information about compiling and linking an OCI application for your
operating system.

See Also: Appendix D, "Getting Started with OCI for Windows"

Parts of OCI
OCI has the following functionality:

= APIs to design a scalable, multithreaded application that can support large
numbers of users securely

1-2 Oracle Call Interface Programmer's Guide

Overview of OCI

= SQL access functions, for managing database access, processing SQL statements,
and manipulating objects retrieved from an Oracle database server

s Datatype mapping and manipulation functions, for manipulating data attributes
of Oracle types

= Data loading functions, for loading data directly into the database without using
SQL statements

= External procedure functions, for writing C callbacks from PL/SQL

Procedural and Non-Procedural Elements

OCl lets you develop scalable, multithreaded applications in a multitier architecture
that combines the non-procedural data access power of Structured Query Language
(SQL) with the procedural capabilities of C and C++.

= Inanon-procedural language program, the set of data to be operated on is
specified, but what operations will be performed, or how the operations are to be
carried out is not specified. The non-procedural nature of SQL makes it an easy
language to learn and to use to perform database transactions. It is also the
standard language used to access and manipulate data in modern relational and
object-relational database systems.

= Ina procedural language program, the execution of most statements depends on
previous or subsequent statements and on control structures, such as loops or
conditional branches, which are not available in SQL. The procedural nature of
these languages makes them more complex than SQL, but it also makes them more
flexible and powerful.

The combination of both non-procedural and procedural language elements in an OCI
program provides easy access to an Oracle database in a structured programming
environment.

OClI supports all SQL data definition, data manipulation, query, and transaction
control facilities that are available through an Oracle database server. For example, an
OCI program can run a query against an Oracle database. The queries can require the
program to supply data to the database using input (bind) variables, as follows:

SELECT name FROM employees WHERE empno = :empnumber;

In the preceding SQL statement, : empnumber is a placeholder for a value that will be
supplied by the application.

You can also take advantage of PL/SQL, Oracle's procedural extension to SQL. The
applications you develop can be more powerful and flexible than applications written
in SQL alone. OCI also provides facilities for accessing and manipulating objects in an
Oracle database server.

Object Support

OCI has facilities for working with object types and objects. An object type is a
user-defined data structure representing an abstraction of a real-world entity. For
example, the database might contain a definition of a person object. That object might
have attributes—first_name, last_name, and age—which represent a person's
identifying characteristics.

The object type definition serves as the basis for creating objects, which represent
instances of the object type. Using the object type as a structural definition, a person
object could be created with the attribute values 'John', ‘Bonivento', and '30'. Object

Introduction and Upgrading 1-3

Overview of OCI

types may also contain methods—programmatic functions that represent the behavior
of that object type.

See Also:

» Oracle Database Concepts

» Oracle Database Application Developer's Guide - Object-Relational

Features.

OCl includes functions that extend the capabilities of OCI to handle objects in an
Oracle database server. Specifically, the following capabilities have been added to OCI:
= Executing SQL statements that manipulate object data and schema information
= Passing of object references and instances as input variables in SQL statements

s Declaring object references and instances as variables to receive the output of SQL
statements

s Fetching object references and instances from a database

s Describing the properties of SQL statements that return object instances and
references

s Describing PL/SQL procedures or functions with object parameters or results

= Extension of commit and rollback calls in order to synchronize object and
relational functionality

Additional OCI calls are provided to support manipulation of objects after they have
been accessed by SQL statements. For a more detailed description of enhancements
and new features, refer to "Encapsulated Interfaces" on page 1-8.

SQL Statements

One of the main tasks of an OCI application is to process SQL statements. Different
types of SQL statements require different processing steps in your program. It is
important to take this into account when coding your OCI application. Oracle
recognizes several types of SQL statements:

= Data Definition Language (DDL)
= Control Statements
s Transaction Control
= Session Control
= System Control
= Data Manipulation Language (DML)

s Queries

Note: Queries are often classified as DML statements, but OCI
applications process queries differently, so they are considered
separately here.

= PL/SQL
s Embedded SQL

1-4 Oracle Call Interface Programmer's Guide

Overview of OCI

See Also: Chapter 4, "Using SQL Statements in OCI"

Data Definition Language

Data definition language (DDL) statements manage schema objects in the database.
DDL statements create new tables, drop old tables, and establish other schema objects.
They also control access to schema objects.

The following is an example of creating and specifying access to a table:

CREATE TABLE employees

(name VARCHAR2 (20) ,
ssn VARCHAR2 (12) ,
empno NUMBER (6) ,
mgr NUMBER (6) ,
salary NUMBER (6)) ;

GRANT UPDATE, INSERT, DELETE ON employees TO donna;
REVOKE UPDATE ON employees FROM jamie;

DDL statements also allow you to work with objects in the Oracle database server, as
in the following series of statements which creates an object table:

CREATE TYPE person_t AS OBJECT (
name VARCHAR2 (30),
ssn VARCHAR2 (12),
address VARCHAR2(50));

CREATE TABLE person_tab OF person_t;

Control Statements

OCI applications treat transaction control, session control, and system control
statements like DML statements.

See Also: Oracle Database SQL Reference for information about
these types of statements

Data Manipulation Language

Data manipulation language (DML) statements can change data in the database tables.
For example, DML statements are used to:

= Insert new rows into a table

= Update column values in existing rows

= Delete rows from a table

= Lock a table in the database

= Explain the execution plan for a SQL statement

= Require an application to supply data to the database using input (bind) variables

See Also: "Binding Placeholders in OCI" on page 4-4 for more
information about input bind variables

DML statements also allow you to work with objects in the Oracle database server, as

in the following example, which inserts an instance of type person_t into the object
table person_tab:

Introduction and Upgrading 1-5

Overview of OCI

INSERT INTO person_tab
VALUES (person_t('Steve May', '123-45-6789','146 Winfield Street'));

Queries

Queries are statements that retrieve data from a database. A query can return zero,
one, or many rows of data. All queries begin with the SQL keyword SELECT, as in the
following example:

SELECT dname FROM dept
WHERE deptno = 42;

Queries access data in tables, and they are often classified with DML statements.
However, OCI applications process queries differently, so they are considered
separately in this guide.

Queries can require the program to supply data to the database using input (bind)
variables, as in the following example:

SELECT name
FROM employees
WHERE empno = :empnumber;

In the preceding SQL statement, : empnumber is a placeholder for a value that will be
supplied by the application.

= When processing a query, an OCI application also needs to define output variables
to receive the returned results. In the preceding statement, you would need to
define an output variable to receive any name values returned from the query.

See Also:

= "Overview of Binding in OCI" on page 5-1 for more information
about input bind variables. See the section "Overview of
Defining in OCI" on page 5-12 for information about defining
output variables.

s Chapter 4, "Using SQL Statements in OCI", for detailed
information about how SQL statements are processed in an OCI
program.

PL/SQL

PL/SQL is Oracle's procedural extension to the SQL language. PL/SQL processes
tasks that are more complicated than simple queries and SQL data manipulation
language statements. PL/SQL allows a number of constructs to be grouped into a
single block and executed as a unit. Among these are:

s One or more SQL statements

» Variable declarations

= Assignment statements

» Procedural control statements (IF.. THEN...ELSE statements and loops)
= Exception handling

You can use PL/SQL blocks in your OCI program to:

= Call Oracle stored procedures and stored functions

= Combine procedural control statements with several SQL statements, so that they
are executed as a single unit

1-6 Oracle Call Interface Programmer's Guide

Overview of OCI

m Access special PL/SQL features such as records, tables, cursor FOR loops, and
exception handling

s Use cursor variables
= Access and manipulate objects in an Oracle database server

The following PL/SQL example issues a SQL statement to retrieve values from a table
of employees, given a particular employee number. This example also demonstrates
the use of placeholders in PL/SQL statements.

BEGIN
SELECT ename, sal, comm INTO :emp_name, :salary, :commission
FROM emp
WHERE empno = :emp_number;

END;

Note that the placeholders in this statement are not PL/SQL variables. They represent
input values passed to Oracle when the statement is processed. These placeholders
need to be bound to C language variables in your program.

See Also:

» Oracle Database PL/SQL User's Guide and Reference for
information about coding PL/SQL blocks.

= "Binding Placeholders in PL/SQL" on page 5-3 for information
about working with placeholders in PL/SQL.

Embedded SQL

OCI processes SQL statements as text strings that an application passes to Oracle on
execution. The Oracle precompilers (Pro*C/C++, Pro*COBOL, Pro*FORTRAN) allow
you to embed SQL statements directly into your application code. A separate
precompilation step is then necessary to generate an executable application.

It is possible to mix OCI calls and embedded SQL in a precompiler program.

See Also: Pro*C/C++ Programmer’s Guide

Special OCI/SQL Terms

This guide uses special terms to refer to the different parts of a SQL statement. For
example, a SQL statement such as

SELECT customer, address
FROM customers

WHERE bus_type = 'SOFTWARE'
AND sales_volume = :sales;

contains the following parts:

s A SQL command - SELECT

n Two select-list items - customer and address

» A table name in the FROM clause - customers

s Two column names in the WHERE clause - bus_ type and sales_volume
= Aliteral input value in the WHERE clause - 'SOFTWARE'

» A placeholder for an input variable in the WHERE clause - : sales

Introduction and Upgrading 1-7

Overview of OCI

When you develop your OCI application, you call routines that specify to the Oracle
database server the address (location) of input and output variables of your program.
In this guide, specifying the address of a placeholder variable for data input is called a
bind operation. Specifying the address of a variable to receive select-list items is called a
define operation.

For PL/SQL, both input and output specifications are called bind operations. These
terms and operations are described in Chapter 4, "Using SQL Statements in OCI".

Encapsulated Interfaces

All the data structures that are used by OCI calls are encapsulated in the form of
opaque interfaces that are called handles. A handle is an opaque pointer to a storage
area allocated by the OCI library that stores context information, connection
information, error information, or bind information about a SQL or PL/SQL
statement. A client allocates a certain types of handles, populates one or more of those
handles through well-defined interfaces, and sends requests to the server using those
handles. In turn, applications can access the specific information contained in the
handle by using accessor functions.

The OCI library manages a hierarchy of handles. Encapsulating the OCI interfaces by
means of these handles has several benefits to the application developer, including:

s Reduction in the amount of server side state information that needs to be retained,
thereby reducing server-side memory usage

= Improvement of productivity by eliminating the need for global variables, making
error reporting easier, and providing consistency in the way OCI variables are
accessed and used

s Encapsulation of OCI structures in the form of handles makes them opaque,
allowing changes to be made to the underlying structure without affecting
applications

Simplified User Authentication and Password Management

OCI provides application developers with simplified user authentication and
password management in several ways:

= Allows a single OCI application to authenticate and maintain multiple users

= Allows the application to update a user's password, which is particularly helpful if
an expired password message is returned by an authentication attempt

OCI supports two types of login sessions:

= A simplified login function for sessions by which a single user connects to the
database using a login name and password

= A mechanism by which a single OCI application authenticates and maintains
multiple sessions by separating the login session, which is the session created
when a user logs into an Oracle database, from the user sessions, which are all
other sessions created by a user

Extensions to Improve Application Performance and Scalability

OCI has several enhancements to improve application performance and scalability.
Application performance has been improved by reducing the number of client to
server round trips required and scalability improvements have been made by reducing

1-8 Oracle Call Interface Programmer's Guide

Overview of OCI

the amount of state information that needs to be retained on the server side. Some of
these features include:

s Increased client-side processing, and reduced server-side requirements on queries

s Implicit prefetching of SELECT statement result sets to eliminate the describe
round trip, reduce round trips, and reduce memory usage

= Elimination of open and closed cursor round trips
» Improved support for multithreaded environments
= Session multiplexing over connections

= Consistent support for a variety of configurations, including standard two-tier
client/server configurations, server-to-server transaction coordination, and
three-tier TP-monitor configurations

= Consistent support for local and global transactions including support for the XA
interface's TM_JOIN operation

= Improved scalability by providing the ability to concentrate connections,
processes, and sessions across users on connections and eliminating the need for
separate sessions to be created for each branch of a global transaction

= Allowing applications to authenticate multiple users and allow transactions to be
started on their behalf

OCI Object Support

OCI provides a comprehensive application programming interface for programmers
seeking to use the Oracle server's object capabilities. These features can be divided into
five major categories:

s Client-Side Object Caching
= Associative and navigational interfaces to access and manipulate objects
= Runtime environment for objects

= Type management functions to access information about object types in an Oracle
database

s Type mapping and manipulation functions for controlling data attributes of Oracle
types

s Object Type Translator utility, for mapping internal Oracle schema information to
client-side language bind variables

Client-Side Object Cache

The object cache is a client-side memory buffer that provides lookup and memory
management support for objects. It stores and tracks object instances that have been
fetched by an OCI application from the server to the client side. The object cache is
created when the OCI environment is initialized. Multiple applications running
against the same server will each have their own object cache. The cache tracks the
objects which are currently in memory, maintains references to objects, manages
automatic object swapping and tracks the meta-attributes or type information about
objects. The object cache provides the following to OCI applications:

» Improved application performance by reducing the number of client/server round
trips required to fetch and operate on objects

= Enhanced scalability by supporting object swapping from the client-side cache

Introduction and Upgrading 1-9

Overview of OCI

= Improved concurrency by supporting object-level locking

Associative and Navigational Interfaces

Applications using OCI can access objects in the Oracle server through several types of
interfaces:

s Using SQL SELECT, INSERT, and UPDATE statements

s Using a C-style pointer chasing scheme to access objects in the client-side cache by
traversing the corresponding smart pointers or REFs

OCI provides a set of functions with extensions to support object manipulation using
SQL SELECT, INSERT, and UPDATE statements. To access Oracle objects these SQL
statements use a consistent set of steps as if they were accessing relational tables. OCI
provides the following sets of functions required to access objects:

= Binding and defining object type instances and references as input and output
variables of SQL statements

= Executing SQL statements that contain object type instances and references
= Fetching object type instances and references
s Describing select-list items of an Oracle object type

OClI also provides a set of functions using a C-style pointer chasing scheme to access
objects once they have been fetched into the client-side cache by traversing the
corresponding smart pointers or REFs. This navigational interface provides functions
for:

» Instantiating a copy of a referenceable persistent object, that is, of a persistent
object with object ID in the client-side cache by pinning its smart pointer or REF

» Traversing a sequence of objects that are connected to each other by traversing the
REFs that point from one to the other

= Dynamically getting and setting values of an object's attributes

OCI Runtime Environment for Objects

OCI provides functions for objects that manages how Oracle objects are used on the
client-side. These functions provide for:

s Connecting to an Oracle server in order to access its object functionality, including
initializing a session, logging on to a database server, and registering a connection

= Setting up the client-side object cache and tuning its parameters
s Getting errors and warning messages

= Controlling transactions that access objects in the server

= Associatively accessing objects through SQL

s Describing a PL/SQL procedure or function whose parameters or result are Oracle
types

Type Management, Mapping and Manipulation Functions

OCI provides two sets of functions to work with Oracle objects:

1-10 Oracle Call Interface Programmer's Guide

Overview of OCI

s Type Mapping functions allow applications to map attributes of an Oracle schema
represented in the server as internal Oracle datatypes to their corresponding host
language types.

s Type Manipulation functions allow host language applications to manipulate
individual attributes of an Oracle schema such as setting and getting their values
and flushing their values to the server.

Additionally, the OCIDescribeany () function provides information about objects
stored in the database.

Object Type Translator

The Object Type Translator (OTT) utility translates schema information about Oracle
object types into client-side language bindings of host language variables, such as
structures. The OTT takes as input an intype file which contains metadata
information about Oracle schema objects. It generates an outtype file and the
necessary header and implementation files that must be included in a C application
that runs against the object schema. Both OCI applications and Pro*C/C++
precompiler applications may include code generated by the OTT. The OTT has many
benefits including;:

= Improves application developer productivity: OTT eliminates the need for you to
code the host language variables that correspond to schema objects.

= Maintains SQL as the data-definition language of choice: By providing the ability
to automatically map Oracle schema objects that are created using SQL to host
language variables, OTT facilitates the use of SQL as the data-definition language
of choice. This in turn allows Oracle to support a consistent model of data.

= Facilitates schema evolution of object types: OTT regenerates included header files
when the schema is changed, allowing Oracle applications to support schema
evolution.

OTT is typically invoked from the command line by specifying the intype file, the
outtype file and the specific database connection. With Oracle, OTT can only
generate C structures which can either be used with OCI programs or with the
Pro*C/C++ precompiler programs

OCI Support for Oracle Streams Advanced Queuing

OCI provides an interface to Oracle's Streams Advanced Queuing (Streams AQ)
feature. Streams AQ provides message queuing as an integrated part of the Oracle
server. Streams AQ provides this functionality by integrating the queuing system with
the database, thereby creating a message-enabled database. By providing an integrated
solution Streams AQ frees you to devote your efforts to your specific business logic
rather than having to construct a messaging infrastructure.

See Also: "OCI and Streams Advanced Queuing" on page 9-39.

XA Library Support

OCI supports the Oracle XA library. The xa . h header file is in the same location as all
the other OCI header files. For Linux or UNIX, the path is

$SORACLE_HOME/rdbms /public. Users of the demo_rdbms . mk file on Linux or
UNIX are not affected because the directory SORACLE_HOME/rdms/public is
already in the file.

For Windows, the path is ORACLE_BASE\ORACLE_HOME\oci\include.

Introduction and Upgrading 1-11

Compatibility and Upgrading

See Also:

s "The Oracle XA Library" on page D-3 for more information
about Windows and XA applications

» Oracle Database Application Developer’s Guide - Fundamentals,
chapter "Developing Applications with Oracle XA".

Compatibility and Upgrading

The following sections discuss issues concerning compatibility between different
versions of OCI client and server, changes in the OCI library routines, and upgrading
an application from the release 7.x OCI to this release of OCI.

Simplified Upgrading of Existing OCI Release 7 Applications

OCT has been significantly improved with many features. Applications written to
work with OCI release 7 have a smooth migration path to this OCI release because of
the interoperability of OCI release 7 clients with this release of the server, and of clients
of this release with an Oracle database version 7 server.

Specifically:

Applications that use the OCI release 7.3 API will work unchanged against this
release of the server. They do need to be linked with the current client library.

OCl release 7 and the OCI calls of this release can be mixed in the same application
and in the same transaction provided they are not mixed within the same
statement execution.

As a result, when migrating an existing OCI version 7 application you have the
following two alternatives:

Upgrade to the current OCI client but do not modify the application: If you choose
to upgrade from an Oracle release 7 OCI client to the current release OCI client,
you need only link the new version of the OCI library and need not recompile your
application. The re-linked Oracle release 7 OCI applications work unchanged
against a current server.

Upgrade to the current OCI client and modify the application: To use the
performance and scalability benefits provided by the new OCI, however, you will
need to modify your existing applications to use the new OCI programming
paradigm, re-link them with the new OCl library, and run them against the current
release of the server.

If you need to use any of the object capabilities of the current server release, you will
need to upgrade your client to this release of OCI.

Statically-Linked and Dynamically-Linked Applications

Here are the rules for re-linking for a new release.

Statically-linked applications:

Statically-linked applications need to be re-linked for both major and minor
releases, because the linked Oracle client-side library code may be incompatible
with the error messages in the upgraded ORACLE_HOME. For example, if an error
message was updated with additional parameters then it will not be compatible
with the statically-linked code.

Dynamically-linked applications:

1-12 Oracle Call Interface Programmer's Guide

Compatibility and Upgrading

Dynamically-linked applications need to be re-linked for major releases only. OCI
applications that are dynamically linked have a hard reference to the
libclntsh. so.n, where n is the major release number.

See Also:

» Oracle Database Upgrade Guide for information about
compatibility and upgrading

» The server versions supported currently are found on Oracle
iSupport in note 207303.1. See the URL
http://metalink.oracle.com/

Obsolete OCI Routines

Release 8.0 of the OCI introduced an entirely new set of functions which were not
available in release 7.3. Oracle continues to support these release 7.3 functions. Many
of the earlier 7.x calls are available, but Oracle strongly recommends that new
applications use the new calls to improve performance and provide increased

functionality.

Table 1-1, " Obsolescent OCI Functions" lists the 7.x OCI calls with their later
equivalents. For more information about the OCI calls, see the function descriptions in
this guide. For more information about the 7.x calls, see the Programmer’s Guide to the
Oracle Call Interface, Release 7.3. These 7.x calls are obsoleted, meaning that OCI has
replaced them with newer calls. While the obsoleted calls are supported at this time,
they may not be supported in all future versions of OCI.

Note:

In many cases the new OCI routines do not map directly

onto the 7.x routines, so it may not be possible to simply replace
one function call and parameter list with another. Additional
program logic may be required before or after the new call is made.
See the remaining chapters of this guide for more information.

Table 1-1

Obsolescent OCI Functions

7.x OCI Routine

Equivalent or Similar Later OCI Routine

obindps (), obndral(),
obndrn (), obndrv()

obreak ()
ocan ()
oclose()
ocof (), ocon()
ocom ()

odefin(), odefinps/()

odescr ()

odessp ()
oerhmns ()

OCIBindByName (), OCIBindByPos () (Note: additional bind
calls may be necessary for some datatypes)

OCIBreak ()

none

Note: cursors are not used in release 8.x or higher
OCIStmtExecute () with OCI_COMMIT_ON_SUCCESS mode
OCITransCommit ()

OCIDefineByPos () (Note: additional define calls may be
necessary for some datatypes)

Note: schema objects are described with OCIDescribeAny(). A
describe, as used in release 7.x, will most often be done by calling
OCIAttrGet() on the statement handle after SQL statement
execution.

OCIDescribeAny ()

OCIErrorGet ()

Introduction and Upgrading 1-13

Compatibility and Upgrading

Table 1-1 (Cont.) Obsolescent OCI Functions

7.x OCI Routine

Equivalent or Similar Later OCI Routine

oexec (), oexn()

oexfet ()

ofen(),ofetch()
oflng ()

ogetpi ()

olog ()

ologof ()

onbclr (), onbset(),
onbtst ()

oopen ()
oopt ()
oparse ()
opinit ()
orol ()
osetpi ()
sglld2 ()
sgllda ()
odsc ()
oermsg ()
olon()
orlon()
oname ()

osgl3 ()

OCIStmtExecute ()

OCIStmtExecute(),0CIStmtFetch () (Note: result set rows
can be implicitly prefetched)

OCIStmtFetch()

none
OCIStmtGetPieceInfol()
OCILogon ()
OCILogoff ()

Note: nonblocking mode can be set or checked by calling
OCIAttrSet () or OCIAttrGet () on the server context handle
or service context handle

Note: cursors are not used in release 8.x or later
none

OCIStmtPrepare (); however, it is all local
OCIEnvCreate ()

OCITransRollback ()
OCIStmtSetPieceInfol()
SQLSveCtxGet or SQLEnvGet
SQLSveCtxGet or SQLEnvGet

Note: see odescr() preceding

OCIErrorGet ()

OCILogon ()

OCILogon ()

Note: see odescr () preceding

Note: see oparse () preceding

OCI Routines Not Supported

Some OCI routines that were available in previous versions of OCI are not supported
in later releases. They are listed in Table 1-2, " OCI Functions Not Supported":

Table 1-2 OCI Functions Not Supported

OCI Routine Equivalent or Similar Later OCI Routine

obind () OCIBindByName (), OCIBindByPos () (Note:
additional bind calls may be necessary for some
datatypes)

obindn () OCIBindByName (), OCIBindByPos () (Note:
additional bind calls may be necessary for some
datatypes)

odfinn () OCIDefineByPos () (Note: additional define calls may
be necessary for some datatypes)

odsrbn () Note: see odescr () in Table 1-1

1-14 Oracle Call Interface Programmer's Guide

Compatibility and Upgrading

Table 1-2 (Cont.) OCI Functions Not Supported

OCI Routine Equivalent or Similar Later OCI Routine
ologon () OCILogon ()
osqgl () Note: see oparse () Table 1-1

Compatibility Between Different Releases of OCI and Servers

This section addresses compatibility between different releases of OCI and Oracle
server.

Existing 7.x applications with no new post-release 7.x calls have to be re-linked with
the new client-side library.

The application will not be able to use the object features of Oracle8i or later, and will
not get any of the performance or scalability benefits provided by those OCI releases.

Upgrading OCI

Programmers who wish to incorporate release post-release 7.x functionality into
existing OCI applications have two options:

= Completely rewrite the application to use only new OCI calls (recommended).

= Incorporate new OCI post-release 7.x calls into the application, while still using 7.x
calls for some operations.

This manual should provide the information necessary to rewrite an existing
application to use only new OCI calls.

Adding Post-release 7.x OCI Calls to 7.x Applications

The following guidelines apply to programmers who want to incorporate new Oracle
datatypes and features by using new OCI calls, while keeping 7.x calls for some
operations:

= Change the existing logon to use OCILogon () instead of olog () (or other logon
call). The service context handle can be used with new OCI calls or can be
converted into an Lda_Def to be used with 7.x OCI calls.

See Also: See the description of OCIServerAttach() on page 16-99
and the description of OCISessionBegin() on page 16-99 for
information about the logon calls necessary for applications which
are maintaining multiple sessions.

m After the server context handle has been initialized, it can be used with OCI
post-release 7.x calls.

= To use release 7 OCI calls, convert the server context handle to an Lda_Def using
OCISveCtxToLda (), and pass the resulting Lda_Def to the 7.x calls.

Note: If there are multiple service contexts that share the same
server handle, only one can be in Oracle version 7 mode at any one
time.

Introduction and Upgrading 1-15

OCI Instant Client

= To begin using post-release 7.x OCI calls again, the application must convert the
Lda_Def back to a server context handle using OCILdaToSveCtx ().

= The application may toggle between the Lda_Def and server context as often as
necessary in the application.

This approach allows an application to use a single connection, but two different APIs,
to accomplish different tasks.

You can mix OCI 7.x and post-release 7.x calls within a transaction, but not within a
statement. This lets you execute one SQL or PL/SQL statement with OCI 7.x calls and
the next SQL or PL/SQL statement within that transaction with post-release 7.x OCI
calls.

Caution: You cannot open a cursor, parse with OCI 7.x calls and
then execute the statement with post-release 7.x calls.

OCl Instant Client

The Instant Client feature makes it extremely easy to deploy OCI, OCCI, ODBC, and
JDBC-OCI based customer applications by eliminating the need for an ORACLE_HOME.
The storage space requirement of an OCI application running in Instant Client mode is
significantly reduced compared to the same application running in a full client side
installation. The Instant Client shared libraries only occupy about one-fourth the disk
space of a full client installation.

Table 1-3 shows the Oracle client side files required to deploy an OCI application:

Table 1-3 OCI Instant Client Shared Libraries

Description for Description for
Linux and UNIX Linux and UNIX Windows Windows
libclntsh.so0.10.1 Client Code Library oci.dll Forwarding functions
that applications link
with
libociei.so OClI Instant Client oraocieil0.dll Data and code
Data Shared Library
libnnz10.so Security Library orannzsbbl0.d1l Security Library

Oracle Database 10g Release 2 library names are used in the table.

To use the Microsoft ODBC and OLEDB driver, ociw32.d11 must also be copied
from ORACLE_HOME\bin.

Benefits of Instant Client

Why use Instant Client? Here are the reasons:
= Installation involves copying a small number of files.

= The Oracle client-side number of required files and the total disk storage are
significantly reduced.

s There is no loss of functionality or performance for applications deployed in
Instant Client mode.

s Itis simple for independent software vendors to package applications.

1-16 Oracle Call Interface Programmer's Guide

OCl Instant Client

OCl Instant Client Installation Process

The Instant Client libraries can also be installed by choosing the Instant Client option
from the Oracle Universal Installer. The Instant Client libraries can also be
downloaded from the Oracle Technology Network
(http://www.oracle.com/technology/index.html) Web site. The installation
process is as simple as:

1. Downloading and installing the Instant Client shared libraries to a directory such
as instantclient_10_2.

2. Setting the operating system shared library path environment variable to the
directory from step 1. For example, on Linux or UNIX, set the
LD_LIBRARY_PATH to instantclient_10_2. On Windows, set PATH to locate
the instantclient_10_2 directory.

After completing the preceding two steps you are ready to run the OCI application.

The OCI application operates in Instant Client mode when the OCI shared libraries are
accessible through the operating system Library Path variable. In this mode, there is
no dependency on ORACLE_HOME and none of the other code and data files provided
in ORACLE_HOME are needed by OCI (except for the tnsnames . ora file described
later).

Instant Client can be installed from the Oracle Universal Installer by selecting the
Instant Client option. The installation should be done into an empty directory. As with
the OTN install, you must set the LD_LIBRARY_PATH to the instant client directory to
operate in instant client mode.

If you have done a complete client installation (by choosing the Admin option) the
Instant Client shared libraries are also installed. The locations of the Instant Client
shared libraries in a full client installation are:

On Linux or UNIX:

libociei.so library isin SORACLE_HOME/instantclient
libclntsh.so.10.1 and 1ibnnz10.so are in SORACLE_HOME/1lib

On Windows:

oraocieil(.dll library is in ORACLE_HOME\instantclient

oci.dll, ociw32.d1ll, and orannzsbbl0.dll are in ORACLE_HOME\bin

By copying the preceding libraries to a different directory and setting the operating
system shared library path to locate this directory you can enable running the OCI
application in Instant Client mode.

Introduction and Upgrading 1-17

OCI Instant Client

Note: All the libraries must be copied from the same
ORACLE_HOME and must be placed in the same directory.

There should be only one set of Oracle libraries on the operating
system Library Path variable. That is, if you have multiple
directories containing Instant Client libraries, then only one such
directory should be on the operating system Library Path.

Similarly, if an ORACLE_HOME-based installation is done on the
same machine, then you should not have ORACLE_HOME/1ib and
Instant Client directory on the operating system Library Path
simultaneously regardless of the order in which they appear on the
Library Path. That is, only one of ORACLE_HOME/ 1ib directory (for
non-Instant Client operation) or Instant Client directory (for Instant
Client operation) should be on the operating system Library Path
variable.

To enable other capabilities such as OCCI and JDBC-OCI, a few other files need to be
copied over as well. In particular, for the JDBC OCI driver, in addition to the three OCI
shared libraries, you must also download OCI JDBC Library (for example
libocijdbcl0.so on Linux or UNIX and oraocijdbc10.d11 on Windows) and
ojdbcXY. jar (where XY is the version number, for example, ojdbc14 . jar). All
libraries must be in the Instant Client directory and ojdbcXY. jar must be able to be
loaded from CLASSPATH.

Note: On hybrid platforms, such as Sparcé4, if the JDBC OCI
driver needs to be operated in the Instant Client mode, the
libociei. so library must be copied from the
ORACLE_HOME/instantclient32 directory. All other Sparc64
libraries needed for the JDBC OCI Instant Client must be copied
from the ORACLE_HOME/11ib32 directory.

For OCC(I, the OCCI Library (1ibocci.so.10.1 on Linux or UNIX and
oraoccil0.dll on Windows) must also be installed in the Instant Client directory.

When to Use Instant Client

Instant Client is a deployment feature and should be used for running production
applications. In general, all OCI functionality is available to an application being run
in the Instant Client mode, except that the Instant Client mode is for client-side
operation only. Therefore, server-side external procedures cannot operate in the Instant
Client mode.

For development you can also use the Instant Client SDK.

See Also: "SDK for Instant Client" on page 1-24

Patching Instant Client Shared Libraries on Linux or UNIX

Because Instant Client is a deployment feature, the emphasis has been on reducing the
number and size of files (client footprint) required to run an OCI application. Hence all
files needed to patch Instant Client shared libraries are not available in an Instant
Client deployment. An ORACLE_HOME based full client installation is needed to patch

1-18 Oracle Call Interface Programmer's Guide

OCl Instant Client

the Instant Client shared libraries. The opatch utility will take care of patching the
Instant Client shared libraries.

After applying the patch in an ORACLE_HOME environment, copy the files listed in
Table 1-3, " OCI Instant Client Shared Libraries" to the instant client directory as
described in "OCI Instant Client Installation Process" on page 1-17.

Instead of copying individual files, you can generate Instant Client zip files for
OCI/OCCI, JDBC, and SQL*Plus as described in "Regeneration of Data Shared Library
and Zip Files" on page 1-19. Then, instead of copying individual files as described
above, you can instead copy the zip files to the target machine and unzip them as
described in"OCI Instant Client Installation Process" on page 1-17.

The opatch utility stores the patching information of the ORACLE_HOME installation
in libclntsh. so . This information can be retrieved by the following command:

genezi -v
Note that if the Instant Client deployment machine does not have the genezi utility,

then it must be copied from the ORACLE_HOME /bin directory of the
ORACLE_HOME machine.

Note: The opatch utility is not available on Windows.

Regeneration of Data Shared Library and Zip Files

The OCI Instant Client Data Shared Library (1ibociei . so) can be regenerated by
performing the following steps in an Administrator Install of ORACLE_HOME:

mkdir -p SORACLE_HOME/rdbms/install/instantclient/light
cd SORACLE_HOME/rdbms/1lib
make -f ins_rdbms.mk ilibociei

A new version of 1ibociei . so based on the current files in the ORACLE_HOME is
then placed in the ORACLE_HOME/rdbms/install/instantclient directory.

Note that the location of the regenerated Data Shared Library (1ibociei. so)is
different from the original Data Shared Library (1ibociei . so) which is located in the
ORACLE_HOME/instantclient directory.

The above steps also generate Instant Client zip files for OCI/OCCI, JDBC, and
SQL*Plus.

Regeneration of data shared library and zip file is not available on Windows
platforms.

Database Connection Strings for OCI Instant Client

The OCI Instant Client can make remote database connections in all the ways that
ordinary SQL clients can. However because the Instant Client does not have the
ORACLE_HOME environment and directory structure some of the database naming
methods will require additional configuration steps.

All Oracle net naming methods that do not require use of ORACLE_HOME or
TNS_ADMIN (to locate configuration files such as tnsnames.ora or sqlnet.ora)
work in the Instant Client mode. In particular, the connect_identifier in the
OCIServerAttach () call can be specified in the following formats:

= A SQL Connect URL string of the form:

[//1host[:port] [/service name]

Introduction and Upgrading 1-19

OCI Instant Client

such as:

//dlsun242:5521/bjava2l

= Asan Oracle Net connect descriptor. For example:

" (DESCRIPTION= (ADDRESS= (PROTOCOL=tcp) (HOST=dlsun242) (PORT=5521))
(CONNECT_DATA= (SERVICE_NAME=bjava2l)))"

= A Connection Name that is resolved through Directory Naming where the site is
configured for LDAP server discovery.

For naming methods such as tnsnames and directory naming to work the
TNS_ADMIN environment variable must be set.

See Also: = Oracle Database Net Services Administrator's Guide
chapter on "Configuring Naming Methods" for more about
connect descriptors

If the TNS_ADMIN environment variable is not set, and TNSNAMES entries such as
instl, and so on, are used, then the ORACLE_HOME variable must be set, and the
configuration files are expected to be in the SORACLE_HOME/network/admin
directory.

Note that the ORACLE_HOME variable in this case is only used for locating Oracle Net

configuration files, and no other component of Client Code Library (OCI, NLS, and so

on) uses the value of ORACLE_HOME.

"

If a NULL string,
then the TWO_TASK environment variable can be set to the connect_identifier.

On Windows platform, the LOCAL environment variable is used instead of TWO_TASK.

Similarly for OCI command line applications such as SQL*Plus, the TWO_TASK (or
LOCAL on Windows) environment variable can be set to the connect_identifier. Its

value can be anything that would have gone to the right of the '@' on a typical connect

string.

Examples of Instant Client Connect Identifiers

If you are using SQL*Plus in Instant Client mode, then you can specify the connect
identifier in the following ways:

If the 1istener. ora file on the Oracle database server contains the following:

LISTENER = (ADDRESS_LIST=
(ADDRESS= (PROTOCOL=tcp) (HOST=server6) (PORT=1573))
)

SID_LIST LISTENER = (SID_LIST=
(SID_DESC=(SID_NAME=rdbms3) (GLOBAL_DBNAME=rdbms3.server6.us.alchemy.com)
(ORACLE_HOME=/home/dba/rdbms3/oracle))
)
The SQL*Plus connect identifier is:

" (DESCRIPTION= (ADDRESS=(PROTOCOL=tcp) (HOST=server6) (PORT=1573)) (CONNECT_DATA=
(SERVICE_NAME=rdbms3.server6.us.alchemy.com)))"

or

"//server6:1573/rdbms3.server6.us.alchemy.com"

1-20 Oracle Call Interface Programmer's Guide

, is used as the connection string in the OCIServerAttach () call,

OCl Instant Client

Alternatively, you can set the TWO_TASK environment variable to any of the previous
connect identifiers and connect without specifying the connect identifier. For example:

setenv TWO_TASK " (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp) (HOST=server6) (PORT=1573))
(CONNECT_DATA= (SERVICE_NAME=rdbms3.server6.us.alchemy.com)))"

or

setenv TWO_TASK //server6:1573/rdbms3.server6.us.alchemy.com

and invoke SQL*Plus with an empty connect identifier:

sqlplus user/password

The connect descriptor can also be stored in the tnsnames . ora file. For example, if
the tnsnames . ora file contains the following connect descriptor:

conn_str =
(DESCRIPTION= (ADDRESS= (PROTOCOL=tcp) (HOST=server6) (PORT=1573)) (CONNECT DATA=
(SERVICE_NAME=rdbms3.server6.us.alchemy.com)))

and the tnsnames . ora is located in the /home /webuser/instantclient
directory, then you can set the variable TNS_ADMIN (or LOCAL on Windows) as:

setenv TNS_ADMIN /home/webuser/instantclient

and then use the connect identifier conn_str for invoking SQL*Plus, or for your OCI
connection.

Note: TNS_ADMIN specifies the directory where the
tnsnames . ora file is located and TNS_ADMIN is not the full path
of the tnsnames . ora file.

If the above tnsnames . ora file is located in an ORACLE_HOME-based install in the
/network/serveré6/home/dba/oracle/network/admin directory, then the
ORACLE_HOME environment variable can be set as:

setenv ORACLE_HOME /network/server6/home/dba/oracle

and SQL*Plus can be invoked as previously, with the identifier conn_str.

Finally, if tnsnames . ora can be located by TNS_ADMIN or ORACLE_HOME, then
TWO_TASK can be set to:

setenv TWO_TASK conn_str

and SQL*Plus can be invoked without a connect identifier.

Environment Variables for OCI Instant Client

The ORACLE_HOME environment variable no longer determines the location of NLS,
CORE, and error message files. An OClI-only application should not require
ORACLE_HOME to be set. However, if it is set, it does not have an impact on OCI's
operation. OCI will always obtain its data from the Data Shared Library. If the Data
Shared Library is not available, only then is ORACLE_HOME used and a full client
installation is assumed. Even though ORACLE_HOME is not required to be set, if it is set,
then it must be set to a valid operating system path name that identifies a directory.

Introduction and Upgrading 1-21

OCI Instant Client

If Dynamic User callback libraries are to be loaded, then as this guide specifies, the
callback package has to reside in ORACLE_HOME/1ib (ORACLE_HOME\bin on
Windows). Therefore, ORACLE_HOME should be set in this case.

Environment variables ORA_NLS10 and ORA_NLS_PROFILE33 are ignored in the
Instant Client mode.

In the Instant Client mode, if the ORA_TZFILE variable is not set, then the smaller,
default, timezone.dat file from the Data Shared Library is used. If the larger
timezlrg.dat file is to be used from the Data Shared Library, then set the
ORA_TZFILE environment variable to the name of the file without any absolute or
relative path names. That is, on Linux or UNIX:

setenv ORA_TZFILE timezlrg.dat

On Windows:

set ORA_TZFILE=timezlrg.dat

If OCl is not operating in the Instant Client mode (because the Data Shared Library is
not available), then ORA_TZFILE variable, if set, names a complete path name as it
does in previous Oracle releases.

If TNSNAMES entries are used, then, as mentioned earlier, TNS_ADMIN directory must
contain the TNSNAMES configuration files, and if TNS_ADMIN is not set, then the
ORACLE_HOME/network/admin directory must contain Oracle Net Services
configuration files.

Instant Client Light (English)

The Instant Client Light (English) version of Instant Client further reduces the disk
space requirements of the client installation by about another 63 MB. For example, the
Instant Client Light data shared library, 1ibociicus. so on Unix operating systems,
occupies only 4 MB, as opposed to 70 MB for 1ibociei. so.

This Instant Client Light version is geared toward applications that require
English-only error messages and use either US7ASCII, WESDEC, or one of the
Unicode characters. There is no restriction on the TERRITORY field of the NLS_LANG
setting, so the Instant Client Light will operate with any territory setting. Therefore, an
application using US7ASCII, WESDEC, or Unicode can significantly reduce its
footprint if it operates in the Instant Client Light environment.

Globalization Settings
Instant Client Light supports the following character sets:

Single-byte
» US7ASCII
= WESDEC

= WESMSWIN1252
= WESISO8859P1

Unicode

= UTF8

= AL16UTF16
= AL32UTF8

1-22 Oracle Call Interface Programmer's Guide

OCl Instant Client

Instant Client Light will return an error if a character set or national character set other
than those in the preceding lists is used as the client or database character set. With
Instant Client Light, the error messages are only obtained in English. Therefore, in
setting NLS_LANG, the valid values are:

American_territory.charset

where territory can be any valid territory that can be specified with NLS_LANG and
charset is one of the character sets listed above.

Instant Client Light can also operate with the OCI Environment handles created in the
OCI_UTF16 mode.

See Also: Oracle Database Globalization Support Guide for more
information about NLS settings

Operation of Instant Client Light

OCI applications, by default, look for the OCI Data Shared Library, 1ibociei. so (or
Oraocieil0.dl1l on Windows) on the LD_LIBRARY_PATH (PATH on Windows) to
determine if the application should operate in the Instant Client mode. If this library is
not found, then OCI tries to load the Instant Client Light Data Shared Library,
libociicus.so (or Oraociicus10.d1l1l on Windows). If the Instant Client Light
library is found, then the application operates in the Instant Client Light mode.
Otherwise, a full ORACLE_HOME based installation is assumed

Installation of Instant Client Light
Instant Client Light can be installed in one of the following ways:

1. From OTN.
Go to the Instant Client URL:

http://www.oracle.com/technology/software/tech/oci/instantclient/

For Instant Client Light, instead of downloading and expanding the basic.zip
package, download and unzip the basiclite. zip package. The
instantclient_10_2 directory in which the Instant Client Light libraries are
unzipped should be empty before the unzip.

2. From Client Admin Install.

Instead of copying 1ibociei.so (or Oraocieil0.dll on Windows) from the
ORACLE_HOME/instantclient directory, copy libociicus. so (or
Oraociicl0.d1l1l on Windows) from the
ORACLE_HOME/instantclient/light subdirectory. That is, the Instant Client
directory on the LD_ LIBRARY_PATH (PATH on Windows) should contain the
Instant Client Light Data Shared Library, 1ibociicus.so (Oraociicus10.d11
on Windows), instead of the larger OCI Instant Client Data Shared Library,
libociei.so (Oraocieil0.d1l1 on Windows).

3. From Oracle Universal Installer.

If the Instant Client option is selected from the Oracle Universal Installer (OUI),
then 1ibociei.so (or Oraocieil0.d1l1 on Windows) is installed in the base
directory of the installation which is going to be placed on the LD_LIBRARY_PATH
(PATH on Widows). This is so that the Instant Client Light is not enabled by
default. The Instant Light Client Data Shared Library, 1ibociicus.so (or
Oraociicusl10.dll on Windows), is installed in the 1ight subdirectory of the
base directory. Therefore, to operate in the Instant Client Light mode, the OCI Data

Introduction and Upgrading 1-23

OCI Instant Client

Shared Library, 1ibociei.so (or Oraocieil0.d1l1l on Windows) must be
deleted or renamed and the Instant Client Light library must be copied up from
the 1ight subdirectory to the base directory of the installation.

For example, if the OUI has installed the Instant Client inmy_oraic_10_2
directory on the LD_LIBRARY_PATH (PATH on Windows), then you need to do the
following to operate in the Instant Client Light mode:

cd my_oraic_10_2
rm libociei.so
mv light/libociicus.so .

Note: All the Instant Client files should always be copied and
installed in an empty directory. This is to make sure that no
incompatible binaries exist in the installation.

SDK for Instant Client
The SDK can be downloaded from the Instant Client web page:

http://www.oracle.com/technology/tech/oci/instantclient/instantclient.html

» The Instant Client SDK package has both C and C++ header files and a Makefile
for developing OCI and OCCI applications while in an Instant Client environment.
Developed applications can be deployed in any client environment.

s The SDK contains C and C++ demonstration programs.

s On Windows, libraries required to link the OCI or OCCI applications are also
included. Make . bat is provided to build the demos.

= On Unix or Linux, the Makefile demo . mk is provided to build the demos. The
instantclient_10_2 directory must be on the LD_LIBRARY_PATH before
linking the application. The OCI and OCCI programs require the presence of
libclntsh.so and libocci . sh symbolic links in the instantclient_10_2
directory. demo . mk creates these before the link step. These symbolic links can
also be created in a shell:

cd instantclient_10_2
In -s libclntsh.so0.10.1 libclntsh.so
In -s libocci.so.10.1 libocci.so

= The SDK also contains the Object Type Translator (OTT) utility and its classes to
generate the application header files.

1-24 Oracle Call Interface Programmer's Guide

2

OCI Programming Basics

This chapter introduces you to the basic concepts involved in programming with the
OCIL.

This chapter contains these topics:

Overview of OCI Programming
Header Files

OCI Program Structure

OCI Data Structures

Handles

OCI Descriptors

OCI Programming Steps

OCI Environment Initialization
Commit or Rollback
Terminating the Application
Error Handling in OCI
Additional Coding Guidelines
Using PL/SQL in an OCI Program
OCI Globalization Support

Overview of OCI Programming

This chapter provides an introduction to the concepts and procedures involved in
developing an OCI application. After reading this chapter, you should have most of
the tools necessary to understand and create a basic OCI application.

This chapter is broken down into the following major sections:

Header Files - gives the location of header files for OCI client application
development.

OCI Program Structure - covers the basic structure of, and the major steps
involved in creating an OCI application.

OCI Data Structures - discusses handles and descriptors.

OCI Programming Steps - discusses in detail each of the steps involved in coding
an OCI application.

OCI Programming Basics 2-1

Header Files

s Error Handling in OCI - covers error handling in OCI applications.

» Additional Coding Guidelines - provides useful information for coding an OCI
application.

s Using PL/SQL in an OCI Program - discusses important points for working with
PL/SQL in an OCI application.

New users should pay particular attention to the information presented in this chapter,
because it forms the basis for the rest of the material presented in this guide. The
information in this chapter is supplemented by information in later chapters.

See Also:

» For a discussion of the OCI functions that apply to a
multilingual environment, see the Oracle Database Globalization
Support Guide

= For a discussion of the OCI functions that apply to cartridge
services, see the Oracle Database Data Cartridge Developer’s
Guide.

Header Files

With the current release, the OCI/OCCI header files that are required for OCI and
OCCI client application development on UNIX platforms reside in the
$ORACLE_HOME/rdbms /public directory. The demo_rdbms . mk file remains in.the
$ORACLE_HOME/ rdbms /demo directory and continues to serve as an example
makefile.

Unless you significantly modified the demo_rdbms . mk file, you are not affected. This
is because the demo_rdbms . mk file already includes the

$ORACLE_HOME/rdbms /public directory. Ensure that your highly customized
makefiles have the SORACLE_HOME/rdbms/public directory in the INCLUDE path.

All demonstration programs and header files continue to reside in the
$ORACLE_HOME/rdbms /demo directory. As with all demonstrations, these files are
only installed from the Companion CD. See Appendix B, "OCI Demonstration
Programs" for the names of these programs and their purposes.

The OCI/OCCI header files required for development, located in
$ORACLE_HOME/rdbms /public, are available both with the Oracle Database Server
installation, and with the Oracle Database Client Administration and Custom
installations.

OCI Program Structure

The general goal of an OCI application is to operate on behalf of multiple users. In an
n-tiered configuration, multiple users are sending HTTP requests to the client
application. The client application may need to perform some data operations that
include exchanging data and performing data processing.

OCI uses the following basic program structure:
1. Initialize the OCI programming environment and threads.
2. Allocate necessary handles, and establish server connections and user sessions.

3. Exchange data with the database server by executing SQL statements on the
server, and perform necessary application data processing.

2-2 Oracle Call Interface Programmer's Guide

OCI Data Structures

4. Execute prepared statements, or prepare a new statement for execution.
5. Terminate user sessions and server connections.
6. Free handles.

Figure 2-1, "Basic OCI Program Flow" illustrates the flow of steps in an OCI
application. Each step is described in more detail in the section "OCI Programming
Steps" on page 2-13.

Figure 2-1 Basic OCI Program Flow

Create
Environment

v

Allocate Handles
and Data Structures

v

Connect to Server
and Begin Session

v

Issue SQL
and Process Data

v

Disconnect

v

Free Handles
& Data Structures

Keep in mind that the diagram and the list of steps present a simple generalization of
OCI programming steps. Variations are possible, depending on the functionality of the
program. OCI applications that include more sophisticated functionality, such as
managing multiple sessions and transactions and using objects, require additional
steps.

All OCI function calls are executed in the context of an environment. There can be
multiple environments within an OCI process. If an environment requires any
process-level initialization, then it is performed automatically.

Note: It is possible to have more than one active connection and
statement in an OCI application.

See Also: For information about accessing and manipulating
objects, see Chapter 10, "OCI Object-Relational Programming" and
the subsequent chapters

OCI Data Structures

Handles and descriptors are opaque data structures which are defined in OCI
applications. They can be allocated directly, through specific allocate calls, or they can
be implicitly allocated by OCI functions.

7.x Upgrade Note: Programmers who have previously written 7.x
OCI applications need to become familiar with these new data
structures which are used by most OCI calls.

OCI Programming Basics 2-3

Handles

Handles and descriptors store information pertaining to data, connections, or
application behavior. Handles are defined in more detail in the next section:

See Also: Descriptors are discussed in the section "OCI
Descriptors" on page 2-9

Handles

Almost all OCI calls include in their parameter list one or more handles. A handle is an
opaque pointer to a storage area allocated by the OCI library. You use a handle to store
context or connection information, (for example, an environment or service context
handle), or it may store information about OCI functions or data (for example, an error
or describe handle). Handles can make programming easier, because the library, rather
than the application, maintains this data.

Most OCI applications need to access the information stored in handles. The get and
set attribute OCI calls, OCIAttrGet () and OCIAttrSet (), access and set this
information.

See Also: "Handle Attributes" on page 2-8

Table 2-1 lists the handles defined for the OCI. For each handle type, the C datatype
and handle type constant used to identify the handle type in OCI calls are listed.

Table 2-1 OCI Handle Types

Description C Datatype Handle Type Constant

OCI environment handle OCIEnv OCI_HTYPE_ENV

OCI error handle OCIError OCI_HTYPE_ERROR

OClI service context handle 0CISveCtx OCI_HTYPE_SVCCTX

OCI statement handle OCIStmt OCI_HTYPE_STMT

OCI bind handle OCIBind OCI_HTYPE_BIND

OCI define handle OCIDefine OCI_HTYPE_DEFINE

OCI describe handle OCIDescribe OCI_HTYPE_DESCRIBE

OCI server handle OCIServer OCI_HTYPE_SERVER

OCT user session handle OCISession OCI_HTYPE_SESSION

OCI authentication information handle OCIAuthInfo OCI_HTYPE_AUTHINFO

OCI connection pool handle OCICPool OCI_HTYPE_CPOOL

OCI session pool handle OCISPool OCI_HTYPE_SPOOL

OCI transaction handle OCITrans OCI_HTYPE_TRANS

OCI complex object retrieval (COR) handle =~ 0CIComplexObject OCI_HTYPE_COMPLEXOBJECT
OCI thread handle OCIThreadHandle N/A

OCI subscription handle OCISubscription OCI_HTYPE_SUBSCRIPTION
OCI direct path context handle OCIDirPathCtx OCI_HTYPE_DIRPATH_CTX
OCI direct path function context handle OCIDirPathFuncCtx OCI_HTYPE_DIRPATH_FN_CTX
OCI direct path column array handle OCIDirPathColArray OCI_HTYPE_DIRPATH_COLUMN_ARRAY
OCI direct path stream handle OCIDirPathStream OCI_HTYPE_DIRPATH_STREAM

2-4 Oracle Call Interface Programmer's Guide

Handles

Table 2-1 (Cont.) OCI Handle Types

Description C Datatype Handle Type Constant
OCI process handle OCIProcess OCI_HTYPE_PROCESS
OCI administration handle OCIAdmin OCI_HTYPE_ADMIN
OCI HA event handle OCIEvent N/A

Allocating and

Freeing Handles

Your application allocates all handles (except the bind, define, and thread handles)
with respect to a particular environment handle. You pass the environment handle as
one of the parameters to the handle allocation call. The allocated handle is then
specific to that particular environment.

The bind and define handles are allocated with respect to a statement handle, and
contain information about the statement represented by that handle.

Note: The bind and define handles are implicitly allocated by the
OCl library, and do not require user allocation.

The environment handle is allocated and initialized with a call to OCIEnvCreate ()
or to OCIEnvNlsCreate (), one of which is required by all OCI applications.

All user-allocated handles are initialized using the OCI handle allocation call,
OCIHandleAlloc ().

Here are the various types of handles: session handle, direct path context handle,
thread handle, COR handle, subscription handle, describe handle, statement handle,
service context handle, error handle, server handle, connection pool handle, event
handle, and administration handle.

The thread handle is allocated with the OCIThreadHndInit () call.

An application must free all handles when they are no longer needed. The
OCIHandleFree () function frees all handles.

Note: When a parent handle is freed, all child handles associated
with it are also freed, and can no longer be used. For example,
when a statement handle is freed, any bind and define handles
associated with it are also freed.

Handles lessen the need for global variables. Handles also make error reporting easier.
An error handle is used to return errors and diagnostic information.

See Also: For sample code demonstrating the allocation and use
of OCI handles, see the example programs listed in Appendix B,
"OCI Demonstration Programs"

Environment Handle

The environment handle defines a context in which all OCI functions are invoked. Each
environment handle contains a memory cache, which enables fast memory access. All
memory allocation under the environment handle is done from this cache. Access to
the cache is serialized if multiple threads try to allocate memory under the same

OCI Programming Basics 2-5

Handles

Error Handle

environment handle. When multiple threads share a single environment handle, they
may block on access to the cache.

The environment handle is passed as the parent parameter to the OCIHandleAlloc ()
call to allocate all other handle types. Bind and define handles are allocated implicitly.

The error handle is passed as a parameter to most OCI calls. The error handle maintains
information about errors that occur during an OCI operation. If an error occurs in a
call, the error handle can be passed to OCIErrorGet () to obtain additional
information about the error that occurred.

Allocating the error handle is one of the first steps in an OCI application because most
OCI calls require an error handle as one of its parameters.

Service Context and Associated Handles

A service context handle defines attributes that determine the operational context for
OCI calls to a server. The service context contains three handles as its attributes, that
represent a server connection, a user session, and a transaction. These attributes are
illustrated in Figure 2-2, "Components of a Service Context":

Figure 2-2 Components of a Service Context

Service Context

Handle
Server User Session Transaction
Handle Handle Handle

= A server handle identifies a connection to a database. It translates into a physical
connection in a connection-oriented transport mechanism.

= A user session handle defines a user's roles and privileges (also known as the user's
security domain), and the operational context in which the calls execute.

» A transaction handle defines the transaction in which the SQL operations are
performed. The transaction context includes user session state information,
including any fetch state and package instantiation.

Breaking the service context down in this way provides scalability and enables
programmers to create sophisticated multitiered applications and transaction
processing (TP) monitors for execute requests on behalf of multiple users on multiple
application servers and different transaction contexts.

You must allocate and initialize the service context handle with OCTIHandleAlloc ()
or OCILogon () before you can use it. The service context handle is allocated explicitly
by 0CIHandleAlloc (). It can be initialized using OCIAttrSet () with the server,
session, and transaction handle. If the service context handle is allocated implicitly
using OCILogon (), it is already initialized.

Applications maintaining only a single user session for each database connection at
any time can call OCILogon () to get an initialized service context handle.

In applications requiring more complex session management, the service context must
be explicitly allocated, and the server and user session handles must be explicitly set

2-6 Oracle Call Interface Programmer's Guide

Handles

into the service context. 0CIServerAttach () and OCISessionBegin () calls
initialize the server and user session handle respectively.

An application will only define a transaction explicitly if it is a global transaction or
there are multiple transactions active for sessions. It will be able to work correctly with
the implicit transaction created automatically by OCI when the application makes
changes to the database.

See Also:

= "OCI Support for Transactions" on page 8-1

= For more information about establishing a server connection
and user session, see the sections "OCI Environment
Initialization" on page 2-14, and "Password and Session
Management" on page 8-7

Statement, Bind, and Define Handles

A statement handle is the context that identifies a SQL or PL/SQL statement and its
associated attributes.

Figure 2-3 Statement Handles

Statement
Handle
Define Bind
Handle Handle

Information about input and output bind variables is stored in bind handles. The OCI
library allocates a bind handle for each placeholder bound with the

OCIBindByName () or OCIBindByPos () function. The user does not need to allocate
bind handles. They are implicitly allocated by the bind call.

Fetched data returned by a query (select statement) is converted and retrieved
according to the specifications of the define handles. The OCI library allocates a define
handle for each output variable defined with 0OCIDefineByPos (). The user does not
need to allocate define handles. They are implicitly allocated by the define call.

Bind and define handles are freed when the statement handle is freed or when a new
statement is prepared on the statement handle.

Describe Handle

The describe handle is used by the OCI describe call, 0CIDescribeAny (). This call
obtains information about schema objects in a database (for example, functions,
procedures). The call takes a describe handle as one of its parameters, along with
information about the object being described. When the call completes, the describe
handle is populated with information about the object. The OCI application can then
obtain describe information through the attributes of parameter descriptors.

See Also: Chapter 6, "Describing Schema Metadata", for more
information about using the OCIDescribeAny () function

OCI Programming Basics 2-7

Handles

Complex Object Retrieval Handle

The complex object retrieval (COR) handle is used by some OCI applications that work
with objects in an Oracle database server. This handle contains COR descriptors, which
provide instructions for retrieving objects referenced by another object.

See Also : "Complex Object Retrieval" on page 10-15

Thread Handle

For information about the thread handle, which is used in multithreaded applications:

See Also: "The OCIThread Package" on page 9-3

Subscription Handle

The subscription handle is used by an OCI client application that registers and
subscribes to receive notifications of database events or events in the AQ namespace.
The subscription handle encapsulates all information related to a registration from a
client.

See Also: "Publish-Subscribe Notification in OCI" on page 9-47

Direct Path Handles

The direct path handles are necessary for an OCI application that uses the direct path
load engine in the Oracle database server. The direct path load interface enables the
application to access the direct block formatter of the Oracle server.

Figure 2—4 Direct Path Handles

Direct Path
Context Handle

l

Direct Path Direct Path Direct Path
Column Array Stream Function Context
Handle Handle Handle
See Also:

»s "Direct Path Loading Overview" on page 12-1
s "Direct Path Loading Handle Attributes" on page A-51

Connection Pool Handle

The connection pool handle is used for applications that pool physical connections into
virtual connections by calling specific OCI functions.

See Also: "Connection Pooling in OCI" on page 9-7

Handle Attributes

All OCI handles have attributes that represent data stored in that handle. You can read
handle attributes using the attribute get call, OCIAttrGet (), and you can change
them with the attribute set call, OCIAttrSet ().

2-8 Oracle Call Interface Programmer's Guide

OCI Descriptors

For example, the following statements set the user name in the session handle by

writing to the OCI_ATTR_USERNAME attribute:

text username[] = "hr";
err = OCIAttrSet ((dvoid*) mysessp, OCI_HTYPE_SESSION, (dvoid*)username,
(ub4) strlen((char *)username),

OCI_ATTR_USERNAME, (OCIError *) myerrhp);

Some OCI functions require that particular handle attributes be set before the function
is called. For example, when 0OCISessionBegin () is called to establish a user's login
session, the user name and password must be set in the user session handle before the

call is made.

Other OCI functions provide useful return data in handle attributes after the function
completes. For example, when OCIStmtExecute () is called to execute a SQL query,
describe information relating to the select-list items is returned in the statement

handle.

ub4d parmcnt;

/* get the number of columns in the select list */

err = OCIAttrGet ((dvoid *)stmhp,

(ub4)OCI_HTYPE_STMT, (dvoid *)

&parmcnt, (ub4 *) 0, (ub4)OCI_ATTR_PARAM COUNT, errhp);

See Also:

s The description of OCIAttrGet() on page 15-48 for an example
showing the user name and password handle attributes being

set

s Appendix A, "Handle and Descriptor Attributes”

OCI Descriptors

OCl descriptors and locators are opaque data structures that maintain data-specific
information. Table 2-2 lists them, along with their C datatype, and the OCI type
constant that allocates a descriptor of that type in a call to OCIDescriptorAlloc ().
The OCIDescriptorFree () function frees descriptors and locators.

Table 2-2 Descriptor Types

Description C Datatype OCI Type Constant
snapshot descriptor OCISnapshot OCI_DTYPE_SNAP

result set descriptor OCIResult OCI_DTYPE_RSET

LOB datatype locator OCILobLocator OCI_DTYPE_LOB

BFILE datatype locator OCILobLocator OCI_DTYPE_FILE

read-only parameter descriptor OCIParam OCI_DTYPE_PARAM

ROWID descriptor OCIRowid OCI_DTYPE_ROWID

ANSI DATE descriptor OCIDateTime OCI_DTYPE_DATE
TIMESTAMP descriptor OCIDateTime OCI_DTYPE_TIMESTAMP
TIMESTAMP WITH TIME ZONE descriptor OCIDateTime OCI_DTYPE_TIMESTAMP_TZ
TIMESTAMP WITH LOCAL TIME ZONE OCIDateTime OCI_DTYPE_TIMESTAMP_LTZ
descriptor

INTERVAL YEAR TO MONTH descriptor OCIInterval OCI_DTYPE_INTERVAL_YM
INTERVAL DAY TO SECOND descriptor OCIInterval OCI_DTYPE_INTERVAL_DS

OCI Programming Basics 2-9

OCI Descriptors

Table 2-2 (Cont.) Descriptor Types

Description C Datatype OCI Type Constant

user callback descriptor OCIUcb OCI_DTYPE_UCB

the distinguished names of the database OCIServerDNs OCI_DTYPE_SRVDN

servers in a registration request

complex object descriptor OCIComplexObjectComp OCI_DTYPE_COMPLEXOBJECTCOMP
advanced queuing enqueue options OCIAQEngOptions OCI_DTYPE_AQENQ_OPTIONS
advanced queuing dequeue options OCIAQDegOptions OCI_DTYPE_AQDEQ_OPTIONS
advanced queuing message properties OCIAQMsgProperties OCI_DTYPE_AQMSG_PROPERTIES
advanced queuing agent OCIAQAgent OCI_DTYPE_AQAGENT

advanced queuing notification OCIAQNotify OCI_DTYPE_AQNFY

advanced queuing listen options OCIAQListenOpts OCI_DTYPE_AQLIS_OPTIONS
advanced queuing message properties OCIAQLisMsgProps OCI_DTYPE_AQLIS_MSG_PROPERTIES
change notification none OCI_DTYPE_CHDES

table change none OCI_DTYPE_TABLE_CHDES

row change none OCI_DTYPE_ROW_CHDES

Note: Although there is a single C type for OCILobLocator, this
locator is allocated with a different OCI type constant for internal
and external LOBs. The section below on LOB locators discusses
this difference.

The main purpose of each descriptor type is listed here, and each descriptor type is
described in the following sections:

s OCISnapshot - used in statement execution

m OCILobLocator - used for LOB (OCI_DTYPE_LOB) or BFILE
(OCI_DTYPE_FILE) calls

s OCIParam - used in describe calls

= OCIRowid - used for binding or defining ROWID values

» OCIDateTime and OCIInterval - used for datetime and interval datatypes
s OCIComplexObjectComp - used for complex object retrieval

s OCIAQEngOptions, OCIAQDeqgOptions, OCIAQMsgProperties, OCIAQAgent
- used for Advanced Queuing

= OCIAQNotify - used for publish-subscribe notification

s OCIServerDNs - used for LDAP-based publish-subscribe notification

Snapshot Descriptor

The snapshot descriptor is an optional parameter to the execute call,
OCIstmtExecute ().Itindicates that a query is being executed against a particular
database snapshot which represents the state of a database at a particular point in
time.

2-10 Oracle Call Interface Programmer's Guide

OCI Descriptors

Allocate a snapshot descriptor with a call to OCIDescriptorAlloc (), by passing
OCI_DTYPE_SNAP as the type parameter.

See Also: For more information about OCIStmtExecute () and
database snapshots, see the section "Execution Snapshots" on
page 4-6

LOB and BFILE Locators

A large object (LOB) is an Oracle datatype that can hold binary (BLOB) or character
(CLOB) data. In the database, an opaque data structure called a LOB locator is stored in
a LOB column of a database row, or in the place of a LOB attribute of an object. The
locator serves as a pointer to the actual LOB value, which is stored in a separate
location.

Note: Depending on your application, you may or may not want
to use LOB locators. You can use the data interface for LOBs, which
does not require LOB locators. In this interface, you can bind or
define character data for CLOB columns or RAW data for BLOB
columns.

See Also:
= "Binding LOB Data" on page 5-8
s "Defining LOB Data" on page 5-15

The OCI LOB locator is used to perform OCI operations against a LOB (BLOB or
CLOB) or FILE (BFILE). OCILobXXX functions take a LOB locator parameter instead
of the LOB value. OCI LOB functions do not use actual LOB data as parameters. They
use the LOB locators as parameters and operate on the LOB data referenced by them.

The LOB locator is allocated with a call to OCIDescriptoralloc (), by passing
OCI_DTYPE_LOB as the type parameter for BLOBs or CLOBs, and OCI_DTYPE_FILE
for BFILEs.

Caution: The two LOB locator types are not interchangeable.
When binding or defining a BLOB or CLOB, the application must
take care that the locator is properly allocated using
OCI_DTYPE_LOB. Similarly, when binding or defining a BFILE, the
application must be sure to allocate the locator using
OCI_DTYPE_FILE.

An OCI application can retrieve a LOB locator from the server by issuing a SQL
statement containing a LOB column or attribute as an element in the select list. In this
case, the application would first allocate the LOB locator and then use it to define an
output variable. Similarly, a LOB locator can be used as part of a bind operation to
create an association between a LOB and a placeholder in a SQL statement.

See Also:

s Chapter 7, "LOB and BFILE Operations"

= "Binding LOB Data" on page 5-8

s "Defining LOB Data" on page 5-15

OCI Programming Basics 2-11

OCI Descriptors

Parameter Descriptor

OCI applications use parameter descriptors to obtain information about select-list
columns or schema objects. This information is obtained through a describe operation.

The parameter descriptor is the only descriptor type that is not allocated using
OCIDescriptorAlloc (). You can obtain it only as an attribute of a describe handle,
statement handle, or through a complex object retrieval handle by specifying the
position of the parameter using an OCIParamGet () call.

See Also: Chapter 6, "Describing Schema Metadata", and
"Describing Select-list Items" on page 4-9 for more information
about obtaining and using parameter descriptors

ROWID Descriptor

The ROWID descriptor, OCIRowid, is used by applications that need to retrieve and use
Oracle ROWIDs. To work with a ROWID using OCI release 8 or later, an application can
define a ROWID descriptor for a rowid position in a SQL select-list, and retrieve a
ROWID into the descriptor. This same descriptor can later be bound to an input variable
in an INSERT statement or WHERE clause.

ROWIDs are also redirected into descriptors using OCIAttrGet () on the statement
handle following an execute.

Date, Datetime, and Interval Descriptors

These descriptors are used by applications which use the date, datetime, or interval
datatypes (0OCIDate, OCIDateTime, and OCIInterval). These descriptors can be
used for binding and defining, and are passed as parameters to the functions
OCIDescAlloc () and OCIDescFree () to allocate and free memory.

See Also:

= For more information about these datatypes refer to Chapter 3,
"Datatypes".

= The functions which operate on these datatypes are described
in Chapter 18, "OCI Datatype Mapping and Manipulation
Functions"

Complex Object Descriptor

Application performance when dealing with objects may be increased through the use
of complex object retrieval (COR).

See Also: For information about the complex object descriptor
and its use, refer to "Complex Object Retrieval" on page 10-15.

Advanced Queuing Descriptors
Oracle AQ provides message queuing as an integrated part of the Oracle server.

See Also:
s "OCI and Streams Advanced Queuing" on page 9-39
» '"Publish-Subscribe Registration Functions in OCI" on page 9-48

2-12 Oracle Call Interface Programmer's Guide

OCI Programming Steps

User Memory Allocation

The 0OCIDescriptorAlloc () call has an xtramem_sz parameter in its parameter
list. This parameter is used to specify an amount of user memory which should be
allocated along with a descriptor or locator.

Typically, an application uses this parameter to allocate an application-defined
structure that has the same lifetime as the descriptor or locator. This structure maybe
used for application bookkeeping or storing context information.

Using the xt ramem_sz parameter means that the application does not need to
explicitly allocate and deallocate memory as each descriptor or locator is allocated and
deallocated. The memory is allocated along with the descriptor or locator, and freeing
the descriptor or locator (with OCIDescriptorFree ()) frees the user's data
structures as well.

The 0CIHandleAlloc () call has a similar parameter for allocating user memory
which has the same lifetime as the handle.

The OCIEnvCreate () and OCIEnvInit () calls have a similar parameter for
allocating user memory which has the same lifetime as the environment handle.

OCI Programming Steps

Each of the steps in developing an OCI application is described in detail in the
following sections. Some of the steps are optional. For example, you do not need to
describe or define select-list items if the statement is not a query.

See Also:

= Appendix B, "OCI Demonstration Programs" for an example
showing the use of OCI calls for processing SQL statements.
See the first sample program.

» The special case of dynamically providing data at run time is
described in detail in the section "Runtime Data Allocation and
Piecewise Operations in OCI" on page 5-29.

= Special considerations for operations involving arrays of
structures are described in the section "Binding and Defining
Arrays of Structures in OCI" on page 5-16.

= Refer to the section "Error Handling in OCI" on page 2-20 for an
outline of the steps involved in processing a SQL statement
within an OCI program.

= For information on using the OCI to write multithreaded
applications, refer to "Overview of OCI Multithreaded
Development" on page 9-1.

= For more information about types of SQL statements, refer to
the section "SQL Statements" on page 1-4.
The following sections describe the steps that are required of an OCI application:
= OCI Environment Initialization
s Processing SQL Statements in OCI
s Commit or Rollback

s Terminating the Application

OCI Programming Basics 2-13

OCI Environment Initialization

s Error Handling in OCI

Application-specific processing will also occur in between any and all of the OCI
function steps.

OCI Environment Initialization

This section describes how to initialize the OCI environment, establish a connection to
a server, and authorize a user to perform actions against the database.

First, the three main steps in initializing the OCI environment are described in the
following sections:

s "Creating the OCI Environment" on page 2-14
s "Allocating Handles and Descriptors" on page 2-14

= "Application Initialization, Connection, and Session Creation" on page 2-15

Creating the OCI Environment

Each OCI function call is executed in the context of an environment that is created
with the OCIEnvCreate () call. This call must be invoked before any other OCI call is
executed. The only exception is the setting of a process-level attribute for the OCI
shared mode.

The mode parameter of OCIEnvCreate () specifies whether the application calling
the OCI library functions will:

= Run in a threaded environment (mode = OCI_THREADED).
= Use objects (mode = OCI_OBJECT).

s Use subscriptions (mode = OCI_EVENTS).

The mode can be set independently in each environment.

It is necessary to initialize in object mode if the application binds and defines objects,
or if it uses the OCI's object navigation calls. The program may also choose to use none
of these features (mode = OCI_DEFAULT) or some combination of them, separating the
options with a vertical bar. For example if mode = (OCI_THREADED | OCI_OBJECT),
then the application runs in a threaded environment and uses objects.

You can specify user-defined memory management functions for each OCI
environment.

See Also:

s OCIEnvCreate() on page 15-13 and OCllInitialize() on
page 15-22 for more information about the initialization calls.

s "Overview of OCI Multithreaded Development" on page 9-1.

s Chapter 10, "OCI Object-Relational Programming" and the
chapters that follow it.

= "Publish-Subscribe Notification in OCI" on page 9-47.

Allocating Handles and Descriptors

Oracle provides OCI functions to allocate and deallocate handles and descriptors. You
must allocate handles using OCIHandleAlloc () before passing them into an OCI
call, unless the OCI call, such as 0CIBindByPos (), allocates the handles for you.

2-14 Oracle Call Interface Programmer's Guide

OCI Environment Initialization

You can allocate the types of handles listed in Table 2-1, " OCI Handle Types"with
OCIHandleAlloc () Depending on the functionality of your application, it needs to
allocate some or all of these handles.

Application Initialization, Connection, and Session Creation

An application must call OCIEnvNlsCreate () to initialize the OCI environment
handle. Existing applications may have used OCIEnvCreate ().

Following this step, the application has several options for establishing a server
connection and beginning a user session.

Note: OCIEnvCreate() or OCIEnvNlsCreate () should be
used instead of the OCIInitialize () and OCIEnvInit () calls.
OCIInitialize() and OCIEnvInit () calls are supported for
backward compatibility.

Single User, Single Connection

This option is the simplified logon method, which can be used if an application
maintains only a single user session for each database connection at any time.

When an application calls 0CILogon2 (), the OCI library initializes the service context
handle that is passed to it, and creates a connection to the specified server for the user
making the request.

The following is an example of what a call to OCILogon2 () looks like for a single user
session with user name hr, password hr, and database oracledb:

OCILogon2 (envhp, errhp, &svchp, (text *)"hr", (ub4)strlen("hr"), (text *)"hr",
(ub4d)strlen("hr"), (text *)"oracledb", (ub4)strlen("oracledb"),
OCI_DEFAULT) ;

The parameters to this call include the service context handle (which has been
initialized), the user name, the user's password, and the name of the database that are
used to establish the connection. With the last parameter, mode, set to OCI_DEFAULT,
this call has the same effect as calling the older OCILogon (). Use OCILogon2 () for
any new applications. The server and user session handles are implicitly allocated by
this function.

If an application uses this logon method, the service context, server, and user session
handles will all be read-only; the application cannot switch session or transaction by
changing the appropriate attributes of the service context handle by means of an
OCIAttrSet () call

An application that initializes its session and authorization using OCILogon2 () must
terminate them using OCILogoff ().

Client Access Through a Proxy

Proxy authentication is a process typically employed in an environment with a middle
tier such as a firewall, in which the end user authenticates to the middle tier, which
then authenticates to the database on the user's behalf—as its proxy. The middle tier
logs into the database as a proxy user. A proxy user can switch identities and, once
logged into the database, switch to the end user's identity. It can perform operations on
the end user's behalf, using the authorization appropriate to that particular end user.

Proxy to database users is supported by means of OCI and the ALTER USER statement,
whose BNF syntax is:

OCI Programming Basics 2-15

OCI Environment Initialization

ALTER USER <targetuser> GRANT CONNECT THROUGH <proxy> [AUTHENTICATION REQUIRED];

The ALTER USER statement is used once in an application. Connections can be made
multiple times afterwards. In OCI, you can either use connect strings or the function
OCIAttrSet () with the parameter OCI_ATTR_PROXY_CLIENT.

After a proxy switch is made, the current and connected user is the target user of the
proxy. The identity of the original user is not used for any privilege calculations. The
original user can be a local or external user.

The following examples show connect strings that can be used in functions such as
OCILogon2 () (setmode = OCI_DEFAULT), OCILogon (), 0CISessionBegin ()
with OCIAttrSet () (pass the attribute OCI_ATTR_USERNAME of the session handle),
and so on:

1. Local user acting on behalf of a local user.

Dilbert and Joe are two local database users. To enable Dilbert to proxy on behalf
of Joe, use the following SQL statement:

ALTER USER joe GRANT CONNECT THROUGH dilbert;
When user name dilbert is acting on behalf of joe, the connection string is
(dilbert has password tiger):

dilbert([joe]/tiger@dbl

The "[" and "]" are actually entered in the connection string.
2. Local user acting on behalf of local user, where user names must be quoted.

"Dilbert" and "Joe" are two local database users. The names are case sensitive and
need to be quoted. To enable "Dilbert" to proxy on behalf of "Joe", use the
following statement:

ALTER USER "Joe" GRANT CONNECT THROUGH 'Dilbert";
When "Dilbert" is acting on behalf of "Joe" the connection string is (be sure to also
include the " characters):

"Dilbert" ["Joe"]/tiger@dbl

3. Local user dilbert [mybert] connecting to database.

There is a user in the database "dilbert[mybert]" and the way this user will connect
to the database is (the "[" and "]" are actually entered in the connection string):

"dilbert [mybert]"/tiger

rem the user was already created this way:
rem CREATE USER "dilbert[mybert]" IDENTIFIED BY tiger;

4. Local user acting on behalf of local user, where the user name has [].

dilbert[mybert] and joe[myjoe] are two database users that contain the characters
"["and "]". If dilbert[mybert] wants to act on behalf of joe[myjoe], the connect
statement is:

"dilbert [mybert]"["joe[myjoe]"]/tiger

5. You can set the target user name by means of the ALTER USER statement, followed
by an OCI program in which OCIAttrSet () sets the attribute
OCI_ATTR_PROXY_ CLIENT and the proxy dilbert. For example:

2-16 Oracle Call Interface Programmer's Guide

OCI Environment Initialization

ALTER USER joe GRANT CONNECT THROUGH dilbert;

In your program, use these statements to connect multiple times:

OCIAttrSet (session, OCI_HTYPE_SESSION, (dvoid *)"dilbert",
(ub4)strlen("dilbert"), OCI_ATTR_USERNAME,
error_handle) ;

OCIAttrSet(session, OCI_HTYPE_SESSION, (dvoid *)"tiger",
(ub4)strlen("tiger"), OCI_ATTR_PASSWORD,
error_handle) ;

OCIAttrSet(session, OCI_HTYPE_SESSION, (dvoid *)"joe",
(ub4)strlen("joe"), OCI_ATTR_PROXY_ CLIENT,
error_handle) ;

See Also:
s "OCI_ATTR_PROXY_CLIENT" on page A-17

s Oracle Database Security Guide for a discussion of proxy
authentication

= '"Password and Session Management" on page 8-7

s "OCIAttrSet()" on page 15-50

Compatibility Issues of Client Access Through a Proxy Since this feature was introduced in
release 10.2, pre-10.2 clients do not have it. If newer clients use the feature with
pre-10.2 databases, the connect will fail and the client will return an error after
checking the database release level.

Non-Proxy Multiple Sessions or Connections

This option uses explicit attach and begin-session calls to maintain multiple user
sessions and connections on a database connection. Specific calls to attach to the server
and begin sessions are:

s OCIServerAttach/()- creates an access path to the data server for OCI
operations.

= OCISessionBegin ()- establishes a session for a user against a particular server.
This call is required for the user to execute operations on the server.

A subsequent call to OCISessionBegin () using different service context and session
context handles logs off the previous user and causes an error. To run two
simultaneous non-migratable sessions, a second OCISessionBegin () call must be
made with the same service context handle and a new session context handle.

These calls set up an operational environment that enables you to execute SQL and
PL/SQL statements against a database.

See Also:
= "Connect, Authorize, and Initialize Functions" on page 15-3.

s Chapter 9, "OCI Programming Advanced Topics", for more
information about maintaining multiple sessions, transactions,
and connections.

s 'Client Character Set Control from OCI" on page 2-28 for the
use of OCIEnvNlsCreate ().

OCI Programming Basics 2-17

OCI Environment Initialization

Example of Creating and Initializing an OCI Environment

The following example demonstrates the use of creating and initializing an OCI
environment.

m A server context is created and set in the service handle.

» Then a user session handle is created and initialized using a database user name
and password.

= For the sake of simplicity, error checking is not included.

#include <oci.h>

main ()

{

OCIEnv *myenvhp; /* the environment handle */
OCIServer *mysrvhp; /* the server handle */
OCIError *myerrhp; /* the error handle */
OCISession *myusrhp; /* user session handle */
OCISveCtx *mysvchp; /* the service handle */

/* initialize the mode to be the threaded and object environment */
(void) OCIEnvCreate (&myenvhp, OCI_THREADED\OCI_OBJECT, (dvoid *)O0,
0, 0, 0, (size_t) 0, (dvoid **)0);

/* allocate a server handle */
(void) OCIHandleAlloc ((dvoid *)myenvhp, (dvoid **)é&mysrvhp,
OCI_HTYPE_SERVER, 0, (dvoid **) 0);

/* allocate an error handle */
(void) OCIHandleAlloc ((dvoid *)myenvhp, (dvoid **)é&myerrhp,
OCI_HTYPE ERROR, 0, (dvoid **) 0);

/* create a server context */
(void) OCIServerAttach (mysrvhp, myerrhp, (text *)"instl_ alias",
strlen ("instl alias"), OCI_DEFAULT);

/* allocate a service handle */
(void) OCIHandleAlloc ((dvoid *)myenvhp, (dvoid **)é&mysvchp,
OCI_HTYPE_SVCCTX, 0, (dvoid **) 0);

/* set the server attribute in the service context handle*/
(void) OCIAttrSet ((dvoid *)mysvchp, OCI_HTYPE_SVCCTX,
(dvoid *)mysrvhp, (ub4) 0, OCI_ATTR_SERVER, myerrhp);

/* allocate a user session handle */
(void) OCIHandleAlloc ((dvoid *)myenvhp, (dvoid **)é&myusrhp,
OCI_HTYPE_SESSION, 0, (dvoid **) 0);

/* set user name attribute in user session handle */
(void) OCIAttrSet ((dvoid *)myusrhp, OCI_HTYPE SESSION,

(dvoid *)"hr", (ub4)strlen("hr"),

OCI_ATTR_USERNAME, myerrhp);

/* set password attribute in user session handle */

(void) OCIAttrSet ((dvoid *)myusrhp, OCI_HTYPE SESSION,
(dvoid *)"hr", (ub4)strlen("hr"),
OCI_ATTR_PASSWORD, myerrhp);

(void) OCISessionBegin ((dvoid *) mysvchp, myerrhp, myusrhp,

2-18 Oracle Call Interface Programmer's Guide

Terminating the Application

OCI_CRED_RDBMS, OCI_DEFAULT);

/* set the user session attribute in the service context handle*/
(void) OCIAttrSet ((dvoid *)mysvchp, OCI_HTYPE_SVCCTX,
(dvoid *)myusrhp, (ub4) 0, OCI_ATTR_SESSION, myerrhp);

}

The demonstration program cdemo81 . ¢ in the demo directory illustrates this process,
with error checking.

Processing SQL Statements in OCI

A chapter of this manual outlines the specific steps involved in processing SQL
statements in OCIL.

See Also: Chapter 4, "Using SQL Statements in OCI"

Commit or Rollback

An application commits changes to the database by calling OCITransCommit (). This
call uses a service context as one of its parameters. The transaction is associated with
the service context whose changes are committed. This transaction can be explicitly
created by the application or implicitly created when the application modifies the
database.

Note: Using the OCI_COMMIT_ON_SUCCESS mode of the
OCIExecute () call, the application can selectively commit
transactions at the end of each statement execution, saving an extra
round trip.

To roll back a transaction, use the OCITransRollback () call.

If an application disconnects from Oracle in some way other than a normal logoff, such
as losing a network connection, and OCITransCommit () has not been called, all
active transactions are rolled back automatically.

See Also:
= "Service Context and Associated Handles" on page 2-6, and

= "OCI Support for Transactions" on page 8-1

Terminating the Application

An OCI application should perform the following three steps before it terminates:
1. Delete the user session by calling 0CISessionEnd () for each session.

2. Delete access to the data source(s) by calling 0OCIServerDetach () for each
source.

3. Explicitly deallocate all handles by calling OCTHandleFree () for each handle.

4. Delete the environment handle, which deallocates all other handles associated
with it.

OCI Programming Basics 2-19

Error Handling in OCI

Note: When a parent OCI handle is freed, any child handles
associated with it are freed automatically

The calls to OCIServerDetach () and OCISessionEnd () are not mandatory, but
are recommended. If the application terminates, and OCITransCommit ()
(transaction commit) has not been called, any pending transactions are automatically
rolled back

See Also: For an example showing handles being freed at the end
of an application, refer to the first sample program in Appendix B,
"OCI Demonstration Programs"

Note: If the application uses the simplified logon method of
OCILogon (), then a call to OCILogoff () terminates the session,
disconnects from the server, and frees the service context and
associated handles. The application is still responsible for freeing
other handles it allocated.

Error Handling in OCI

Table2-3 OCIR

OCI function calls have a set of return codes, listed in Table 2-3, " OCI Return Codes",
which indicate the success or failure of the call, such as OCI_SUCCESS or OCI_ERROR,
or provide other information that may be required by the application, such as
OCI_NEED_DATA or OCI_STILI_EXECUTING. Most OCI calls return one of these
codes.

To verify that the connection to the server is not terminated by the OCI_ERROR, an
application can check the value of the attribute OCI_ATTR_SERVER_STATUS in the
server handle. If the value of the attribute is OCI_SERVER_NOT_CONNECTED, then the
connection to the server and the user session must be reestablished.

See Also:

= For exceptions, see "Functions Returning Other Values" on
page 2-22

= For complete details and an example of usage, see
"OCIErrorGet()" on page 16-176

= "Server Handle Attributes" on page A-10

eturn Codes

OCI Return Code

Description

OCI_SUCCESS

The function completed successfully.

OCI_SUCCESS_WITH_INFO The function completed successfully; a call to OCIErrorGet () returns

OCI_NO_DATA

OCI_ERROR

additional diagnostic information. This may include warnings.
The function completed, and there is no further data.

The function failed; a call to OCIErrorGet () returns additional information.

OCI_INVALID_HANDLE An invalid handle was passed as a parameter or a user callback is passed an

2-20 Oracle Call |

invalid handle or invalid context. No further diagnostics are available.

nterface Programmer's Guide

Error Handling in OCI

Table 2-3 (Cont.) OCI Return Codes

OCI Return Code

Description

OCI_NEED_DATA

OCI_STILL_EXECUTING

OCI_CONTINUE

The application must provide runtime data.

The service context was established in nonblocking mode, and the current
operation could not be completed immediately. The operation must be called
again to complete. OCIErrorGet () returns ORA-03123 as the error code.

This code is returned only from a callback function. It indicates that the
callback function wants the OCI library to resume its normal processing.

If the return code indicates that an error has occurred, the application can retrieve
Oracle-specific error codes and messages by calling OCIErrorGet (). One of the
parameters to OCIErrorGet () is the error handle passed to the call that caused the
error.

Note: Multiple diagnostic records can be retrieved by calling
OCIErrorGet () repeatedly until there are no more records
(OCI_NO_DATA is returned). OCIErrorGet () returns at most a
single diagnostic record.

Return and Error Codes for Data

In Table 2—4, the OCI return code, error number, indicator variable, and column return
code are specified when the data fetched is normal, null, or truncated.

See Also: "Indicator Variables" on page 2-23 for a discussion of
indicator variables.

Table 2-4 Return and Error Codes

State of Data

Return Code

Indicator - not provided

Indicator - provided

not null or
truncated

not null or
truncated

null data

null data

truncated data

not provided

provided

not provided

provided

not provided

OCI_SUCCESS

error =0

OCI_SUCCESS
error =0

return code =0

OCI_ERROR
error = 1405

OCI_ERROR
error = 1405

return code = 1405

OCI_ERROR
error = 1406

OCI_SUCCESS
error =0
indicator = 0
OCI_SUCCESS
error =0
indicator = 0
return code =0
OCI_SUCCESS
error =0
indicator = -1
OCI_SUCCESS
error =0

indicator = -1

return code = 1405

OCI_ERROR
error = 1406

indicator = data_len

OCI Programming Basics 2-21

Additional Coding Guidelines

Table 2-4 (Cont.) Return and Error Codes

State of Data Return Code Indicator - not provided Indicator - provided
truncated data provided OCI_SUCCESS_WITH_INFO OCI_SUCCESS_WITH_INFO
error = 24345 error = 24345
return code = 1405 indicator = data_len

return code = 1406

For truncated data, data_1len is the actual length of the data that has been truncated
if this length is less than or equal to SB2MAXVAL. Otherwise, the indicator is set to -2.

Functions Returning Other Values

Some functions return values other than the OCI error codes listed in Table 2-3. When
using these function be aware that they return values directly from the function call,
rather than through an OUT parameter. More detailed information about each
function and its return values is listed in the reference chapters.

Additional Coding Guidelines

This section explains some additional issues when coding OCI applications.

Parameter Types

OCI functions take a variety of different types of parameters, including integers,
handles, and character strings. Special considerations must be taken into account for
some types of parameters, as described in the following sections.

See Also: "Connect, Authorize, and Initialize Functions" on
page 15-3 for more information about parameter datatypes and
parameter passing conventions.

Address Parameters

Address parameters are used to pass the address of the variable to Oracle. You should
be careful when developing in C, since it normally passes scalar parameters by value.

Integer Parameters

Binary integer and short binary integer parameters are numbers whose size is
system-dependent. See your Oracle system-specific documentation for the size of these
integers on your system.

Character String Parameters

Character strings are a special type of address parameter. Each OCI routine that
enables a character string to be passed as a parameter also has a string length
parameter. The length parameter should be set to the length of the string.

7.x Upgrade Note: Unlike earlier versions of the OCI, you do not
pass -1 for the string length parameter of a null-terminated string.

Inserting Nulls into a Column

You can insert a null into a database column in several ways.

2-22 Oracle Call Interface Programmer's Guide

Additional Coding Guidelines

1. One method is to use a literal NULL in the text of an INSERT or UPDATE statement.
For example, the SQL statement

INSERT INTO empl (ename, empno, deptno)
VALUES (NULL, 8010, 20)

makes the ENAME column NULL.

1. Use indicator variables in the OCI bind call.

See Also: ‘"Indicator Variables" on page 2-23

2. Insert a NULL is to set the buffer length and maximum length parameters both to
zero on a bind call.

Note: Following SQL92 requirements, Oracle returns an error if an
attempt is made to fetch a null select-list item into a variable that
does not have an associated indicator variable specified in the
define call.

Indicator Variables

Each bind and define OCI call has a parameter that associates an indicator variable, or
an array of indicator variables, with a DML statement, a PL/SQL statement, or a
query.

The C language does not have the concept of null values; therefore you associate
indicator variables with input variables to specify whether the associated placeholder

is a NULL. When data is passed to Oracle, the values of these indicator variables
determine whether or not a NULL is assigned to a database field.

For output variables, indicator variables determine whether the value returned from
Oracle is a NULL or a truncated value. In the case of a NULL fetch in an
OCIStmtFetch () call, or a truncation in an OCIStmtExecute () call, the OCI call
returns OCI_SUCCESS_WITH_INFO. The output indicator variable is set.

The datatype of indicator variables is sb2. In the case of arrays of indicator variables,
the individual array elements should be of type sb2.

Input

For input host variables, the OCI application can assign the following values to an
indicator variable:

Input Indicator Value Action Taken by Oracle

-1 Oracle assigns a NULL to the column, ignoring the value of the
input variable.

>=0 Oracle assigns the value of the input variable to the column.

Output

On output, Oracle can assign the following values to an indicator variable:

OCI Programming Basics 2-23

Additional Coding Guidelines

Output Indicator Value Meaning

-2 The length of the item is greater than the length of the output
variable; the item has been truncated. Additionally, the original
length is longer than the maximum data length that can be
returned in the sb2 indicator variable.

-1 The selected value is null, and the value of the output variable is
unchanged.

0 Oracle assigned an intact value to the host variable.

>0 The length of the item is greater than the length of the output

variable; the item has been truncated. The positive value
returned in the indicator variable is the actual length before
truncation.

Indicator Variables for Named Data Types and REFs

Indicator variables for most datatypes introduced after release 8.0 behave as described
earlier. The only exception is SQLT_NTY (a named datatype). For data of type
SQLT_NTY, the indicator variable must be a pointer to an indicator structure. Data of
type SQLT_REEF uses a standard scalar indicator, just like other variable types.

When database types are translated into C struct representations using the Object Type
Translator (OTT), a null indicator structure is generated for each object type. This
structure includes an atomic null indicator, plus indicators for each object attribute.

See Also:

= Documentation for the OTT in Chapter 14, "Using the Object
Type Translator with OCI", and section "NULL Indicator
Structure" on page 10-22 of this manual for information about
null indicator structures

= Descriptions of OCIBindByName () and OCIBindByPos ()
in"Bind, Define, and Describe Functions" on page 15-59, and
the sections "Information for Named Datatype and REF Binds"
on page 11-26, and "Information for Named Datatype and REF
Defines, and PL/SQL OUT Binds" on page 11-27, for more
information about setting indicator parameters for named
datatypes and REFs

Canceling Calls

On most operating systems, you can cancel long-running or repeated OCI calls, by
entering the operating system's interrupt character (usually CTRL-C) from the
keyboard.

Note: This is not to be confused with cancelling a cursor, which is
accomplished by calling 0CIStmtFetch () with the nrows
parameter set to zero.

When you cancel the long-running or repeated call using the operating system
interrupt, the error code ORA-01013 ("user requested cancel of current operation") is
returned.

Given a particular service context pointer or server context pointer, the OCIBreak ()
function performs an immediate (asynchronous) stop of any currently executing OCI

2-24 Oracle Call Interface Programmer's Guide

Additional Coding Guidelines

function associated with the server. It is normally used to stop a long-running OCI call
being processed on the server. The OCIReset() function is necessary to perform a
protocol synchronization on a nonblocking connection after an OCI application stops a
function with OCIBreak ().

Note: OCIBreak () works on Windows systems, including
Windows 2000, and Windows XP.

The status of potentially long-running calls can be monitored through the use of
nonblocking calls. Use multithreading for new applications.

See Also:
s "Overview of OCI Multithreaded Development" on page 9-1
s "The OCIThread Package" on page 9-3

Positioned Updates and Deletes

You can use the ROWID associated with a SELECT...FOR UPDATE OF... statement in a
later UPDATE or DELETE statement. The ROWID is retrieved by calling OCIAttrGet ()
on the statement handle to retrieve the handle's OCI_ATTR_ROWID attribute.

For example, for a SQL statement such as

SELECT ename FROM empl WHERE empno = 7499 FOR UPDATE OF sal

when the fetch is performed, the ROWID attribute in the handle contains the row
identifier of the selected row. You can retrieve the ROWID into a buffer in your program
by calling OCIAttrGet () as follows:

OCIRowid *rowid; /* the rowid in opaque format */
/* allocate descriptor with OCIDescriptorAlloc() */
status = OCIDescriptorAlloc ((dvoid *) envhp, (dvoid **) &rowid,
(ub4) OCI_DTYPE_ROWID, (size_t) 0, (dvoid **) 0);
status = OCIAttrGet ((dvoid*) mystmtp, OCI_HTYPE_STMT,
(dvoid*) rowid, (ub4 *) 0, OCI_ATTR_ROWID, (OCIError *) myerrhp);

You can then use the saved ROWID in a DELETE or UPDATE statement. For example, if
rowid is the buffer in which the row identifier has been saved, you can later process a
SQL statement such as

UPDATE empl SET sal = :1 WHERE rowid = :2

by binding the new salary to the : 1 placeholder and rowid to the : 2 placeholder. Be
sure to use datatype code 104 (ROWID descriptor) when binding rowid to : 2.

Using prefetching, an array of ROWIDs can be selected for use in subsequent batch

updates.

See Also: For more information on ROWIDs, see "UROWID" on
page 3-5 and "DATE" on page 3-11.

Reserved Words

Some words are reserved by Oracle. That is, they have a special meaning to Oracle and
cannot be redefined. For this reason, you cannot use them to name database objects
such as columns, tables, or indexes.

OCI Programming Basics 2-25

Additional Coding Guidelines

See Also: To view the lists of the Oracle keywords or reserved
words for SQL and PL/SQL, see the Oracle Database SQL
Reference and the Oracle Database PL/SQL User's Guide and
Reference

Oracle Reserved Namespaces

Table 2-5, " Oracle Reserved Namespaces" contains a list of namespaces that are
reserved by Oracle. The initial characters of function names in Oracle libraries are
restricted to the character strings in this list. Because of potential name conflicts, do not
use function names that begin with these characters.

Table 2-5 Oracle Reserved Namespaces

Namespace Library

XA external functions for XA applications only

SQ external SQLLIB functions used by Oracle Precompiler and
SQL*Module applications

0, OCI external OCI functions internal OCI functions

UPI, KP function names from the Oracle UPI layer

NA Oracle Net Native Services Product

NC Oracle Net Rpc Project

ND Oracle Net Directory

NL Oracle Net Network Library Layer

NM Oracle Net Management Project

NR Oracle Net Interchange

NS Oracle Net Transparent Network Service

NT Oracle Net Drivers

NZ Oracle Net Security Service

0s SQL*Net V1

TTC Oracle Net Two Task

GEN, L, ORA Core library functions

LI, LM, LX function names from the Oracle Globalization Support layer

S function names from system-dependent libraries

KO Kernel Objects

For a complete list of functions within a particular namespace, refer to the document
that corresponds to the appropriate Oracle library.

Nonblocking Mode in OCI

Because nonblocking mode increases the number of round trips and the CPU usage,
use multithreaded calls for new applications.

See Also:
= "Overview of OCI Multithreaded Development" on page 9-1
s "The OCIThread Package" on page 9-3

2-26 Oracle Call Interface Programmer's Guide

Using PL/SQL in an OCI Program

The OCI provides the ability to establish a server connection in blocking mode or
nonblocking mode. When a connection is made in blocking mode, an OCI call returns
control to an OCI client application only when the call completes, either successfully
or in error. With the nonblocking mode, control is immediately returned to the OCI
program if the call could not complete, and the call returns a value of
OCI_STILL_EXECUTING.

In nonblocking mode, an application must test the return code of each OCI function to
see if it returns OCI_STILL_EXECUTING. If it does, the OCI client can continue to
process program logic while waiting to retry the OCI call to the server. This mode is
particularly useful in Graphical User Interface (GUI) applications, real-time
applications, and in distributed environments.

The nonblocking mode is not interrupt-driven. Rather, it is based on a polling
paradigm, which means that the client application has to check whether the pending
call is finished at the server by executing the call again with the exact same parameters.

Note: While waiting to retry a nonblocking OCI call, the
application cannot issue other OCI calls, or an ORA-03124 error will
occur; the only exceptions to this rule are the calls OCIBreak ()
and OCIReset ().

Setting Blocking Modes

You can modify or check an application's blocking status by calling OCIAttrSet () to
set the status, or OCIAttrGet () to read the status on the server context handle with
the attrtype parameter set to OCI_ATTR_NONBLOCKING_MODE. You must set this
attribute only after OCISessionBegin () or OCILogon2 () has been called.
Otherwise, an error will be returned.

See Also: "Server Handle Attributes" on page A-10

Note: Only functions that have a server context or a service context
handle as a parameter may return OCI_STILL_EXECUTING.

Cancelling a Nonblocking Call

You can cancel a long-running OCI call by using the OCIBreak () function while the
OCI call is in progress. You must then issue an OCIReset () call to reset the
asynchronous operation and protocol.

Using PL/SQL in an OCI Program

PL/SQL is Oracle's procedural extension to the SQL language. PL/SQL supports tasks
that are more complicated than simple queries and SQL data manipulation language
(DML) statements. PL/SQL lets you group a number of constructs into a single block
and execute it as a unit. These constructs include:

s One or more SQL statements
» Variable declarations
= Assignment statements

» Procedural control statements such as IF. . .THEN. . . ELSE statements and loops

OCI Programming Basics 2-27

OCI Globalization Support

= Exception handling
You can use PL/SQL blocks in your OCI program to perform the following operations:
s Call Oracle stored procedures and stored functions

s Combine procedural control statements with several SQL statements, to be
executed as a single unit

m Access special PL/SQL features such as tables, CURSOR FOR loops, and exception
handling

s Use cursor variables

= Operate on objects in a server

Note:

= While the OCI can only directly process anonymous blocks,
and not named packages or procedures, you can always put the
package or procedure call within an anonymous block and
process that block.

= Note that all OUT variables have to be initialized to NULL
(through an indicator of -1, or an actual length of 0) prior to
executing a PL/SQL begin-end block in OCI.

= OCI does not support the PL/SQL RECORD datatype.

s When binding a PL/SQL VARCHAR? variable in OCI, the
maximum size of the bind variable is 32512 bytes, because of
the overhead of control structures.

Caution: When writing PL/SQL code, it is important to keep in
mind that the parser treats everything that starts with "--" to a
carriage return as a comment. So if comments are indicated on each
line by "--", the C compiler can concatenate all lines in a PL/SQL
block into a single line without putting a carriage return "\n" for
each line. In this particular case, the parser fails to extract the
PL/SQL code of a line if the previous line ends with a comment. To
avoid the problem, the programmer should put "\n" after each "--"
comment to make sure the comment ends there.

See Also: Oracle Database PL/SQL User’s Guide and Reference for
information about coding PL/SQL blocks

OCI Globalization Support

The following sections introduce OCI functions that can be used for globalization
purposes, such as deriving locale information, manipulating strings, character set
conversion, and OCI messaging. These functions are also described in detail in other
chapters of this guide because they have multiple purposes and functionality.

Client Character Set Control from OCI

The function OCIEnvNlsCreate () enables you to set character set information in
applications, independently from NLS_LANG and NLS_NCHAR settings. One

2-28 Oracle Call Interface Programmer's Guide

OCI Globalization Support

application can have several environment handles initialized within the same system
environment using different client side character set IDs and national character set IDs.

OCIEnvNlsCreate (OCIEnv **envhp, ..., csid, ncsid);

where csid is the value for character set ID, and ncsid is the value for national
character set ID. Either can be 0 or OCI_UTF161ID. If both are 0, this is equivalent to
using OCIEnvCreate () instead. The other arguments are the same as for the
OCIEnvCreate () call.

OCIEnvNlsCreate () is an enhancement for programmatic control of character sets,
because it validates OCI_UTF161ID.

When character set IDs are set through the function OCIEnvNlsCreate (), they will
replace the settings in NLS_LANG and NLS_NCHAR. In addition to all character sets
supported by NLSRTL, OCI_UTF161ID is also allowed as a character set ID in the
OCIEnvNlsCreate () function, although this ID is not valid in NLS_LANG or
NLS_NCHAR.

Any Oracle character set ID, except AL16UTF16, can be specified through the
OCIEnvNlsCreate () function to specify the encoding of metadata, SQL CHAR data,
and SQL NCHAR data.

You can retrieve character sets in NLS_LANG and NLS_NCHAR through another
function, OCINlsEnvironmentVariableGet ().

See Also: "OCIEnvNIsCreate()" on page 15-18

Code Example for Character Set Control in OCI

For a pseudocode fragment that illustrates a sample usage of these calls:

See Also: "Setting Client Character Sets in OCI" on page 5-23

Character Control and OCI Interfaces

OCINlsGetInfo () returns information about OCI_UTF161D if this value has been
used in OCIEnvNlsCreate().

OCIAttrGet () returns the character set ID and national character set ID that were
passed into OCIEnvNlsCreate (). This is used to get OCI_ATTR_ENV_CHARSET_ID
and OCI_ATTR_ENV_NCHARSET ID. This includes the value OCI_UTF161ID.

If both charset and ncharset parameters were set to NULL by
OCIEnvNlsCreate (), the character set IDs in NLS_LANG and NLS_NCHAR will be
returned.

OCIAttrSet() sets character IDs as the defaults if OCI_ATTR_CHARSET FORM is reset
through this function. The eligible character set IDs include OCI_UTF161ID if
OCIEnvNlsCreate () hasit passed as charset or ncharset.

OCIBindByName () and OCIBindByPos () bind variables with default character set
in the OCIEnvNlsCreate () call, including OCI_UTF161ID. The actual length and the
returned length are always in bytes if OCIEnvNlsCreate () is used.

OCIDefineByPos () defines variables with the value of charset in
OCIEnvNlsCreate (), including OCI_UTF161D, as the default. The actual length and
returned length are always in bytes if OCIEnvNlsCreate () is used. This behavior for
bind and define handles is different from that when OCIEnvCreate () is used and
OCI_UTF161ID is the character set ID for the bind and define handles.

OCI Programming Basics 2-29

OCI Globalization Support

Character Length Semantics in OCI

OCI works as a translator between server and client, and passes around character
information for constraint checking.

There are two kinds of character sets, variable-width and fixed-width, as a single byte
character set is just a special case of a fixed-width character set where each byte stands
for one character.

For fixed-width character sets, constraint checking is easier as number of bytes is
simply equal to a multiple of number of characters. Therefore, no scanning of the
entire string is needed to determine the number of characters for fixed-width character
sets. However, for variable-width ones, complete scanning is needed to determine the
number of characters.

Character Set Support in OCI

See "Character Length Semantics Support in Describing" on page 6-18 and "Character
Conversion in OCI Binding and Defining" on page 5-22 for a complete discussion.

Other OCI Globalization Support Functions

Many globalization support functions accept either the environment handle or the
user session handle. The OCI environment handle is associated with the client NLS
environment variables. This environment does not change when ALTER SESSION
statements are issued to the server. The character set associated with the environment
handle is the client character set. The OCI session handle (returned by
OCISessionBegin ())is associated with the server session environment. The NLS
settings change when the session environment is modified with an ALTER SESSION
statement. The character set associated with the session handle is the database
character set.

Note that the OCI session handle does not have NLS settings associated with it until
the first transaction begins in the session. SELECT statements do not begin a
transaction.

For complete details and discussions of the functions that follow:

See Also:
» Chapter 21, "OCI Globalization Support Functions"
= Oracle Database Globalization Support Guide

Getting Locale Information in OCI

2-30

An Oracle locale consists of language, territory, and character set definitions. The
locale determines conventions such as day and month names, as well as date, time,
number, and currency formats. A globalized application follows a user's locale setting
and cultural conventions. For example, when the locale is set to German, users expect
to see day and month names in German.

See Also:
s "OCI Locale Functions" on page 21-3
= "OCINIsEnvironmentVariableGet()" on page 21-6

You can retrieve the following information with the 0OCIN1sGetInfo () function:

= Days of the week (translated)

Oracle Call Interface Programmer's Guide

OCI Globalization Support

Abbreviated days of the week (translated)
Month names (translated)
Abbreviated month names (translated)
Yes/no (translated)

AM/PM (translated)

AD/BC (translated)

Numeric format

Debit/ credit

Date format

Currency formats

Default language

Default territory

Default character set

Default linguistic sort

Default calendar

Example of Getting Locale Information in OCI

This example code retrieves information and checks for errors.

sword MyPrintLinguisticName (envhp, errhp)
OCIEnv *envhp;
OCIError *errhp;

{

OraText infoBuf [OCI_NLS_MAXBUFSZ];
sword ret;

ret = OCINlsGetInfo (envhp,
errhp,
infoBuf,
(size_t) OCI_NLS_MAXBUFSZ,
(ub2) OCI_NLS_LINGUISTIC_NAME) ;

if (ret != OCI_SUCCESS)

checkerr (errhp, ret, OCI_HTYPE_ERROR) ;
ret = OCI_ERROR;

}

else

{
printf ("NLS linguistic: %s\n", infoBuf);
}

return(ret);

Manipulating Strings in OCI

Multibyte strings and wide character strings are supported for string manipulation:

/* environment handle */
/* error handle */

/* destination buffer */
/* buffer size */

/* item */

Multibyte strings are encoded in native Oracle character sets. Functions that operate
on multibyte strings take the string as a whole unit with the length of the string

OCI Programming Basics 2-31

OCI Globalization Support

calculated in bytes. Wide character string (wchar) functions provide more flexibility in
string manipulation. They support character-based and string-based operations where
the length the string calculated in characters.

The wide character datatype, OCIWchar, is Oracle-specific and should not be confused
with the wchar_t datatype defined by the ANSI/ISO C standard. The Oracle wide
character datatype is always 4 bytes in all operating systems, while the size of
wchar_t depends on the implementation and the operating system. The Oracle wide
character datatype normalizes multibyte characters so that they have a uniform fixed
width for easy processing. This guarantees no data loss for round trip conversion
between the Oracle wide character set and the native character set.

String manipulation can be classified into the following categories:
s Conversion of strings between multibyte and wide character

s Character classifications

= Case conversion

s Calculations of display length

= General string manipulation, such as comparison, concatenation, and searching
See Also: "OCI String Manipulation Functions" on page 21-14
Example of Manipulating Strings in OCI

The following example shows a simple case of manipulating strings.

size_t MyConvertMultiByteToWideChar (envhp, dstBuf, dstSize, srcStr)

OCIEnv *envhp;

OCIWchar *dstBuf;

size_t dstSize;

OraText *srcStr; /* null terminated source string */

{
sword ret;
size_t dstLen = 0;
size_t srcLen;

/* get length of source string */
srcLen = OCIMultiByteStrlen(envhp, srcStr);

ret = OCIMultiByteInSizeToWideChar (envhp, /* environment handle */
dstBuf, /* destination buffer */
dstSize, /* destination buffer size */
srcStr, /* source string */
srcLen, /* length of source string */
&dstLen) ; /* pointer to destination length */

if (ret != OCI_SUCCESS)
{
checkerr (envhp, ret, OCI_HTYPE_ENV) ;

}

return(dstLen) ;

Example of Classifying Characters in OCI

The OCI character classification functions are described in detail.

See Also: "OCI Character Classification Functions" on page 21-44

2-32 Oracle Call Interface Programmer's Guide

OCI Globalization Support

The following example shows how to classify characters in OCI.

boolean MyIsNumberWideCharString (envhp, srcStr)

OCIEnv *envhp;
OCIWchar *srcStr;
{
OCIWchar *pstr =
boolean status =

srcStr;
TRUE;

/* Check input */
if (pstr == (OCIWchar*) NULL)
return (FALSE) ;

if (*pstr == (0CIWchar) NULL)
return (FALSE) ;

do

{
if (OCIWideCharIsDigit (envhp, *pstr)
{

status = FALSE;
break;
}
} while (*++pstr != (OCIWchar) NULL);

return(status) ;

Converting Character Sets in OCI

/* wide char source string */

/* define and init pointer */

/* define and initialize status variable */

/* check each character for digit */

!= TRUE)

/* non-decimal digit character */

Conversion between Oracle character sets and Unicode (16-bit, fixed-width Unicode
encoding) is supported. Replacement characters are used if a character has no
mapping from Unicode to the Oracle character set. Therefore, conversion back to the
original character set is not always possible without data loss.

Character set conversion functions involving Unicode character sets require data bind
and define buffers to be aligned at a ub2 address, or else an error is raised.

See Also:
page 21-57

Example of Converting Character Sets in OCI

"OCI Character Set Conversion Functions" on

The following example shows a simple conversion into Unicode.

/* Example of Converting Character Sets in OCI

size_t MyConvertMultiByteToUnicode (envhp, errhp, dstBuf, dstSize, srcStr)
OCIEnv *envhp;
OCIError *errhp;
ub2 *dstBuf;
size_t dstSize;
OraText *srcStr;
{
size_t dstLen = 0;
size_t srcLen = 0;
OraText tb[OCI_NLS_MAXBUFSZ]; /* NLS info buffer */
ub?2 cid; /* OCIEnv character set id */

OCI Programming Basics 2-33

OCI Globalization Support

/* get OCIEnv character set */

checkerr (errhp, OCINlsGetInfo(envhp, errhp, tb, sizeof (tb),
OCI_NLS_CHARACTER_SET)) ;

cid = OCINlsCharSetNameToId (envhp, tb);

if (cid == OCI_UTF161ID)
{
ub2 *srcStrUb2 = (ub2*)srcStr;
while (*srcStrUb2++) ++srcLen;
srcLen *= sizeof (ub2);
}
else
srcLen = OCIMultiByteStrlen(envhp, srcStr);

checkerr (errhp,

OCINlsCharSetConvert (
envhp, /* environment handle */
errhp, /* error handle */
OCI_UTF16ID, /* Unicode character set id */
dstBuf, /* destination buffer */
dstSize, /* size of destination buffer */
cid, /* OCIEnv character set id */
srcStr, /* source string */
srclen, /* length of source string */
&dstLen)) ; /* pointer to destination length */

return dstLen/sizeof (ub2);

OCI Messaging Functions

The user message API provides a simple interface for cartridge developers to retrieve
their own messages and Oracle messages.

See Also:
» Oracle Database Data Cartridge Developer’s Guide
s "OCI Messaging Functions" on page 21-63

Example of Retrieving a Message from a Text Message File

This example creates a message handle, initializes it to retrieve messages from
impus.msg, retrieves message number 128, and closes the message handle. It assumes
that OCI environment handles, OCI session handles, product, facility, and cache size
have been initialized properly.

0CIMsg msghnd; /* message handle */
/* initialize a message handle for retrieving messages from impus.msg*/
err = OCIMessageOpen (hndl,errhp, &msghnd, prod, fac,O0CI_DURATION_SESSION) ;
if (err != OCI_SUCCESS)
/* error handling */

/* retrieve the message with message number = 128 */
msgptr = OCIMessageGet (msghnd, 128, msgbuf, sizeof (msgbuf));
/* do something with the message, such as display it */

/* close the message handle when there are no more messages to retrieve */
OCIMessageClose (hndl, errhp, msghnd);

2-34 Oracle Call Interface Programmer's Guide

OCI Globalization Support

Imsgen Utility

The Imsgen utility converts text-based message files (. msg) into binary format (. msb)
so that Oracle messages and OCI messages provided by the user can be returned to
OCI functions in the desired language.

BNF Syntax of Imsgen

lmsgen text_file product facility [language]
where:

m text_ fileisamessage text file.

» product is the name of the product.

» facilityis the name of the facility.

» language is the optional message language corresponding to the language
specified in the NLS_LANG parameter. The language parameter is required if the
message file is not tagged properly with language.

Guidelines for Text Message Files

s Lines that start with "/ " and "/ /" are treated as internal comments and are
ignored.

= To tag the message file with a specific language, include a line similar to the
following:

CHARACTER_SET_NAME= Japanese_Japan.JAl6EUC

= Each message contains 3 fields:

message_number, warning level, message_text

= The message number must be unique within a message file.
= The warning level is not currently used. Set to 0.

= The message text cannot be longer than 76 bytes.

The following is an example of an Oracle message text file:

/ Copyright (c) 2001 by the Oracle Corporation. All rights reserved.
/ This is a test us7ascii message file

CHARACTER_SET _NAME= american_america.us7ascii

/

00000, 00000, "Export terminated unsuccessfully\n"

00003, 00000, "no storage definition found for segment (%1u, %$lu)"

Example: Creating a Binary Message File from a Text Message File
The following table contains sample values for the Imsgen parameters:

Imsgen Parameter Value

product SHOME /myApplication
facility imp

language AMERICAN

text_file impus.msg

OCI Programming Basics 2-35

OCI Globalization Support

The text message file is found in the following location:

SHOME /myApp/mesg/impus . msg

One of the lines in the text message file is:

00128,2, "Duplicate entry %s found in %s"

The 1msgen utility converts the text message file (impus .msg) into binary format,
resulting in a file called impus .msb:

% lmsgen impus.msg S$HOME/myApplication imp AMERICAN

The following output results:

Generating message file impus.msg -->
/home/scott/myApplication/mesg/impus.msb

NLS Binary Message File Generation Utility: Version 9.2.0.0.0 -Production
Copyright (c) Oracle Corporation 1979, 2001. All rights reserved.

CORE 9.2.0.0.0 Production

2-36 Oracle Call Interface Programmer's Guide

3

Datatypes

This chapter provides a reference to Oracle external datatypes used by OCI
applications. It also discusses Oracle datatypes and the conversions between internal
and external representations that occur when you transfer data between your program
and Oracle.

This chapter contains these topics:
s Oracle Datatypes

» Internal Datatypes

» External Datatypes

s Data Conversions

= Typecodes

» Definitions in oratypes.h

See Also: For detailed information about Oracle internal
datatypes, see the Oracle Database SQL Reference

Oracle Datatypes

One of the main functions of an OCI program is to communicate with a database
through an Oracle server. The OCI application may retrieve data from database tables
through SQL SELECT queries, or it may modify existing data in tables through
INSERT, UPDATE, or DELETE statements.

Inside a database, values are stored in columns in tables. Internally, Oracle represents
data in particular formats known as internal datatypes. Examples of internal datatypes
include NUMBER, CHAR, and DATE.

In general, OCI applications do not work with internal datatype representations of
data, but with host language datatypes which are predefined by the language in which
they are written. When data is transferred between an OCI client application and a
database table, the OCI libraries convert the data between internal datatypes and
external datatypes.

External datatypes are host language types that have been defined in the OCI header
files. When an OCI application binds input variables, one of the bind parameters is an
indication of the external datatype code (or SQLT code) of the variable. Similarly, when
output variables are specified in a define call, the external representation of the
retrieved data must be specified.

Datatypes 3-1

Oracle Datatypes

In some cases, external datatypes are similar to internal types. External types provide a
convenience for the programmer by making it possible to work with host language
types instead of proprietary data formats.

Note: Even though some external types are similar to internal
types, an OCI application never binds to internal datatypes. They
are discussed here because it can be useful to understand how
internal types can map to external types.

The OCl is capable of performing a wide range of datatype conversions when
transferring data between Oracle and an OCI application. There are more OCI external
datatypes than Oracle internal datatypes. In some cases a single external type maps to
an internal type; in other cases multiple external types map to an single internal type.

The many-to-one mappings for some datatypes provide flexibility for the OCI
programmer. For example, if you are processing the SQL statement

SELECT sal FROM emp WHERE empno = :employee_number

and you want the salary to be returned as character data, instead of a binary
floating-point format, specify an Oracle external string datatype, such as VARCHAR2
(code = 1) or CHAR (code = 96) for the dty parameter in the OCIDefineByPos () call
for the sal column. You also need to declare a string variable in your program and
specify its address in the valuep parameter.

If you want the salary information to be returned as a binary floating-point value,
however, specify the FLOAT (code = 4) external datatype. You also need to define a
variable of the appropriate type for the valuep parameter.

Oracle performs most data conversions transparently. The ability to specify almost any
external datatype provides a lot of power for performing specialized tasks. For
example, you can input and output DATE values in pure binary format, with no
character conversion involved, by using the DATE external datatype. See the
description of the DATE external datatype on page 3-11 for more information.

To control data conversion, you must use the appropriate external datatype codes in
the bind and define routines. You must tell Oracle where the input or output variables
are in your OCI program and their datatypes and lengths.

OClI also supports an additional set of OCI typecodes which are used by Oracle's type
management system to represent datatypes of object type attributes. There is a set of
predefined constants which can be used to represent these typecodes. The constants
each contain the prefix OCI_TYPECODE.

In summary, the OCI programmer must be aware of the following different datatypes
or data representations:

= Internal Oracle datatypes, which are used by table columns in an Oracle database.
These also include datatypes used by PL/SQL which are not used by Oracle
columns (for example, indexed table, boolean, record).

See Also: '"Internal Datatypes" on page 3-3

s External OCI datatypes, which are used to specify host language representations
of Oracle data.

3-2 Oracle Call Interface Programmer's Guide

Internal Datatypes

See Also: "External Datatypes" on page 3-6, and "Using External
Datatype Codes" on page 3-3

= OCI_TYPECODE values, which are used to Oracle to represent type information for
object type attributes.

See Also: "Typecodes" on page 3-24, and "Relationship Between
SQLT and OCI_TYPECODE Values" on page 3-26

Information about a column's internal datatype is conveyed to your application in the
form of an internal datatype code. Once your application knows what type of data will
be returned, it can make appropriate decisions about how to convert and format the
output data. The Oracle internal datatype codes are listed in the section "Internal
Datatypes" on page 3-3.

See Also:

s For detailed information about Oracle internal datatypes, see
the Oracle Database SQL Reference.

s For information about describing select-list items in a query, see
the section "Describing Select-list Items" on page 4-9.

Using External Datatype Codes

An external datatype code indicates to Oracle how a host variable represents data in
your program. This determines how the data is converted when returned to output
variables in your program, or how it is converted from input (bind) variables to Oracle
column values. For example, if you want to convert a NUMBER in an Oracle column to a
variable-length character array, you specify the VARCHAR? external datatype code in
the OCIDefineByPos () call that defines the output variable.

To convert a bind variable to a value in an Oracle column, specify the external
datatype code that corresponds to the type of the bind variable. For example, if you
want to input a character string such as 02-FEB-65 to a DATE column, specify the
datatype as a character string and set the length parameter to nine.

It is always the programmer's responsibility to make sure that values are convertible. If
you try to insert the string "MY BIRTHDAY" into a DATE column, you will get an
error when you execute the statement.

See Also: For a complete list of the external datatypes and
datatype codes, see Table 3-2, " External Datatypes and Codes"

Internal Datatypes

Table 3-1 lists the Oracle internal (also known as built-in) datatypes, along with each
type's maximum internal length and datatype code.

Table 3—1 Internal Oracle Datatypes

Datatype
Internal Oracle Datatype Maximum Internal Length Code
VARCHAR2, NVARCHAR2 4000 bytes 1
NUMBER 21 bytes 2
LONG 2/31-1 bytes (2 gigabytes) 8

Datatypes 3-3

Internal Datatypes

Table 3—-1 (Cont.) Internal Oracle Datatypes

Datatype

Internal Oracle Datatype Maximum Internal Length Code
DATE 7 bytes 12
RAW 2000 bytes 23
LONG RAW 2/31-1 bytes 24
ROWID 10 bytes 69
CHAR, NCHAR 2000 bytes 96
BINARY_FLOAT 4 bytes 100
BINARY_DOUBLE 8 bytes 101
User-defined type (object type, VARRAY, N/A 108
Nested Table)
REF N/A 111
CLOB, NCLOB 128 terabytes 112
BLOB 128 terabytes 113
BFILE maximum operating system 114

file size or UB8MAXVAL
TIMESTAMP 11 bytes 180
TIMESTAMP WITH TIME ZONE 13 bytes 181
INTERVAL YEAR TO MONTH 5 bytes 182
INTERVAL DAY TO SECOND 11 bytes 183
UROWID 3950 bytes 208
TIMESTAMP WITH LOCAL TIME ZONE 11 bytes 231

See Also: For more information about these built-in datatypes,
see the Oracle Database SQL Reference.

LONG, RAW, LONG RAW, VARCHAR2

You can use the piecewise capabilities provided by OCIBindByName (),
OCIBindByPos (), 0CIDefineByPos (), 0CIStmtGetPieceInfo () and

OCIstmtSetPieceInfo () to perform inserts, updates or fetches involving column

data of these types.

Character Strings and Byte Arrays

3-4

You can use five Oracle internal datatypes to specify columns that contain characters

or arrays of bytes: CHAR, VARCHAR2, RAW, LONG, and LONG RAW.

Note: LOBs can contain characters and BFILEs can contain binary

data. They are handled differently than other types, so they are not
included in this discussion. See Chapter 7, "LOB and BFILE
Operations", for more information about these datatypes.

CHAR, VARCHAR2, and LONG columns normally hold character data. RAW and LONG
RAW hold bytes that are not interpreted as characters, for example, pixel values in a

Oracle Call Interface Programmer's Guide

Internal Datatypes

UROWID

bit-mapped graphic image. Character data can be transformed when passed through a
gateway between networks. Character data passed between machines using different
languages, where single characters may be represented by differing numbers of bytes,
can be significantly changed in length. Raw data is never converted in this way.

It is the responsibility of the database designer to choose the appropriate Oracle
internal datatype for each column in the table. The OCI programmer must be aware of
the many possible ways that character and byte-array data can be represented and
converted between variables in the OCI program and Oracle tables.

When an array holds characters, the length parameter for the array in an OCI call is
always passed in and returned in bytes, not characters.

The Universal ROWID (UROWID) is a datatype that can store both logical and physical
rowids of Oracle tables. Logical rowids are primary key-based logical identifiers for
the rows of Index-Organized Tables (I0Ts).

To use columns of the UROWID datatype, the value of the COMPATIBLE initialization
parameter must be set to 8.1 or higher.

The following host variables can be bound to Universal ROWIDs:
= SQLT_CHR (VARCHAR2)

s SQLT_VCS (VARCHAR)

= SQLT_STR (NULL-terminated string)

s SQLT_LVC (LONG VARCHAR)

s SLQT_AFC (CHAR)

= SQLT_AVC (CHARZ)

s SQLT_ VST (OCI String)

= SQLT_RDD (ROWID descriptor)

BINARY_FLOAT and BINARY_DOUBLE

The BINARY_FLOAT and BINARY_DOUBLE datatypes represent single-precision and
double-precision floating point values that mostly conform to the IEEE754 standard
for Floating Point Arithmetic.

Prior to the addition of these datatypes, all numeric values in an Oracle database were
stored in the Oracle NUMBER format. These new binary floating point types will not
replace Oracle NUMBER. Rather, they are alternatives to Oracle NUMBER that provide
the advantage of using less disk storage.

These internal types are represented by the following codes:
= SQLT IBFLOAT for BINARY FLOAT.
= SQLT IBDOUBLE for BINARY DOUBLE.

All the following host variables can be bound to BINARY_FLOAT and
BINARY_DOUBLE datatypes:

= SQLT_BFLOAT (native float)
= SQLT_BDOUBLE (native double)

= SQLT_INT (integer)

Datatypes 3-5

External Datatypes

» SQLT_FLT (float)

= SQLT_NUM (Oracle NUMBER)
= SQLT_UIN (unsigned)

= SQLT_VNU (VARNUM)

= SQLT_CHR (VARCHAR2)

s SQLT_VCS (VARCHAR)

= SQLT_STR (NULL-terminated String)
s SQLT_LVC (LONG VARCHAR)
= SQLT_AFC (CHAR)

= SQLT_AVC (CHARZ)

= SQLT VST (OCIString)

For best performance, you are advised to use external types SQLT_BFLOAT and
SQLT_BDOUBLE in conjunction with the BINARY_FLOAT and BINARY_DOUBLE
datatypes.

External Datatypes

Table 3-2 lists datatype codes for external datatypes. For each datatype, the table lists
the program variable types for C from or to which Oracle internal data is normally
converted.

Table 3-2 External Datatypes and Codes

EXTERNAL DATATYPE CODE PROGRAM VARIABLE OCI DEFINED CONSTANT
VARCHAR?2 1 char[n] SQLT_CHR
NUMBER 2 unsigned char[21] SQLT_NUM
8-bit signed INTEGER 3 signed char SQLT_INT
16-bit signed INTEGER 3 signed short, signed int SQLT_INT
32-bit signed INTEGER 3 signed int, signed long SQLT_INT
FLOAT 4 float, double SQLT_FLT
NULL-terminated STRING 5 char[n+1] SQLT_STR
VARNUM 6 char[22] SQLT_VNU
LONG 8 char[n] SQLT_LNG
VARCHAR 9 char[n+sizeof(short integer)] SQLT_VCS
DATE 12 char[7] SQLT_DAT
VARRAW 15 unsigned SQLT_VBI
char[n+sizeof(short integer)]
native float 21 float SQLT_BFLOAT
native double 22 double SQLT_BDOUBLE
RAW 23 unsigned char[n] SQLT_BIN
LONG RAW 24 unsigned char[n] SQLT_LBI
UNSIGNED INT 68 unsigned SQLT_UIN

3-6 Oracle Call Interface Programmer's Guide

External Datatypes

Table 3-2 (Cont.) External Datatypes and Codes

EXTERNAL DATATYPE CODE PROGRAM VARIABLE OCI DEFINED CONSTANT

LONG VARCHAR 94 char[n+sizeof(integer)] SQLT_LVC

LONG VARRAW 95 unsigned SQLT_LVB
char[n+sizeof(integer)]

CHAR 96 char[n] SQLT_AFC

CHARZ 97 char[n+1] SQLT_AVC

ROWID descriptor 104 OCIRowid * SQLT_RDD

NAMED DATATYPE 108 struct SQLT_NTY

REF 110 OCIRef SQLT_REF

Character LOB descriptor 112 OCILobLocator (see note2) SQLT_CLOB

Binary LOB descriptor 113 OCILobLocator (see note 2) SQLT_BLOB

Binary FILE descriptor 114 OCILobLocator SQLT_FILE

OCI STRING type 155 OCIString SQLT_VST (see note 1)

OCI DATE type 156 OClIDate * SQLT_ODT (see note 1)

ANSI DATE descriptor 184 OCIDateTime * SQLT_DATE

TIMESTAMP descriptor 187 OCIDateTime * SQLT_TIMESTAMP

TIMESTAMP WITH TIME ZONE 188 OCIDateTime * SQLT_TIMESTAMP_TZ

descriptor

INTERVAL YEAR TO MONTH 189 OCllInterval * SQLT_INTERVAL_YM

descriptor

INTERVAL DAY TO SECOND 190 OClInterval * SQLT_INTERVAL_DS

descriptor

TIMESTAMP WITH LOCAL TIME 232 OCIDateTime * SQLT_TIMESTAMP_LTZ

ZONE descriptor

Note:

Where the length is shown as 7, it is a variable, and

depends on the requirements of the program (or of the operating
system in the case of ROWID).

For more information on the use of these datatypes, refer to
Chapter 11, "Object-Relational Datatypes in OCI".

In applications using datatype mappings generated by OTT,
CLOBs may be mapped as OCIClobLocator, and BLOBs may be
mapped as OCIBlobLocator. For more information, refer to
Chapter 14, "Using the Object Type Translator with OCI".

The following three types are internal to PL/SQL and cannot be returned as values by

OCIL:

s Boolean, SQLT_ BOL

s Indexed Table, SQLT TAB

s Record, SQLT_REC

Datatypes 3-7

External Datatypes

VARCHAR2

The VARCHAR2 datatype is a variable-length string of characters with a maximum
length of 4000 bytes.

Note: If you are using Oracle objects, you can work with a special
OCIString external datatype using a set of predefined OCI
functions. Refer to Chapter 11, "Object-Relational Datatypes in OCI"
for more information about this datatype.

Input

The value_sz parameter determines the length in the OCIBindByName () or
OCIBindByPos () call.

If the value_sz parameter is greater than zero, Oracle obtains the bind variable value
by reading exactly that many bytes, starting at the buffer address in your program.
Trailing blanks are stripped, and the resulting value is used in the SQL statement or
PL/SQL block. If, in the case of an INSERT statement, the resulting value is longer
than the defined length of the database column, the INSERT fails, and an error is
returned.

Note: A trailing NULL is not stripped. Variables should be
blank-padded but not NULL-terminated.

If the value_sz parameter is zero, Oracle treats the bind variable as a NULL,
regardless of its actual content. Of course, a NULL must be allowed for the bind
variable value in the SQL statement. If you try to insert a NULL into a column that has
a NOT NULL integrity constraint, Oracle issues an error, and the row is not inserted.

When the Oracle internal (column) datatype is NUMBER, input from a character string
that contains the character representation of a number is legal. Input character strings
are converted to internal numeric format. If the VARCHAR?2 string contains an illegal
conversion character, Oracle returns an error and the value is not inserted into the
database.

Output

Specify the desired length for the return value in the value_sz parameter of the
OCIDefineByPos () call, or the value_sz parameter of OCIBindByName () or
OCIBindByPos () for PL/SQL blocks. If zero is specified for the length, no data is
returned.

If you omit the r1enp parameter of OCIDefineByPos (), returned values are
blank-padded to the buffer length, and NULLs are returned as a string of blank
characters. If r1enp is included, returned values are not blank-padded. Instead, their
actual lengths are returned in the rlenp parameter.

To check if a NULL is returned or if character truncation has occurred, include an
indicator parameter in the OCIDefineByPos () call. Oracle sets the indicator
parameter to -1 when a NULL is fetched and to the original column length when the
returned value is truncated. Otherwise, it is set to zero. If you do not specify an
indicator parameter and a NULL is selected, the fetch call returns the error code
OCI_SUCCESS_WITH_INFO. Retrieving diagnostic information on the error will
return ORA-1405.

3-8 Oracle Call Interface Programmer's Guide

External Datatypes

NUMBER

INTEGER

See Also: ‘"Indicator Variables" on page 2-23

You should not need to use NUMBER as an external datatype. If you do use it, Oracle
returns numeric values in its internal 21-byte binary format and will expect this format
on input. The following discussion is included for completeness only.

Note: If you are using objects in an Oracle database server, you
can work with a special OCINumber datatype using a set of
predefined OCI functions. Refer to Chapter 11, "Object-Relational
Datatypes in OCI" for more information about this datatype.

Oracle stores values of the NUMBER datatype in a variable-length format. The first byte
is the exponent and is followed by 1 to 20 mantissa bytes. The high-order bit of the
exponent byte is the sign bit; it is set for positive numbers and it is cleared for negative
numbers. The lower 7 bits represent the exponent, which is a base-100 digit with an
offset of 65.

To calculate the decimal exponent, add 65 to the base-100 exponent and add another
128 if the number is positive. If the number is negative, you do the same, but
subsequently the bits are inverted. For example, -5 has a base-100 exponent = 62
(0x3e). The decimal exponent is thus (~0x3e) -128 - 65 = Oxc1 -128 -65 = 193 -128 -65 = 0.

Each mantissa byte is a base-100 digit, in the range 1..100. For positive numbers, the
digit has 1 added to it. So, the mantissa digit for the value 5 is 6. For negative numbers,
instead of adding 1, the digit is subtracted from 101. So, the mantissa digit for the
number -5 is 96 (101 - 5). Negative numbers have a byte containing 102 appended to
the data bytes. However, negative numbers that have 20 mantissa bytes do not have
the trailing 102 byte. Because the mantissa digits are stored in base 100, each byte can
represent 2 decimal digits. The mantissa is normalized; leading zeroes are not stored.

Up to 20 data bytes can represent the mantissa. However, only 19 are guaranteed to be
accurate. The 19 data bytes, each representing a base-100 digit, yield a maximum
precision of 38 digits for an Oracle NUMBER.

If you specify the datatype code 2 in the dty parameter of an OCIDefineByPos ()
call, your program receives numeric data in this Oracle internal format. The output
variable should be a 21-byte array to accommodate the largest possible number. Note
that only the bytes that represent the number are returned. There is no blank padding
or NULL termination. If you need to know the number of bytes returned, use the
VARNUM external datatype instead of NUMBER.

See Also:

"OCINumber Examples" on page 11-10

= "VARNUM" on page 3-11 for a description of the internal
NUMBER format

The INTEGER datatype converts numbers. An external integer is a signed binary
number; the size in bytes is system dependent. The host system architecture
determines the order of the bytes in the variable. A length specification is required for
input and output. If the number being returned from Oracle is not an integer, the
fractional part is discarded, and no error or other indication is returned. If the number

Datatypes 3-9

External Datatypes

FLOAT

STRING

to be returned exceeds the capacity of a signed integer for the system, Oracle returns
an "overflow on conversion" error.

The FLOAT datatype processes numbers that have fractional parts or that exceed the
capacity of an integer. The number is represented in the host system's floating-point
format. Normally the length is either four or eight bytes. The length specification is
required for both input and output.

The internal format of an Oracle number is decimal, and most floating-point
implementations are binary; therefore Oracle can represent numbers with greater
precision than floating-point representations.

Note: You may receive a round-off error when converting
between FLOAT and NUMBER. Using a FLOAT as a bind variable in a
query may return an ORA-1403 error. You can avoid this situation
by converting the FLOAT into a STRING and then using VARCHAR2
or a NULL-terminated string for the operation.

The NULL-terminated STRING format behaves like the VARCHAR? format, except that
the string must contain a NULL terminator character. This datatype is most useful for C
language programs.

Input

The string length supplied in the 0OCIBindByName () or OCIBindByPos () call limits
the scan for the NULL terminator. If the NULL terminator is not found within the length
specified, Oracle issues the error

ORA-01480: trailing NULL missing from STR bind value

If the length is not specified in the bind call, the OCI uses an implied maximum string
length of 4000.

The minimum string length is two bytes. If the first character is a NULL terminator and
the length is specified as two, a NULL is inserted in the column, if permitted. Unlike
types VARCHAR?2 and CHAR, a string containing all blanks is not treated as a NULL on
input; it is inserted as is.

Note: Unlike earlier versions of the OCI, in release 8.0 or later, you
cannot pass -1 for the string length parameter of a NULL-terminated
string

Output

A NULL terminator is placed after the last character returned. If the string exceeds the
field length specified, it is truncated and the last character position of the output
variable contains the NULL terminator.

A NULL select-list item returns a NULL terminator character in the first character
position. An ORA-01405 error is possible, as well.

3-10 Oracle Call Interface Programmer's Guide

External Datatypes

VARNUM

LONG

VARCHAR

DATE

The VARNUM datatype is like the external NUMBER datatype, except that the first byte
contains the length of the number representation. This length does not include the
length byte itself. Reserve 22 bytes to receive the longest possible VARNUM. Set the
length byte when you send a VARNUM value to Oracle Database.

Table 3-3 shows several examples of the VARNUM values returned for numbers in a
table.

Table 3-3 VARNUM Examples

Decimal Exponent Mantissa Terminator
Value Length Byte Byte Bytes Byte

0 1 128 n/a n/a

5 2 193 6 n/a

-5 3 62 96 102

2767 3 194 28, 68 n/a

-2767 4 61 74, 34 102

100000 2 195 11 n/a
1234567 5 196 2,24,46, 68 n/a

The LONG datatype stores character strings longer than 4000 bytes. You can store up to
two gigabytes (2\31-1 bytes) in a LONG column. Columns of this type are used only for
storage and retrieval of long strings. They cannot be used in functions, expressions, or
WHERE clauses. LONG column values are generally converted to and from character
strings.

Do not create tables with LONG columns. Use LOB columns (CLOB, NCLOB, or BLOB)
instead. LONG columns are supported only for backward compatibility.

Oracle also recommends that you convert existing LONG columns to LOB columns. LOB
columns are subject to far fewer restrictions than LONG columns. Furthermore, LOB
functionality is enhanced in every release, but LONG functionality has been static for
several releases.

The VARCHAR datatype stores character strings of varying length. The first two bytes
contain the length of the character string, and the remaining bytes contain the string.
The specified length of the string in a bind or a define call must include the two length
bytes, so the largest VARCHAR string that can be received or sent is 65533 bytes long,
not 65535.

The DATE datatype can update, insert, or retrieve a date value using the Oracle
internal date binary format. A date in binary format contains seven bytes, as shown in
Table 3-4.

Datatypes 3-11

External Datatypes

RAW

Table 3-4 Format of the DATE Datatype

Byte 1 2 3 4 5 6 7
Meaning Century Year Month Day Hour Minute Second
Example (for 119 192 11 30 16 18 1

30-NOV-1992, 3:17 PM)

The century and year bytes (bytes 1 and 2) are in excess-100 notation. The first byte
stores the value of the year, which is 1992, as an integer, divided by 100, giving 119 in
excess-100 notation. The second byte stores year modulo 100, giving 192. Dates Before
Common Era (BCE) are less than 100. The era begins on 01-JAN-4712 BCE, which is
Julian day 1. For this date, the century byte is 53, and the year byte is 88. The hour,
minute, and second bytes are in excess-1 notation. The hour byte ranges from 1 to 24,
the minute and second bytes from 1 to 60. If no time was specified when the date was
created, the time defaults to midnight (1, 1, 1).

When you enter a date in binary format using the DATE external datatype, the
database does not do consistency or range checking. All data in this format must be
carefully validated before input.

Note: There is little need to use the Oracle external DATE datatype
in ordinary database operations. It is much more convenient to
convert DATE into character format, because the program usually
deals with data in a character format, such as DD-MON-YY.

When a DATE column is converted to a character string in your program, it is returned
using the default format mask for your session, or as specified in the INIT. ORA file.

See Also: If you are using objects in an Oracle database, you can
work with a special 0OCIDate datatype using a set of predefined
OCI functions.

= Refer to Chapter 11, "Object-Relational Datatypes in OCI" for
more information about this datatype.

s For information about DATETIME and INTERVAL datatypes,
refer to "Datetime and Interval Datatype Descriptors” on
page 3-18.

The RAW datatype is used for binary data or byte strings that are not to be interpreted
by Oracle, for example, to store graphics character sequences. The maximum length of
a RAW column is 2000 bytes.

See Also: Oracle Database SQL Reference.

When RAW data in an Oracle table is converted to a character string in a program, the
data is represented in hexadecimal character code. Each byte of the RAW data is
returned as two characters that indicate the value of the byte, from '00' to 'FF'. If you
want to input a character string in your program to a RAW column in an Oracle table,
you must code the data in the character string using this hexadecimal code.

You can use the piecewise capabilities provided by OCIDefineByPos (),
OCIBindByName (), OCIBindByPos (), 0CIStmtGetPiecelInfo (), and

3-12 Oracle Call Interface Programmer's Guide

External Datatypes

VARRAW

LONG RAW

UNSIGNED

OCIStmtSetPiecelInfo () to perform inserts, updates, or fetches involving RAW (or
LONG RAW) columns.

See Also: If you are using objects in an Oracle database, you can
work with a special OCIRaw datatype using a set of predefined OCI
functions. Refer to Chapter 11, "Object-Relational Datatypes in OCI"
for more information about this datatype.

The VARRAW datatype is similar to the RAW datatype. However, the first two bytes
contain the length of the data. The specified length of the string in a bind or a define
call must include the two length bytes, so the largest VARRAW string that can be
received or sent is 65533 bytes, not 65535. For converting longer strings, use the LONG
VARRAW external datatype.

The LONG RAW datatype is similar to the RAW datatype, except that it stores raw data
with a length up to two gigabytes (2/31-1 bytes).

The UNSIGNED datatype is used for unsigned binary integers. The size in bytes is
system dependent. The host system architecture determines the order of the bytes in a
word. A length specification is required for input and output. If the number being
output from Oracle is not an integer, the fractional part is discarded, and no error or
other indication is returned. If the number to be returned exceeds the capacity of an
unsigned integer for the system, Oracle returns an "overflow on conversion" error.

LONG VARCHAR

The LONG VARCHAR datatype stores data from and into an Oracle LONG column. The
first four bytes of a LONG VARCHAR contain the length of the item. So, the maximum
length of a stored item is 2°31-5 bytes.

LONG VARRAW

CHAR

The LONG VARRAW datatype is used to store data from and into an Oracle LONG RAW
column. The length is contained in the first four bytes. The maximum length is 231-5
bytes.

The CHAR datatype is a string of characters, with a maximum length of 2000. CHAR
strings are compared using blank-padded comparison semantics.

See Also: Oracle Database SQL Reference
Input

The length is determined by the value_sz parameter in the OCIBindByName () or
OCIBindByPos () call.

Datatypes 3-13

External Datatypes

CHARZ

Note: The entire contents of the buffer (value_sz chars) is
passed to the database, including any trailing blanks or NULLs

If the value_sz parameter is zero, Oracle treats the bind variable as a NULL,
regardless of its actual content. Of course, a NULL must be allowed for the bind
variable value in the SQL statement. If you try to insert a NULL into a column that has
a NOT NULL integrity constraint, Oracle issues an error and does not insert the row.

Negative values for the value_sz parameter are not allowed for CHARs.

When the Oracle internal (column) datatype is NUMBER, input from a character string
that contains the character representation of a number is legal. Input character strings
are converted to internal numeric format. If the CHAR string contains an illegal
conversion character, Oracle returns an error and does not insert the value. Number
conversion follows the conventions established by Globalization Support settings for
your system. For example, your system might be configured to recognize a comma (,)
rather than a period (.) as the decimal point.

Output

Specify the desired length for the return value in the value_sz parameter of the
OCIDefineByPos () call. If zero is specified for the length, no data is returned.

If you omit the r1enp parameter of OCIDefineByPos (), returned values are blank
padded to the buffer length, and NULLs are returned as a string of blank characters. If
rlenp is included, returned values are not blank padded. Instead, their actual lengths
are returned in the rlenp parameter.

To check whether a NULL is returned or if character truncation has occurred, include
an indicator parameter or array of indicator parameters in the OCIDefineByPos ()
call. An indicator parameter is set to -1 when a NULL is fetched and to the original
column length when the returned value is truncated. Otherwise, it is set to zero. If you
do not specify an indicator parameter and a NULL is selected, the fetch call returns an
ORA-01405 error.

See Also: "Indicator Variables" on page 2-23

You can also request output to a character string from an internal NUMBER datatype.
Number conversion follows the conventions established by the Globalization Support
settings for your system. For example, your system might use a comma (,) rather than
a period (.) as the decimal point.

The CHARZ external datatype is similar to the CHAR datatype, except that the string
must be NULL-terminated on input, and Oracle places a NULL-terminator character at
the end of the string on output. The NULL terminator serves only to delimit the string
on input or output; it is not part of the data in the table.

On input, the length parameter must indicate the exact length, including the NULL
terminator. For example, if an array in C is declared as

char my_num[] = "123.45";

then the length parameter when you bind my_num must be seven. Any other value
would return an error for this example.

3-14 Oracle Call Interface Programmer's Guide

External Datatypes

The following new external datatypes were introduced with or after release 8.0. These
datatypes are not supported when you connect to an Oracle release 7 server.

Note: Both internal and external datatypes have Oracle-defined
constant values, such as SQLT_NTY, SQLT_REF, corresponding to
their datatype codes. Although the constants are not listed for all of
the types in this chapter, they are used in this section when
discussing new Oracle datatypes. The datatype constants are also
used in other chapters of this guide when referring to these new

types.

Named Datatypes: Object, VARRAY, Nested Table

REF

Named datatypes are user-defined types which are specified with the CREATE TYPE
command in SQL. Examples include object types, varrays, and nested tables. In the
OCI, named datatype refers to a host language representation of the type. The
SQLT_NTY datatype code is used when binding or defining named datatypes.

In a C application, named datatypes are represented as C structs. These structs can be
generated from types stored in the database by using the Object Type Translator. These
types correspond to OCI_TYPECODE_OBJECT.

See Also:

= For more information about working with named datatypes in
the OCI, see Chapter 11, "Object-Relational Datatypes in OCI".

s For information about how named datatypes are represented as
C structs, refer to Chapter 14, "Using the Object Type Translator
with OCT".

This is a reference to a named datatype. The C language representation of a REF is a
variable declared to be of type OCIRef *.The SQLT_REF datatype code is used when
binding or defining REFs.

Access to REFs is only possible when an OCI application has been initialized in object
mode. When REFs are retrieved from the server, they are stored in the client-side
object cache.

To allocate a REF for use in your application, you should declare a variable to be a
pointer to a REF, and then call 0CIObjectNew (), passing OCI_TYPECODE_REF as
the typecode parameter.

See Also: For more information about working with REFs in the
OCI, see Chapter 13, "Object Advanced Topics in OCI"

ROWID Descriptor

The ROWID datatype identifies a particular row in a database table. ROWID can be a
select-list item in a query, such as:

SELECT ROWID, ename, empno FROM emp

In this case, you can use the returned ROWID in further DELETE statements.

If you are performing a SELECT for UPDATE, the ROWID is implicitly returned. This
ROWID can be read into a user-allocated ROWID descriptor using OCIAttrGet () on

Datatypes 3-15

External Datatypes

the statement handle and used in a subsequent UPDATE statement. The prefetch
operation fetches all ROWIDs on a SELECT for UPDATE; use prefetching and then a
single row fetch.

You access rowids through the use of a ROWID descriptor, which you can use as a bind
or define variable.

See Also: "OCI Descriptors" on page 2-9 and "Positioned Updates
and Deletes" on page 2-25 for more information about the use of the
ROWID descriptor

LOB Descriptor

A LOB (Large Object) stores binary or character data up to 128 terabytes in length.
Binary data is stored in a BLOB (Binary LOB), and character data is stored in a CLOB
(Character LOB) or NCLOB (National Character LOB).

LOB values may or may not be stored inline with other row data in the database. In
either case, LOBs have the full transactional support of the database server. A database
table stores a LOB locator that points to the LOB value, which may be in a different
storage space.

When an OCI application issues a SQL query which includes a LOB column or
attribute in its select-list, fetching the result(s) of the query returns the locator, rather
than the actual LOB value. In OCI, the LOB locator maps to a variable of type
OCILobLocator.

Note: Depending on your application, you may or may not want
to use LOB locators. You can use the data interface for LOBs, which
does not require LOB locators. In this interface, you can bind or
define character data for CLOB columns or RAW data for BLOB
columns.

See Also:

= For more information about descriptors, including the LOB
locator, see the section "OCI Descriptors" on page 2-9

= For more information about LOBs refer to the Oracle Database
SQL Reference and the Oracle Database Application Developer’s
Guide - Large Objects.

= "Binding LOB Data" on page 5-8

s "Defining LOB Data" on page 5-15

The OCI functions for LOBs take a LOB locator as one of their arguments. The OCI
functions assume that the locator has already been created, whether or not the LOB to
which it points contains data.

Bind and define operations are performed on the LOB locator, which is allocated with
the OCIDescriptorAlloc () function.

The locator is always fetched first using SQL or OCIObjectPin (), and then
operations are performed using the locator. The OCI functions never take the actual
LOB value as a parameter.

See Also: For more information about OCI LOB functions, see
Chapter 7, "LOB and BFILE Operations"

3-16 Oracle Call Interface Programmer's Guide

External Datatypes

The datatype codes available for binding or defining LOBs are:

= SQLT_BLOB - a binary LOB datatype.

= SQLT_ CLOB - a character LOB datatype.

The NCLOB is a special type of CLOB with the following requirements:

s To write into or read from an NCLOB, the user must set the character set form
(csfrm) parameter to be SQLCS_NCHAR.

s The amount (amtp) parameter in calls involving CLOBs and NCLOBs is always
interpreted in terms of characters, rather than bytes, for fixed-width character sets.

See Also: "LOB and BFILE Functions in OCI" on page 7-8

BFILE

Oracle supports access to binary files, or BFILEs. The BFILE datatype provides access
to LOBs that are stored in file systems outside an Oracle database.

A BFILE column or attribute stores a file LOB locator, which serves as a pointer to a
binary file on the server's file system. The locator maintains the directory object and
the filename. The maximum size of a BFILE is the smaller of the operating system
maximum file size or UB8MAXVAL.

Binary file LOBs do not participate in transactions. Rather, the underlying operating
system provides file integrity and durability.

The database administrator must ensure that the file exists and that Oracle processes
have operating system read permissions on the file.

The BFILE datatype allows read-only support of large binary files; you cannot modify
a file through Oracle. Oracle provides APIs to access file data.

The datatype code available for binding or defining BFILES is:
= SQLT_BFILE - a binary FILE LOB datatype

See Also: For more information about directory aliases, refer to
the Oracle Database Application Developer's Guide - Large Objects

BLOB

The BLOB datatype stores unstructured binary large objects. BLOBs can be thought of
as bit streams with no character set semantics. BLOBs can store up to 128 terabytes of
binary data.

BLOBs have full transactional support; changes made through the OCI participate fully
in the transaction. The BLOB value manipulations can be committed or rolled back.
You cannot save a BLOB locator in a variable in one transaction and then use it in
another transaction or session.

CLOB

The CLOB datatype stores fixed- or variable-width character data. CLOBs can store up
to 128 terabytes of character data.

CLOBs have full transactional support; changes made through the OCI participate fully
in the transaction. The CLOB value manipulations can be committed or rolled back.
You cannot save a CLOB locator in a variable in one transaction and then use it in
another transaction or session.

Datatypes 3-17

External Datatypes

NCLOB

An NCLOB is a national character version of a CLOB. It stores fixed-width, single-byte
or multibyte national character set (NCHAR) data, or variable-width character set data.
NCLOBs can store up to 128 terabytes of character text data.

NCLOBs have full transactional support; changes made through the OCI participate
fully in the transaction. NCLOB value manipulations can be committed or rolled back.
You cannot save a NCLOB locator in a variable in one transaction and then use it in
another transaction or session.

Datetime and Interval Datatype Descriptors

The datetime and interval datatype descriptors are briefly summarized here.

See Also: Oracle Database SQL Reference

ANSI DATE

The ANSI DATE is based on the DATE, but contains no time portion. It also has no time
zone. ANSI DATE follows the ANST specification for the DATE datatype. When
assigning an ANSI DATE to a DATE or a timestamp datatype, the time portion of the
Oracle DATE and the timestamp are set to zero. When assigning a DATE or a timestamp
to an ANST DATE, the time portion is ignored.

You are encouraged to instead use the TIMESTAMP datatype which contains both date
and time.

TIMESTAMP

The TIMESTAMP datatype is an extension of the DATE datatype. It stores the year,
month, and day of the DATE datatype, plus the hour, minute, and second values. It has
no time zone. The TIMESTAMP datatype has the form:

TIMESTAMP (fractional_seconds_precision)

where the optional fractional_seconds_precision specifies the number of
digits in the fractional part of the SECOND datetime field and can be a number in the
range 0 to 9. The default is 6.

TIMESTAMP WITH TIME ZONE

TIMESTAMP WITH TIME ZONE (TSTZ) is a variant of TIMESTAMP that includes an
explicit time zone displacement in its value. The time zone displacement is the
difference in hours and minutes between local time and UTC (Coordinated Universal
Time—formerly Greenwich Mean Time). The TIMESTAMP WITH TIME ZONE datatype
has the form:

TIMESTAMP (fractional_seconds_precision) WITH TIME ZONE
where fractional_seconds_precision optionally specifies the number of digits

in the fractional part of the SECOND datetime field, and can be a number in the range 0
to 9. The default is 6.

Two TIMESTAMP WITH TIME ZONE values are considered identical if they represent
the same instant in UTC, regardless of the TIME ZONE offsets stored in the data.

TIMESTAMP WITH LOCAL TIME ZONE

TIMESTAMP WITH LOCAL TIME ZONE (TSLTZ) is another variant of TIMESTAMP that
includes a time zone displacement in its value. Storage is in the same format as for

3-18 Oracle Call Interface Programmer's Guide

External Datatypes

TIMESTAMP. This type differs from TIMESTAMP WITH TIME ZONE in that data stored
in the database is normalized to the database time zone, and the time zone
displacement is not stored as part of the column data. When retrieving the data, Oracle
returns it in your local session time zone.

The time zone displacement is the difference (in hours and minutes) between local
time and UTC (Coordinated Universal Time—formerly Greenwich Mean Time). The
TIMESTAMP WITH LOCAL TIME ZONE datatype has the form:

TIMESTAMP (fractional_seconds_precision) WITH LOCAL TIME ZONE
where fractional_seconds_precision optionally specifies the number of digits

in the fractional part of the SECOND datetime field and can be a number in the range 0
to 9. The default is 6.

INTERVAL YEAR TO MONTH

INTERVAL YEAR TO MONTH stores a period of time using the YEAR and MONTH
datetime fields. The INTERVAL YEAR TO MONTH datatype has the form:

INTERVAL YEAR (year_precision) TO MONTH

where the optional year_precision is the number of digits in the YEAR datetime
field. The default value of year_precisionis 2.

INTERVAL DAY TO SECOND

INTERVAL DAY TO SECOND stores a period of time in terms of days, hours, minutes,
and seconds. The INTERVAL DAY TO SECOND datatype has the form:

INTERVAL DAY (day_precision) TO SECOND(fractional_seconds_precision)

where:

» day_ precision is the optional number of digits in the DAY datetime field. It is
optional. Accepted values are 0 to 9. The default is 2.

fractional_seconds_precision is the number of digits in the fractional part of
the SECOND datetime field. Accepted values are 0 to 9. The default is 6.

Avoiding Unexpected Results Using Datetime

Note: To avoid unexpected results in your DML operations on
datetime data, you can verify the database and session time zones
by querying the built-in SQL functions DBTIMEZONE and
SESSIONTIMEZONE. If the time zones have not been set manually,
Oracle uses the operating system time zone by default. If the
operating system time zone is not a valid Oracle time zone, Oracle
uses UTC as the default value.

Native Float and Native Double

The native float (SQLT_BFLOAT) and native double (SQLT_BDOUBLE) datatypes
represent the single-precision and double-precision floating point values. They are
represented natively, that is, in the host system's floating point format.

Note that these new external types were added to externally represent the
BINARY_FLOAT and BINARY_DOUBLE internal datatypes. Thus, performance for the
new internal types will be best when used in conjunction with external types native

Datatypes 3-19

Data Conversions

float and native double respectively. This draws a clear distinction between the
existing representation of floating point values (SQLT_FLT) and these new types.

C Object-Relational Datatype Mappings

OCI supports Oracle-defined C datatypes for mapping user-defined datatypes to C
representations (for example, OCINumber, OCIArray). OCI provides a set of calls to
operate on these datatypes, and to use these datatypes in bind and define operations,
in conjunction with OCI external datatypes.

See Also: For information on using these Oracle-defined C
datatypes, refer to Chapter 11, "Object-Relational Datatypes in OCI"

Data Conversions

Table 3-5 show the supported conversions from internal datatypes to external
datatypes, and from external datatypes into internal column representations, for all
datatypes available through release 7.3. Information about data conversions for
datatypes newer than release 7.3 is listed here:

= REFs stored in the database are converted to SQLT_REF on output.
= SQLT_REF is converted to the internal representation of REFs on input.

= Named datatypes stored in the database can be converted to SQLT_NTY (and
represented by a C struct in the application) on output.

s SQLT_NTY (represented by a C struct in an application) is converted to the internal
representation of the corresponding type on input.

LOBs are shown in Table 3-6, because of the width limitation.
See Also: For information about OCIString, OCINumber, and

other new datatypes, refer to Chapter 11, "Object-Relational
Datatypes in OCI"

Table 3-5 Data Conversions

INTERNAL
- DATATYPES-> - - - - - - - -

EXTERNAL LONG
DATATYPES VARCHAR2 NUMBER LONG ROWID UROWID DATE RAW RAW CHAR
VARCHAR2 1/0 1/0 1/0 I/0(1) 1/0(1) 1/0(2) 1/03) 1/0(3) -
NUMBER I/0(4) I/0 I - - - - - 1I/0(4)
INTEGER I/0(4) I/0 I - - - - - I/0(4)
FLOAT I/0(4) I/0 I - - - - - I/0(4)
STRING 1/0 1/0 1/0 I/0(1) 1/0(1) 1/0(2) 1/0(3) 1/0(3,5) 1/O
VARNUM 1I/0(4) I/0 I - - - - - I/0(4)
DECIMAL 1/0(4) 1/0 I - - - - - 1/0(4)
LONG 1/0 1/0 1/0 I/0(1) 1/0(1) 1/0(2) 1/0@3) 1/0(3,5) 1/O
VARCHAR 1/0 1/0 1/0 I/0(1) 1/0(1) 1/0(2) 1/0@3) 1/0(3,5) 1/O
DATE I/0 - I - - 1/0 - - I/0
VARRAW 1/0(6) - I(5, 6) - - - 1/0 1/0 1/0(6)

3-20 Oracle Call Interface Programmer's Guide

Data Conversions

Table 3-5 (Cont.) Data Conversions

INTERNAL
- DATATYPES-> - - - - - - - -

EXTERNAL

DATATYPES VARCHAR2 NUMBER LONG ROWID UROWID DATE RAW II;S\\I;‘VG CHAR
RAW 1/0(6) - I(5,6) - - - I/0 1/0 1/0(6)
LONG RAW O(6) - 1(5, 6) - - - I/0 1/0 0O(6)
UNSIGNED 1/0(4) I/0 I - - - - - 1/0(4)
LONG 1/0 1/0 1/0 I/0(1) 1/0(1) 1/0(2) 1/0@3) 1/0(3,5) 1/O
VARCHAR

LONG VARRAW I/0(6) - 1(5, 6) - - - 1/0 1/0 1/0(6)
CHAR 1/0 1/0 1/0 I/0(1) 1/0(1) 1/02) 1/0(3) I(3) 1/0
CHARZ 1/0 1/0 1/0 I/0(1) 1/0(1) 1/0(2) 1/0@3) I@3) 1/0
ROWID I(1) - - 1/0 I/0 - - - I(1)
descriptor

Legend:

I = Conversion valid for input only

O = Conversion valid for output only

I/0 = Conversion valid for input or output

Notes:

(1) For input, host string must be in Oracle ROWID/UROWID format.
On output, column value is returned in Oracle ROWID/UROWID format.

(2) For input, host string must be in the Oracle DATE character format.
On output, column value is returned in Oracle DATE format.

(3) For input, host string must be in hex format.
On output, column value is returned in hex format.

(4) For output, column value must represent a valid number.

(5) Length must be less than or equal to 2000.

(6) On input, column value is stored in hex format.

On output, column value must be in hex format.

Data Conversions for LOB Datatype Descriptors

These are the data conversions for L.OBs:

Table 3-6 Data Conversions for LOBs

EXTERNAL DATATYPES INTERNAL CLOB INTERNAL BLOB
VARCHAR I/0
CHAR I/0
LONG I/0

Datatypes 3-21

Data Conversions

Table 3-6 (Cont.) Data Conversions for LOBs

EXTERNAL DATATYPES INTERNAL CLOB INTERNAL BLOB
LONG VARCHAR I/0

RAW I/0

VARRAW I/0

LONG RAW I/0

LONG VARRAW /O

Data Conversions for Datetime and Interval Datatypes

You can also use one of the character datatypes for the host variable used in a fetch or
insert operation from or to a datetime or interval column. Oracle will do the
conversion between the character datatype and datetime/interval datatype for you.

Table 3-7 Data Conversion for Datetime and Interval Types

INTERVAL INTERVAL

External Types/Internal VARCHAR, YEAR TO DAY TO
Types CHAR DATE TS TSTZ TSLTZ MONTH SECOND
VARCHAR2, CHAR 1/0 1/0 1/0 1/0 1/0 1/0 1/0
DATE 1/0 1/0 1/0 1/0 1/0 - -

OCI DATE 1/0 I/0 I/0 1/0 I/0 - -

ANSI DATE 1/0 1/0 1/0 1/0 1/0 - -
TIMESTAMP (TS) 1/0 1/0 1/0 1/0 1/0 - -
TIMESTAMP WITH TIME 1/0 1/0 1/0 1/0 1/0 - -

ZONE (TSTZ)

TIMESTAMP WITH LOCAL I/O 1/0 1/0 1/0 I/0 - -

TIME ZONE (TSLTZ)

INTERVAL YEAR TO 1/0 - - - - 1/0 -
MONTH

INTERVAL DAY TO 1/0 - - - - - 1/0
SECOND

Assignment Notes

When assigning a source with time zone to a target without a time zone, the time zone
portion of the source is ignored. On assigning a source without a time zone to a target
with a time zone, the time zone of the target is set to the session's default time zone

When assigning an Oracle DATE to a TIMESTAMP, the TIME portion of the DATE is
copied over to the TIMESTAMP. When assigning a TIMESTAMP to Oracle DATE, the
TIME portion of the result DATE is set to zero. This is done to encourage upgrading of
Oracle DATE to ANSI compliant DATETIME datatypes

When assigning an ANSTI DATE to an Oracle DATE or a TIMESTAMP, the TIME portion
of the Oracle DATE and the TIMESTAMP are set to zero. When assigning an Oracle
DATE or a TIMESTAMP to an ANSI DATE, the TIME portion is ignored

When assigning a DATETIME to a character string, the DATETIME is converted using
the session's default DATETIME format. When assigning a character string to a
DATETIME, the string must contain a valid DATETIME value based on the session's
default DATETIME format

3-22 Oracle Call Interface Programmer's Guide

Data Conversions

When assigning a character string to an INTERVAL, the character
string must be a valid INTERVAL character format.

Data Conversion Notes for Datetime and Interval Types

(1) When converting from TSLTZ to CHAR, DATE, TIMESTAMP, and TSTZ, the value
will be adjusted to the session time zone.

(2) When converting from CHAR, DATE, and TIMESTAMP to TSLTZ, the session time
zone will be stored in memory.

(3) When assigning TSLTZ to ANSI DATE, the time portion will be zero.

(4) When converting from TSTZ, the time zone which the time stamp is in will be
stored in memory.

(5) When assigning a character string to an interval, the character string must be a
valid interval character format.

Datetime and Date Upgrading Rules

OCI has full forward and backward compatibility between a client application and the
database server as far as the datetime and date columns are concerned.

Pre-9.0 Client with 9.0 or Later Server

The only datetime datatype available to a pre-9.0 application is the DATE datatype,
SQLT_DAT. When a pre-9.0 client that defined a buffer as SQLT_DAT, tries to obtain
data from a TSLTZ column, then only the date portion of the value will be returned to
the client.

Pre-9.0 Server with 9.0 or Later Client

In this case the new client can have a bind or define buffer of type
SQLT_TIMESTAMP_LTZ. The following compatibilities are maintained in this case.

If any client application tries to insert a SQLT_TIMESTAMP_LTZ (or any of the new
datetime datatypes) into a DATE column, an error will be issued since there is potential
data loss in this situation.

When a client has an OUT bind or a define buffer that is of datatype
SQLT_TIMESTAMP_LTZ and the underlying server side SQL buffer or column is of
DATE type, then the session time zone is assigned.

Data Conversion for BINARY FLOAT and BINARY DOUBLE in OCI

Table 3-8 shows the supported conversions between internal numerical datatypes and
all relevant external types. An (I) implies that the conversion is valid for input only
(binds), and (O) implies that the conversion is valid for output only (defines), while an
(I/0O) implies that the conversion is valid for input as well as output (binds and
defines).

Table 3-8 Data Conversion for External Datatypes to Internal Numerical Datatypes

External Types/Internal Types BINARY_FLOAT BINARY_DOUBLE
VARCHAR I/0 1/0
VARCHAR2 I/0 1/0
NUMBER I/0 I/0

Datatypes 3-23

Typecodes

Typecodes

Table 3-8 (Cont.) Data Conversion for External Datatypes to Internal Numerical

External Types/Internal Types BINARY_FLOAT BINARY_DOUBLE
INTEGER I/0 I/0
FLOAT I/0 I/0
STRING I/0 1I/0
VARNUM I/0 170
LONG 170 1/0
UNSIGNED INT I/0 1/0
LONG VARCHAR I/0 1/0
CHAR I/0 I/0
BINARY_FLOAT I/0 I/0
BINARY_DOUBLE I/0 I/0

Table 3-9 shows the supported conversions between all relevant internal types and
numerical external types. An (I) implies that the conversion is valid for input only
(only for binds), and (O) implies that the conversion is valid for output only (only for
defines), while an (I/O) implies that the conversion is valid for input as well as output
(binds and defines).

Table 3-9 Data Conversions for Internal to External Numerical Datatypes

Internal Types/External Types Native Float Native Double
VARCHAR2 I/0 I/0

NUMBER I/0 I/0

LONG I I

CHAR I/0 I/0
BINARY_FLOAT I/0 I/0
BINARY_DOUBLE I/0 1/0

There is a unique typecode associated with each Oracle type, whether scalar,
collection, reference, or object type. This typecode identifies the type, and is used by
Oracle to manage information about object type attributes. This typecode system is
designed to be generic and extensible, and is not tied to a direct one-to-one mapping to
Oracle datatypes. Consider the following SQL statements:

CREATE TYPE my_type AS OBJECT
(attrl NUMBER,

attr2 INTEGER,

attr3 SMALLINT) ;

CREATE TABLE my_table AS TABLE OF my_type;

These statements create an object type and an object table. When it is created,
my_table will have three columns, all of which are of Oracle NUMBER type, because
SMALLINT and INTEGER map internally to NUMBER. The internal representation of the
attributes of my_ type, however, maintains the distinction between the datatypes of
the three attributes: attrl is OCI_TYPECODE_NUMBER, attr?2 is

3-24 Oracle Call Interface Programmer's Guide

Typecodes

OCI_TYPECODE_INTEGER, and attr3 is OCI_TYPECODE_SMALLINT. If an
application describes my_ type, these typecodes are returned.

OCITypeCode is the C datatype of the typecode. The typecode is used by some OCI
functions, like OCIObjectNew (), where it helps determine what type of object is
created. It is also returned as the value of some attributes when an object is described;
for example, querying the OCI_ATTR_TYPECODE attribute of a type returns an

OCITypeCode value.

Table 3-10 lists the possible values for an OCITypeCode. There is a value

corresponding to each Oracle datatype.

Table 3-10 OCITypeCode Values and Datatypes

Value Datatype
OCI_TYPECODE_REF REF
OCI_TYPECODE_DATE DATE
OCI_TYPECODE_TIMESTAMP TIMESTAMP

OCI_TYPECODE_TIMESTAMP_TZ
OCI_TYPECODE_TIMESTAMP_LTZ
OCI_TYPECODE_INTERVAL_YM
OCI_TYPECODE_INTERVAL_DS
OCI_TYPECODE_REAL
OCI_TYPECODE_DOUBLE
OCI_TYPECODE_FLOAT
OCI_TYPECODE_NUMBER
OCI_TYPECODE_BFLOAT
OCI_TYPECODE_BDOUBLE
OCI_TYPECODE_DECIMAL
OCI_TYPECODE_OCTET
OCI_TYPECODE_INTEGER
OCI_TYPECODE_SMALLINT
OCI_TYPECODE_RAW
OCI_TYPECODE_VARCHAR2
OCI_TYPECODE_VARCHAR
OCI_TYPECODE_CHAR
OCI_TYPECODE_VARRAY
OCI_TYPECODE_TABLE
OCI_TYPECODE_CLOB
OCI_TYPECODE_BLOB
OCI_TYPECODE_BFILE
OCI_TYPECODE_OBJECT

OCI_TYPECODE_NAMEDCOLLECTION

TIMESTAMP WITH TIME ZONE
TIMESTAMP WITH LOCAL TIME ZONE
INTERVAL YEAR TO MONTH

INTERVAL DAY TO SECOND
single-precision real

double-precision real

floating-point

Oracle NUMBER

BINARY_FLOAT

BINARY_DOUBLE

decimal

octet

integer

small int

RAW

variable string ANSI SQL, that is, VARCHAR2
variable string Oracle SQL, that is, VARCHAR
fixed-length string inside SQL, that is SQL CHAR
variable-length array (varray)

multiset

character large object (CLOB)

binary large object (BLOB)

binary large object file (BFILE)

named object type, or SYS.XMLIype

Domain (named primitive type)

Datatypes 3-25

Typecodes

Relationship Between SQLT and OCI_TYPECODE Values

Oracle recognizes two different sets of datatype code values. One set is distinguished
by the SQLT_ prefix, the other by the OCI_TYPECODE_ prefix.

The SQLT typecodes are used by OCI to specify a datatype in a bind or define
operation, enabling you to control data conversions between Oracle and OCI client
applications. The OCI_TYPECODE types are used by Oracle's type system to reference
or describe predefined types when manipulating or creating user-defined types.

In many cases there are direct mappings between SQLT and OCI_TYPECODE values. In
other cases, however, there is not a direct one-to-one mapping. For example
OCI_TYPECODE_SIGNED16, OCI_TYPECODE_SIGNED32,
OCI_TYPECODE_INTEGER, OCI_TYPECODE_OCTET,and OCI_TYPECODE_SMALLINT
are all mapped to the SQLT_INT type.

Table 3-11 illustrates the mappings between SQLT and OCI_TYPECODE types.

Table 3-11 OCI_TYPECODE to SQLT Mappings

Oracle Type System Typename

Oracle Type System Type Equivalent SQLT Type

BFILE

BLOB

CHAR

CLOB

COLLECTION

DATE

TIMESTAMP

TIMESTAMP WITH TIME ZONE

TIMESTAMP WITH LOCAL TIME ZONE

INTERVAL YEAR TO MONTH
INTERVAL DAY TO SECOND
FLOAT

DECIMAL

DOUBLE

BINARY_FLOAT
BINARY_DOUBLE

INTEGER

NUMBER

OCTET

POINTER

RAW

REAL

REF
OBJECT or SYS.XMLType
SIGNED(8)

SIGNED(16)

OCI_TYPECODE_BFILE
OCI_TYPECODE_BLOB
OCI_TYPECODE_CHAR (n)

OCI_TYPECODE_CLOB

OCI_TYPECODE_NAMEDCOLLECTION

OCI_TYPECODE_DATE

OCI_TYPECODE_TIMESTAMP

OCI_TYPECODE_TIMESTAMP_TZ

OCI_TYPECODE_TIMESTAMP_LTZ

OCI_TYPECODE_INTERVAL_YM
OCI_TYPECODE_INTERVAL_DS
OCI_TYPECODE_FLOAT (b)
OCI_TYPECODE_DECIMAL (p)
OCI_TYPECODE_DOUBLE
OCI_TYPECODE_BFLOAT
OCI_TYPECODE_BDOUBLE
OCI_TYPECODE_INTEGER
OCI_TYPECODE_NUMBER (p, s)
OCI_TYPECODE_OCTET
OCI_TYPECODE_PTR
OCI_TYPECODE_RAW
OCI_TYPECODE_REAL
OCI_TYPECODE_REF
OCI_TYPECODE_OBJECT
OCI_TYPECODE_SIGNEDS

OCI_TYPECODE_SIGNED16

3-26 Oracle Call Interface Programmer's Guide

SQLT_BFILE
SQLT_BLOB
SQLT_AFC(n) [note 1]
SQLT_CLOB

SQLT_NCO

SQLT_DAT
SQLT_TIMESTAMP
SQLT_TIMESTAMP_TZ
SQLT_TIMESTAMP_LTZ
SQLT_INTERVAL_YM
SQLT_INTERVAL_DS
SQLT_FLT (8) [note 2]
SQLT_NUM (p, 0) [note 3]
SQLT_FLT (8)
SQLT_BFLOAT
SQLT_BDOUBLE
SQLT_INT (i) [note 4]
SQLT_NUM (p, s) [note 5]
SQLT_INT (1)

<NONE>

SQLT_LVB

SQLT_FLT (4)
SQLT_REF

SQLT_NTY

SQLT_INT (1)

SQLT_INT (2)

Definitions in oratypes.h

Table 3-11 (Cont.) OCI_TYPECODE to SQLT Mappings

Oracle Type System Typename Oracle Type System Type Equivalent SQLT Type
SIGNED (32) OCI_TYPECODE_SIGNED32 SQLT_INT (4)
SMALLINT OCI_TYPECODE_SMALLINT SQLT_INT (i) [note 4]
TABLE [note 6] OCI_TYPECODE_TABLE <NONE>
TABLE (Indexed table) OCI_TYPECODE_ITABLE SQLT_TAB
UNSIGNED(8) OCI_TYPECODE_UNSIGNEDS8 SQLT_UIN (1)
UNSIGNED(16) OCI_TYPECODE_UNSIGNED16 SQLT_UIN (2)
UNSIGNED (32) OCI_TYPECODE_UNSIGNED32 SQLT_UIN (4)
VARRAY [note 6] OCI_TYPECODE_VARRAY <NONE>
VARCHAR OCI_TYPECODE_VARCHAR (n) SQLT_CHR (n) [note 1]
VARCHAR?2 OCI_TYPECODE_VARCHAR2 (n) SQLT_VCS (n) [note 1]
Notes:

1. n is the size of the string in bytes

2. These are floating point numbers, the precision is given in terms of binary digits. b is
the precision of the number in binary digits.

3. This is equivalent to a NUMBER with no decimal places.
4.11is the size of the number in bytes, set as part of an OCI call.

5. p is the precision of the number in decimal digits; s is the scale of the number in
decimal digits.

6. Can only be part of a named collection type.

Definitions in oratypes.h

Throughout this guide you will see references to datatypes like ub2 or sb4, or to
constants like UB4MAXVAL. These types are defined in the oratypes.h header file,
which is found in the public directory. The exact contents may vary according to the
operating system you are using.

Note: The use of the datatypes in oratypes . h is the only
supported means of supplying parameters to the OCI.

Datatypes 3-27

Definitions in oratypes.h

3-28 Oracle Call Interface Programmer's Guide

4

Using SQL Statements in OCI

This chapter discusses the concepts and steps involved in processing SQL statements
with the Oracle Call Interface.

This chapter contains these topics:

s Overview of SQL Statement Processing
»s Preparing Statements

» Binding Placeholders in OCI

= Executing Statements

» Describing Select-list Items

s Defining Output Variables in OCI

s Fetching Results

= Scrollable Cursors in OCI

Overview of SQL Statement Processing

Chapter 2, "OCI Programming Basics" discussed the basic steps involved in any OCI
application. This chapter presents a more detailed look at the specific tasks involved in
processing SQL statements in an OCI program.

One of the most common tasks of an OCI program is to accept and process SQL
statements. This section outlines the specific steps involved in this processing.

Once you have allocated the necessary handles and connected to a server, follow the
steps illustrated in Figure 4-1, "Steps In Processing SQL Statements":

Using SQL Statements in OCI 4-1

Overview of SQL Statement Processing

Figure 4-1 Steps In Processing SQL Statements

—> Sﬁ)z;?eprﬁ;it OCIStmtPrepare() or OCIStmtPrepare2()
v OCIBindByName() or OCIBindByPos()
Bind OCIBindObject()
Placeholders* OCIBindArrayOfStruct()
s OCIBindDynamic()
Execute
—> Statement OCIStmtExecute()
v
Describe OCIParamGet()
Select-list ltems* OCIAttrGet()
v OClIDefineByPos()
Define OCIDefineObject()
Output Variables* OCIDefineArrayOfStruct()
3 OClIDefineDynamic()
Fetch and

Process Data* OCIStthetch()

| |

* These steps performed
if necessary

1. Prepare statement. Define an application request using OCIStmtPrepare () or
OCIStmtPrepare2 ().

2. Bind placeholders, if necessary.. For DML statements and queries with input
variables, perform one or more bind calls using

s OCIBindByPos ()

s OCIBindByName ()

m OCIBindObject ()

m OCIBindDynamic ()

s OCIBindArrayOfStruct ()

to bind the address of each input variable (or PL/SQL output variable) or array to
each placeholder in the statement.

3. A statement can also be prepared for execution with OCIStmtPrepare2 (), an
enhanced version of OCIStmtPrepare () introduced to support statement
caching.

no further steps are necessary.

5. Describe, if necessary. Describe the select-list items, if necessary, using

Execute. Call 0OCIStmtExecute () to execute the statement. For DDL statements,

OCIParamGet () and OCIAttrGet (). This is an optional step; it is not required if

the number of select-list items and the attributes of each item (such as its length
and datatype) are known at compile time.

6. Define, if necessary. For queries, perform one or more define calls to
OCIDefineByPos (), 0CIDefineObject (), 0CIDefineDynamic (), or
OCIDefineArrayOfStruct () to define an output variable for each select-list
item in the SQL statement. Note that you do not use a define call to define the
output variables in an anonymous PL/SQL block. You have done this when you
have bound the data.

4-2 Oracle Call Interface Programmer's Guide

Preparing Statements

7. Fetch, if necessary. For queries, call 0CIStmtFetch () to fetch the results of the
query.

Following these steps, the application can free allocated handles and then detach from

the server, or it may process additional statements.

7.x Upgrade Note: OCI programs no longer require an explicit
parse step. If a statement must be parsed, that step takes place upon
execution. This means that 8.0 or later applications must issue an
execute command for both DML and DDL statements.

For each of the steps in the diagram, the corresponding OCI function calls are listed. In
some cases multiple calls may be required.

Each step is described in detail in the following sections.

Note: Some variation in the order of steps is possible. For
example, it is possible to do the define step before the execute if the
datatypes and lengths of returned values are known at compile
time.

Additional steps beyond those listed earlier may be required if your application needs
to do any of the following:

= initiate and manage multiple transactions
= manage multiple threads of execution

= perform piecewise inserts, updates, or fetches

See Also: "Statement Caching in OCI" on page 9-20

Preparing Statements

SQL and PL/SQL statements are prepared for execution by using the statement
prepare call and any necessary bind calls. In this phase, the application specifies a SQL
or PL/SQL statement and binds associated placeholders in the statement to data for
execution. The client-side library allocates storage to maintain the statement prepared
for execution.

An application requests a SQL or PL/SQL statement to be prepared for execution
using the OCIStmtPrepare () call and passes to it a previously allocated statement
handle. This is a completely local call, requiring no round trip to the server. No
association is made between the statement and a particular server at this point.

Following the request call, an application can call OCIAttrGet () on the statement
handle, passing OCI_ATTR_STMT_TYPE to the attrtype parameter, to determine
what type of SQL statement was prepared. The possible attribute values and
corresponding statement types are listed in Table 4-1, " OCI_ATTR_STMT_TYPE
Values and Statement Types".

Table 4-1 OCI_ATTR_STMT_TYPE Values and Statement Types

Attribute Value Statement Type
OCI_STMT SELECT SELECT statement
OCI_STMT UPDATE UPDATE statement

Using SQL Statements in OCI 4-3

Binding Placeholders in OCI

Table 4-1 (Cont.) OCI_ATTR_STMT_TYPE Values and Statement Types

Attribute Value Statement Type
OCI_STMT DELETE DELETE statement
OCI_STMT_ INSERT INSERT statement
OCI_STMT_ CREATE CREATE statement
OCI_STMT_DROP DROP statement
OCI_STMT_ALTER ALTER statement
OCI_STMT BEGIN BEGIN... (PL/SQL)
OCI_STMT DECLARE DECLARE... (PL/SQL)
See Also:

s "Using PL/SQL in an OCI Program" on page 2-27
s "OCIStmtPrepare()" on page 16-12

Using Prepared Statements on Multiple Servers

A prepared application request can be executed on multiple servers at run time by
reassociating the statement handle with the respective service context handles for the
servers. All information about the current service context and statement handle
association is lost when a new association is made.

For example, consider an application such as a network manager, which manages
multiple servers. In many cases, it is likely that the same SELECT statement will need
to be executed against multiple servers to retrieve information for display. The OCI
allows the network manager application to prepare a SELECT statement once and
execute it against multiple servers. It must fetch all of the required rows from each
server prior to reassociating the prepared statement with the next server.

Note: If a prepared statement must be re-executed frequently on
the same server, it is more efficient to prepare a new statement for
another service context.

Binding Placeholders in OCI

Most DML statements, and some queries (such as those with a WHERE clause), require
a program to pass data to Oracle as part of a SQL or PL/SQL statement. This data can
be constant or literal, known when your program is compiled. For example, the
following SQL statement, which adds an employee to a database contains several
literals, such as 'BESTRY' and 2365:

INSERT INTO emp VALUES
(2365, 'BESTRY', 'PROGRAMMER', 2000, 20)

Coding a statement like this into an application would severely limit its usefulness.
You would need to change the statement and recompile the program each time you
add a new employee to the database. To make the program more flexible, you can
write the program so that a user can supply input data at run time.

When you prepare a SQL statement or PL/SQL block that contains input data to be
supplied at run time, placeholders in the SQL statement or PL/SQL block mark where
data must be supplied. For example, the following SQL statement contains five

4-4 Oracle Call Interface Programmer's Guide

Executing Statements

placeholders, indicated by the leading colons (: ename), that show where input data
must be supplied by the program.

INSERT INTO emp VALUES
(:empno, :ename, :job, :sal, :deptno)

You can use placeholders for input variables in any DELETE, INSERT, SELECT, or
UPDATE statement, or a PL/SQL block, in any position in the statement where you can
use an expression or a literal value. In PL/SQL, placeholders can also be used for
output variables.

Placeholders cannot be used to represent other Oracle objects such as tables. For
example, the following is not a valid use of the emp placeholder:

INSERT INTO :emp VALUES
(12345, 'OERTEL', 'WRITER', 50000, 30)

For each placeholder in a SQL statement or PL/SQL block, you must call an OCI
routine that binds the address of a variable in your program to that placeholder. When
the statement executes, Oracle gets the data that your program placed in the input, or
bind, variables and passes it to the server with the SQL statement.

Binding is used for both input and output variables in non-query operations. In the
following example,

empno_out, ename_out, job_out, sal_out, and deptno_out

should be bound. These are outbinds (as opposed to regular inbinds).

INSERT INTO emp VALUES
(:empno, :ename, :job, :sal, :deptno)
RETURNING
(empno, ename, job, sal, deptno)
INTO
(:empno_out, :ename_out, :job_out, :sal_out, :deptno_out)

See Also: For detailed information about implementing bind
operations, refer to Chapter 5, "Binding and Defining in OCI"

Executing Statements

An OCI application executes prepared statements individually using
OCIStmtExecute().

When an OCI application executes a query, it receives data from Oracle that matches
the query specifications. Within the database, the data is stored in Oracle-defined
formats. When the results are returned, the OCI application can request that data be
converted to a particular host language format, and stored in a particular output
variable or buffer.

For each item in the select-list of a query, the OCI application must define an output
variable to receive the results of the query. The define step indicates the address of the
buffer and the type of the data to be retrieved.

Using SQL Statements in OCI 4-5

Executing Statements

Note: If output variables are defined for a SELECT statement
before a call to OCIStmtExecute (), the number of rows specified
by the iters parameter are fetched directly into the defined
output buffers and additional rows equivalent to the prefetch count
are prefetched. If there are no additional rows, then the fetch is
complete without calling OCIStmtFetch().

For non-queries, the number of times the statement is executed during array
operations is equal to iters - rowoff, where rowoff is the offset in the bound
array, and is also a parameter of the OCIStmtExecute () call.

For example, if an array of 10 items is bound to a placeholder for an INSERT
statement, and iters is set to 10, all 10 items will be inserted in a single execute call
when rowof£f is zero. If rowo£ff is set to 2, only 8 items will be inserted.

See Also: "Defining Output Variables in OCI" on page 4-12 for
more information about defining output variables

Execution Snapshots

The oCcIStmtExecute () call provides the ability to ensure that multiple service
contexts operate on the same consistent snapshot of the database's committed data.
This is achieved by taking the contents of the snap_out parameter of one
OCIStmtExecute () call and passing that value as the snap_in parameter of the
next OCIStmtExecute () call.

Note: Uncommitted data in one service context is not visible to
another context, even when using the same snapshot.

The datatype of both the snap_out and snap_in parameter is OCISnapshot, an
OCI snapshot descriptor that is allocated with the OCIDescAlloc () function.

See Also: "OCI Descriptors" on page 2-9

It is not necessary to specify a snapshot when calling OCIStmtExecute (). The
following sample code shows a basic execution in which the snapshot parameters are
passed as NULL.

checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
(OCISnapshot *)NULL, (OCISnapshot *) NULL, OCI_DEFAULT));

Note: The checkerr () function, which is user-developed,
evaluates the return code from an OCI application.

Execution Modes of OCIStmtExecute()

You can specify several modes for the OCIStmtExecute () call.

See Also: "OCIStmtExecute()" on page 16-4 for the values of the
parameter mode

4-6 Oracle Call Interface Programmer's Guide

Executing Statements

Batch Error Mode

OCI provides the ability to perform array DML operations. For example, an
application can process an array of INSERT, UPDATE, or DELETE statements with a
single statement execution. If one of the operations fails due to an error from the
server, such as a unique constraint violation, the array operation aborts and OCI
returns an error. Any rows remaining in the array are ignored. The application must
then re-execute the remainder of the array, and go through the whole process again if it
encounters more errors, which makes additional round trips.

To facilitate processing of array DML operations, OCI provides the batch error mode
(also called the enhanced DML array feature). This mode, which is specified in the
OCIStmtExecute () call, simplifies DML array processing in the event of one or
more errors. In this mode, OCI attempts to INSERT, UPDATE, or DELETE all rows, and
collects information about any errors that occurred. The application can then retrieve
error information and re-execute any DML operations which failed during the first
call.In this way, all DML operations in the array are attempted in the first call, and any
failed operations can be reissued in a second call.

Note: This feature is only available to applications linked with the
8.1 or later OCl libraries running against a release 8.1 or later
server. Applications must also be re-coded to account for the new
program logic described in this section.

This mode is used as follows:

1. The user specifies OCI_BATCH_ERRORS as the mode parameter of the
OCIStmtExecute () call.

2. After performing an array DML operation with OCIStmtExecute (), the
application can retrieve the number of errors encountered during the operation by
calling OCIAttrGet () on the statement handle to retrieve the
OCI_ATTR_NUM_DML_ERRORS attribute. For example:

ubd num_errs;
OCIAttrGet (stmtp, OCI_HTYPE_STMT, &num_errs, 0, OCI_ATTR_NUM DML_ERRORS,
errhp) ;

3. The application extracts each error using OCIParamGet (), along with its row
information, from the error handle that was passed to the OCIStmtExecute ()
call. In order to retrieve the information, the application must allocate an
additional new error handle for the OCIParamGet () call, populating the new
error handle with batched error information. The application obtains the syntax of
each error with OCIErrorGet (), and the row offset into the DML array at which
the error occurred, by calling OCIAttrGet () on the new error handle.

For example, once the num_errs amount has been retrieved, the application can
issue the following calls:

OCIError errhndl, errhp2;
for (i=0; i<num_errs; i++)
{
OCIParamGet (errhp, OCI_HTYPE_ERROR, errhp2, (dvoid **)&errhndl, i);
OCIAttrGet (errhndl, OCI_HTYPE_ERROR, &row_offset, 0,
OCI_ATTR_DML_ROW_OFFSET, errhp2);
OCIErrorGet(..., errhndl, ...);

Following this, the application can correct the bind information for the appropriate
entry in the array using the diagnostic information retrieved from the batched

Using SQL Statements in OCI 4-7

Executing Statements

error. Once the appropriate bind buffers are corrected or updated, the application
can re-execute the associated DML statements.

Since it cannot be determined at compile time which rows in the first execution
will cause errors, the binds for the subsequent DML should be done dynamically
by passing in the appropriate buffers at runtime. The bind buffers used in the
array binds done on the first DML operation can be reused.

Example of Batch Error Mode

The following code shows an example of how this execution mode might be used. In
this example assume that we have an application which inserts five rows (with two
columns, of types NUMBER and CHAR) into a table. Furthermore, let us assume only
two rows (say, 1 and 3) are successfully inserted in the initial DML operation. The user
then proceeds to correct the data (wrong data was being inserted the first time) and to
issue an update with the corrected data. The user uses statement handles stmtp1l and
stmtp2 to issue the INSERT and UPDATE respectively.

0CIBind *bindpl[2], *bindp2([2];

ub4 num_errs, row_off[MAXROWS], number[MAXROWS] = {1,2,3,4,5};
char grade[MAXROWS] = {'A','B','C','D','E'};

OCIError *errhp2;

OCIError *errhndl [MAXROWS];

/* Array bind all the positions */
0CIBindByPos (stmtpl,&bindpl[0],errhp,1, (dvoid *)&number[0],
sizeof (number[0]),SQLT_INT, (dvoid *)0, (ub2 *)0, (ub2 *)0,
0, (ub4 *)0,0CI_DEFAULT) ;
OCIBindByPos (stmtpl,&bindpl(l],errhp,2, (dvoid *)&grade([0],
sizeof (grade[0]),SQLT CHR, (dvoid *)0, (ub2 *)0, (ub2 *)0,0,
(ub4 *)0,0CI_DEFAULT) ;
/* execute the array INSERT */
OCIStmtExecute (svchp,stmtpl,errhp,5,0,0,0,0CI_BATCH_ERRORS) ;
/* get the number of errors, a different error handler errhp2 is used so that
* the state of errhp is not changed */
OCIAttrGet (stmtpl, OCI_HTYPE_STMT, &num_errs, 0,
OCI_ATTR_NUM_DMIL_ERRORS, errhp2);
if (num_errs) {
/* The user can do one of two things: 1) Allocate as many */
/* error handles as number of errors and free all handles */
/* at a later time; or 2) Allocate one err handle and reuse */
/* the same handle for all the errors */
for (1 = 0; 1 < num_errs; i++) {
OCIHandleAlloc((dvoid *)envhp, (dvoid **)&errhndl[i],
(ub4) OCI_HTYPE_ERROR, 0, (dvoid *) 0);
OCIParamGet (errhp, OCI_HTYPE_ERROR, errhp2, &errhndl[i], 1);
OCIAttrGet (errhndl[i], OCI_HTYPE_ERROR, &row_off[i], O,
OCI_ATTR_DMIL_ROW_OFFSET, errhp2);
/* get server diagnostics */
OCIErrorGet (..., errhndl[i], ...);
}
}
/* make corrections to bind data */
OCIBindByPos (stmtp2,&bindp2[0],errhp,1, (dvoid *)0,sizeof (grade[0]), SQLT_INT,
(dvoid *)0, (ub2 *)0, (ub2 *)0,0, (ub4 *)0,0CI_DATA_AT_EXEC);
0CIBindByPos (stmtp2,&bindp2([1],errhp,2, (dvoid *)0,sizeof (number[0]), SQLT_ DAT,
(dvoid *)0, (ub2 *)0, (ub2 *)0,0, (ub4 *)0,0CI_DATA_ AT EXEC);
/* register the callback for each bind handle, row_off and position
* information can be passed to call back function by means of context
* pointers.

4-8 Oracle Call Interface Programmer's Guide

Describing Select-list Items

*/
0CIBindDynamic (bindp2[0],errhp,ctxpl,my_callback,0,0);
OCIBindDynamic (bindp2[1],errhp,ctxp2,my_callback,0,0);
/* execute the UPDATE statement */
OCIStmtExecute (svchp,stmtp2,errhp,num_errs,0,0,0,0CI_BATCH_ERRORS) ;

In this example, OCIBindDynamic () is used with a callback because the user does
not know at compile time what rows will return with errors. With a callback, you can
simply pass the erroneous row numbers, stored in row_o£ £, through the callback
context and send only those rows that need to be updated or corrected. The same bind
buffers can be shared between the INSERT and the UPDATE executes.

Describing Select-list ltems

If your OCI application is processing a query, you may need to obtain more
information about the items in the select-list. This is particularly true for dynamic
queries whose contents are not known until run time. In this case, the program may
need to obtain information about the datatypes and column lengths of the select-list
items. This information is necessary to define output variables that will receive query
results.

For example, consider a query where the program has no prior information about the
columns in the employees table:

SELECT * FROM employees

There are two types of describes available: implicit and explicit.

An implicit describe is one that does not require any special calls to retrieve describe
information from the server, although special calls are necessary to access the
information. An implicit describe allows an application to obtain select-list
information as an attribute of the statement handle after a statement has been executed
without making a specific describe call. It is called implicit, because no describe call is
required. The describe information comes free with the execute.

An explicit describe is one which requires the application to call a particular function to
bring the describe information from the server. An application may describe a
select-list (query) either implicitly or explicitly. Other schema elements must be
described explicitly.

You can describe a query explicitly prior to execution. To do this, specify
OCI_DESCRIBE_ONLY as the mode of OCIStmtExecute (), which does not execute
the statement, but returns the select-list description. For performance reasons it is
recommended that applications take advantage of the implicit describe that comes free
with a standard statement execution.

An explicit describe with the OCIDescribeAny () call obtains information about
schema objects rather than select-lists.

In all cases, the specific information about columns and datatypes is retrieved by
reading handle attributes.

See Also: For information about using OCIDescribeAny () to
obtain metadata pertaining to schema objects, refer to Chapter 6,
"Describing Schema Metadata"

Using SQL Statements in OCI 4-9

Describing Select-list Items

Implicit Describe

After a SQL statement is executed, information about the select-list is available as an
attribute of the statement handle. No explicit describe call is needed.

To retrieve information about multiple select-list items, an application can call
OCIParamGet () with the pos parameter set to 1 the first time, and then iterate the
value of pos and repeat the OCIParamGet () call until OCI_ERROR with ORA-24334 is
returned. An application could also specify any position # to get a column at random.

Once a parameter descriptor has been allocated for a position in the select-list, the
application can retrieve specific information by calling OCIAttrGet () on the
parameter descriptor. Information available from the parameter descriptor includes
the datatype and maximum size of the parameter.

The following sample code shows a loop that retrieves the column names and
datatypes corresponding to a query following query execution. The query was
associated with the statement handle by a prior call to OCIStmtPrepare ().

OCIParam *mypard = (OCIParam *) 0;

ub?2 dtype;

text *col_name;

ub4 counter, col_name_len, char semantics;
ub2 col_width;

sbd parm_status;

text *sglstmt = (text *)"SELECT * FROM employees WHERE employee_id = 100";

checkerr (errhp, OCIStmtPrepare(stmthp, errhp, (OraText *)sglstmt,
(ubd)strlen((char *)sqglstmt),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, 0, 0, (OCISnapshot *)O0,
(OCISnapshot *)0, OCI_DEFAULT));

/* Request a parameter descriptor for position 1 in the select-list */

counter = 1;

parm_status = OCIParamGet ((dvoid *)stmthp, OCI_HTYPE_STMT, errhp,
(dvoid **)&mypard, (ub4) counter);

/* Loop only if a descriptor was successfully retrieved for
current position, starting at 1 */

while (parm_status == OCI_SUCCESS) {
/* Retrieve the datatype attribute */
checkerr (errhp, OCIAttrGet ((dvoid*) mypard, (ub4) OCI_DTYPE_PARAM,
(dvoid*) &dtype, (ub4 *) 0, (ub4) OCI_ATTR_DATA_ TYPE,
(OCIError *) errhp));

/* Retrieve the column name attribute */

col_name_len = 0;

checkerr (errhp, OCIAttrGet ((dvoid*) mypard, (ub4) OCI_DTYPE_PARAM,
(dvoid**) &col_name, (ub4 *) &col_name_len, (ub4) OCI_ATTR_NAME,
(OCIError *) errhp));

/* Retrieve the length semantics for the column */

char_semantics = 0;

checkerr (errhp, OCIAttrGet((dvoid*) mypard, (ub4) OCI_DTYPE_PARAM,
(dvoid*) &char_semantics, (ub4 *) 0, (ub4) OCI_ATTR_CHAR_USED,
(OCIError *) errhp));

4-10 Oracle Call Interface Programmer's Guide

Describing Select-list Items

col_width = 0;
if (char_semantics)
/* Retrieve the column width in characters */
checkerr (errhp, OCIAttrGet ((dvoid*) mypard, (ub4) OCI_DTYPE_PARAM,
(dvoid*) &col_width, (ub4 *) 0, (ub4) OCI_ATTR_CHAR_SIZE,
(OCIError *) errhp));
else
/* Retrieve the column width in bytes */
checkerr (errhp, OCIAttrGet((dvoid*) mypard, (ub4) OCI_DTYPE_PARAM,
(dvoid*) &col_width, (ub4 *) 0, (ub4) OCI_ATTR_DATA SIZE,
(OCIError *) errhp));

/* increment counter and get next descriptor, if there is one */
counter++;
parm_status = OCIParamGet ((dvoid *)stmthp, OCI_HTYPE_STMT, errhp,
(dvoid **)&mypard, (ub4) counter);
} /* while */

The checkerr () function is used for error handling. The complete listing can be
found in the first sample application in Appendix B, "OCI Demonstration Programs".

The calls to OCIAttrGet () and OCIParamGet () are local calls that do not require a
network round trip, because all of the select-list information is cached on the client
side after the statement is executed.

See Also:
s "OCIParamGet()" on page 15-56 and.
s "OCIAttrGet()" on page 15-48

= '"Parameter Attributes" on page 6-4 for a list of the specific
attributes of the parameter descriptor which may be read by
OCIAttrGet().

Explicit Describe of Queries

You can describe a query explicitly prior to execution. To do this, specify
OCI_DESCRIBE_ONLY as the mode of OCIStmtExecute (); this does not execute the
statement, but returns the select-list description.

Note: To maximize performance, it is recommended that
applications execute the statement in default mode and use the
implicit describe that accompanies the execution.

The following code demonstrates the use of explicit describe in a select-list to return
information about columns.

int 1 = 0;

ub4 numcols = 0;
ub2 type = 0;
OCIParam *colhd = (OCIParam *) O0; /* column handle */

text *sglstmt = (text *)"SELECT * FROM employees WHERE employee_id = 100";

checkerr (errhp, OCIStmtPrepare(stmthp, errhp, (OraText *)sglstmt,
(ubd)strlen((char *)sglstmt),

Using SQL Statements in OCI 4-11

Defining Output Variables in OCI

(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

/* initialize svchp, stmhp, errhp, rowoff, iters, snap_in, snap_out */

/* set the execution mode to OCI_DESCRIBE_ONLY. Note that setting the mode to
OCI_DEFAULT does an implicit describe of the statement in addition to executing
the statement */

checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, 0, 0,
(OCISnapshot *) 0, (OCISnapshot *) 0, OCI_DESCRIBE_ONLY)) ;

/* Get the number of columns in the query */
checkerr (errhp, OCIAttrGet ((dvoid *)stmthp, OCI_HTYPE STMT, (dvoid *)&numcols,
(ub4 *)0, OCI_ATTR_PARAM_COUNT, errhp));

/* go through the column list and retrieve the datatype of each column. We
start from pos = 1 */
for (1 = 1; 1 <= numcols; i++)
{

/* get parameter for column i */

checkerr (errhp, OCIParamGet ((dvoid *)stmthp, OCI_HTYPE_STMT, errhp, (dvoid
**)g&colhd, 1));

/* get data-type of column i */

type = 0;

checkerr (errhp, OCIAttrGet((dvoid *)colhd, OCI_DTYPE_PARAM,
(dvoid *)&type, (ub4 *)0, OCI_ATTR_DATA_TYPE, errhp));

Defining Output Variables in OCI

Query statements return data from the database to your application. When processing
a query, you must define an output variable or an array of output variables for each
item in the select-list that you want to retrieve data from. The define step creates an
association that determines where returned results are stored, and in what format.

For example, to process the following statement you would normally need to define
two output variables, one to receive the value returned from the name column, and
one to receive the value returned from the ssn column:

SELECT name, ssn FROM employees
WHERE empno = :empnum

See Also: Chapter 5, "Binding and Defining in OCI"

Fetching Results

If an OCI application has processed a query, it is typically necessary to fetch the results
with OCIStmtFetch () or with OCIStmtFetch2 () after the statement has
completed execution. Oracle encourages the use of OCIStmtFetch2 (), which
supports scrollable cursors.

See Also: "Scrollable Cursors in OCI" on page 4-14

Fetched data is retrieved into output variables that have been specified by define
operations.

4-12 Oracle Call Interface Programmer's Guide

Fetching Results

Note: If output variables are defined for a SELECT statement
before a call to OCIStmtExecute (), the number of rows specified
by the iters parameter is fetched directly into the defined output
buffers

See Also:

» These statements fetch data associated with the sample code in
the section "Steps Used in OCI Defining" on page 5-13. Refer to
that example for more information.

s For information about defining output variables, see the section
"Overview of Defining in OCI" on page 5-12.

Fetching LOB Data

If LOB columns or attributes are part of a select-list, they can be returned as LOB
locators or actual LOB values, depending on how you define them. If LOB locators are
fetched, then the application can perform further operations on these locators through
the OCILobXXX interfaces.

See Also:

s Chapter 7, "LOB and BFILE Operations", for more information
about working with LOB locators in the OCL

s "Defining LOB Output Variables" on page 5-14 for usage and
examples of selecting LOB data without the use of locators.

Setting Prefetch Count

In order to minimize server round trips and optimize the performance, the OCI can
prefetch result set rows when executing a query. You can customize this prefetching by
setting either the OCI_ATTR_PREFETCH_ROWS or OCI_ATTR_PREFETCH_MEMORY
attribute of the statement handle using the OCIAttrSet () function. These attributes
are used as follows:

= OCI_ATTR_PREFETCH_ROWS sets the number of rows to be prefetched. If it is not
set, then the default value is 1. If the iters parameter of OCIStmtExecute () is
0 and prefetching is enabled, the rows are buffered during calls to
ocIstmtFetch2 (). The prefetch value can be altered after execution and
between fetches.

= OCI_ATTR_PREFETCH_MEMORY sets the memory allocated for rows to be
prefetched. The application then fetches as many rows as will fit into that much
memory.

When both of these attributes are set, the OCI prefetches rows up to the
OCI_ATTR_PREFETCH_ROWS limit unless the OCI_ATTR_PREFETCH_MEMORY limit is
reached, in which case the OCI returns as many rows as will fit in a buffer of size
OCI_ATTR_PREFETCH_MEMORY.

By default, prefetching is turned on, and the OCI fetches an extra row all the time. To
turn prefetching off, set both the OCI_ATTR_PREFETCH_ROWS and
OCI_ATTR_PREFETCH MEMORY attributes to zero.

Using SQL Statements in OCI 4-13

Scrollable Cursors in OCI

Note: Prefetching is not in effect if LONG columns are part of the
query. Queries containing LOB columns can be prefetched, because
the LOB locator, not the data, is returned by the query.

See Also: "Statement Handle Attributes" on page A-22.

Scrollable Cursors in OCI

A cursor is a current position in a result set. Execution of a cursor puts the results of the
query into a set of rows called the result set that can be fetched either sequentially or
non-sequentially. In the latter case the cursor is known as a scrollable cursor.

A scrollable cursor provides support for forward and backward access into the result
set from a given position, using either absolute or relative row number offsets into the
result set.

Rows are numbered starting at one. For a scrollable cursor, you can fetch
previously-fetched rows, the n-th row in the result set, or the n-th row from the current
position. Client-side caching of either the partial or entire result set improves
performance by limiting calls to the server.

Oracle does not support DML operations on scrollable cursors. A cursor cannot be
made scrollable if the LONG datatype is part of the select list.

Moreover, fetches from a scrollable statement handle are based on the snapshot at
execution time. OCI client prefetching works with OCI scrollable cursors. The size of
the client prefetch cache can be controlled by the existing OCI attributes

OCI_ATTR_ PREFETCH_ROWS and OCI_ATTR_PREFETCH_MEMORY.

Note: Do not use scrollable cursors unless you require the
functionality, because they use more server resources and can have
greater response times than non-scrollable cursors.

The 0CIStmtExecute () call has an execution mode for scrollable cursors,
OCI_STMT_SCROLLABLE_READONLY. The default for statement handles is
non-scrollable, forward sequential access only, where the mode is OCI_FETCH_NEXT.
You must set this execution mode each time the statement handle is executed.

The statement handle attribute OCI_ATTR_CURRENT_POSITION can be retrieved
using OCIAttrGet () only. This attribute cannot be set by the application; it indicates
the current position in the result set.

For non-scrollable cursors, OCI_ATTR_ROW_COUNT is the total number of rows fetched
into user buffers with the OCIStmtFetch2 () calls since this statement handle was
executed. Since non-scrollable cursors are forward sequential only,
OCI_ATTR_ROW_COUNT also represents the highest row number seen by the
application.

For scrollable cursors, OCI_ATTR_ROW_COUNT will represent the maximum (absolute)
row number fetched into the user buffers. Since the application can arbitrarily position
the fetches, this does not have to be the total number of rows fetched into the your
buffers since the (scrollable) statement was executed.

The attribute OCI_ATTR_ROWS_FETCHED on the statement handle, represents the
number of rows that were successfully fetched into the user's buffers in the last fetch
call or execute. It works for both scrollable and non-scrollable cursors.

4-14 Oracle Call Interface Programmer's Guide

Scrollable Cursors in OCI

Use the OCIStmtFetch2() call, instead of the OCIStmtFetch () call, which is retained
for backward compatibility. You are encouraged to use OCIStmtFetch2 (), for all
new applications, even those not using scrollable cursors. This call also works for
non-scrollable cursors, but can raise an error if any other orientation besides
OCI_DEFAULT or OCI_FETCH_NEXT is passed.

Scrollable cursors are supported for remote mapped queries. Transparent application
Failover (TAF) is supported for scrollable cursors.

Note: If you call 0CIStmtFetch2 () with the nrows parameter
set to 0, the cursor is cancelled.

See Also:
s "OCIStmtFetch2()" on page 16-8
» "Setting Prefetch Count" on page 4-13

Increasing Scrollable Cursor Performance

Response time is improved if you use OCI client-side prefetch buffers. After calling
OCIStmtExecute () for ascrollable cursor, call 0CIStmtFetch2 () using
OCI_FETCH_LAST to obtain the size of the result set. Then set
OCI_ATTR_PREFETCH_ROWS to about 20% of that size, and set
OCI_PREFETCH_MEMORY if the result set uses a large amount of memory.

Example of Access on a Scrollable Cursor
Assume that a result set is returned by the SQL query:

SELECT empno, ename FROM emp

and that the table EMP has 14 rows. One use of scrollable cursors is:

/* execute the scrollable cursor in the scrollable mode */
OCIStmtExecute(svchp, stmthp, errhp, (ub4)0, (ub4)0, (CONST OCISnapshot *)NULL,
(OCISnapshot *) NULL, OCI_STMT SCROLLABLE_READONLY) ;

/* Fetches rows with absolute row numbers 6, 7, 8. After this call,
OCI_ATTR_CURRENT POSITION = 8, OCI_ATTR_ROW_COUNT = 8 */
checkprint (errhp, OCIStmtFetch2 (stmthp, errhp, (ub4) 3,
OCI_FETCH_ABSOLUTE, (sb4) 6, OCI_DEFAULT);

/* Fetches rows with absolute row numbers 6, 7, 8. After this call,
OCI_ATTR_CURRENT POSITION = 8, OCI_ATTR_ROW_COUNT = 8 */
checkprint (errhp, OCIStmtFetch2 (stmthp, errhp, (ub4) 3,
OCI_FETCH_RELATIVE, (sb4) -2, OCI_DEFAULT);

/* Fetches rows with absolute row numbers 14. After this call,
OCI_ATTR_CURRENT_POSITION = 14, OCI_ATTR_ROW_COUNT = 14 */
checkprint (errhp, OCIStmtFetch2 (stmthp, errhp, (ub4) 1,
OCI_FETCH_LAST, (sb4) 0, OCI_DEFAULT) ;

/* Fetches rows with absolute row number 1. After this call,

OCI_ATTR_CURRENT_POSITION = 1, OCI_ATTR_ROW_COUNT = 14 */

checkprint (errhp, OCIStmtFetch2 (stmthp, errhp, (ub4) 1,
OCI_FETCH_FIRST, (sb4) 0, OCI_DEFAULT);

Using SQL Statements in OCI 4-15

Scrollable Cursors in OCI

/* Fetches rows with absolute row numbers 2, 3, 4. After this call,
OCI_ATTR_CURRENT_POSITION = 4, OCI_ATTR_ROW_COUNT = 14 */
checkprint (errhp, OCIStmtFetch2 (stmthp, errhp, (ub4) 3,
OCI_FETCH_NEXT, (sb4) 0, OCI_DEFAULT);
/* Fetches rows with absolute row numbers 3,4,5,6,7. After this call,
OCI_ATTR_CURRENT POSITION = 7, OCI_ATTR_ROW_COUNT = 14. It is assumed
the user's define memory is allocated. */
checkprint (errhp, OCIStmtFetch2 (stmthp, errhp, (ub4) 5,
OCI_FETCH_PRIOR, (sb4) 0, OCI_DEFAULT) ;

}
checkprint (errhp, status)
{
ub4 rows_fetched;
/* This checks for any OCI errors before printing the results of the fetch call
in the define buffers */
checkerr (errhp, status);
checkerr (errhp, OCIAttrGet ((CONST void *) stmthp, OCI_HTYPE_STMT,
(void *) &rows_fetched, (uint *) 0, OCI_ATTR_ROWS_FETCHED, errhp));

4-16 Oracle Call Interface Programmer's Guide

O

Binding and Defining in OCI

This chapter contains these topics:

s Overview of Binding in OCI

= Advanced Bind Operations in OCI

s Overview of Defining in OCI

= Advanced Define Operations in OCI

= Binding and Defining Arrays of Structures in OCI

= DML with RETURNING Clause in OCI

s Character Conversion in OCI Binding and Defining
= PL/SQL REF CURSORs and Nested Tables in OCI

= Runtime Data Allocation and Piecewise Operations in OCI

Overview of Binding in OCI

This chapter expands on the basic concepts of binding and defining, and provides
more detailed information about the different types of binds and defines you can use
in OCI applications. Additionally, this chapter discusses the use of arrays of structures,
as well as other issues involved in binding, defining, and character conversions.

For example, given the INSERT statement
INSERT INTO emp VALUES

(:empno, :ename, :job, :sal, :deptno)
and the following variable declarations
text *ename, *job;

sword empno, sal, deptno;

the bind step makes an association between the placeholder name and the address of
the program variables. The bind also indicates the datatype and length of the program
variables, as illustrated in Figure 5-1.

See Also: The code that implements this example is found in the
section "Steps Used in OCI Binding" on page 5-4.

Binding and Defining in OCI 5-1

Overview of Binding in OCI

Figure 5-1 Using OCIBindByName() to Associate Placeholders with Program Variables

INSERT INTO emp (empno, ename, job, sal, deptno)

VALUES (:empno, :ename, :j sal, :deptno)
OCIBindByName () \ \\’\l
Address &empno ename &sal &deptno
Data Type integer string string integer integer
Length sizeof (empno) strlen(ename)+1l strlen(job)+l @ sizeof(sal) sizeof (deptno)

If you change only the value of a bind variable, it is not necessary to rebind it in order
to execute the statement again. Because the bind is by reference, as long as the address
of the variable and handle remain valid, you can re-execute a statement that references
the variable without rebinding.

Note: At the interface level, all bind variables are considered at
least IN and must be properly initialized. If the variable is a pure
OUT bind variable, you can set the variable to 0. You can also
provide a NULL indicator and set that indicator to -1 (NULL).

In the Oracle server, new datatypes have been implemented for named datatypes,
REFs and LOBs, and they may be bound as placeholders in a SQL statement.

Note: For opaque datatypes (descriptors or locators) whose sizes
are not known, pass the address of the descriptor or locator pointer.
Set the size parameter to the size of the appropriate data structure,
(sizeof (structure))

Named Binds and Positional Binds

The SQL statement in the previous section is an example of a named bind. Each
placeholder in the statement has a name associated with it, such as 'ename’ or 'sal'.
When this statement is prepared and the placeholders are associated with values in the
application, the association is made by the name of the placeholder using the
OCIBindByName () call with the name of the placeholder passed in the placeholder
parameter.

A second type of bind is known as a positional bind. In a positional bind, the
placeholders are referred to by their position in the statement rather than their names.
For binding purposes, an association is made between an input value and the position
of the placeholder, using the OCIBindByPos () call.

Using the previous example for a positional bind:

INSERT INTO emp VALUES
(:empno, :ename, :job, :sal, :deptno)

The five placeholders are then each bound by calling 0CIBindByPos () and passing
the position number of the placeholder in the position parameter. For example, the

5-2 Oracle Call Interface Programmer's Guide

Overview of Binding in OCI

: empno placeholder would be bound by calling OCIBindByPos () with a position of
1, : ename with a position of 2, and so on.

In the case of a duplicate bind, only a single bind call may be necessary. Consider the
following SQL statement, which queries the database for employees whose
commission and salary are both greater than a given amount:

SELECT empno FROM emp
WHERE sal > :some_value
AND comm > :some_value

An OCI application could complete the binds for this statement with a single call to
OCIBindByName () to bind the : some_value placeholder by name. In this case, the
second placeholder inherits the bind information from the first placeholder.

OCI Array Interface

You can pass data to Oracle in various ways.

You can execute a SQL statement repeatedly using the OCIStmtExecute () routine
and supply different input values on each iteration.

You can use the Oracle array interface and input many values with a single statement
and a single call to OCIStmtExecute (). In this case you bind an array to an input
placeholder, and the entire array can be passed at the same time, under the control of
the iters parameter.

The array interface significantly reduces round trips to the database when you are
updating or inserting a large volume of data. This reduction can lead to considerable
performance gains in a busy client/server environment. For example, consider an
application that needs to insert 10 rows into the database. Calling
OCIStmtExecute () ten times with single values results in ten network round trips
to insert all the data. The same result is possible with a single call to
OCIStmtExecute () using an input array, which involves only one network round
trip.

Note: When using the OCI array interface to perform inserts, row
triggers in the database are fired as each row is inserted.

The maximum number of rows allowed in an array DML statement
is 4 gigabytes -1.

Binding Placeholders in PL/SQL

You process a PL/SQL block by placing the block in a string variable, binding any
variables, and then executing the statement containing the block, just as you would
with a single SQL statement.

When you bind placeholders in a PL/SQL block to program variables, you must use
OCIBindByName () or OCIBindByPos () to perform the basic binds for host
variables that are either scalars or arrays.

The following short PL/SQL block contains two placeholders, which represent IN
parameters to a procedure that updates an employee's salary, given the employee
number and the new salary amount:

char plsqgl_statement[] = "BEGIN\
RAISE_SALARY (:emp_number, :new_sal);\
END; " ;

Binding and Defining in OCl 5-3

Overview of Binding in OCI

These placeholders can be bound to input variables in the same way as placeholders in
a SQL statement.

When processing PL/SQL statements, output variables are also associated with
program variables using bind calls.

For example, in a PL/SQL block such as

BEGIN
SELECT ename, sal,comm INTO :emp_name, :salary, :commission
FROM emp
WHERE empno = :emp_number;

END;

you would use OCIBindByName () to bind variables in place of the : emp_name,
:salary, and : commission output placeholders, and in place of the input
placeholder : emp_number.

Note: All buffers, even pure OUT buffers, must be initialized by
setting the buffer length to zero in the bind call, or by setting the
corresponding indicator to -1.

See Also: "Information for Named Datatype and REF Binds" on
page 11-26 for more information about binding PL/SQL
placeholders

Steps Used in OCI Binding

Placeholders are bound in several steps. For a simple scalar or array bind, it is only
necessary to specify an association between the placeholder and the data, by using
OCIBindByName () or OCIBindByPos ().

Once the bind is complete, the OCI library knows where to find the input data or
where to put PL/SQL output data when the SQL statement is executed. Program input
data does not need to be in the program variable when it is bound to the placeholder,
but the data must be there when the statement is executed.

The following code example shows handle allocation and binding for each placeholder
in a SQL statement.

/* The SQL statement, associated with stmthp (the statement handle)

by calling OCIStmtPrepare() */

text *insert = (text *) "INSERT INTO emp (empno, ename, job, sal, deptno)\
VALUES (:empno, :ename, :job, :sal, :deptno)";

/* Bind the placeholders in the SQL statement, one per bind handle. */

checkerr (errhp, OCIBindByName (stmthp, &bndlp, errhp, (text *) ":ENAME",
strlen(":ENAME"), (ubl *) ename, enamelen+l, SOLT_STR, (dvoid *) 0,
(ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT));

checkerr (errhp, OCIBindByName (stmthp, &bnd2p, errhp, (text *) ":JOB",
strlen(":JOB"), (ubl *) job, joblen+l, SQLT STR, (dvoid *)
&job_ind, (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT)) ;

checkerr (errhp, OCIBindByName (stmthp, &bnd3p, errhp, (text *) ":SAL",
strlen(":SAL"), (ubl *) &sal, (sword) sizeof(sal), SQLT INT,
(dvoid *) &sal_ind, (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4d *) O,
OCI_DEFAULT)) ;

5-4 Oracle Call Interface Programmer's Guide

Overview of Binding in OCI

checkerr (errhp, OCIBindByName (stmthp, &bnd4p, errhp, (text *) ":DEPTNO",
strlen(":DEPTNO"), (ubl *) &deptno, (sword) sizeof (deptno), SQLT INT,
(dvoid *) 0, (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT));

checkerr (errhp, OCIBindByName (stmthp, &bnd5p, errhp, (text *) ":EMPNO",
strlen(":EMPNO"), (ubl *) &empno, (sword) sizeof (empno), SQLT_INT,
(dvoid *) 0, (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0,0CI_DEFAULT)) ;

Note: The checkerr () function evaluates the return code from
an OCI application. The code for the function is listed in the section
"OCI Programming Steps" on page 2-20.

PL/SQL Block in an OCI Program

Perhaps the most common use for PL/SQL blocks in OCl is to call stored procedures
or stored functions. Assume that there is a procedure named RAISE_SALARY stored
in the database, and you embed a call to that procedure in an anonymous PL/SQL
block, and then process the PL/SQL block.

The following program fragment shows how to embed a stored procedure call in an
OCI application. The program passes an employee number and a salary increase as
inputs to a stored procedure called raise_salary:

raise_salary (employee_num IN, sal_increase IN, new_salary OUT);

This procedure raises a given employee's salary by a given amount. The increased
salary which results is returned in the stored procedure's variable, new_salary, and
the program displays this value.

Note that the PL/SQL procedure argument, new_salary, although a PL/SQL OUT
variable, must be bound, not defined. This is further explained in the section on OCI
defines.

/* Define PL/SQL statement to be used in program. */
text *give_raise = (text *) "BEGIN\
RAISE_SALARY (:emp_number, :sal_increase, :new_salary);\

END;";
OCIBind *bndlp = NULL; /* the first bind handle */
OCIBind *bnd2p = NULL; /* the second bind handle */
OCIBind *bnd3p = NULL; /* the third bind handle */

static void checkerr();
sbd status;

main ()
{
sword empno, raise, new_sal;
dvoid *tmp;
0CISession *usrhp = (OCISession *)NULL;

/* attach to database server, and perform necessary initializations
and authorizations */

/* allocate a statement handle */
checkerr (errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **) &stmthp,
OCI_HTYPE_STMT, 100, (dvoid **) &tmp));

/* prepare the statement request, passing the PL/SQL text
block as the statement to be prepared */

Binding and Defining in OCl 5-5

Advanced Bind Operations in OCI

checkerr (errhp, OCIStmtPrepare(stmthp, errhp, (text *) give_raise, (ub4)
strlen(give_raise), OCI_NTV_SYNTAX, OCI_DEFAULT)) ;

/* bind each of the placeholders to a program variable */
checkerr(errhp, OCIBindByName (stmthp, &bndlp, errhp, (text *) ":emp_number",
-1, (ubl *) &empno,
(sword) sizeof (empno), SQLT_INT, (dvoid *) O,
(ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT));

checkerr(errhp, OCIBindByName (stmthp, &bnd2p, errhp, (text *) ":sal_increase",
-1, (ubl *) &raise,
(sword) sizeof (raise), SQLT INT, (dvoid *) 0,
(ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT)) ;

/* remember that PL/SQL OUT variable are bound, not defined */

checkerr(errhp, OCIBindByName (stmthp, &bnd3p, errhp, (text *) ":new_salary",
-1, (ubl *) &new_sal,
(sword) sizeof (new_sal), SQLT INT, (dvoid *) 0,
(ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT));

/* prompt the user for input values */
printf ("Enter the employee number: ");
scanf ("%d", &empno) ;

/* flush the input buffer */
myfflush();

printf ("Enter employee's raise: ");
scanf ("%d", &raise);

/* flush the input buffer */
myfflush();

/* execute PL/SQL block*/
checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(OCISnapshot *) NULL, (OCISnapshot *) NULL, OCI_DEFAULT));

/* display the new salary, following the raise */
printf ("The new salary is %d\n", new_sal);

}

This example demonstrates how to perform a simple scalar bind where only a single
bind call is necessary. In some cases, additional bind calls are needed to define
attributes for specific bind datatypes or execution modes.

Advanced Bind Operations in OCI

The section "Binding Placeholders in OCI" on page 4-4 discussed how a basic bind
operation is performed to create an association between a placeholder in a SQL
statement and a program variable using 0CIBindByName () or OCIBindByPos ().
This section covers more advanced bind operations, including multi-step binds, and
binds of named datatypes and REFs.

In some cases, additional bind calls are necessary to define specific attributes for
certain bind datatypes or certain execution modes.

The following sections describe these special cases, and the information about binding
is summarized in Table 5-1.

5-6 Oracle Call Interface Programmer's Guide

Advanced Bind Operations in OCI

Table 5-1 Information Summary for Bind Types

Type of Bind Bind Datatype Notes

Scalar any scalar datatype Bind a single scalar using OCIBindByName () or
OCIBindByPos ().

Array of Scalars any scalar datatype Bind an array of scalars using OCIBindByName () or
OCIBindByPos ().

Named Datatype SQLT_NTY Two bind calls are required:

n OCIBindByName () or OCIBindByPos ()
n OCIBindObject ()

REF SQLT_REF Two bind calls are required:
n OCIBindByName () or OCIBindByPos ()
n OCIBindObject ()

LOB SQLT_BLOB Allocate the LOB locator using OCIDescriptorAlloc (), and
then bind its address, OCILobLocator **, with

BFILE SQLT_CLOB OCIBindByName () or OCIBindByPos (), using one of the
LOB datatypes.

Array of Structures varies Two bind calls are required:

or Static Arrays s OCIBindByName () or OCIBindByPos ()

n OCIBindArrayOfStruct ()

Piecewise Insert varies OCIBindByName () or OCIBindByPos () is required. The
application may also need to call 0CIBindDynamic () to
register piecewise callbacks.

REF CURSOR variables SQLT_RSET Allocate a statement handle, OCIStmt, and then bind its
address, OCIStmt **, using the SQLT_RSET datatype.

See Also:

= "Named Datatype Binds" on page 11-25 For information on
binding named datatypes (objects)

» "Binding REFs" on page 11-25 for information on binding REFs

Binding LOBs
There are two ways of binding LOBs:

s Bind the LOB locator, rather than the actual LOB values. In this case the LOB value
is written or read by passing a LOB locator to the OCI LOB functions.

= Bind the LOB value directly, without using the LOB locator.

Binding LOB Locators

Either a single locator or an array of locators can be bound in a single bind call. In each
case, the application must pass the address of a LOB locator and not the locator itself. For
example, if an application has prepared a SQL statement:

INSERT INTO some_table VALUES (:one_lob)

where one_1lob is a bind variable corresponding to a LOB column, and has made the
following declaration:

OCILobLocator * one_lob;

Binding and Defining in OCl 5-7

Advanced Bind Operations in OCI

Then the following calls would be used to bind the placeholder and execute the
statement:

/* initialize single locator */

one_lob = OCIDescriptorAlloc(...OCI_DTYPE_LOB...);

/* pass the address of the locator */
OCIBindByName(..., (dvoid *) &one_lob,... SQLT CLOB, ...);
OCIStmtExecute(...,1,...) /* 1 is the iters parameter */

You can also insert an array using the same SQL INSERT statement. In this case, the
application would include the following code:

OCILobLocator * lob_array[10];

for (i=0; i<10, i++)

lob_array[i] = OCIDescriptorAlloc(...OCI_DTYPE LOB...);
/* initialize array of locators */

OCIBindByName(..., (dvoid *) lob_array,...);

0CIBindArrayOfStruct(...);
OCIStmtExecute(...,10,...); /* 10 is the iters parameter */

You must allocate descriptors with the OCIDescriptorAlloc () routine before they
can be used. In the case of an array of locators, you must initialize each array element
using OCIDescriptorAlloc (). Use OCI_DTYPE_LOB as the type parameter when
allocating BLOBs, CLOBs, and NCLOBs. Use OCI_DTYPE_FILE when allocating
BFILES.

Restrictions on Binding LOB Locators
= Piecewise and callback INSERT or UPDATE operations are not supported.

s When using a FILE locator as a bind variable for an INSERT or UPDATE statement,
you must first initialize the locator with a directory object and filename, using
OCILobFileSetName () before issuing the INSERT or UPDATE statement.

See Also: Chapter 7, "LOB and BFILE Operations" for more
information about the OCI LOB functions

Binding LOB Data

Oracle allows nonzero binds for INSERTs and UPDATEs of any size LOB. So you can
bind data into a LOB column using 0CIBindByPos (), 0CIBindByName (), and
PL/SQL binds.

The bind of more than 4 kilobytes of data to a LOB column uses space from the
temporary tablespace. Make sure that your temporary tablespace is big enough to hold
at least the amount of data equal to the sum of all the bind lengths for LOBs. If your
temporary tablespace is extendable, it will be extended automatically after the existing
space is fully consumed. Use the following command to create an extendable
temporary tablespace:

CREATE TABLESPACE ... AUTOEXTENT ON ... TEMPORARY ...;

5-8 Oracle Call Interface Programmer's Guide

Advanced Bind Operations in OCI

Restrictions on Binding LOB Data

If a table has both LONG and LOB columns, then you can have binds of greater
than 4 kilobytes for either the LONG column or the LOB columns, but not both in
the same statement.

In an INSERT AS SELECT operation, Oracle does not allow binding of any length
data to LOB columns.

Oracle does not do implicit conversions, such as HEX to RAW or RAW to HEX, for
data of size more than 4000 bytes. The following PL/SQL code illustrates this:

create table t (cl clob, c2 blob);
declare

text varchar (32767) ;

binbuf raw(32767);

begin
text := lpad ('a', 12000, 'a');
binbuf := utl_raw.cast_to_raw(text);

-- The following works:
insert into t values (text, binbuf);

-- The following won't work because Oracle won't do implicit
-- hex to raw conversion.
insert into t (c2) values (text);

-- The following won't work because Oracle won't do implicit
-- raw to hex conversion.
insert into t (cl) values (binbuf);

-- The following won't work because we can't combine the
-- utl_raw.cast_to_raw() operator with the >4k bind.
insert into t (c2) values (utl_raw.cast_to_raw(text));

end;
/

If you bind more than 4000 bytes of data to a BLOB or a CLOB, and the data is
filtered by a SQL operator, then Oracle will limit the size of the result to at most
4000 bytes.

For example:

create table t (cl clob, c2 blob);

-- The following command inserts only 4000 bytes because the result of
-- LPAD is limited to 4000 bytes

insert into t(cl) values (lpad('a', 5000, 'a'));

-- The following command inserts only 2000 bytes because the result of
-- LPAD is limited to 4000 bytes, and the implicit hex to raw conversion
-- converts it to 2000 bytes of RAW data.

insert into t(c2) values (lpad('a', 5000, 'a'));

Examples of Binding LOB Data

Consider the following SQL statements which will be used in the examples that
follow:

CREATE TABLE foo (a INTEGER);
CREATE TYPE lob_typ AS OBJECT (Al CLOB);
CREATE TABLE lob_long_tab (Cl CLOB, C2 CLOB, CT3 lob_typ, L LONG);

Binding and Defining in OCl 5-9

Advanced Bind Operations in OCI

Example1: Binding LOBs

void insert() /* A function in an OCI program */

{

/* The following is allowed */

ubl buffer[8000];

text *insert_sqgl = (text *) "INSERT INTO lob_long_tab (Cl, C2, L) \

VALUES (:1, :2, :3)";
OCIStmtPrepare (stmthp, errhp, insert_sqgl, strlen((char*)insert_sql),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);

0CIBindByPos (stmthp, &bindhp[0], errhp, 1, (dvoid *)buffer, 8000,
SQLT LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);

OCIBindByPos (stmthp, &bindhpll], errhp, 2, (dvoid *)buffer, 8000,
SQLT LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT) ;

0CIBindByPos (stmthp, &bindhp[2], errhp, 3, (dvoid *)buffer, 2000,
SQLT ING, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);

OCIStmtExecute (svchp, stmthp, errhp, 1, 0, (OCISnapshot *) NULL,

(OCISnapshot *) NULL, OCI_DEFAULT);

Example2: Binding LOBs

void insert()

{

/* The following is allowed */

ubl buffer[8000];

text *insert_sqgl = (text *) "INSERT INTO lob_long_tab (C1l, L) \

VALUES (:1, :2)";
OCIStmtPrepare(stmthp, errhp, insert_sql, strlen((char*)insert_sql),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);

0CIBindByPos (stmthp, &bindhp[0], errhp, 1, (dvoid *)buffer, 2000,
SQLT ING, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);

OCIBindByPos (stmthp, &bindhpll], errhp, 2, (dvoid *)buffer, 8000,
SQLT LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT) ;

OCIStmtExecute(svchp, stmthp, errhp, 1, 0, (OCISnapshot *) NULL,

(OCISnapshot *) NULL, OCI_DEFAULT);

Example3: Binding LOBs

void update()

{

/* The following is allowed, no matter how many rows it updates */
ubl buffer[8000];
text *update_sqgl = (text *)"UPDATE lob_long tab SET \
Ccl = :1, C2=:2, L=:3";
OCIStmtPrepare(stmthp, errhp, update_sqgl, strlen((char*)update_sql),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT) ;
OCIBindByPos (stmthp, &bindhp[0], errhp, 1, (dvoid *)buffer, 8000,
SQLT LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT) ;
0CIBindByPos (stmthp, &bindhp[1l], errhp, 2, (dvoid *)buffer, 8000,
SQLT ING, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
0CIBindByPos (stmthp, &bindhp[2], errhp, 3, (dvoid *)buffer, 2000,
SQLT LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
OCIStmtExecute(svchp, stmthp, errhp, 1, 0, (OCISnapshot *) NULL,
(OCISnapshot *) NULL, OCI_DEFAULT);

Exampled4: Binding LOBs

void update()

5-10 Oracle Call Interface Programmer's Guide

Advanced Bind Operations in OCI

/* The following is allowed, no matter how many rows it updates */
ubl buffer([8000];
text *update_sgl = (text *)"UPDATE lob_long tab SET \
Cl = :1, C2=:2, L=:3";
OCIStmtPrepare(stmthp, errhp, update_sqgl, strlen((char*)update_sql),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
0CIBindByPos (stmthp, &bindhp[0], errhp, 1, (dvoid *)buffer, 2000,
SQLT ING, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
OCIBindByPos (stmthp, &bindhpll], errhp, 2, (dvoid *)buffer, 2000,
SQLT LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT) ;
OCIBindByPos (stmthp, &bindhpl2], errhp, 3, (dvoid *)buffer, 8000,
SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
OCIStmtExecute(svchp, stmthp, errhp, 1, 0, (OCISnapshot *) NULL,
(OCISnapshot *) NULL, OCI_DEFAULT) ;

Example5: Binding LOBs

void insert()

{

/* Piecewise, callback and array insert/update operations similar to
* the allowed regular insert/update operations are also allowed */

Example6: Binding LOBs

void insert ()

{

/* The following is NOT allowed because we try to insert >4000 bytes
* into both LOB and LONG columns */
ubl buffer([8000];
text *insert_sqgl = (text *)"INSERT INTO lob_long tab (Cl, L) \
VALUES (:1, :2)";
OCIStmtPrepare(stmthp, errhp, insert_sqgl, strlen((char*)insert_sql),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT) ;
0CIBindByPos (stmthp, &bindhp[0], errhp, 1, (dvoid *)buffer, 8000,
SQLT ING, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
0CIBindByPos (stmthp, &bindhp[1l], errhp, 2, (dvoid *)buffer, 8000,
SQLT LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
OCIStmtExecute(svchp, stmthp, errhp, 1, 0, (OCISnapshot *) NULL,
(OCISnapshot *) NULL, OCI_DEFAULT);

Example7: Binding LOBs

void insert ()

{

/* Insert of data into LOB attributes is allowed */

ubl buffer([8000];

text *insert_sqgl = (text *)"INSERT INTO lob_long tab (CT3) \
VALUES (lob_typ(:1))";

OCIStmtPrepare (stmthp, errhp, insert_sqgl, strlen((char*)insert_sql),

(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT) ;
OCIBindByPos (stmthp, &bindhpl[0], errhp, 1, (dvoid *)buffer, 2000,
SQLT LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT) ;

OCIStmtExecute(svchp, stmthp, errhp, 1, 0, (OCISnapshot *) NULL,

(OCISnapshot *) NULL, OCI_DEFAULT);

Binding and Defining in OCI 5-11

Overview of Defining in OCI

Example8: Binding LOBs

void insert()
{
/* The following is NOT allowed because we try to do insert as
* gelect character data into LOB column */
ubl buffer[8000];
text *insert_sqgl = (text *)"INSERT INTO lob_long tab (Cl) SELECT \
:1 from FOO";
OCIStmtPrepare (stmthp, errhp, insert_sqgl, strlen((char*)insert_sql),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
OCIBindByPos (stmthp, &bindhpl0], errhp, 1, (dvoid *)buffer, 8000,
SQLT LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT) ;
OCIStmtExecute (svchp, stmthp, errhp, 1, 0, (OCISnapshot *) NULL,
(OCISnapshot *) NULL, OCI_DEFAULT);

Binding in OCI_DATA_AT_EXEC Mode

If the mode parameter in a call to OCIBindByName () or OCIBindByPos () is set to
OCI_DATA_AT_ EXEC, an additional call to OCIBindDynamic () is necessary if the
application will use the callback method for providing data at runtime. The call to
OCIBindDynamic () sets up the callback routines, if necessary, for indicating the data
or piece provided. If the OCI_DATA_AT_EXEC mode is chosen, but the standard OCI
piecewise polling method will be used instead of callbacks, the call to
OCIBindDynamic () is not necessary.

When binding RETURN clause variables, an application must use OCI_DATA AT EXEC
mode, and it must provide callbacks.

See Also: "Runtime Data Allocation and Piecewise Operations in
OCI" on page 5-29 for more information about piecewise operations

Binding REF CURSOR Variables
REF CURSORSs are bound to a statement handle with a bind datatype of SQLT_RSET.

See Also: "PL/SQL REF CURSORs and Nested Tables in OCI" on
page 5-28

Overview of Defining in OCI

Query statements return data from the database to your application. When processing
a query, you must define an output variable or an array of output variables for each
item in the select-list for retrieving data. The define step creates an association that
determines where returned results are stored, and in what format.

For example, if your program processes the following statement you would normally
need to define two output variables, one to receive the value returned from the name
column, and one to receive the value returned from the ssn column:

SELECT name, ssn FROM employees
WHERE empno = :empnum

If you were only interested in retrieving values from the name column, you would not
need to define an output variable for ssn. If the SELECT statement being processed
returns more than a single row for a query, the output variables you define can be
arrays instead of scalar values.

5-12 Oracle Call Interface Programmer's Guide

Overview of Defining in OCI

Depending on the application, the define step can take place before or after an execute.
If you know the datatypes of select-list items at compile time, the define can take place
before the statement is executed. If your application is processing dynamic SQL
statements entered by you at runtime or statements that do not have a clearly defined
select-list, the application must execute the statement to retrieve describe information.
After the describe information is retrieved, the type information for each select-list
item is available for use in defining output variables.

The OCI processes the define call locally on the client side. In addition to indicating
the location of buffers where results should be stored, the define step determines what
data conversions must take place when data is returned to the application.

Note: Output buffers must be 2-byte aligned.

The dty parameter of the OCIDefineByPos () call specifies the datatype of the
output variable. The OCI is capable of a wide range of data conversions when data is
fetched into the output variable. For example, internal data in Oracle DATE format can
be automatically converted to a String datatype on output.

See Also:

s Chapter 3, "Datatypes" For more information about datatypes
and conversions

s "Describing Select-list Items" on page 4-9 for more information

Steps Used in OCI Defining

A basic define is done with a position call, OCIDefineByPos (). This step creates an
association between a select-list item and an output variable. Additional define calls
may be necessary for certain datatypes or fetch modes. Once the define step is
complete, the OCI library determines where to put retrieved data. You can make your
define calls again to redefine the output variables without having to re-prepare or
re-execute the SQL statement.

The following example shows a scalar output variable being defined following an
execute and a describe.

SELECT department_name FROM departments WHERE department_id = :dept_input

/* The input placeholder was bound earlier, and the data comes from the
user input below */

printf ("Enter employee dept: ");
scanf ("%d", &deptno);

/* Execute the statement. If OCIStmtExecute() returns OCI_NO_DATA, meaning that
no data matches the query, then the department number is invalid. */

if ((status = OCIStmtExecute(svchp, stmthp, errhp, 0, 0, (OCISnapshot *) 0,
(OCISnapshot *) 0,
OCI_DEFAULT))
&& (status != OCI_NO_DATA))
{
checkerr (errhp, status);
return OCI_ERROR;
}
if (status == OCI_NO_DATA) {
printf ("The dept you entered doesn't exist.\n");

Binding and Defining in OCI 5-13

Advanced Define Operations in OCI

return 0;

}

/* The next two statements describe the select-list item, dname, and
return its length */
checkerr (errhp, OCIParamGet ((dvoid *)stmthp, (ub4) OCI_HTYPE STMT, errhp, (dvoid
**) &parmdp, (ubd) 1));
checkerr (errhp, OCIAttrGet ((dvoid*) parmdp, (ub4) OCI_DTYPE_PARAM,
(dvoid*) &deptlen, (ub4 *) &sizelen, (ub4) OCI_ATTR_DATA_SIZE,
(OCIError *) errhp));

/* Use the retrieved length of dname to allocate an output buffer, and
then define the output variable. If the define call returns an error,
exit the application */
dept = (text *) malloc((int) deptlen + 1);
if (status = OCIDefineByPos (stmthp, &defnp, errhp,
1, (dvoid *) dept, (sb4) deptlen+l,
SQLT_STR, (dvoid *) 0, (ub2 *) 0,
(ub2 *) 0, OCI_DEFAULT))

{

checkerr (errhp, status);
return OCI_ERROR;
}

See Also: "Describing Select-list Items" on page 4-9 for an
explanation of the describe step

Advanced OCI Defines

In some cases the define step requires more than just a call to OCIDefineByPos ().
There are additional calls that define the attributes of an array fetch,
OCIDefineArrayOfStruct (), or a named datatype fetch, OCIDefineObject ().
For example, to fetch multiple rows with a column of named datatypes, all three calls
must be invoked for the column; but to fetch multiple rows of scalar columns,
OCIDefineArrayOfStruct () and OCIDefineByPos () are sufficient.

Oracle also provides pre-defined C datatypes that map object type attributes.

See Also:
= Chapter 11, "Object-Relational Datatypes in OCI"
= "Advanced Define Operations in OCI" on page 5-14

Advanced Define Operations in OCI

This section covers advanced defined operations, including multi-step defines, and
defines of named datatypes and REFs.

In some cases the define step requires additional calls that define the attributes of an
array fetch, OCIDefineArrayOfStruct (), or anamed datatype fetch,
OCIDefineObject (). For example, to fetch multiple rows with a column of named
datatypes, all the three calls must be invoked for the column. To fetch multiple rows of
scalar columns only OCIDefineArrayOfStruct () and OCIDefineByPos () are
sufficient.

Defining LOB Output Variables

There are two ways of defining LOBs:

5-14 Oracle Call Interface Programmer's Guide

Advanced Define Operations in OCI

s Define as a LOB locator, rather than the actual LOB values. In this case the LOB
value is written or read by passing a LOB locator to the OCI LOB functions.

= Define as a LOB value directly, without using the LOB locator.

Defining LOB Locators

Either a single locator or an array of locators can be defined in a single define call. In
each case, the application must pass the address of a LOB locator and not the locator
itself. For example, if an application has prepared a SQL statement like:

SELECT lobl FROM some_table;
where 1obl is the LOB column and one_1lob is a define variable corresponding to a
LOB column with the following declaration:

OCILobLocator * one_lob;

The following sequence of steps bind the placeholder, and execute the statement:
/* initialize single locator */

one_lob = OCIDescriptorAlloc(...OCI_DTYPE_LOB...);

/* pass the address of the locator */
0CIDefineByPos(... 1, ..., (dvoid *) &one_lob,... SQLT_CLOB, ...);
OCIStmtExecute(...,1,...) /* 1 is the iters parameter */

You can also do an array select using the same SQL SELECT statement. In this case, the
application would include the following steps:
OCILobLocator * lob_array([10];
for (i=0; 1<10, i++)
lob_array[i] = OCIDescriptorAlloc(...OCI_DTYPE LOB...);
/* initialize array of locators */

OCIDefineByPos(...,1, (dvoid *) lob_array,... SQLT CLOB, ...);

OCIDefineArrayOfStruct(...);
OCIStmtExecute(...,10,...); /* 10 is the iters parameter */

Note that you must allocate descriptors with the OCIDescriptorAlloc () routine
before they can be used. In the case of an array of locators, you must initialize each
array element using OCIDescriptorAlloc (). Use OCI_DTYPE_LOB as the type
parameter when allocating BLOBs, CLOBs, and NCLOBs. Use OCI_DTYPE_FILE when
allocating BFILES.

Defining LOB Data

Oracle allows nonzero defines for SELECTs of any size LOB. So you can select up to
the maximum allowed size of data from a LOB column using OCIDefineByPos (),
and PL/SQL defines. Because there can be multiple LOBs in a row, you can select the
maximum size of data from each one of those LOBs in the same SELECT statement.

Consider the following SQL statements which will be used in the examples that
follow:

CREATE TABLE lob_tab (Cl CLOB, C2 CLOB);
Example1: Defining LOBs Before Execution

void select_define_before_execute() /* A function in an OCI program */

{

Binding and Defining in OCI 5-15

Binding and Defining Arrays of Structures in OCI

/* The following is allowed */
ubl buffer1[8000];
ubl buffer2[8000];
text *select_sgl = (text *)"SELECT cl, c2 FROM lob_tab";
OCIStmtPrepare(stmthp, errhp, select_sqgl, (ub4)strlen((char*)select_sql),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
0CIDefineByPos (stmthp, &defhp[0], errhp, 1, (dvoid *)bufferl, 8000,
SQLT_LNG, (void *)0, (ub2 *)0, (ub2 *)0, (ub4) OCI_DEFAULT);
OCIDefineByPos (stmthp, &defhp[l], errhp, 2, (dvoid *)buffer2, 8000,
SQLT_LNG, (void *)0, (ub2 *)0, (ub2 *)0, (ub4) OCI_DEFAULT);
OCIStmtExecute(svchp, stmthp, errhp, 1, 0, (OCISnapshot *)0,
(OCISnapshot *)0, OCI_DEFAULT) ;

Example2: Defining LOBs after Execution

void select_execute_before_define()
{
/* The following is allowed */
ubl bufferl1[8000];
ubl buffer2[8000];
text *select_sqgl = (text *)"SELECT cl, c2 FROM lob_tab";

OCIStmtPrepare(stmthp, errhp, select_sqgl, (ub4)strlen((char*)select_sql),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT) ;
OCIStmtExecute(svchp, stmthp, errhp, 0, 0, (OCISnapshot *)0,
(OCISnapshot *)0, OCI_DEFAULT) ;
OCIDefineByPos (stmthp, &defhp[0], errhp, 1, (dvoid *)bufferl, 8000,
SQLT _ING, (void *)0, (ub2 *)0, (ub2 *)0, (ub4) OCI_DEFAULT);
OCIDefineByPos (stmthp, &defhp[l], errhp, 2, (dvoid *)buffer2, 8000,
SQLT_LNG, (void *)0, (ub2 *)0, (ub2 *)0, (ub4) OCI_DEFAULT);
OCIStmtFetch(stmthp, errhp, 1, OCI_FETCH_NEXT, OCI_DEFAULT);

Defining PL/SQL Output Variables

Do not use the define calls to define output variables for select-list items in a SQL
SELECT statement inside a PL/SQL block. Use OCI bind calls instead.

See Also: "Information for Named Datatype and REF Defines,
and PL/SQL OUT Binds" on page 11-27 for more information about
defining PL/SQL output variables.

Defining for a Piecewise Fetch

A piecewise fetch requires an initial call to 0CIDefineByPos (). An additional call to
OCIDefineDynamic () is necessary if the application will use callbacks rather than
the standard polling mechanism.

Binding and Defining Arrays of Structures in OCI

Defining arrays of structures requires an initial call to OCIDefineByPos () . An
additional call to OCIDefineArrayOfStruct () is necessary to set up each
additional parameter, including the skip parameter necessary for arrays of structures
operations.

Using arrays of structures can simplify the processing of multi-row, multi-column
operations. You can create a structure of related scalar data items, and then fetch

5-16 Oracle Call Interface Programmer's Guide

Binding and Defining Arrays of Structures in OClI

values from the database into an array of these structures, or insert values into the
database from an array of these structures.

For example, an application may need to fetch multiple rows of data from columns
NAME, AGE, and SALARY. The application can include the definition of a structure
containing separate fields to hold the NAME, AGE and SALARY data from one row in the
database table. The application would then fetch data into an array of these structures.

In order to perform a multi-row, multi-column operation using an array of structures,
associate each column involved in the operation with a field in a structure. This
association, which is part of 0OCIDefineArrayOfStruct () and
OCIBindArrayOfStruct () calls, specifies where data is stored.

Skip Parameters

When you split column data across an array of structures, it is no longer stored
contiguously in the database. The single array of structures stores data as though it
were composed of several arrays of scalars. For this reason, you must specify a skip
parameter for each field you are binding or defining. This skip parameter is the
number of bytes that need to be skipped in the array of structures before the same field
is encountered again. In general, this will be equivalent to the byte size of one
structure.

Figure 5-2 shows how a skip parameter is determined. In this case the skip parameter
is the sum of the sizes of the fields fieldl, field2, and field3, which is 8 bytes.
This equals the size of one structure.

Figure 5-2 Determining Skip Parameters

Array of Structures

field 1 field 2 field 3 | field 1 field 2 field 3 | field 1 field 2 field 3
2 bytes 4 bytes | 2 bytes | 2 bytes | 4 bytes | 2 bytes | 2 bytes | 4 bytes | 2 bytes
|« | > | | >|
skip 8 bytes skip 8 bytes

On some operating systems it may be necessary to set the skip parameter to
sizeof(one_array_element) rather than sizeof(struct), because some
compilers insert extra bytes into a structure.

Consider an array of C structures consisting of two fields, a ub4 and a ub1:

struct demo {
ub4 fieldl;
ubl field2;
}i
struct demo demo_array[MAXSIZE];

Some compilers insert three bytes of padding after the ub1 so that the ub4 which
begins the next structure in the array is properly aligned. In this case, the following
statement may return an incorrect value:

skip_parameter = sizeof (struct demo) ;

On some operating systems this will produce a proper skip parameter of eight. On
other systems, skip_parameter will be set to five bytes by this statement. In this
case, use the following statement to get the correct value for the skip parameter:

Binding and Defining in OCI 5-17

DML with RETURNING Clause in OCI

skip_parameter = sizeof (demo_array[0]);

Skip Parameters for Standard Arrays

Arrays of structures are an extension of binding and defining arrays of single
variables. When specifying a single-variable array operation, the related skip will be
equal to the size of the datatype of the array under consideration. For example, for an
array declared as:

text emp_names([4][20];

the skip parameter for the bind or define operation will be 20. Each data element in the
array is then recognized as a separate unit, rather than being part of a structure.

OCI Calls Used with Arrays of Structures

Two OCI calls must be used when performing operations involving arrays of
structures:

s OCIBindArrayOfStruct () for binding fields in arrays of structures for input
variables

m OCIDefineArrayOfStruct () for defining arrays of structures for output
variables.

Note: When binding or defining for arrays of structures, multiple
calls are required. A call to OCIBindByName () or
OCIBindByPos () must precede a call to
OCIBindArrayOfStruct (), and a call to OCIDefineByPos ()
must precede a call to OCIDefineArrayOfStruct ().

Arrays of Structures and Indicator Variables

The implementation of arrays of structures also supports the use of indicator variables
and return codes. You can declare parallel arrays of column-level indicator variables
and return codes that correspond to the arrays of information being fetched, inserted,
or updated. These arrays can have their own skip parameters, which are specified
during OCIBindArrayOfStruct () or OCIDefineArrayOfStruct () calls.

You can set up arrays of structures of program values and indicator variables in many
ways. Consider an application that fetches data from three database columns into an
array of structures containing three fields. You can set up a corresponding array of
indicator variable structures of three fields, each of which is a column-level indicator
variable for one of the columns being fetched from the database. A one-to-one
relationship between the fields in an indicator struct and the number of select-list
items is not necessary.

See Also: '"Indicator Variables" on page 2-23 for more information
about indicator variables.

DML with RETURNING Clause in OCI

OCI supports the use of the RETURNING clause with SQL INSERT, UPDATE, and
DELETE statements. This section outlines the rules for correctly implementing DML
statements with the RETURNING clause.

5-18 Oracle Call Interface Programmer's Guide

DML with RETURNING Clause in OCI

See Also:

s For a complete examples, see the demonstration programs
included with your Oracle installation. For additional
information, refer to Appendix B, "OCI Demonstration
Programs"

» Oracle Database SQL Reference. or more information about the
use of the RETURNING clause with INSERT, UPDATE, or
DELETE statements

Using DML with RETURNING Clause

Using the RETURNING clause with a DML statement enables you to combine two SQL
statements into one, possibly saving you a server round trip. This is accomplished by
adding an extra clause to the traditional UPDATE, INSERT, and DELETE statements.
The extra clause effectively adds a query to the DML statement.

In OCI, values are returned to the application as OUT bind variables. In the following
examples, the bind variables are indicated by a preceding colon, ":". These examples
assume the existence of tablel, a table that contains columns col1, col2, and col3.

The following statement inserts new values into the database and then retrieves the
column values of the affected row from the database, for manipulating inserted rows.

INSERT INTO tablel VALUES (:1, :2, :3)
RETURNING coll, col2, col3
INTO :outl, :out2, :out3

The next example updates the values of all columns where the value of col1 falls
within a given range, and then returns the affected rows which were modified.

UPDATE tablel SET coll = coll + :1, col2 = :2, col3 = :3
WHERE coll >= :low AND coll <= :high
RETURNING coll, col2, col3
INTO :outl, :out2, :out3

The DELETE statement deletes the rows where col1 value falls within a given range,
and then returns the data from those rows.

DELETE FROM tablel WHERE coll >= :low AND col2 <= :high
RETURNING coll, col2, col3
INTO :outl, :out2, :out3

Binding RETURNING...INTO variables

Because both the UPDATE and DELETE statements can affect multiple rows in the table,
and a DML statement can be executed multiple times in a single OCIExecute () call,
how much data will be returned may not be known at runtime. As a result, the
variables corresponding to the RETURNING...INTO placeholders must be bound in
OCI_DATA_AT_ EXEC mode. An application must define its own dynamic data
handling callbacks rather than using a polling mechanism.

The returning clause can be particularly useful when working with LOBs. Normally,
an application must insert an empty LOB locator into the database, and then SELECT
it back out again to operate on it. Using the RETURNING clause, the application can
combine these two steps into a single statement:

INSERT INTO some_table VALUES (:in_locator)
RETURNING lob_column
INTO :out_locator

Binding and Defining in OCI 5-19

DML with RETURNING Clause in OCI

An OCI application implements the placeholders in the RETURNING clause as pure
OUT bind variables. However, all binds in the RETURNING clause are initially IN and
must be properly initialized. To provide a valid value, you can provide a NULL
indicator and set that indicator to -1.

An application must adhere to the following rules when working with bind variables
in a RETURNING clause:

1. Bind RETURNING clause placeholders in OCI_DATA_AT_EXEC mode using
OCIBindByName () or OCIBindByPos (), followed by a call to
OCIBindDynamic () for each placeholder.

2. When binding RETURNING clause placeholders, supply a valid OUT bind function
as the ocbfp parameter of the OCIBindDynamic () call. This function must
provide storage to hold the returned data.

3. The icbfp parameter of OCIBindDynamic () call should provide a default
function which returns NULL values when called.

4. The piecep parameter of 0CIBindDynamic () must be set to OCI_ONE_PIECE.

No duplicate binds are allowed in a DML statement with a RETURNING clause, and no
duplication between bind variables in the DML section and the RETURNING section of
the statement is allowed.

Note: The OCI only supports the callback mechanism for
RETURNING clause binds. The polling mechanism is not supported.

OCI Error Handling

The oUT bind function provided to OCIBindDynamic () must be prepared to receive
partial results of a statement in the event of an error. If the application has issued a
DML statement that is executed 10 times, and an error occurs during the fifth iteration,
the server returns the data from iterations 1 through 4. The callback function is still
called to receive data for the first four iterations.

DML with RETURNING REF...INTO Clause in OCI

The RETURNING clause can also be used to return a REF to an object which is being
inserted into or updated in the database:

UPDATE extaddr e SET e.zip = '12345', e.state ='AZ'
WHERE e.state = 'CA' AND e.zip = '95117'
RETURNING REF (e), zip
INTO :addref, :zip

The preceding statement updates several attributes of an object in an object table and
returns a REF to the object (and a scalar ZIP code) in the RETURNING clause.

Binding the Output Variable
Binding the REF output variable in an OCI application requires three steps:

1. The initial bind information is set using OCIBindByName ()

2. Additional bind information for the REF (including the TDO) is set with
OCIBindObject ()

3. Acall to OCIBindDynamic ()

5-20 Oracle Call Interface Programmer's Guide

DML with RETURNING Clause in OCI

The following pseudocode shows a function which performs the binds necessary for
the preceding example.

sword bind_output (stmthp, bndhp, errhp)
OCIStmt *stmthp;
OCIBind *bndhpl];
OCIError *errhp;
{
ubd i;
/* get TDO for BindObject call */
if (OCITypeByName (envhp, errhp, svchp, (CONST text *) 0,
(ub4) 0, (CONST text *) "ADDRESS_OBJECT",
(ub4) strlen((CONST char *) "ADDRESS_OBJECT"),
(CONST text *) 0, (ub4) 0,
OCI_DURATION_SESSION, OCI_TYPEGET HEADER, &addrtdo))

return OCI_ERROR;

/* initial bind call for both variables */
if (OCIBindByName (stmthp, &bndhp[2], errhp,
(text *) ":addref", (sb4) strlen((char *) ":addref"),
(dvoid *) 0, (sb4) sizeof (OCIRef *), SQLT REF,
(dvoid *) 0, (ub2 *)0, (ub2 *)O,
(ub4) 0, (ub4 *) 0, (ub4) OCI_DATA_ AT EXEC)
|| OCIBindByName (stmthp, &bndhp[3], errhp,
(text *) ":zip", (sb4) strlen((char *) ":zip"),
(dvoid *) 0, (sb4) MAXZIPLEN, SQLT CHR,
(dvoid *) 0, (ub2 *)0, (ub2 *)O0,
(ub4) 0, (ub4 *) 0, (ub4) OCI_DATA_AT_EXEC))

return OCI_ERROR;

/* object bind for REF variable */
if (OCIBindObject (bndhp[2], errhp, (OCIType *) addrtdo,
(dvoid **) &addrref[0], (ub4 *) 0, (dvoid **) 0, (ub4d *) 0))

return OCI_ERROR;

for (1 = 0; 1 < MAXCOLS; i++)
pos[i] = i;

/* dynamic binds for both RETURNING variables */
if (OCIBindDynamic (bndhp[2], errhp, (dvoid *) &pos[0], cbf_no_data,
(dvoid *) &pos[0], cbf_get_data)
|| OCIBindDynamic (bndhp[3], errhp, (dvoid *) &pos[l], cbf_no_data,

(dvoid *) &pos[l], cbf_get_data))
{
return OCI_ERROR;

return OCI_SUCCESS;

Additional Notes About OCI Callbacks

When a callback function is called, the OCI_ATTR_ROWS_RETURNED attribute of the
bind handle tells the application the number of rows being returned in that particular

Binding and Defining in OCI 5-21

Character Conversion in OCI Binding and Defining

iteration. During the first callback of an iteration you can allocate space for all rows
that are returned for that bind variable. During subsequent callbacks of the same
iteration, you merely increment the buffer pointer to the correct memory within the
allocated space.

Array Interface for DML RETURNING Statements in OCI

OCI provides additional functionality for single-row DML and array DML operations
in which each iteration returns more than one row. To take advantage of this feature,
you must specify an OUT buffer in the bind call that is at least as big as the iteration
count specified by the OCIStmtExecute () call. This is in addition to the bind buffers
provided through callbacks.

If any of the iteration returns more than one row, then the application receives an
OCI_SUCCESS_WITH_INFO return code. In this case, the DML operation is successful.
At this point the application may choose to roll back the transaction or ignore the
warning.

Character Conversion in OCI Binding and Defining

This section discusses issues involving character conversions between the client and
the server.

Choosing Character Set

If a database column containing character data is defined to be an NCHAR or
NVARCHAR2 column, then a bind or define involving that column must take into
account special considerations for dealing with character set specifications.

These considerations are necessary in case the width of the client character set is
different from the server character set, and also for proper character conversion.
During conversion of data between different character sets, the size of the data may
increase or decrease by a factor of four. Insure that buffers provided to hold the data
are of sufficient size.

In some cases, it may also be easier for an application to deal with NCHAR or
NVARCHAR2 data in terms of numbers of characters, rather than numbers of bytes,
which is the usual case.

Character Set Form and ID
Each OCI bind and define handle has OCI_ATTR_CHARSET FORM and
OCI_ATTR_CHARSET_ID attributes associated. An application can set these attributes

with the OCIAttrSet () call in order to specify the character form and character set
ID of the bind /define buffer.

The csform attribute (OCI_ATTR_CHARSET_FORM) indicates the character set of the
client buffer, for binds, and the character set in which to store fetched data for defines.
It has two possible values:

s SQLCS_IMPLICIT - default value, indicates database character set ID for the bind
or define buffer and the character buffer data are converted to the server database
character set

s SQLCS_NCHAR - indicates that the national character set ID for the bind or define
buffer and the client buffer data are converted to the server national character set.

If the character set ID attribute, OCI_ATTR_CHARSET_1ID, is not specified, either the
default value of the database or the national character set ID of the client is used,

5-22 Oracle Call Interface Programmer's Guide

Character Conversion in OCI Binding and Defining

depending on the value of csform. They are the values specified in the NLS_LANG
and NLS_NCHAR environment variables, respectively

Note:

» The data is converted and inserted into the database according
to the server's database character set ID or national character
set ID, regardless of the client-side character set id.

s OCI_ATTR_CHARSET ID mustnever be setto 0.

s The define handle attributes OCI_ATTR_CHARSET FORM and
OCI_ATTR_CHARSET_ID do not affect the LOB types. LOB
locators fetched from the server retain their original csforms.
There is no CLOB/NCLOB conversion as part of define
conversion based on these attributes.

See Also: Oracle Database Reference for more information about
NCHAR data

Implicit Conversion Between CHAR and NCHAR

As the result of implicit conversion between database character sets and national
character sets, OCI can support cross binding and cross defining between CHAR and
NCHAR. Even though the OCI_ATTR_CHARSET_FORM attribute is set to SQLCS_NCHAR,
OCI enables conversion of data to the database character set if the data is inserted into
a CHAR column.

Setting Client Character Sets in OCI

You can set the character sets through the OCIEnvNlsCreate () function parameters
charset and ncharset. Both of these parameters can be set as OCI_UTF16ID. The
charset parameter controls coding of the metadata and CHAR data. ncharset
controls coding of NCHAR data. The function OCINlsEnvironmentVariableGet ()
returns the character set from NLS_LANG and the national character set from
NLS_NCHAR.

Here is an example of the use of these functions (OCI provides a typedef called utext
to facilitate binding and defining of UTF-16 data):

OCIEnv *envhp;

ub2 ncsid = 2; /* we8dec */

ub2 hdlecsid, hdlncsid;

OraText thename[20];

utext *selstmt = L"SELECT ename FROM emp"; /* UTF16 statement */
OCIStmt *stmthp;

0CIDefine *defhp;

OCIError *errhp;

OCIEnvNlsCreate (OCIEnv **envhp, ..., OCI_UTF16ID, ncsid);
OCIStmtPrepare(stmthp, ..., selstmt, ...); /* prepare UTF1l6 statement */
OCIDefineByPos (stmthp, defnp, ..., 1, thename, sizeof (thename), SQLT CHR,...);

OCINlsEnvironmentVariableGet (&hdlcsid, (size_t)0, OCI_NLS_CHARSET ID, (ub2)O0,
(size_t*)NULL) ;
OCIAttrSet(defnp, ..., &hdlcsid, 0, OCI_ATTR_CHARSET_ID, errhp);
/* change charset ID to NLS_LANG setting*/

Binding and Defining in OCI 5-23

Character Conversion in OCI Binding and Defining

See Also:
s "OCIEnvNIsCreate()" on page 15-18
= "OCINIsEnvironmentVariableGet()" on page 21-6

Using OCI_ATTR_MAXDATA_SIZE Attribute

Update or insert operations are done through variable binding. When binding
variables, specify OCI_ATTR_MAXCHAR_SIZE and OCI_ATTR_MAXDATA_SIZE in the
bind handle to indicate character and byte constraints used when inserting data on the
server.

These attributes are defined as:

m OCI_ATTR_MAXCHAR_SIZE sets the maximum number of characters allowed in
the buffer on the server side.

= OCI_ATTR_MAXDATA_ SIZE sets the maximum number of bytes allowed in the
buffer on the server side.

Every bind handle has an OCI_ATTR_MAXDATA_SIZE attribute that specifies the
number of bytes allocated on the server to accommodate client-side bind data after
character set conversions.

An application will typically set OCI_ATTR_MAXDATA_SIZE to the maximum size of
the column or the size of the PL/SQL variable, depending on how it is used. Oracle
issues an error if OCI_ATTR_MAXDATA_SIZE is not large enough to accommodate the
data after conversion, and the operation will fail.

For IN/INOUT binds, when OCI_ATTR_MAXDATA_SIZE attribute is set, the bind
buffer must be large enough to hold the number of characters multiplied by the bytes
in each character of the character set.

If OCI_ATTR_MAXCHAR_SIZE is set to a nonzero value such as 100, then if the
character set has 2 bytes in each character, the minimum possible allocated size is 200
bytes.

The following scenarios demonstrate some examples of the use of the
OCI_ATTR MAXDATA_ SIZE attribute:

m Scenario 1: CHAR (source data) -> non-CHAR (destination column)

There are implicit bind conversions of the data. The recommended value of
OCI_ATTR_MAXDATA_SIZE is the size of the source buffer multiplied by the
worst-case expansion factor between the client and server character sets.

m Scenario 2: CHAR (source data) -> CHAR (destination column) or non-CHAR
(source data) -> CHAR (destination column)

The recommended value of OCI_ATTR_MAXDATA_SIZE is the size of the column.
s Scenario 3: CHAR (source data) -> PL/SQL variable

In this case, the recommended value of OCI_ATTR_MAXDATA_SIZE is the size of
the PL/SQL variable.

Using OCI_ATTR_MAXCHAR_SIZE Attribute

OCI_ATTR_MAXCHAR_SIZE enables processing to work with data in terms of number
of characters, rather than number of bytes.

For binds, the OCI_ATTR_MAXCHAR_SIZE attribute sets the number of characters
reserved on the server to store the bind data.

5-24 Oracle Call Interface Programmer's Guide

Character Conversion in OCI Binding and Defining

For example, if OCI_ATTR_MAXDATA_SIZE is set to 100, and
OCI_ATTR_MAXCHAR_SIZE is set to 0, then the maximum possible size of the data on
the server after conversion is 100 bytes. However, if OCI_ATTR_MAXDATA_SIZE is set
to 300, and OCI_ATTR_MAXCHAR_SIZE is set to a nonzero value, such as 100, then if
the character set has 2 bytes/character, the maximum possible allocated size is 200
bytes.

For defines, the OCI_ATTR_MAXCHAR_SIZE attribute specifies the maximum number
of characters that the client application allows in the return buffer. Its derived byte
length overrides the maxlength parameter specified in the OCIDefineByPos () call

Note: Regardless of the value of the attribute
OCI_ATTR_MAXCHAR_SIZE, the buffer lengths specified in a bind
or define call are always in terms of bytes. The actual length values
sent and received by you are also in bytes.

Buffer Expansion During OCI Binding

Do not set OCI_ATTR_MAXDATA_SIZE for OUT binds or for PL/SQL binds. Only set
OCI_ATTR_MAXDATA_SIZE for INSERT or UPDATE statements.

If neither of these two attributes is set, OCI expands the buffer using its best estimates.

IN Binds

If the underlying column was created using character length semantics, then it is
preferable to specify the constraint using OCI_ATTR_MAXCHAR_SIZE. As long as the
actual buffer contains less characters than specified in OCI_ATTR_MAXCHAR_SIZE, no
constraints are violated at OCI level.

If the underlying column was created using byte length semantics, then use
OCI_ATTR_MAXDATA_SIZE in the bind handle to specify the byte constraint on the
server. If you also specify an OCI_ATTR_MAXCHAR_SIZE value, then this constraint is
imposed when allocating the receiving buffer on the server side.

Dynamic SQL

For dynamic SQL, you can use the explicit describe to get OCI_ATTR_DATA_SIZE and
OCI_ATTR_CHAR_SIZE in parameter handles, as a guide for setting
OCI_ATTR_MAXDATA_SIZE and OCI_ATTR_MAXCHAR_SIZE attributes in bind
handles. It is a good practice to specify OCI_ATTR_MAXDATA_SIZE and
OCI_ATTR_MAXCHAR_SIZE to be no more than the actual column width in bytes, or
characters.

Buffer Expansion During Inserts
You should avoid unexpected behavior caused by buffer expansion during inserts.

Consider what happens when the database column has character length semantics,
and the user tries to insert data using 0CIBindByPos () or OCIBindByName () while
setting only the OCI_ATTR_MAXCHAR_SIZE to 3000 bytes. The database character set
is UTF8 and the client character set is ASCII. Then, in this case although 3000
characters will fit in a buffer of size 3000 bytes for the client, on the server side it might
expand to more than 4000 bytes. Unless the underlying column is a LONG or a LOB
type, the server will return an error. You can get around this problem by specifying the
OCI_ATTR_MAXDATA_SIZE to be 4000, to guarantee that the data will never exceed
4000 bytes.

Binding and Defining in OCI 5-25

Character Conversion in OCI Binding and Defining

Constraint Checking During Defining

To select data from columns into client buffers, OCI uses defined variables. You can set
an OCI_ATTR_MAXCHAR_SIZE value on the define buffer to impose an additional
character length constraint. There is no OCI_ATTR_MAXDATA_SIZE attribute for
define handles since the buffer size in bytes serves as the limit on byte length. The
define buffer size provided in the OCIDefineByPos () call can be used as the byte
constraint.

Dynamic SQL Selects

When sizing buffers for dynamic SQL, always use the OCI_ATTR_DATA_SIZE value
in the implicit describe to avoid data loss through truncation. If the database column is
created using character length semantics known through OCI_ATTR_CHAR_USED
attribute, then you can use the OCI_ATTR_MAXCHAR_SIZE value to set an additional
constraint on the define buffer. A maximum number of OCI_ATTR_MAXCHAR_SIZE
characters is put in the buffer.

Return Lengths

The following length values are always in bytes regardless of the character length
semantics of the database:

s The value returned in the alen, or the actual length field in binds and defines.

= The value that appears in the length, prefixed in special datatypes like VARCHAR
and LONG VARCHAR.

m The value of the indicator variable in case of truncation.

The only exception to this rule is for string buffers in OCI_UTF16ID character set id;
then the lengths are in UTF-16 units.

Note: The buffer sizes in the bind and define calls and the piece
sizes in the OCIGetPieceInfo () and OCISetPieceInfo () and
the callbacks are always in bytes.

General Compatibility Issues for Character Length Semantics in OCI

s For arelease 9.0 or later client talking to an 8.1 or earlier server,
OCI_ATTR_MAXCHAR_SIZE is not understood by the server, so this value will be
ignored. If you specify only this value, OCI will derive the corresponding
OCI_ATTR_MAXDATA_SIZE value based on the maximum bytes for each character
for the client-side character set.

= For an 8.1 or earlier client talking to a 9.0 or later server, the client will never be
able to specify an OCI_ATTR_MAXCHAR_SIZE value, so the server will consider
the client always expecting byte length semantics. This is similar to the situation
when the client specifies only OCI_ATTR_MAXDATA_SIZE.

So in both cases, the server and client can exchange information in an appropriate
manner.

Code Example for Inserting and Selecting Using OCI_ATTR_MAXCHAR_SIZE

When a column is created by specifying a number N of characters, the actual allocation
in the data base will consider the worst scenario in the following table. The real bytes
allocated will be a multiple of N, say M times N. Currently, M is three as the maximum
bytes for each character in UTF-8.

5-26 Oracle Call Interface Programmer's Guide

Character Conversion in OCI Binding and Defining

For example, in the following table EMP, ENAME column is defined as 30 characters and
ADDRESS is defined as 80 characters. Then the corresponding byte lengths in database
are M*30 or 3*30=90, and M*80 or 3*80=240 respectively.

utext ename[31], address[81];
/* E' <= 30+ 1, D' <= 80+ 1, considering null-termination */
sb4 ename_max_chars = EC=20, address_max_chars = ED=60;
/* EC <= (E' - 1), ED <= (D' - 1) */
sb4d ename_max_bytes = EB=80, address_max_ bytes = DB=200;
/* EB <=M * EC, DB <= M * DC */
text *insstmt = (text *)"INSERT INTO EMP(ENAME, ADDRESS) VALUES (:ENAME, \
:ADDRESS) ";
text *selstmt = (text *)"SELECT ENAME, ADDRESS FROM EMP";

/* Inserting Column Data */

OCIStmtPrepare (stmthpl, errhp, insstmt, (ub4)strlen((char *)insstmt),
(ub4)0CI_NTV_SYNTAX, (ub4)OCI_DEFAULT) ;

0CIBindByName (stmthpl, &bndlp, errhp, (text *)":ENAME",
(sb4)strlen((char *)":ENAME")
(dvoid *)ename, sizeof (ename), SQLT STR, (dvoid *)&insname_ind,
(ub2 *)alenp, (ub2 *)rcodep, (ub4d)maxarr_len, (ub4 *)curelep, OCI_DEFAULT) ;

/* either */

OCIAttrSet((dvoid *)bndlp, (ub4)OCI_HTYPE_BIND, (dvoid *)&ename_max_bytes,
(ub4)0, (ub4)OCI_ATTR_MAXDATA SIZE, errhp);

/* or */

OCIAttrSet((dvoid *)bndlp, (ub4)OCI_HTYPE_BIND, (dvoid *)&ename_max_chars,
(ub4)0, (ub4)OCI_ATTR_MAXCHAR SIZE, errhp);

/* Retrieving Column Data */
OCIStmtPrepare(stmthp2, errhp, selstmt, strlen((char *)selstmt),
(ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT);

OCIDefineByPos (stmthp2, &dfnlp, errhp, (ub4)l, (dvoid *)ename,
(sbd)sizeof (ename),
SQLT_STR, (dvoid *)&selname_ind, (ub2 *)alenp, (ub2 *)rcodep,
(ub4)OCI_DEFAULT) ;

/* if not called, byte semantics is by default */

OCIAttrSet((dvoid *)dfnlp, (ub4)OCI_HTYPE_DEFINE, (dvoid *)&ename_max_chars,
(ub4)0,
(ub4)OCI_ATTR_MAXCHAR_SIZE, errhp);

Code Example for UTF-16 Binding and Defining

The character set ID in bind and define of the CHAR or VARCHAR?2, or in NCHAR or
NVARCHAR variant handles can be set to assume that all data will be passed in
UTF-16 (Unicode) encoding. To specify UTF-16, set OCI_ATTR_CHARSET_ID =
OCI_UTF161ID.

See Also: "Bind Handle Attributes" on page A-28

OClI provides a typedef called utext to facilitate binding and defining of UTF-16 data.
The internal representation of utext is a 16-bit unsigned integer, ub2. Operating
systems where the encoding scheme of the wchar_ t datatype conforms to UTF-16 can
easily convert utext to the wchar_t datatype using cast operators.

Even for UTF-16 data, the buffer size in bind and define calls is assumed to be in bytes.
Users should use the utext datatype as the buffer for input and output data.

The following pseudocode illustrates a bind and define for UTF-16 data:

Binding and Defining in OCI 5-27

PL/SQL REF CURSORs and Nested Tables in OCI

OCIStmt *stmthpl, *stmthp2;
OCIDefine *dfnlp, *dfn2p;
OCIBind *bndlp, *bnd2p;
text *insstmt=
(text *) "INSERT INTO EMP(ENAME, ADDRESS) VALUES (:ename, :address)"; \
text *selname =
(text *) "SELECT ENAME, ADDRESS FROM EMP";
utext ename[21]; /* Name - UTF-16 */
utext address[51]; /* Address - UTF-16 */
ub2 csid = OCI_UTF16ID;
sb4 ename_col_len = 20;
sb4d address_col_len = 50;

/* Inserting UTF-16 data */
OCIStmtPrepare (stmthpl, errhp, insstmt, (ub4)strlen ((char *)insstmt),
(ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT) ;

OCIBindByName (stmthpl, &bndlp, errhp, (text*)":ENAME",
(sbd)strlen((char *)":ENAME")
(dvoid *) ename, sizeof (ename), SQLT_STR,
(dvoid *)&insname_ind, (ub2 *) 0, (ub2 *) 0, (ub4) O,
(ub4 *)0, OCI_DEFAULT) ;

OCIAttrSet dvoid *) bndlp, (ub4) OCI_HTYPE_BIND, (dvoid *) &csid,

((

(ub4) 0, (ub4)OCI_ATTR_CHARSET_ID, errhp);

OCIAttrSet((dvoid *) bndlp, (ub4) OCI_HTYPE_BIND, (dvoid *) &ename_col_len,
(ub4) 0, (ub4)OCI_ATTR_MAXDATA SIZE, errhp);

/* Retrieving UTF-16 data */
OCIStmtPrepare (stmthp2, errhp, selname, strlen((char *) selname),
(ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT) ;
0CIDefineByPos (stmthp2, &dfnlp, errhp, (ub4)l, (dvoid *)ename,
(sb4)sizeof (ename), SQLT_STR,
(dvoid *)0, (ub2 *)0, (ub2 *)0, (ub4)OCI_DEFAULT);
OCIAttrSet ((dvoid *) dfnlp, (ub4) OCI_HTYPE_DEFINE, (dvoid *) &csid,
(ub4) 0, (ub4)OCI_ATTR_CHARSET ID, errhp);

PL/SQL REF CURSORs and Nested Tables in OCI

The OCI provides the ability to bind and define PL/SQL REF CURSORs and nested
tables. An application can use a statement handle to bind and define these types of
variables. As an example, consider this PL/SQL block:

static const text *plsgl_block = (text *)
"begin \
OPEN :cursorl FOR SELECT employee_id, last_name, job_id, manager_id, \
salary, department_id \
FROM employees WHERE job_id=:job ORDER BY employee_id; \
OPEN :cursor2 FOR SELECT * FROM departments ORDER BY department_id;
end;";

An application allocates a statement handle for binding, by calling
OCIHandleAlloc (), and then binds the : cursorl placeholder to the statement
handle, as in the following code, where : cursorl is bound to stm2p.

status = OCIStmtPrepare (stmlp, errhp, (text *) plsgl_block,
strlen((char *)plsgl_block), OCI_NTV_SYNTAX, OCI_DEFAULT);

status = OCIBindByName (stmlp, (OCIBind **) &bndlp, errhp,
(text *)":cursorl", (sbd)strlen((char *)":cursorl"),

5-28 Oracle Call Interface Programmer's Guide

Runtime Data Allocation and Piecewise Operations in OCI

(dvoid *)&stm2p, (sb4) 0, SQLT RSET, (dvoid *)O0,
(ub2 *)0, (ub2 *)0, (ub4)0, (ub4 *)O, (ub4)O0CI_DEFAULT) ;

In this code, stmlp is the statement handle for the PL/SQL block, while stm2p is the
statement handle which is bound as a REF CURSOR for later data retrieval. A value of
SQLT_RSET is passed for the dty parameter.

As another example, consider the following:

static const text *nst_tab = (text *)
"SELECT last_name, CURSOR (SELECT department_name, location_id \
FROM departments) FROM employees WHERE last_name = 'FORD'";

The second position is a nested table, which an OCI application can define as a
statement handle as follows:

status = OCIStmtPrepare (stmlp, errhp, (text *) nst_tab,
strlen((char *)nst_tab), OCI_NTV_SYNTAX, OCI_DEFAULT) ;

status = OCIDefineByPos (stmlp, (OCIDefine **) &dfn2p, errhp, (ub4)2,
(dvoid *)&stm2p, (sb4)0, SQLT RSET, (dvoid *)0, (ub2 *)O0,
(ub2 *)0, (ub4)OCI_DEFAULT) ;

After execution, when you fetch a row into stm2p it becomes a valid statement
handle.

Note: If you have retrieved multiple REF CURSORs, you must take
care when fetching them into stm2p. If you fetch the first one, you
can then perform fetches on it to retrieve its data. However, once
you fetch the second REF CURSOR into stm2p, you no longer have
access to the data from the first REF CURSOR.

OCI does not support PL/SQL REF CURSORs that were executed in
scrollable mode.

OCI does not support scrollable REF CURSORs because you cannot
scroll back to the rows already fetched by a REF CURSOR.

Runtime Data Allocation and Piecewise Operations in OCI

You can use the OCI to perform piecewise inserts, updates, and fetches of data. You
can also use the OCI to provide data dynamically in case of array inserts or updates,
instead of providing a static array of bind values. You can insert or retrieve a very
large column as a series of chunks of smaller size, minimizing client-side memory
requirements.

The size of individual pieces is determined at runtime by the application and can be
uniform or not.

The piecewise functionality of OCl is particularly useful when performing operations
on extremely large blocks of string or binary data, operations involving database
columns that store CLOB, BL.OB, LONG, RAW, or LONG RAW data.

The piecewise fetch is complete when the final OCIStmtFetch () call returns a value
of OCI_SUCCESS.

In both the piecewise fetch and insert, it is important to understand the sequence of
calls necessary for the operation to complete successfully. For a piecewise insert, you
must call OCIStmtExecute () one time more than the number of pieces to be
inserted (if callbacks are not used). This is because the first time OCIStmtExecute ()

Binding and Defining in OCl 5-29

Runtime Data Allocation and Piecewise Operations in OClI

is called, it merely returns a value indicating that the first piece to be inserted is
required. As a result, if you are inserting n pieces, you must call 0CIStmtExecute ()
a total of n+1 times.

Similarly, when performing a piecewise fetch, you must call 0CIStmtFetch () once
more than the number of pieces to be fetched.

Users who are binding to PL/SQL index-by tables can retrieve a pointer to the current
index of the table during the OCIStmtGetPiecelInfo () calls.

Valid Datatypes for Piecewise Operations

Only some datatypes can be manipulated in pieces. OCI applications can perform
piecewise fetches, inserts, or updates of all the following datatypes:

n VARCHAR2
n STRING
n LONG

= LONG RAW

= RAW
= CLOB
= BLOB

Another way of using this feature for all datatypes is to provide data dynamically for
array inserts or updates. The callbacks should always specify OCI_ONE_PIECE for the
piecep parameter of the callback for datatypes that do not support piecewise
operations.

Types of Piecewise Operations

You can perform piecewise operations in two ways:

= Use calls provided in the OCI library to execute piecewise operations under a
polling paradigm.

= Employ user-defined callback functions to provide the necessary information and
data blocks.

When you set the mode parameter of an 0CIBindByPos () or OCIBindByName ()
call to OCI_DATA_ AT EXEC, it indicates that an OCI application will be providing
data for an INSERT or UPDATE dynamically at runtime.

Similarly, when you set the mode parameter of an OCIDefineByPos () call to
OCI_DYNAMIC_FETCH, it indicates that an application will dynamically provide
allocation space for receiving data at the time of the fetch.

In each case, you can provide the run-time information for the INSERT, UPDATE, or
FETCH in one of two ways: through callback functions, or by using piecewise
operations. If callbacks are desired, an additional bind or define call is necessary to
register the callbacks.

The following sections give specific information about run-time data allocation and
piecewise operations for inserts, updates, and fetches.

Note: Piecewise operations are also valid for SQL and PL/SQL
blocks.

5-30 Oracle Call Interface Programmer's Guide

Runtime Data Allocation and Piecewise Operations in OCI

Providing INSERT or UPDATE Data at Runtime

When you specify the OCI_DATA_ AT EXEC mode in a call to OCIBindByPos () or
OCIBindByName (), the value_sz parameter defines the total size of the data that
can be provided at runtime. The application must be ready to provide to the OCI
library the run-time IN data buffers on demand as many times as is necessary to
complete the operation. When the allocated buffers are no longer required, they must
be freed by the client.

Runtime data is provided in one of the two ways:

= You can define a callback using the 0CIBindDynamic () function, which when
called at runtime returns either a piece or the whole data.

» Ifno callbacks are defined, the call to OCIStmtExecute () to process the SQL
statement returns the OCI_NEED_DATA error code. The client application then
provides the IN/OUT data buffer or piece using the OCIStmtSetPieceInfo ()
call that specifies which bind and piece are being used.

Performing a Piecewise Insert or Update

Once the OCI environment has been initialized, and a database connection and session
have been established, a piecewise insert begins with calls to prepare a SQL or
PL/SQL statement and to bind input values. Piecewise operations using standard OCI
calls rather than user-defined callbacks do not require a call to OCIBindDynamic ().

Note: Additional bind variables that are not part of piecewise
operations may require additional bind calls, depending on their
datatypes.

Following the statement preparation and bind, the application performs a series of
calls to OCIStmtExecute (), OCIStmtGetPieceInfo () and
OCIstmtSetPieceInfo () to complete the piecewise operation. Each call to
OCIStmtExecute () returns a value that determines what action should be
performed next. In general, the application retrieves a value indicating that the next
piece needs to be inserted, populates a buffer with that piece, and then executes an
insert. When the last piece has been inserted, the operation is complete.

Keep in mind that the insert buffer can be of arbitrary size and is provided at runtime.
In addition, each inserted piece does not need to be of the same size. The size of each
piece to be inserted is established by each 0CIStmtSetPieceInfo () call.

Note: If the same piece size is used for all inserts, and the size of
the data being inserted is not evenly divisible by the piece size, the
final inserted piece will be smaller. You must account for this by
indicating the smaller size in the final OCIStmtSetPieceInfo ()
call.

The procedure is illustrated in Figure 5-3.

Binding and Defining in OCI 5-31

Runtime Data Allocation and Piecewise Operations in OClI

Figure 5-3 Performing Piecewise Insert

Prepare Statement
OCIStmtPrepare()

v
Bind
OCIBindByName()/
OCIBindByPos()

Set Piece Info R
OCIStmtSetPiecelnfo() v

f

Get Piece Info QCI—NEED—DATA | Execute Other
OCIStmtGetPiecelnfo() | ~ [OCIStmtExecute() »

l OCI_SUCCESS

Error

‘ Done

1. Initialize the OCI environment, allocate the necessary handles, connect to a server,
authorize a user, and prepare a statement request.

2. Bind a placeholder using OCIBindByName () or OCIBindByPos (). You do not
need to specify the actual size of the pieces you will use, but you must provide the
total size of the data that can be provided at runtime.

3. CallocistmtExecute () for the first time. No data is being inserted here, and
the OCI_NEED_DATA error code is returned to the application. If any other value is
returned, it indicates that an error occurred.

4. CallocIStmtGetPieceInfo () to retrieve information about the piece that
needs to be inserted. The parameters of OCIStmtGetPieceInfo () include a
pointer to a value indicating if the required piece is the first piece,
OCI_FIRST_PIECE, or a subsequent piece, OCI_NEXT_PIECE.

5. The application populates a buffer with the piece of data to be inserted and calls
OCIStmtSetPieceInfo () with these parameters:

= a pointer to the piece

= a pointer to the length of the piece

= avalue indicating whether this is the

a. first piece, OCI_FIRST_PIECE

b. anintermediate piece, OCI_NEXT_PIECE
c. thelast piece, OCI_LAST_PIECE

6. CallocIstmtExecute () again. If OCI_LAST_ PIECE was indicated in step 5 and
OCIStmtExecute () returns OCI_SUCCESS, all pieces were inserted successfully.
If ocIStmtExecute () returns OCI_NEED_DATA, go back to Step 3 for the next
insert. If OCIStmtExecute () returns any other value, an error occurred.

The piecewise operation is complete when the final piece has been successfully
inserted. This is indicated by the OCI_SUCCESS return value from the final
OCIStmtExecute () call

Piecewise updates are performed in a similar manner. In a piecewise update operation
the insert buffer is populated with data that is being updated and
OCIstmtExecute () is called to execute the update.

5-32 Oracle Call Interface Programmer's Guide

Runtime Data Allocation and Piecewise Operations in OCI

Piecewise Operations with PL/SQL

An OCI application can perform piecewise operations with PL/SQL for IN, OUT, and
IN/OUT bind variables in a method similar to that outlined previously. Keep in mind
that all placeholders in PL/SQL statements are bound, rather than defined. The call to
OCIBindDynamic () specifies the appropriate callbacks for OUT or IN/OUT
parameters.

Providing FETCH Information at Runtime

When a call is made to OCIDefineByPos () with the mode parameter set to
OCI_DYNAMIC_FETCH, an application can specify information about the data buffer at
the time of fetch. You may also need to call 0CIDefineDynamic () to set callback
function that will be invoked to get information about your data buffer.

Run-time data is provided in one of the two ways:

= You can define a callback using the 0OCIDefineDynamic (). The value_sz
parameter defines the maximum size of the data that will be provided at runtime.
When the client library needs a buffer to return the fetched data, the callback will
be invoked to provide a run-time buffer into which a either piece or the whole
data will be returned.

s If no callbacks are defined, the OCI_NEED_DATA error code is returned and the
OUT data buffer or piece can then be provided by the client application using
OoCIstmtSetPieceInfo().TheO0CIStmtGetPieceInfo () call provides
Information about which define and which piece are involved.

Performing a Piecewise Fetch

The fetch buffer can be of arbitrary size. In addition, each fetched piece does not need
to be of the same size. The only requirement is that the size of the final fetch must be
exactly the size of the last remaining piece. The size of each piece to be fetched is
established by each 0OCIStmtSetPiecelInfo () call. This process is illustrated in
Figure 5-4.

Figure 5-4 Performing Piecewise Fetch

Execute Statement
OCIStmtExecute()

v

Define
OCIDefineByPos()

Set Piece Info

OCIStmtSetPiecelnfo() e
- OCI_NEED_DATA Other
Get Piece Info — — Fetch |
OCIStmtGetPiecelnfo() | ~ OCIStmtFetch() Error

l OCI_SUCCESS

Done

1. Initialize the OCI environment, allocate necessary handles, connect to a database,
authorize a user, prepare a statement, and execute the statement.

2. Define an output variable using 0OCIDefineByPos (), with mode set to
OCI_DYNAMIC_FETCH. At this point you do not need to specify the actual size of

Binding and Defining in OCI 5-33

Runtime Data Allocation and Piecewise Operations in OClI

the pieces you will use, but you must provide the total size of the data that will be
fetched at runtime.

3. CallocistmtFetch () for the first time. No data is retrieved, and the
OCI_NEED_DATA error code is returned to the application. If any other value is
returned, an error occurred.

4. CallocIStmtGetPieceInfo () to obtain information about the piece to be
fetched. The piecep parameter indicates whether it is the first piece,
OCI_FIRST_PIECE, a subsequent piece, OCI_NEXT_PIECE, or the last piece,
OCI_LAST_ PIECE.

5. CallocistmtSetPieceInfo () to specify the fetch buffer.

6. CallocIstmtFetch () again to retrieve the actual piece. If 0CIStmtFetch ()
returns OCI_SUCCESS, all the pieces have been fetched successfully. If
OCIStmtFetch () returns OCI_NEED_DATA, return to Step 4 to process the next
piece. If any other value is returned, an error occurred.

Piecewise Binds and Defines for LOBs

There are two ways of doing piecewise binds and defines for LOBs:
1. Using the data interface

You can bind or define character data for CLOB columns using SQLT_CHR
(VARCHAR2) or SQLT_LNG (LONG) as the input datatype for the following
functions. You can also bind or define raw data for BLOB columns using
SQLT_LBI (LONG RAW), and SQLT_BIN (RAW) as the input datatype for these
functions:

s OCIDefineByPos()
s OCIBindByName()
= OCIBindByPos(}

See Also:

= "Binding LOB Data" on page 5-8 for usage and examples for
both INSERT and UPDATE statements

s "Defining LOB Data" on page 5-15 for usage and examples of
SELECT statements
All the piecewise operations described later are supported for CLOB and BLOB
columns in this case.
2, Using the LOB locator

You can bind or define a LOB locator for CLOB and BLOB columns using
SQLT_CLOB (CLOB) or SQLT_BLOB (BLOB) as the input datatype for the following
functions.

= OCIDefineByPos()
s OCIBindByName()
= OCIBindByPos(}

You must then call OCILob* functions to read and manipulate the data.
OCILobRead2 () and OCILobWrite2 () support piecewise and callback modes.

5-34 Oracle Call Interface Programmer's Guide

Runtime Data Allocation and Piecewise Operations in OCI

See Also:
s "OCILobRead2()" on page 16-78
s "OCILobWrite2()" on page 16-88

s "LOB Read and Write Callbacks" on page 7-11 for information
about streaming using callbacks with OCILobWrite2 () and
OCILobRead?2 ().

Binding and Defining in OCl 5-35

Runtime Data Allocation and Piecewise Operations in OClI

5-36 Oracle Call Interface Programmer's Guide

6

Describing Schema Metadata

This chapter discusses the use of the OCIDescribeAny() function to obtain information
about schema elements.

This chapter contains these topics:

s Using OCIDescribeAny()

» Parameter Attributes

» Character Length Semantics Support in Describing
= Examples Using OCIDescribe Any()

Using OCIDescribeAny()

The OCIDescribeAny () function enables you to perform an explicit describe of the
following schema objects and their subschema objects:

» tables and views
= synonyms

= procedures

= functions

= packages

= sequences

» collections

= types

= schemas

= databases

Information about other schema elements (function arguments, columns, type
attributes, and type methods) is available through a describe of one of the preceding
schema objects or an explicit describe of the subschema object.

When an application describes a table, it can then retrieve information about that
table's columns. Additionally, OCIDescribeAny () can directly describe subschema
objects such as columns of a table, packages of a function, or fields of a type if given
the name of the subschema object.

The 0CIDescribeAny () call requires a describe handle as one of its arguments. The
describe handle must be previously allocated with a call to OCIHandleAlloc().

Describing Schema Metadata 6-1

Using OCIDescribeAny()

The information returned by OCIDescribeAny () is organized hierarchically like a
tree, as shown in Figure 6-1:

Figure 6—1 OClIDescribeAny() Table Description

describe
handle

v

table
description

v

columns

column 1 column 2

data type name

The describe handle returned by 0CIDescribeany () has an attribute,
OCI_ATTR_PARAMN, that points to such a description tree. Each node of the tree has
attributes associated with that node, and attributes that are like recursive describe
handles and point to subtrees containing further information. If all the attributes are
homogenous, as in the case of elements of a column list, they are called parameters. The
attributes associated with any node are returned by OCIAttrGet (), and the
parameters are returned by OCIParamGet ().

A call to OCIAttrGet () on the describe handle for the table returns a handle to the
column-list information. An application can then use OCIParamGet () to retrieve the
handle to the column description of a particular column in the column-list. The handle
to the column descriptor can be passed to OCIAttrGet () to get further information
about the column, such as the name and datatype.

After a SQL statement is executed, information about the select-list is available as an
attribute of the statement handle. No explicit describe call is needed. To retrieve
information about select-list items from the statement handle, the application must call
OCIParamGet () once for each position in the select-list to allocate a parameter
descriptor for that position.

Note: No subsequent OCIAttrGet () or OCIParamGet () call
requires extra round trips, as all the description is cached on the
client side by OCIDescribeAny ().

Limitations on OCIDescribeAny()

The OCIDescribeAny () call limits information returned to the basic information and
stops expanding a node if it amounts to another describe. For example, if a table
column is of an object type, then the OCI does not return a subtree describing the type
since this information can be obtained by another describe.

The table name is not returned by OCIDescribeAny () or the implicit use of
OCIStmtExecute ().Sometimes a column is not associated with a table. In most
cases, the table is already known.

6-2 Oracle Call Interface Programmer's Guide

Using OCIDescribeAny()

See Also:
s "Describing Select-list Items" on page 4-9

s "OClIDescribeAny()" on page 15-83

Notes on Types and Attributes

When performing describe operations, you should be aware of the following:

Datatype Codes

OCI_ATTR_TYPECODE returns typecodes which represent the types supplied by the
user when a new type is created using the CREATE TYPE statement. These typecodes
are of the enumerated type OCITypeCode, and are represented by OCI_TYPECODE
constants. Internal PL/SQL types (boolean, indexed table) are not supported.

OCI_ATTR_DATA_TYPE returns typecodes which represent the datatypes stored in
database columns. These are similar to the describe values returned by previous
versions of Oracle. These values are represented by SQLT constants (ub2 values).
BOOLEAN types return SQLT_BOL.

See Also: "Typecodes" on page 3-24 for more information about
typecodes, such as the OCI_TYPCODE values returned in the
OCI_ATTR_TYPECODE attribute and the SQLT typecodes returned
in the OCI_ATTR_DATA_TYPE attribute

Describing Types

In order to describe type objects, it is necessary to initialize the OCI process in object
mode:

/* Initialize the OCI Process */
if (OCIEnvCreate((OCIEnv **) &envhp, (ub4) OCI_OBJECT, (dvoid *) 0,
(dvoid * (*) (dvoid *,size_t)) O,
(dvoid * (*) (dvoid *, dvoid *, size_t)) O,
(void (*) (dvoid *, dvoid *)) 0, (size_t) 0, (dvoid **) 0))
{
printf ("FAILED: OCIEnvCreate()\n");
return OCI_ERROR;
}

See Also: "OClInitialize()" on page 15-22

Note on Implicit and Explicit Describes

The column attribute OCI_ATTR_PRECISION can be returned using an implicit
describe with OCIStmtExecute () and an explicit describe with

OCIDescribeAny (). When using an implicit describe, the precision should be set to
sb2. When using an explicit describe, the precision should be set to ubl for a
placeholder. This is necessary to match the datatype of precision in the dictionary.

Note on OCI_ATTR_LIST_ARGUMENTS

The OCI_ATTR_LIST_ARGUMENTS attribute for type methods represents second-level
arguments for the method.

For example, given the following record my_ type and the procedure my_proc which
takes an argument of type my_type:

my_type record(a number, b char)

Describing Schema Metadata 6-3

Parameter Attributes

my_proc (my_input my_type)

the OCI_ATTR_LIST_ARGUMENTS attribute would apply to arguments a and b of the
my_type record.

Parameter Attributes

A parameter is returned by OCIParamGet (). Parameters can describe different types
of objects or information, and have attributes depending on the type of description
they contain, or type-specific attributes. This section describes the attributes and
handles that belong to different parameters.

Note that OCIDescribeAny () does support more than two name components, for
example, schema. type.attrl.attr2.methodl. Note that with more than one
component, the first component is interpreted as the schema name (unless some other
flag is set). There is a flag to specify that the object must be looked up under PUBLIC,

non

that is, describe "a", where "a" can be either in the current schema or a public synonym.

If you do not know what the object type is, specify OCI_PTYPE_UNK. Otherwise an
error is returned if the actual object type does not match the specified type.

Table 6-1 lists the attributes of all parameters:

Table 6-1 Attributes of All Parameters

Attribute
Attribute Description Datatype
OCI_ATTR_NUM_PARAMS The number of parameters ub2
OCI_ATTR_OBJ_ID Object or schema ID ub4
OCI_ATTR_OBJ_NAME Database name or object name in a schema OraText *
OCI_ATTR_OBJ_SCHEMA Schema name where the object is located OraText *

6-4 Oracle Call Interface Programmer's Guide

Parameter Attributes

Table 6-1 (Cont.) Attributes of All Parameters

Attribute
Attribute Description Datatype
OCI_ATTR_PTYPE Type of information described by the parameter. Possible values: ubl

OCI_PTYPE_TABLE - table

OCI_PTYPE_VIEW - view

OCI_PTYPE_PROC - procedure

OCI_PTYPE_FUNC - function

OCI_PTYPE_PKG - package

OCI_PTYPE_TYPE - type

OCI_PTYPE_TYPE_ATTR - attribute of a type
OCI_PTYPE_TYPE_COLL - collection type information
OCI_PTYPE_TYPE METHOD - method of a type
OCI_PTYPE_SYN - synonym

OCI_PTYPE_SEQ - sequence

OCI_PTYPE_COL - column of a table or view
OCI_PTYPE_ARG - argument of a function or procedure
OCI_PTYPE_TYPE_ ARG - argument of a type method
OCI_PTYPE_TYPE_RESULT - results of a method

OCI_PTYPE_LIST - column list for tables and views, argument list for
functions and procedures, or subprogram list for packages.

OCI_PTYPE_SCHEMA - schema
OCI_PTYPE_DATABASE - database
OCI_PTYPE_UNK - unknown schema object

OCI_ATTR_TIMESTAMP The timestamp of the object on which the description is based in Oracle ubl *
date format

The following sections list the attributes and handles specific to different types of
parameters.

Table or View Parameters

Parameters for a table or view (type OCI_PTYPE_TABLE or OCI_PTYPE_VIEW) have
the following type-specific attributes:

Table 6-2 Attributes of Tables or Views

Attribute Description Attribute Datatype
OCI_ATTR_OBJID Object id ub4
OCI_ATTR_NUM_COLS Number of columns ub2
OCI_ATTR_LIST_COLUMNS Column list (type OCI_PTYPE_LIST) dvoid *
OCI_ATTR_REF_TDO REEF to the TDO of the base type in case of OCIRef*

extent tables

Describing Schema Metadata 6-5

Parameter Attributes

Table 6-2 (Cont.) Attributes of Tables or Views

Attribute Description Attribute Datatype
OCI_ATTR_IS_TEMPORARY Indicates the table is temporary ubl
OCI_ATTR_IS_TYPED Indicates the table is typed ubl
OCI_ATTR_DURATION Duration of a temporary table. Values canbe: =~ 0CIDuration

OCI_DURATION_SESSION - session
OCI_DURATION_TRANS - transaction
OCI_DURATION_NULL -table not temporary

The following are additional attributes which belong to tables:

Table 6-3 Attributes Specific to Tables

Attribute Description Attribute Datatype
OCI_ATTR_RDBA Data block address of the segment header ub4
OCI_ATTR_TABLESPACE Tablespace the table resides in word
OCI_ATTR_CLUSTERED Indicates the table is clustered ubl
OCI_ATTR_PARTITIONED Indicates the table is partitioned ubl
OCI_ATTR_INDEX_ ONLY Indicates the table is index-only ubl

Procedure, Function, Subprogram Attributes

When a parameter is for a procedure or function (type OCI_PTYPE_PROC or
OCI_PTYPE_FUNC), it has the following type specific attributes:

Table 6—-4 Attribute of Procedures or Functions

Attribute Description Attribute Datatype
OCI_ATTR_LIST_ARGUMENTS Argument list. See "List Attributes" on dvoid *

page 6-14.
OCI_ATTR_IS_INVOKER_RIGHTS Indicates the procedure or function has ubl

invoker's rights

The following attributes are defined only for package subprograms:

Table 6-5 Attributes Specific to Package Subprograms

Attribute Description Attribute Datatype
OCI_ATTR_NAME Name of the procedure or function OraText *
OCI_ATTR_OVERLOAD_ID Overloading ID number (relevant in case the ~ ub2

procedure or function is part of a package and
is overloaded). Values returned may be
different from direct query of a PL/SQL
function or procedure.

Package Attributes

When a parameter is for a package (type OCI_PTYPE_PKG), it has the following type
specific attributes:

6-6 Oracle Call Interface Programmer's Guide

Parameter Attributes

Table 6—6 Attributes of Packages

Attribute Description Attribute Datatype
OCI_ATTR_LIST_SUBPROGRAMS Subprogram list. See "List Attributes" on dvoid *
page 6-14.
OCI_ATTR_IS_INVOKER_RIGHTS Is the package invoker's rights? ubl
Type Attributes

When a parameter is for a type (type OCI_PTYPE_TYPE), it has the attributes listed in
Table 6-7. These attributes are only valid if the application initialized the OCI process
in OCI_OBJECT modeinacallto OCIInitialize().

Table 6-7 Attributes of Types

Attribute

Attribute Description Datatype
OCI_ATTR_REF_TDO Returns the in-memory REF of the type OCIRef *

descriptor object for the type, if the column

type is an object type. If space has not been

reserved for the OCIRef, then it is allocated

implicitly in the cache. The caller can then

pin the TDO with 0CIObjectPin().
OCI_ATTR_TYPECODE Typecode. See "Datatype Codes" on 0CITypeCode

page 6-3. Currently can be only

OCI_TYPECODE_OBJECT or

OCI_TYPECODE_NAMEDCOLLECTION.
OCI_ATTR_COLLECTION_TYPECODE Typecode of collection if type is collection; O0CITypeCode

invalid otherwise. See "Datatype Codes" on

page 6-3. Currently can be only

OCI_TYPECODE_VARRAY oOr

OCI_TYPECODE_TABLE. Error is returned

if this attribute is queried for non-collection

type.
OCI_ATTR_IS_INCOMPLETE_TYPE Indicates this is an incomplete type ubl
OCI_ATTR_IS_SYSTEM_TYPE Indicates this is a system type ubl
OCI_ATTR_IS_PREDEFINED_TYPE Indicates this is a predefined type ubl
OCI_ATTR_IS_TRANSIENT_TYPE Indicates this is a transient type ubl
OCI_ATTR_IS_SYSTEM_GENERATED_TYPE Indicates this is a system-generated type ubl
OCI_ATTR_HAS_NESTED_TABLE This type contains a nested table attribute ~ ubl
OCI_ATTR_HAS_LOB This type contains a LOB attribute ubl
OCI_ATTR_HAS_FILE This type contains a BFILE attribute ubl
OCI_ATTR_COLLECTION_ELEMENT Handle to collection element. See dvoid *

"Collection Attributes" on page 6-10.
OCI_ATTR_NUM_TYPE_ATTRS Number of type attributes ub2
OCI_ATTR_LIST_TYPE_ATTRS List of type attributes. See "List Attributes" dvoid *

on page 6-14.
OCI_ATTR_NUM_TYPE_METHODS Number of type methods ub2
OCI_ATTR_LIST_TYPE_METHODS List of type methods. See "List Attributes” dvoid *

on page 6-14.

Describing Schema Metadata 6-7

Parameter Attributes

Table 6-7 (Cont.) Attributes of Types

Attribute
Attribute Description Datatype
OCI_ATTR_MAP_METHOD Map method of type. See "Type Method dvoid *
Attributes" on page 6-9.
OCI_ATTR_ORDER_METHOD Order method of type. See "Type Method ~ dvoid *
Attributes” on page 6-9.
OCI_ATTR_IS_INVOKER_RIGHTS Indicates the type has invoker's rights ubl
OCI_ATTR_NAME A pointer to a string which is the type OraText *
attribute name
OCI_ATTR_SCHEMA_NAME A string with the schema name where the = OraText *
type has been created
OCI_ATTR_IS_FINAL_TYPE Indicates this is a final type ubl
OCI_ATTR_IS_INSTANTIABLE_TYPE Indicates this is an instantiable type ubl
OCI_ATTR_IS_SUBTYPE Indicates this is a subtype ubl
OCI_ATTR_SUPERTYPE_SCHEMA_NAME Name of the schema that contains the OraText *
supertype
OCI_ATTR_SUPERTYPE_NAME Name of the supertype OraText *

Type Attribute Attributes

When a parameter is for an attribute of a type (type OCI_PTYPE_TYPE_ATTR), it has
the attributes listed in Table 6-8.

Table 6-8 Attributes of Type Attributes

Attribute Description Attribute Datatype
OCI_ATTR_DATA_SIZE The maximum size of the type attribute. This ubd

length is returned in bytes and not characters for

strings and raws. It returns 22 for NUMBERS.
OCI_ATTR_TYPECODE Typecode. See "Datatype Codes" on page 6-3. 0CITypeCode
OCI_ATTR_DATA_TYPE The datatype of the type attribute. See "Datatype ub2

Codes" on page 6-3.
OCI_ATTR_NAME A pointer to a string which is the type attribute =~ OraText *

name

OCI_ATTR_PRECISION The precision of numeric type attributes. If the ubl for explicit

precision is nonzero and scale is -127, thenitisa describe
FLOAT, else it is a NUMBER (precision, sb2 for implicit
scale). For th_e case when precision is 0, describe
NUMBER (precision, scale) canbe
represented simply as NUMBER.
OCI_ATTR_SCALE The scale of numeric type attributes. If the sbl

precision is nonzero and scale is -127, then it is a
FLOAT, else it is a NUMBER (precision,
scale). For the case when precision is 0,
NUMBER (precision, scale) canbe
represented simply as NUMBER.

6-8 Oracle Call Interface Programmer's Guide

Parameter Attributes

Table 6-8 (Cont.) Attributes of Type Attributes

Attribute

Description

Attribute Datatype

OCI_ATTR_TYPE_NAME

OCI_ATTR_SCHEMA_NAME

OCI_ATTR_REF_TDO

OCI_ATTR_CHARSET_ID

OCI_ATTR_CHARSET_FORM

OCI_ATTR_FSPRECISION

OCI_ATTR_LFPRECISION

A string which is the type name. The returned
value will contain the type name if the datatype
is SQLT_NTY or SQLT_REF. If the datatype is
SQLT_NTY, the name of the named datatype's
type is returned. If the datatype is SQLT_REF, the
type name of the named datatype pointed to by
the REF is returned

Returns the in-memory REF of the TDO for the
type, if the column type is an object type. If space
has not been reserved for the OCIRef, then itis
allocated implicitly in the cache. The caller can
then pin the TDO with OCIObjectPin ().

OraText *

A string with the schema name under which the = OraText *
type has been created

OCIRef *

The character set id, if the type attribute is of a ub2
string/character type

The character set form, if the type attribute isof a ubl
string /character type

The fractional seconds precision of a datetime or ubl
interval.

The leading field precision of an interval. ubl

Type Method Attributes

When a parameter is for a method of a type (type OCI_PTYPE_TYPE_ METHOD), it has
the attributes listed in Table 6-9.

Table 6-9 Attributes of Type Methods

Attribute

Description

Attribute Datatype

OCI_ATTR_NAME

OCI_ATTR_ENCAPSULATION

OCI_ATTR_LIST_ARGUMENTS

OCI_ATTR_IS_CONSTRUCTOR
OCI_ATTR_IS_DESTRUCTOR
OCI_ATTR_IS_OPERATOR
OCI_ATTR_IS_SELFISH
OCI_ATTR_IS_MAP
OCI_ATTR_TIS_ORDER

OCI_ATTR_IS_RNDS

OCI_ATTR_IS_RNPS

Name of method (procedure or function) OraText *

Encapsulation level of the method (either =~ 0CITypeEncap

OCI_TYPEENCAP_PRIVATE or
OCI_TYPEENCAP_PUBLIC)

Argument list. See "Note on dvoid *
OCI_ATTR_LIST_ARGUMENTS" on

page 6-3, and "List Attributes" on

page 6-14.

Indicates method is a constructor ubl
Indicates method is a destructor ubl
Indicates method is an operator ubl
Indicates method is selfish ubl
Indicates method is a map method ubl
Indicates method is an order method ubl

Indicates "Read No Data State" is set for ubl

method

Indicates "Read No Process State" is set for ubl

method

Describing Schema Metadata 6-9

Parameter Attributes

Table 6-9 (Cont.) Attributes of Type Methods

Attribute

Description

Attribute Datatype

OCI_ATTR_IS_WNDS

OCI_ATTR_IS_WNPS

OCI_ATTR_IS_FINAL_METHOD

Indicates "Write No Data State" is set for
method

Indicates "Write No Process State" is set for
method

Indicates this is a final method

OCI_ATTR_IS_INSTANTIABLE_METHOD Indicates this is an instantiable method

OCI_ATTR_IS_OVERRIDING_METHOD

Indicates this is an overriding method

ubl

ubl

ubl
ubl
ubl

Collection Attributes

When a parameter is for a collection type (type OCI_PTYPE_COLL), it has the
attributes listed in Table 6-10.

Table 6—-10 Attributes of Collection Types

Attribute

Description

Attribute Datatype

OCI_ATTR_DATA_SIZE

OCI_ATTR_TYPECODE

OCI_ATTR_DATA_TYPE

OCI_ATTR_NUM_ELEMS

OCI_ATTR_NAME

OCI_ATTR_PRECISION

OCI_ATTR_SCALE

OCI_ATTR_TYPE_NAME

OCI_ATTR_SCHEMA_NAME

The maximum size of the type attribute. This
length is returned in bytes and not characters for
strings and raws. It returns 22 for NUMBERS.

Typecode. See "Datatype Codes" on page 6-3.

The datatype of the type attribute. See "Datatype
Codes" on page 6-3.

The number of elements in an array. It is only
valid for collections that are arrays

A pointer to a string which is the type attribute
name

The precision of numeric type attributes. If the
precision is nonzero and scale is -127, then itis a
FLOAT, else it is a NUMBER (precision,
scale). For the case when precision is 0,
NUMBER (precision, scale) canbe
represented simply as NUMBER.

The scale of numeric type attributes. If the
precision is nonzero and scale is -127, then itis a
FLOAT, else it is a NUMBER (precision,
scale). For the case when precision is 0,
NUMBER (precision, scale) canbe
represented simply as NUMBER.

A string which is the type name. The returned
value will contain the type name if the datatype
is SQLT_NTY or SQLT_REF. If the datatype is
SQLT_NTY, the name of the named datatype's
type is returned. If the datatype is SQLT_REF, the
type name of the named datatype pointed to by
the REF is returned

A string with the schema name under which the
type has been created

6-10 Oracle Call Interface Programmer's Guide

ub4d

0OCITypeCode

ub2

ub4d

OraText *

ubl for explicit
describe
sb2 for implicit
describe

sbl

OraText *

OraText *

Parameter Attributes

Table 6-10 (Cont.) Attributes of Collection Types

Attribute

Description

Attribute Datatype

OCI_ATTR_REF_TDO

OCI_ATTR_CHARSET_ID

OCI_ATTR_CHARSET FORM

Returns the in-memory REF of the TDO for the
type, if the column type is an object type. If space
has not been reserved for the OCIRef, then it is
allocated implicitly in the cache. The caller can
then pin the TDO with OCIObjectPin().

The character set id, if the type attribute is of a
string /character type

The character set form, if the type attribute is of a
string/character type

OCIRef *

ub2

ubl

Synonym Attributes

When a parameter is for a synonym (type OCI_PTYPE_SYN), it has the attributes listed
in Table 6-11.

Table 6-11 Attributes of Synonyms
Attribute Description Attribute Datatype
OCI_ATTR_OBJID Object id ubd
OCI_ATTR_SCHEMA_NAME A string containing the schema name of the OraText *
synonym translation
OCI_ATTR_NAME A NULL-terminated string containing the object OraText *
name of the synonym translation
OCI_ATTR_LINK A NULL-terminated string containing the database = OraText *

link name of the synonym translation

Sequence Attributes

When a parameter is for a sequence (type OCI_PTYPE_SEQ), it has the attributes listed
in Table 6-12.

Table 6-12 Attributes of Sequences

Attribute

Description

Attribute Datatype

OCI_ATTR_OBJID
OCI_ATTR_MIN
OCI_ATTR_MAX
OCI_ATTR_INCR

OCI_ATTR_CACHE

OCI_ATTR_ORDER

OCI_ATTR_HW_MARK

Object id

Minimum value (in Oracle NUMBER format)
Maximum value (in Oracle NUMBER format)
Increment (in Oracle NUMBER format)

Number of sequence numbers cached; zero if
the sequence is not a cached sequence (in
Oracle NUMBER format)

Whether the sequence is ordered

High-water mark (in NUMBER format)

ub4

ubl *
ubl*
ubl *
ubl *

ubl
ubl *

See Also: "OCINumber Examples" on page 11-10

Describing Schema Metadata 6-11

Parameter Attributes

Column Attributes

Note: For BINARY_FLOAT and BINARY_DOUBLE:

If ocIDescribeAny () is used to retrieve the column datatype
(OCI_ATTR_DATA_ TYPE) for BINARY_ FLOAT or BINARY_ DOUBLE
columns in a table, it returns the internal datatype code.

The SQLT codes corresponding to the internal datatype codes for
BINARY_ FLOAT and BINARY_DOUBLE are SQLT_IBFLOAT and
SQLT_IBDOUBLE.

When a parameter is for a column of a table or view (type OCI_PTYPE_COL), it has the
attributes listed in Table 6-13.

Table 6-13 Attributes of Columns of Tables or Views

Attribute Description Attribute Datatype

OCI_ATTR_CHAR_USED Returns the type of length semantics of the ub4
column. 0 means byte-length semantics and 1
means character-length semantics. See
"Character Length Semantics Support in
Describing" on page 6-18.

OCI_ATTR_CHAR_SIZE Returns the column character length whichis ub2
the number of characters allowed in the
column. It is the counterpart of
OCI_ATTR_DATA_SIZE which gets the byte
length. See "Character Length Semantics
Support in Describing" on page 6-18.

OCI_ATTR_DATA_ SIZE The maximum size of the column. This length ~ ub4
is returned in bytes and not characters for
strings and raws. It returns 22 for NUMBERS.

OCI_ATTR_DATA_ TYPE The datatype of the column. See "Datatype ub2
Codes" on page 6-3.
OCI_ATTR_NAME A pointer to a string which is the column name OraText *
OCI_ATTR_PRECISION The precision of numeric columns. If the ubl for explicit
precision is nonzero and scale is -127, then itis describe
a FLOAT, else it is a NUMBER (precision, sb2 for implicit

scale). For the case when precision is 0,
NUMBER (precision, scale) canbe
represented simply as NUMBER.

describe

OCI_ATTR_SCALE The scale of numeric columns. If the precision sbl
is nonzero and scale is -127, then it is a FLOAT,
else it is a NUMBER(precision, scale). For the
case when precision is 0,
NUMBER (precision, scale) canbe
represented simply as NUMBER.

OCI_ATTR_IS_NULL Returns 0 if null values are not permitted for ubl
the column

OCI_ATTR_TYPE_NAME Returns a string which is the type name. The OraText *
returned value will contain the type name if
the datatype is SQLT_NTY or SQLT_REF. If the
datatype is SQLT_NTY, the name of the named
datatype's type is returned. If the datatype is
SQLT_REF, the type name of the named
datatype pointed to by the REF is returned

6-12 Oracle Call Interface Programmer's Guide

Parameter Attributes

Table 6-13 (Cont.) Attributes of Columns of Tables or Views

Attribute

Description

Attribute Datatype

OCI_ATTR_SCHEMA_NAME

OCI_ATTR_REF_TDO

OCI_ATTR_CHARSET ID

OCI_ATTR_CHARSET_FORM

Returns a string with the schema name under

which the type has been created

OraText *

The REF of the TDO for the type, if the column 0CIRef *

type is an object type

The character set id, if the column is of a
string /character type

The character set form, if the column is of a
string / character type

ub2

ubl

Argument and Result Attributes

When a parameter is for an argument of a procedure or function (type
OCI_PTYPE_ARG), for a type method argument (type OCI_PTYPE_TYPE_ARG) or for
method results (type OCI_PTYPE_TYPE_RESULT), it has the attributes listed in

Table 6-14.

Table 6-14 Attributes of Arguments and Results

Attribute

Description

Attribute Datatype

OCI_ATTR_NAME

OCI_ATTR_POSITION

OCI_ATTR_TYPECODE

OCI_ATTR_DATA_TYPE

OCI_ATTR_DATA_SIZE

OCI_ATTR_PRECISION

OCI_ATTR_SCALE

OCI_ATTR_LEVEL

OCI_ATTR_HAS_DEFAULT

OCI_ATTR_LIST_ARGUMENTS

Returns a pointer to a string which is the
argument name

The position of the argument in the argument
list. Always returns zero.

Typecode. See "Datatype Codes" on page 6-3.

The datatype of the argument. See "Datatype
Codes" on page 6-3.

The size of the datatype of the argument. This
length is returned in bytes and not characters
for strings and raws. It returns 22 for
NUMBERS.

The precision of numeric arguments. If the
precision is nonzero and scale is -127, then it
is a FLOAT, else it is a NUMBER (precision,
scale). For the case when precision is 0,
NUMBER (precision, scale) canbe
represented simply as NUMBER.

The scale of numeric arguments. If the
precision is nonzero and scale is -127, then it
is a FLOAT, else it is a NUMBER (precision,
scale). For the case when precision is 0,
NUMBER (precision, scale) canbe
represented simply as NUMBER.

The datatype levels. This attribute always
returns zero.

Indicates whether an argument has a default

The list of arguments at the next level (when
the argument is of a record or table type).

OraText *
ub?2

OCITypeCode

ub2

ub4

b1 for explicit describe

sb2 for implicit
describe

sbl

ub?2

ubl

dvoid *

Describing Schema Metadata 6-13

Parameter Attributes

Table 6-14 (Cont.) Attributes of Arguments and Results

Attribute Description Attribute Datatype

OCI_ATTR_IOMODE Indicates the argument mode: OCITypeParamMode
0is IN (OCI_TYPEPARAM_IN),
1is OUT (OCI_TYPEPARAM OUT),
2is IN/OUT (OCI_TYPEPARAM INOUT)

OCI_ATTR_RADIX Returns a radix (if number type) ubl
OCI_ATTR_IS_NULL Returns 0 if null values are not permitted for ubl

the column
OCI_ATTR_TYPE_NAME Returns a string which is the type name, or OraText *

the package name in the case of package local
types. The returned value will contain the
type name if the datatype is SQLT_NTY or
SQLT_REE. If the datatype is SQLT_NTY, the
name of the named datatype's type is
returned. If the datatype is SQLT_REEF, the
type name of the named datatype pointed to
by the REF is returned.

OCI_ATTR_SCHEMA_NAME For SQLT_NTY or SQLT_REEF, returns a string OraText *
with the schema name under which the type
was created, or under which the package was
created in the case of package local types

OCI_ATTR_SUB_NAME For SQLT_NTY or SQLT_REF, returns a string OraText *
with the type name, in the case of package
local types

OCI_ATTR_LINK For SQLT_NTY or SQLT_REEF, returns a string OraText *

with the database link name of the database
on which the type exists. This can happen
only in the case of package local types, when
the package is remote.

OCI_ATTR_REF_TDO Returns the REF of the TDO for the type, if OCIRef *
the argument type is an object

OCI_ATTR_CHARSET_ID Returns the character set ID if the argumentis ub2
of a string/character type

OCI_ATTR_CHARSET FORM Returns the character set form if the ubl
argument is of a string/character type

List Attributes

When a parameter is for a list of columns, arguments, or subprograms (type
OCI_PTYPE_LIST), it has the following type specific attributes and handles
(parameters):

The list has an OCI_ATTR_LIST_TYPE attribute which designates the list type. The
possible values and their lower bounds when traversing the list are:

Table 6-15 List Attributes

List Attribute Description Lower Bound
OCI_LTYPE_COLUMN Column list 1
OCI_LTYPE_ARG_PROC Procedure argument list 1
OCI_LTYPE_ARG_FUNC Function argument list 0
OCI_LTYPE_SUBPRG Subprogram list 0

6-14 Oracle Call Interface Programmer's Guide

Parameter Attributes

Table 6-15 (Cont.) List Attributes

List Attribute Description Lower Bound
OCI_LTYPE_TYPE ATTR Type attribute list 1
OCI_LTYPE_TYPE_METHOD Type method list 1
OCI_LTYPE_TYPE_ARG_PROC Type method without result argument list 0
OCI_LTYPE_TYPE_ARG_FUNC Type method without result argument list 1
OCI_LTYPE_SCH_OBJ Object list within a schema 0
OCI_LTYPE_DB_SCH Schema list within a database 0

s Thelist has an OCI_ATTR_NUM_PARAMS attribute, which tells the number of
elements in the list.

s Each list has LowerBound .. OCI_ATTR_NUM_PARAMS parameters. LowerBound
is the value in the Lower Bound column of Table 6-15, " List Attributes". In the
case of a function argument list, position 0 has a parameter for the return value
(type OCI_PTYPE_ARG).

Schema Attributes

When a parameter is for a schema type (type OCI_PTYPE_SCHEMA), it has the
attributes listed in Table 6-16:

Table 6-16 Attributes Specific to Schemas

Attribute Description Attribute Datatype
OCI_ATTR_LIST_ OBJECTS List of objects in the schema OraText *
Database Attributes

When a parameter is for a database type (type OCI_PTYPE_DATABASE), it has the
attributes listed in Table 6-17:

Table 6-17 Attributes Specific to Databases

Attribute Description Attribute Datatype
OCI_ATTR_VERSION Database version OraText *
OCI_ATTR_CHARSET ID Database character set Id from the server ub2
handle
OCI_ATTR_NCHARSET ID Database character set Id from the server — ub2
handle
OCI_ATTR_LIST_ SCHEMAS List of schemas (type ubl
OCI_PTYPE_SCHEMA) in the database
OCI_ATTR_MAX_PROC_LEN Maximum length of a procedure name ub4
OCI_ATTR_MAX_ COLUMN_LEN Maximum length of a column name ub4

Describing Schema Metadata 6-15

Parameter Attributes

Table 6-17 (Cont.) Attributes Specific to Databases

Attribute Description Attribute Datatype
OCI_ATTR_CURSOR_COMMIT_BEHAVIOR How a COMMIT operation affects cursors ubl

and prepared statements in the database.

Values are:

OCI_CURSOR_OPEN - preserve cursor state
as before the commit operation

OCI_CURSOR_CLOSED - cursors are closed
on COMMIT, but the application can still
re-execute the statement without
re-preparing it

OCI_ATTR_MAX_CATALOG_NAMELEN Maximum length of a catalog (database) ubl
name
OCI_ATTR_CATALOG_LOCATION Position of the catalog in a qualified table. ubl

Values are OCI_CL_START and
OCI_CL_END

OCI_ATTR_SAVEPOINT_SUPPORT Does database support savepoints? Values ubl
are OCI_SP_SUPPORTED and
OCI_SP_UNSUPPORTED

OCI_ATTR_NOWAIT_ SUPPORT Does database support the nowait clause? ubl
Values are OCI_NW_SUPPORTED and
OCI_NW_UNSUPPORTED

OCI_ATTR_AUTOCOMMIT_DDL Is autocommit mode required for DDL ubl
statements? Values are OCI_AC_DDL and
OCI_NO_AC_DDL

OCI_ATTR_LOCKING_MODE Locking mode for the database. Values are ubl
OCI_LOCK_IMMEDIATE and
OCI_LOCK_DELAYED

Rule Attributes

When a parameter is for a rule (type OCI_PTYPE_RULE), it has the attributes listed in
Table 6-18:

Table 6-18 Attributes Specific to Rules

Attribute Description Attribute Datatype
OCI_ATTR_CONDITION Rule condition OraText *
OCI_ATTR_EVAL_CONTEXT_ OWNER Owner name of evaluation context associated OraText *

with the rule, if any

OCI_ATTR_EVAL_CONTEXT_NAME Object name of evaluation context associated OraText *
with the rule, if any

OCI_ATTR_COMMENT Comment associated with the rule, if any OraText *

OCI_ATTR_LIST ACTION_CONTEXT List of name value pairs in the action context ~ dvoid *
(type OCI_PTYPE_LIST)

Rule Set Attributes

When a parameter is for a rule set (type OCI_PTYPE_RULE_SET), it has the attributes
listed in Table 6-19:

6-16 Oracle Call Interface Programmer's Guide

Parameter Attributes

Table 6-19 Attributes Specific to Rule Sets

Attribute Description Attribute Datatype
OCI_ATTR_EVAL_CONTEXT_OWNER Owner name of evaluation context associated OraText *

with the rule set, if any
OCI_ATTR_EVAL_CONTEXT_NAME Object name of evaluation context associated =~ OraText *

with the rule set, if any
OCI_ATTR_COMMENT Comment associated with the rule set, if any OraText *
OCI_ATTR_LIST_RULES List of rules in the rule set (type dvoid *

OCI_PTYPE_LIST)

Evaluation Context Attributes

When a parameter is for an evaluation context (type
OCI_PTYPE_EVALUATION_CONTEXT), it has the attributes listed in Table 6-20:

Table 6-20 Attributes Specific to Evaluation Contexts

Attribute Description Attribute Datatype

OCI_ATTR_EVALUATION_FUNCTION Evaluation function associated with the OraText *
evaluation context, if any

OCI_ATTR_COMMENT Comment associated with the evaluation OraText *
context, if any

OCI_ATTR_LIST_TABLE_ ALIASES List of table aliases in the evaluation context dvoid *
(type OCI_PTYPE_LIST)

OCI_ATTR_LIST_VARIABLE_TYPES List of variable types in the evaluation context ~ dvoid *
(type OCI_PTYPE_LIST)

Table Alias Attributes

When a parameter is for a table alias (type OCI_PTYPE_TABLE_ALIAS), it has the
attributes listed in Table 6-21:

Table 6-21 Attributes Specific to Table Aliases

Attribute Description Attribute Datatype
OCI_ATTR_NAME Table alias name OraText *
OCI_ATTR_TABLE_NAME Table name associated with the alias OraText *
Variable Type Attributes

When a parameter is for a variable (type OCI_PTYPE_VARIABLE_TYPE), it has the
attributes listed in Table 6-22:

Table 6-22 Attributes Specific to Variable Types

Attribute
Attribute Description Datatype
OCI_ATTR_NAME Variable name OraText *
OCI_ATTR_TYPE Variable type OraText *
OCI_ATTR_VAR_VALUE_FUNCTION Variable value function associated with the OraText *

variable, if any

Describing Schema Metadata 6-17

Character Length Semantics Support in Describing

Table 6-22 (Cont.) Attributes Specific to Variable Types

Attribute
Attribute Description Datatype
OCI_ATTR_VAR_METHOD_FUNCTION Variable method function associated with the OraText *

variable, if any

Name Value Attributes

When a parameter is for a name value pair (type OCI_PTYPE_NAME_VALUE), it has
the attributes listed in Table 6-23:

Table 6-23 Attributes Specific to Name Value Pair

Attribute Description Attribute Datatype
OCI_ATTR_NAME Name OraText *
OCI_ATTR_VALUE Value OCIAnyData*

Character Length Semantics Support in Describing

Since release Oracle9i, query and column information are supported with character
length semantics.

The following attributes of describe handles support character length semantics:

s OCL_ATTR_CHAR_ SIZE gets the column character length, which is the number of
characters allowed in the column. It is the counterpart of OCI_ATTR_DATA_SIZE
that gets the byte length.

» Calling OCIAttrGet () with attribute OCI_ATTR_CHAR_SIZE or
OCI_ATTR_DATA_SIZE does not return data on stored procedure parameters,
because stored procedure parameters are not bounded.

= OCI_ATTR_CHAR_USED gets the type of length semantics of the column. 0 means
byte-length semantics and 1 means character length semantics.

An application can describe a select-list query either implicitly or explicitly through
OCIStmtExecute (). Other schema elements must be described explicitly through
OCIDescribeAny ().

Implicit Describing

If the database column was created using character length semantics, then the implicit
describe information will contain the character length, the byte length, and a flag
indicating how the database column was created. OCI_ATTR_CHAR_SIZE is the
character length of the column or expression. The OCI_ATTR_CHAR_USED flagis 1 in
this case, indicating that the column or expression was created with character length
semantics.

The OCI_ATTR_DATA_SIZE value will be always large enough to hold all the data, as
many as OCI_ATTR_CHAR_SIZE number of characters. The OCI_ATTR_DATA_SIZE
will be usually set to (OCI_ATTR_CHAR_SIZE)*(the client's max bytes) for each
character value.

If the database column was created with byte length semantics, then the implicit
describe will behave exactly as it does before release 9.0. That is, the
OCI_ATTR_DATA_SIZE value returned will be (column's byte length)*(the maximum
conversion ratio between the client and server's character set), that is, column byte
length divided by the server's max bytes for each character multiplied by the client's

6-18 Oracle Call Interface Programmer's Guide

Examples Using OCIDescribeAny()

max bytes for each character. The OCI_ATTR_CHAR_USED value is 0 and the
OCI_ATTR_CHAR_SIZE value will be set to the same value as
OCI_ATTR_DATA_SIZE

Explicit Describing
Explicit describes of tables will have the following attributes:

= OCI_ATTR_DATA_SIZE that gets the column's size in bytes, as it appears in the
server

s thelength in characters in OCI_ATTR_CHAR_SIZE
» aflag OCI_ATTR_CHAR_USED that indicates how the column was created

When inserting, if the OCI_ATTR_CHAR_USED flag is set, you can set the
OCI_ATTR_MAXCHAR_SIZE in the bind handle to the value returned by
OCI_ATTR_CHAR_SIZE in the parameter handle. This will prevent you from violating
the size constraint for the column.

See Also: "IN Binds" on page 5-25

Client and Server Compatibility Issues for Describing

When an Oracle9i or later client talks to an Oracle8i or earlier server, it will behave as
if the database is only using byte length semantics;

When an Oracle8i or earlier client talks to a Oracle9i or later server, the attributes
OCI_ATTR_CHAR_SIZE and OCI_ATTR_CHAR_USED are not available on the client
side.

In both cases, the character length semantics cannot be described when either the
server or client has an Oracle8i or earlier software release.

Examples Using OClIDescribeAny()

The following examples demonstrate the use of 0OCIDescribeAny () for describing
different types of schema objects. For a more detailed code sample, see the
demonstration program cdemodsa. ¢ included with your Oracle installation.

See Also: For additional information on the demonstration
programs, see Appendix B, "OCI Demonstration Programs"

Retrieving Column Datatypes for a Table

This example illustrates the use of an explicit describe that retrieves the column

datatypes for a table.

int 1=0;

text objptr[] = "EMPLOYEES"; /* the name of a table to be described */
ub2 numcols, col_width;

ubl char_semantics;

ub2 coltyp;

ub4 objp_len = (ub4) strlen((char *)objptr);

OCIParam *parmh = (OCIParam *) 0; /* parameter handle */
OCIParam *collsthd = (OCIParam *) O0; /* handle to list of columns */
OCIParam *colhd = (OCIParam *) O0; /* column handle */
OCIDescribe *dschp = (OCIDescribe *)O0; /* describe handle */

OCIHandleAlloc ((dvoid *)envhp, (dvoid **)&dschp,

Describing Schema Metadata 6-19

Examples Using OCIDescribeAny()

(ub4)OCI_HTYPE_DESCRIBE, (size_t)0, (dvoid **)0);

/* get the describe handle for the table */
if (OCIDescribeAny (svch, errh, (dvoid *)objptr, objp_len, OCI_OTYPE NAME, 0,
OCI_PTYPE_TABLE, dschp))
return OCI_ERROR;

/* get the parameter handle */
if (OCIAttrGet((dvoid *)dschp, OCI_HTYPE_DESCRIBE, (dvoid *)é&parmh, (ub4 *)O0,
OCI_ATTR_PARAM, errh))
return OCI_ERROR;

/* The type information of the object, in this case, OCI_PTYPE_TABLE,
is obtained from the parameter descriptor returned by the OCIAttrGet(). */
/* get the number of columns in the table */
numcols = 0;
if (OCIAttrGet((dvoid *)parmh, OCI_DTYPE_PARAM, (dvoid *)&numcols, (ub4 *)O0,
OCI_ATTR_NUM_COLS, errh))
return OCI_ERROR;

/* get the handle to the column list of the table */
if (OCIAttrGet((dvoid *)parmh, OCI_DTYPE_PARAM, (dvoid *)&collsthd, (ub4 *)O0,
OCI_ATTR_LIST_COLUMNS, errh)==0CI_NO_DATA)
return OCI_ERROR;

/* go through the column list and retrieve the data-type of each column,
and then recursively describe column types. */

for (1 = 1; 1 <= numcols; 1i++)
{
/* get parameter for column i */
if (OCIParamGet ((dvoid *)collsthd, OCI_DTYPE PARAM, errh, (dvoid **)&colhd,
(ubd)i))
return OCI_ERROR;

/* for example, get datatype for ith column */
coltyp = 0;
if (OCIAttrGet((dvoid *)colhd, OCI_DTYPE_PARAM, (dvoid *)&coltyp, (ub4 *)O0,
OCI_ATTR_DATA TYPE, errh))
return OCI_ERROR;

/* Retrieve the length semantics for the column */

char_semantics = 0;

OCIAttrGet ((dvoid*) colhd, (ub4) OCI_DTYPE_ PARAM,
(dvoid*) &char_semantics, (ub4 *) 0, (ub4) OCI_ATTR_CHAR_USED,
(OCIError *) errh);

col_width = 0;
if (char_semantics)
/* Retrieve the column width in characters */
OCIAttrGet ((dvoid*) colhd, (ub4) OCI_DTYPE_ PARAM,
(dvoid*) &col_width, (ub4 *) 0, (ub4) OCI_ATTR_CHAR_SIZE,
(OCIError *) errh);
else
/* Retrieve the column width in bytes */
OCIAttrGet ((dvoid*) colhd, (ub4) OCI_DTYPE_PARAM,
(dvoid*) &col_width, (ub4 *) 0, (ub4) OCI_ATTR_DATA_SIZE,
(OCIError *) errh);

6-20 Oracle Call Interface Programmer's Guide

Examples Using OCIDescribeAny()

if (dschp)

OCIHandleFree((dvoid *) dschp, OCI_HTYPE_DESCRIBE);

Describing the Stored Procedure

The difference between a procedure and a function is that the latter has a return type
at position 0 in the argument list, while the former has no argument associated with
position 0 in the argument list. The steps required to describe type methods (also
divided into functions and procedures) are identical to that of regular PL/SQL
functions and procedures. Note that procedures and functions can take default types
of objects as arguments. Consider the following procedure:

Pl (argl emp.sal%type, arg2 emp%rowtype)

Assume that each row in emp table has two columns: name (VARCHAR2 (20)), and
sal (NUMBER) . In the argument list for P1, there are two arguments, argl and arg?2,
at positions 1 and 2 respectively at level 0, and arguments name and sal at positions
land 2 respectively at level 1. Description of P1 returns the number of arguments as
two while returning the higher level (> 0) arguments as attributes of the 0 zero level

arguments.

int 1 =0, j = 0;

text objptr[] = "add_job_history";
ub4 objp_len = (ub4)strlen((char *)objptr);
ub2 numargs = 0, numargsl, pos, level;

text *name, *namel;

ub4 namelen, namelenl;
OCIParam *parmh = (OCIParam *)
OCIParam *arglst = (OCIParam *)
OCIParam *arg = (OCIParam *) O0;
OCIParam *arglstl = (OCIParam *)
OCIParam *argl = (OCIParam *) O0;
OCIDescribe *dschp = (OCIDescribe *)O0;

0;
0;

0;

OCIHandleAlloc((dvoid *)envhp, (dvoid **)&dschp,
(ub4)OCI_HTYPE_DESCRIBE, (size_t)O0,

/*
if

get the describe handle for the procedure */
(OCIDescribeAny (svch, errh,

OCI_PTYPE_PROC, dschp))
return OCI_ERROR;

/* get the parameter handle */

/* the name of a procedure to be described */

/* parameter handle */
/* list of args */
/* argument handle */
/* list of args */
/* argument handle */
/* describe handle */

(dvoid **)0);

(dvoid *)objptr, objp_len, OCI_OTYPE_NAME, O,

if (OCIAttrGet((dvoid *)dschp, OCI_HTYPE_DESCRIBE, (dvoid *)&parmh, (ub4 *)O0,
OCI_ATTR_PARAM, errh))

return OCI_ERROR;
/* Get the number of arguments and the arg list */
if (OCIAttrGet((dvoid *)parmh, OCI_DTYPE_PARAM, (dvoid *)é&arglst,

(ub4 *)0, OCI_ATTR_LIST ARGUMENTS, errh))

return OCI_ERROR;

if (OCIAttrGet((dvoid *)arglst, OCI_DTYPE_PARAM, (dvoid *)&numargs, (ub4 *)O0,

OCI_ATTR_NUM_PARAMS, errh))
return OCI_ERROR;
1;

/* For a procedure, we begin with i = for a

function, we begin with 1 = 0. */

Describing Schema Metadata 6-21

Examples Using OCIDescribeAny()

for (i = 1; 1 <= numargs; i++) {
OCIParamGet ((dvoid *)arglst, OCI_DTYPE_PARAM, errh, (dvoid **)&arg, (ub4)i);
namelen = 0;
OCIAttrGet((dvoid *)arg, OCI_DTYPE_PARAM, (dvoid *)&name, (ub4 *)&namelen,
OCI_ATTR_NAME, errh);

/* to print the attributes of the argument of type record
(arguments at the next level), traverse the argument list */

OCIAttrGet ((dvoid *)arg, OCI_DTYPE_PARAM, (dvoid *)&arglstl, (ub4 *)O0,
OCI_ATTR_LIST_ ARGUMENTS, errh);

/* check if the current argument is a record. For argl in the procedure
arglstl is NULL. */

if (arglstl) {
numargsl = 0;
OCIAttrGet((dvoid *)arglstl, OCI_DTYPE_PARAM, (dvoid *)&numargsl, (ub4 *)O0,
OCI_ATTR_NUM_PARAMS, errh);

/* Note that for both functions and procedures, the next higher level
arguments start from index 1. For arg2 in the procedure, the number of
arguments at the level 1 would be 2 */

for (j = 1; j <= numargsl; j++) {
OCIParamGet ((dvoid *)arglstl, OCI_DTYPE_PARAM, errh, (dvoid **)&argl,
(ub4)3);
namelenl = 0;
OCIAttrGet ((
*)&namelenl,
OCI_ATTR_NAME, errh);

void *)argl, OCI_DTYPE_PARAM, (dvoid *)&namel, (ub4

if (dschp)
OCIHandleFree((dvoid *) dschp, OCI_HTYPE_DESCRIBE);

Retrieving Attributes of an Object Type

This example illustrates the use of an explicit describe on a named object type. We
illustrate how you can describe an object by its name or by its object reference
(ocIRef). The following code fragment attempts to retrieve the datatype value of each
of the object type's attributes.

int 1 = 0;

text type_name[] = "inventory typ";
ub4 type_name_len = (ub4)strlen((char *)type_name);

OCIRef *type_ref = (OCIRef *) 0;

ub2 numattrs = 0, describe_by_name = 1;
ub2 datatype = 0;

OCITypeCode typecode = 0;

OCIDescribe *dschp = (OCIDescribe *) 0; /* describe handle */
OCIParam *parmh = (OCIParam *) 0; /* parameter handle */
OCIParam *attrlsthd = (OCIParam *) 0; /* handle to list of attrs */
OCIParam *attrhd = (OCIParam *) 0; /* attribute handle */

6-22 Oracle Call Interface Programmer's Guide

Examples Using OCIDescribeAny()

/* allocate describe handle */
if (OCIHandleAlloc((dvoid *)envh, (dvoid **)&dschp,
(ub4)OCI_HTYPE_DESCRIBE, (size_t)0, (dvoid **)0))
return OCI_ERROR;

/* get the describe handle for the type */
if (describe_by name) {
if (OCIDescribeAny(svch, errh, (dvoid *)type_name, type_name_len,
OCI_OTYPE_NAME, 0, OCI_PTYPE_TYPE, dschp))
return OCI_ERROR;
}
else {
/* get ref to type using OCIAttrGet */

/* get the describe handle for the type */
if (OCIDescribeAny(svch, errh, (dvoid*)type_ref, 0, OCI_OTYPE_REF,
0, OCI_PTYPE_TYPE, dschp))
return OCI_ERROR;

/* get the parameter handle */
if (OCIAttrGet((dvoid *)dschp, OCI_HTYPE_DESCRIBE, (dvoid *)&parmh, (ub4 *)O0,
OCI_ATTR_PARAM, errh))
return OCI_ERROR;

/* The type information of the object, in this case, OCI_PTYPE_TYPE, is
obtained from the parameter descriptor returned by the OCIAttrGet */

/* get the number of attributes in the type */

if (OCIAttrGet((dvoid *)parmh, OCI_DTYPE_PARAM, (dvoid *)&numattrs, (ub4 *)O0,
OCI_ATTR_NUM_TYPE_ATTRS, errh))
return OCI_ERROR;

/* get the handle to the attribute list of the type */
if (OCIAttrGet((dvoid *)parmh, OCI_DTYPE_PARAM, (dvoid *)&attrlsthd, (ub4 *)O0,
OCI_ATTR_LIST TYPE ATTRS, errh))
return OCI_ERROR;

/* go through the attribute list and retrieve the data-type of each attribute,
and then recursively describe attribute types. */

for (i = 1; 1 <= numattrs; i++)

{

/* get parameter for attribute i */

if (OCIParamGet ((dvoid *)attrlsthd, OCI_DTYPE PARAM, errh, (dvoid **)&attrhd, 1))
return OCI_ERROR;

/* for example, get datatype and typecode for attribute; note that
OCI_ATTR_DATA_TYPE returns the SQLT code, while OCI_ATTR_TYPECODE returns the
Oracle Type System typecode. */

datatype = 0;
if (OCIAttrGet((dvoid *)attrhd, OCI_DTYPE_PARAM, (dvoid *)&datatype, (ub4 *)O0,
OCI_ATTR_DATA_ TYPE, errh))
return OCI_ERROR;

typecode = 0;
if (OCIAttrGet((dvoid *)attrhd, OCI_DTYPE_PARAM, (dvoid *)&typecode, (ub4 *)O0,
OCI_ATTR_TYPECODE, errh))
return OCI_ERROR;

Describing Schema Metadata 6-23

Examples Using OCIDescribeAny()

/* if attribute is an object type, recursively describe it */
if (typecode == OCI_TYPECODE_OBJECT)
{

OCIRef *attr_type_ref;

OCIDescribe *nested_dschp;

/* allocate describe handle */

if (OCIHandleAlloc((dvoid *)envh, (dvoid**)&nested_dschp,
(ub4)OCI_HTYPE_DESCRIBE, (size_t)0, (dvoid **)0))
return OCI_ERROR;

if (OCIAttrGet((dvoid *)attrhd, OCI_DTYPE_PARAM,
(dvoid *)&attr_type_ref, (ub4 *)0, OCI_ATTR_REF _TDO,errh))
return OCI_ERROR;

OCIDescribeAny (svch, errh, (dvoid*)attr_type_ref, 0,
OCI_OTYPE_REF, 0, OCI_PTYPE_TYPE, nested_dschp);
/* go on describing the attribute type... */

if (dschp)
OCIHandleFree((dvoid *) dschp, OCI_HTYPE_DESCRIBE);

Retrieving the Collection Element's Datatype of a Named Collection Type
This example illustrates the use of an explicit describe on a named collection type:

text type_name[] = "phone_list_typ";

ub4d type_name_len = (ub4) strlen((char *)type_name);

OCIRef *type_ref = (OCIRef *) 0;

ub2 describe_by name = 1;

ub4 num_elements = 0;

OCITypeCode typecode = 0, collection_typecode = 0, element_typecode = 0;

dvoid *collection_element_parmh = (dvoid *) 0;
OCIDescribe *dschp = (OCIDescribe *) 0; /* describe handle */
OCIParam *parmh = (OCIParam *) 0; /* parameter handle */

/* allocate describe handle */
if (OCIHandleAlloc((dvoid *)envh, (dvoid **)&dschp,
(ub4)OCI_HTYPE_DESCRIBE, (size_t)0, (dvoid **)0))
return OCI_ERROR;

/* get the describe handle for the type */
if (describe_by_name) {
if (OCIDescribeAny(svch, errh, (dvoid *)type_name, type name_len,
OCI_OTYPE_NAME, 0, OCI_PTYPE_TYPE, dschp))
return OCI_ERROR;
}
else {
/* get ref to type using OCIAttrGet */

/* get the describe handle for the type */
if (OCIDescribeAny(svch, errh, (dvoid*)type_ref, 0, OCI_OTYPE_REF,
0, OCI_PTYPE_TYPE, dschp))
return OCI_ERROR;

6-24 Oracle Call Interface Programmer's Guide

Examples Using OCIDescribeAny()

/* get the parameter handle */
if (OCIAttrGet((dvoid *)dschp, OCI_HTYPE_DESCRIBE, (dvoid *)é&parmh, (ub4 *)O0,
OCI_ATTR_PARAM, errh))
return OCI_ERROR;

/* get the Oracle Type System type code of the type to determine that this is a
collection type */
typecode = 0;
if (OCIAttrGet((dvoid *)parmh, OCI_DTYPE_PARAM, (dvoid *)&typecode, (ub4 *)O0,
OCI_ATTR_TYPECODE, errh))
return OCI_ERROR;

/* if typecode is OCI_TYPECODE_NAMEDCOLLECTION,
proceed to describe collection element */
if (typecode == OCI_TYPECODE_NAMEDCOLLECTION)
{
/* get the collection's type: ie, OCI_TYPECODE_VARRAY or OCI_TYPECODE_TABLE */
collection_typecode = 0;
if (OCIAttrGet((dvoid *)parmh, OCI_DTYPE_PARAM, (dvoid *)&collection_typecode,
(ubd *)O0,
OCI_ATTR_COLLECTION TYPECODE, errh))
return OCI_ERROR;

/* get the collection element; you MUST use this to further retrieve information
about the collection's element */
if (OCIAttrGet((dvoid *)parmh, OCI_DTYPE_PARAM, &collection_element_parmh,
(ub4d *)O0,
OCI_ATTR_COLLECTION_ELEMENT, errh))
return OCI_ERROR;
/* get the number of elements if collection is a VARRAY; not valid for nested
tables */
if (collection_typecode == OCI_TYPECODE_VARRAY) ({
if (OCIAttrGet((dvoid *)collection_element_parmh, OCI_DTYPE_ PARAM,
(dvoid *)&num_elements, (ub4 *)0, OCI_ATTR_NUM ELEMS, errh))
return OCI_ERROR;
}
/* now use the collection_element parameter handle to retrieve information about
the collection element */
element_typecode = 0;
if (OCIAttrGet((dvoid *)collection_element_parmh, OCI_DTYPE_PARAM,
(dvoid *)&element_typecode, (ub4 *)0, OCI_ATTR_TYPECODE, errh))
return OCI_ERROR;

/* do the same to describe additional collection element information; this is
very similar to describing type attributes */

if (dschp)
OCIHandleFree((dvoid *) dschp, OCI_HTYPE_DESCRIBE);

Describing with Character Length Semantics

The following sample code shows a loop that retrieves the column names and
datatypes corresponding to a query following query execution. The query was
associated with the statement handle by a prior call to OCIStmtPrepare ().

OCIParam *mypard = (OCIParam *) 0;
ub?2 dtype;

Describing Schema Metadata 6-25

Examples Using OCIDescribeAny()

text *col_name;

ub4 counter, col_name_len, char semantics;
ub2 col_width;

sbd parm_status;

text *sglstmt = (text *)"SELECT * FROM employees WHERE employee_id = 100";

checkerr (errhp, OCIStmtPrepare(stmthp, errhp, (OraText *)sglstmt,

(ub4d)strlen((char *)sqglstmt),

(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));
checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, 0, 0, (OCISnapshot *)O0,

(OCISnapshot *)0, OCI_DEFAULT));

/* Request a parameter descriptor for position 1 in the select-list */

counter = 1;

parm_status = OCIParamGet ((dvoid *)stmthp, OCI_HTYPE_STMT, errhp,

(dvoid **)&mypard, (ub4) counter);
/* Loop only if a descriptor was successfully retrieved for
current position, starting at 1 */
while (parm_status == OCI_SUCCESS) ({
/* Retrieve the datatype attribute */

checkerr (errhp, OCIAttrGet((dvoid*) mypard, (ub4) OCI_DTYPE_PARAM,
(dvoid*) &dtype, (ub4 *) 0, (ub4) OCI_ATTR_DATA_TYPE,

(OCIError *) errhp));
/* Retrieve the column name attribute */
col_name_len = 0;

checkerr (errhp, OCIAttrGet((dvoid*) mypard, (ub4) OCI_DTYPE_PARAM,
(

dvoid**) &col_name, (ub4 *) &col_name_len, (ub4)
(OCIError *) errhp));
/* Retrieve the length semantics for the column */
char_semantics = 0;

OCI_ATTR_NAME,

checkerr (errhp, OCIAttrGet((dvoid*) mypard, (ub4) OCI_DTYPE_PARAM,
(dvoid*) &char_semantics, (ub4 *) 0, (ub4) OCI_ATTR_CHAR_USED,

(OCIError *) errhp));
col_width = 0;
if (char_semantics)
/* Retrieve the column width in characters */

checkerr (errhp, OCIAttrGet((dvoid*) mypard, (ub4) OCI_DTYPE_PARAM,
(dvoid*) &col_width, (ub4 *) 0, (ub4) OCI_ATTR_CHAR_SIZE,

(OCIError *) errhp));
else
/* Retrieve the column width in bytes */

checkerr (errhp, OCIAttrGet((dvoid*) mypard, (ub4) OCI_DTYPE_PARAM,
(dvoid*) &col_width, (ub4 *) 0, (ub4) OCI_ATTR_DATA_SIZE,

(OCIError *) errhp));

/* increment counter and get next descriptor, if there is one */

counter++;

parm_status = OCIParamGet ((dvoid *)stmthp, OCI_HTYPE_STMT, errhp,

(dvoid **)&mypard, (ub4) counter);
} /* while */

6-26 Oracle Call Interface Programmer's Guide

7

LOB and BFILE Operations

This chapter contains these topics:

Using OCI Functions for LOBs

Creating and Modifying Persistent LOBs

Associating a BFILE in a Table with an Operating System File
LOB Attributes of an Object

Array Interface for LOBs

Using LOBs of Size Greater than 4 GB

LOB and BFILE Functions in OCI

Temporary LOB Support

Using OCI Functions for LOBs

The OCl includes a set of functions for performing operations on large objects (LOBs)
in a database. Persistent LOBs (BLOBs, CLOBs, NCLOBs) are stored in the database
tablespaces in a way that optimizes space and provides efficient access. These LOBs
have the full transactional support of the database server. BFILEs are large data objects
stored in the server's operating system files outside the database tablespaces.

The OCI also provides support for temporary LOBs, which can be used like local
variables for operating on LOB data.

BFILEs are read-only. Oracle supports only binary BFILEs.

See Also:

= Appendix B, "OCI Demonstration Programs" for code samples
showing the use of LOBs.

= SORACLE_HOME/rdbms/demo/lobs/oci/ for specific LOB
code samples.

» Oracle Database PL/SQL Packages and Types Reference for the
DBMS_LOB package

» Oracle Database Application Developer's Guide - Large Objects.

LOB and BFILE Operations 7-1

Creating and Modifying Persistent LOBs

Creating and Modifying Persistent LOBs

LOB instances can be either persistent (stored in the database) or temporary (existing
only in the scope of your application). Do not confuse the concept of a persistent LOB
with a persistent object.

There are two ways of creating and modifying persistent LOBs:
1. Using the data interface

You can create a LOB by inserting character data into a CLOB column or RAW data
into a BLOB column directly. You can also modify LOBs by using a SQL UPDATE
statement, binding character data into a CLOB column or RAW data into a BLOB
column.

Insert, update, and select of remote LOBs (over a dblink) is supported as long as
neither the remote server or the local server is of a release less than Oracle
Database 10g Release 2. The data interface only supports data size up to 2 GB -1,
the maximum size of an sb4.

See Also: Oracle Database Application Developer’s Guide - Large
Objects chapter "Data Interface for Persistent LOBs", for more
information and examples.

2. Using the LOB locator

You create a new internal LOB by initializing a new LOB locator using
OCIDescriptorAlloc (), calling OCIAttrSet () to setit to empty (using the
OCI_ATTR_LOBEMPTY attribute), and then binding the locator to a placeholder in
an INSERT statement. Doing so inserts the empty locator into a table with a LOB
column or attribute. You can then SELECT...FOR UPDATE this row to get the
locator, and write to it using one of the OCI LOB functions.

Note: To modify a LOB column or attribute (write, copy, trim, and
so forth), you must lock the row containing the LOB. One way to
do this is to use a SELECT. . . FOR UPDATE statement to select the
locator before performing the operation.

See Also: "Binding LOB Data" on page 5-8 for usage and
examples for both INSERT and UPDATE

For any LOB write command to be successful, a transaction must be open. If you
commit a transaction before writing the data, you must lock the row again (by
reissuing the SELECT. . . FOR UPDATE, for example), because the commit closes the
transaction.

Associating a BFILE in a Table with an Operating System File

The BFILENAME () function can be used in an INSERT statement to associate an
external server-side (operating system) file with a BFILE column or attribute in a
table. Using BFILENAME () in an UPDATE statement associates the BFILE column or
attribute with a different operating system file. OCILobFileSetName () can also be
used to associate a BFILE in a table with an operating system file. BFILENAME () is
usually used in an INSERT or UPDATE without bind variables and
OCILobFileSetName () is used for bind variables.

7-2 Oracle Call Interface Programmer's Guide

LOB Attributes of an Object

See Also:
s "OCILobFileSetName()" on page 16-56

» Oracle Database Application Developer’s Guide - Large Objects for
more information about the BFILENAME () function

LOB Attributes of an Object

An OCI application can use OCIObjectNew () to create a persistent or transient object
with a LOB attribute.

Writing to a LOB Attribute of an Object

It is possible to use the OCI to create a new persistent object with a LOB attribute and
write to that LOB attribute. The application would follow these steps when using a
LOB locator:

1. Call 0CIObjectNew () to create a persistent object with a LOB attribute.
2. Mark the object as "dirty."

3. Flush the object, thereby inserting a row into the table

4

Re-pin the latest version of the object (or refresh the object), thereby retrieving the
object from the database and acquiring a valid locator for the LOB

5. CallocILobWrite () using the LOB locator in the object to write the data.

See Also: Chapter 10, "OCI Object-Relational Programming" and
the chapters that follow it, for more information about objects

There is a second way of writing to a LOB attribute: when using the data interface,
you can bind or define character data for a CLOB attribute or RAW data for a BLOB
attribute.

See Also:

= "Binding LOB Data" on page 5-8 for usage and examples for
both INSERT and UPDATE statements

s "Defining LOB Data" on page 5-15 for usage and examples of
SELECT statements

Transient Objects with LOB Attributes

An application can call 0CIObjectNew () and create a transient object with an
internal LOB (BLOB, CLOB, NCLOB) attribute. However, you cannot perform any
operations, such as read or write, on the LOB attribute because transient objects with
LOB attributes are not supported. Calling 0OCIObjectNew () to create a transient
internal LOB type will not fail, but the application cannot use any LOB operations
with the transient LOB.

An application can, however, create a transient object with a BFILE attribute and use
the BFILE attribute to read data from a file stored in the server's file system. The
application can also call 0CIObjectNew () to create a transient BFILE.

LOB and BFILE Operations 7-3

Array Interface for LOBs

Array Interface for LOBs

You can use the OCI array interface with LOBs, just as with any other datatype. There
are two ways of using the array interface.

1. Using the data interface

You can bind or define arrays of character data for a CLOB co