
Oracle® Data Guard
Concepts and Administration

10g Release 2 (10.2)

B14239-04

March 2006

Oracle Data Guard Concepts and Administration, 10g Release 2 (10.2)

B14239-04

Copyright © 1999, 2006, Oracle. All rights reserved.

Primary Author: Vivian Schupmann

Contributors: Andy Adams, Beldalker Anand, Rick Anderson, Andrew Babb, Pam Bantis, Tammy Bednar,
Barbara Benton, Chipper Brown, Larry Carpenter, George Claborn, Laurence Clarke, Jay Davison, Jeff
Detjen, Ray Dutcher, B.G. Garin, Mahesh Girkar, Yosuke Goto, Ray Guzman, Susan Hillson, Mark Johnson,
Rajeev Jain, Joydip Kundu, J. William Lee, Steve Lee, Steve Lim, Nitin Karkhanis, Steve McGee, Bob
McGuirk, Joe Meeks, Steve Moriarty, Muthu Olagappan, Deborah Owens, Ashish Ray, Antonio Romero,
Mike Schloss, Mike Smith, Vinay Srihali, Morris Tao, Lawrence To, Doug Utzig, Ric Van Dyke, Doug Voss,
Ron Weiss, Jingming Zhang

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software—Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Preface .. xvii

Audience.. xvii
Documentation Accessibility .. xvii
Related Documents ... xviii
Conventions ... xviii

What’s New in Oracle Data Guard?.. xix

Part I Concepts and Administration

1 Introduction to Oracle Data Guard

1.1 Data Guard Configurations... 1-1
1.1.1 Primary Database... 1-2
1.1.2 Standby Databases... 1-2
1.1.3 Configuration Example... 1-2
1.2 Data Guard Services ... 1-3
1.2.1 Redo Transport Services ... 1-3
1.2.2 Log Apply Services.. 1-4
1.2.3 Role Transitions ... 1-5
1.3 Data Guard Broker.. 1-5
1.3.1 Using Oracle Enterprise Manager ... 1-6
1.3.2 Using the Data Guard Command-Line Interface.. 1-7
1.4 Data Guard Protection Modes .. 1-7
1.5 Data Guard and Complementary Technologies... 1-8
1.6 Summary of Data Guard Benefits... 1-9

2 Getting Started with Data Guard

2.1 Standby Database Types .. 2-1
2.1.1 Physical Standby Databases ... 2-1
2.1.2 Logical Standby Databases... 2-3
2.2 User Interfaces for Administering Data Guard Configurations .. 2-4
2.3 Data Guard Operational Prerequisites .. 2-4
2.3.1 Hardware and Operating System Requirements.. 2-4
2.3.2 Oracle Software Requirements .. 2-5
2.4 Standby Database Directory Structure Considerations... 2-6

iv

2.5 Online Redo Logs, Archived Redo Logs, and Standby Redo Logs 2-8
2.5.1 Online Redo Logs and Archived Redo Logs ... 2-8
2.5.2 Standby Redo Logs.. 2-9

3 Creating a Physical Standby Database

3.1 Preparing the Primary Database for Standby Database Creation 3-1
3.1.1 Enable Forced Logging ... 3-2
3.1.2 Create a Password File .. 3-2
3.1.3 Configure a Standby Redo Log.. 3-2
3.1.4 Set Primary Database Initialization Parameters.. 3-4
3.1.5 Enable Archiving ... 3-7
3.2 Step-by-Step Instructions for Creating a Physical Standby Database................................. 3-7
3.2.1 Create a Backup Copy of the Primary Database Datafiles .. 3-7
3.2.2 Create a Control File for the Standby Database .. 3-8
3.2.3 Prepare an Initialization Parameter File for the Standby Database 3-8
3.2.4 Copy Files from the Primary System to the Standby System..................................... 3-10
3.2.5 Set Up the Environment to Support the Standby Database 3-10
3.2.6 Start the Physical Standby Database.. 3-11
3.2.7 Verify the Physical Standby Database Is Performing Properly 3-12
3.3 Post-Creation Steps.. 3-13

4 Creating a Logical Standby Database

4.1 Prerequisite Conditions for Creating a Logical Standby Database 4-1
4.1.1 Determine Support for Data Types and Storage Attributes for Tables 4-1
4.1.2 Ensure Table Rows in the Primary Database Can Be Uniquely Identified 4-1
4.2 Step-by-Step Instructions for Creating a Logical Standby Database................................... 4-3
4.2.1 Create a Physical Standby Database ... 4-3
4.2.2 Stop Redo Apply on the Physical Standby Database ... 4-3
4.2.3 Prepare the Primary Database to Support a Logical Standby Database...................... 4-3
4.2.3.1 Prepare the Primary Database for Role Transitions .. 4-4
4.2.3.2 Build a Dictionary in the Redo Data .. 4-4
4.2.4 Transition to a Logical Standby Database.. 4-5
4.2.4.1 Convert to a Logical Standby Database .. 4-5
4.2.4.2 Create a New Password File ... 4-5
4.2.4.3 Adjust Initialization Parameters for the Logical Standby Database 4-5
4.2.5 Open the Logical Standby Database ... 4-7
4.2.6 Verify the Logical Standby Database Is Performing Properly 4-7
4.3 Post-Creation Steps... 4-7

5 Redo Transport Services

5.1 Introduction to Redo Transport Services .. 5-1
5.2 Where to Send Redo Data.. 5-2
5.2.1 Destination Types .. 5-2
5.2.2 Configuring Destinations with the LOG_ARCHIVE_DEST_n Parameter.................. 5-3
5.2.2.1 Changing Destination Attributes ... 5-5
5.2.2.2 Viewing Attribute with V$ARCHIVE_DEST ... 5-5

v

5.2.3 Setting Up Flash Recovery Areas .. 5-5
5.2.3.1 Using the LOG_ARCHIVE_DEST_10 Destination .. 5-6
5.2.3.2 Using Other LOG_ARCHIVE_DEST_n Destinations ... 5-6
5.2.3.3 Using the STANDBY_ARCHIVE_DEST Destination.. 5-7
5.2.3.4 Sharing a Flash Recovery Area Between Primary and Standby Databases......... 5-7
5.3 How to Send Redo Data... 5-7
5.3.1 Using Archiver Processes (ARCn) to Archive Redo Data ... 5-8
5.3.1.1 Initialization Parameters That Control ARCn Archival Behavior......................... 5-8
5.3.1.2 ARCn Archival Processing.. 5-8
5.3.2 Using the Log Writer Process (LGWR) to Archive Redo Data 5-10
5.3.2.1 LOG_ARCHIVE_DEST_n Attributes for LGWR Archival Processing.............. 5-10
5.3.2.2 LGWR SYNC Archival Processing.. 5-11
5.3.2.3 LGWR ASYNC Archival Processing .. 5-12
5.3.3 Providing for Secure Redo Data Transmission .. 5-13
5.4 When Redo Data Should Be Sent... 5-14
5.4.1 Specifying Role-Based Destinations with the VALID_FOR Attribute...................... 5-14
5.4.2 Specify Unique Names for Primary and Standby Databases..................................... 5-15
5.5 What to Do If Errors Occur... 5-16
5.5.1 Retrying the Archival Operation.. 5-16
5.5.2 Using an Alternate Destination .. 5-17
5.5.3 Controlling the Number of Retry Attempts ... 5-17
5.6 Setting Up a Data Protection Mode... 5-18
5.6.1 Choosing a Data Protection Mode ... 5-18
5.6.1.1 Maximum Protection Mode ... 5-18
5.6.1.2 Maximum Availability Mode .. 5-18
5.6.1.3 Maximum Performance Mode... 5-19
5.6.2 Setting the Data Protection Mode of a Data Guard Configuration 5-19
5.7 Managing Log Files ... 5-21
5.7.1 Specifying Alternate Directory Locations for Archived Redo Log Files 5-21
5.7.2 Reusing Online Redo Log Files... 5-22
5.7.3 Managing Standby Redo Log Files .. 5-23
5.7.3.1 Determining If a Standby Redo Log File Group Configuration Is Adequate... 5-23
5.7.3.2 Adding Standby Redo Log Members to an Existing Group 5-23
5.7.4 Planning for Growth and Reuse of the Control Files .. 5-23
5.7.4.1 Sizing the Disk Volumes that Contain the Control Files 5-24
5.7.4.2 Specifying the Reuse of Records in the Control File .. 5-24
5.7.5 Sharing a Log File Destination Among Multiple Standby Databases....................... 5-24
5.8 Managing Archive Gaps ... 5-25
5.8.1 When Is an Archive Gap Discovered?... 5-26
5.8.2 How Is a Gap Resolved?.. 5-26
5.8.3 Using the Fetch Archive Log (FAL) to Resolve Archive Gaps................................... 5-26
5.8.4 Manually Determining and Resolving Archive Gaps ... 5-27
5.9 Verification.. 5-29
5.9.1 Monitoring Log File Archival Information ... 5-29
5.9.2 Monitoring the Performance of Redo Transport Services .. 5-30
5.9.2.1 ARCn Process Wait Events .. 5-30
5.9.2.2 LGWR SYNC Wait Events.. 5-30

vi

5.9.2.3 LGWR ASYNC Wait Events .. 5-31

6 Log Apply Services

6.1 Introduction to Log Apply Services ... 6-1
6.2 Log Apply Services Configuration Options.. 6-2
6.2.1 Using Real-Time Apply to Apply Redo Data Immediately .. 6-2
6.2.2 Specifying a Time Delay for the Application of Archived Redo Log Files 6-3
6.2.2.1 Using Flashback Database as an Alternative to Setting a Time Delay 6-4
6.3 Applying Redo Data to Physical Standby Databases .. 6-4
6.3.1 Starting Redo Apply ... 6-4
6.3.2 Stopping Redo Apply.. 6-5
6.3.3 Monitoring Redo Apply on Physical Standby Databases.. 6-5
6.4 Applying Redo Data to Logical Standby Databases.. 6-5
6.4.1 Starting SQL Apply ... 6-5
6.4.2 Stopping SQL Apply on a Logical Standby Database.. 6-5
6.4.3 Monitoring SQL Apply on Logical Standby Databases ... 6-6

7 Role Transitions

7.1 Introduction to Role Transitions... 7-1
7.1.1 Preparing for a Role Transition (Failover or Switchover).. 7-2
7.1.2 Choosing a Target Standby Database for a Role Transition.. 7-3
7.1.3 Switchovers... 7-4
7.1.4 Failovers .. 7-6
7.2 Role Transitions Involving Physical Standby Databases .. 7-7
7.2.1 Switchovers Involving a Physical Standby Database... 7-7
7.2.2 Failovers Involving a Physical Standby Database .. 7-9
7.3 Role Transitions Involving Logical Standby Databases... 7-13
7.3.1 Switchovers Involving a Logical Standby Database.. 7-13
7.3.2 Failovers Involving a Logical Standby Database ... 7-16
7.4 Using Flashback Database After a Role Transition... 7-20
7.4.1 Using Flashback Database After a Switchover... 7-20
7.4.2 Using Flashback Database After a Failover .. 7-20

8 Managing a Physical Standby Database

8.1 Starting Up and Shutting Down a Physical Standby Database ... 8-1
8.1.1 Starting Up a Physical Standby Database .. 8-1
8.1.2 Shutting Down a Physical Standby Database.. 8-2
8.2 Opening a Standby Database for Read-Only or Read/Write Access 8-2
8.2.1 Assessing Whether or Not to Open a Standby Database... 8-3
8.2.2 Opening a Physical Standby Database for Read-Only Access...................................... 8-4
8.3 Managing Primary Database Events That Affect the Standby Database............................ 8-5
8.3.1 Adding a Datafile or Creating a Tablespace .. 8-6
8.3.1.1 When STANDBY_FILE_MANAGEMENT Is Set to AUTO 8-6
8.3.1.2 When STANDBY_FILE_MANAGEMENT Is Set to MANUAL 8-7
8.3.2 Dropping Tablespaces and Deleting Datafiles .. 8-9
8.3.2.1 When STANDBY_FILE_MANAGEMENT Is Set to AUTO or MANUAL........... 8-9

vii

8.3.2.2 Using DROP TABLESPACE INCLUDING CONTENTS AND DATAFILES... 8-10
8.3.3 Using Transportable Tablespaces with a Physical Standby Database 8-10
8.3.4 Renaming a Datafile in the Primary Database ... 8-10
8.3.5 Adding or Dropping Online Redo Log Files .. 8-12
8.3.6 NOLOGGING or Unrecoverable Operations ... 8-12
8.4 Recovering Through the OPEN RESETLOGS Statement... 8-13
8.5 Monitoring the Primary and Standby Databases.. 8-13
8.5.1 Alert Log .. 8-15
8.5.2 Dynamic Performance Views (Fixed Views) .. 8-15
8.5.3 Monitoring Recovery Progress ... 8-15
8.5.3.1 Monitoring the Process Activities ... 8-15
8.5.3.2 Determining the Progress of Redo Apply.. 8-16
8.5.3.3 Determining the Location and Creator of the Archived Redo Log Files........... 8-16
8.5.3.4 Viewing Database Incarnations Before and After OPEN RESETLOGS 8-17
8.5.3.5 Viewing the Archived Redo Log History .. 8-17
8.5.3.6 Determining Which Log Files Were Applied to the Standby Database 8-18
8.5.3.7 Determining Which Log Files Were Not Received by the Standby Site............ 8-18
8.5.4 Monitoring Log Apply Services on Physical Standby Databases.............................. 8-19
8.5.4.1 Accessing the V$DATABASE View.. 8-19
8.5.4.2 Accessing the V$MANAGED_STANDBY Fixed View.. 8-19
8.5.4.3 Accessing the V$ARCHIVE_DEST_STATUS Fixed View 8-20
8.5.4.4 Accessing the V$ARCHIVED_LOG Fixed View ... 8-20
8.5.4.5 Accessing the V$LOG_HISTORY Fixed View .. 8-20
8.5.4.6 Accessing the V$DATAGUARD_STATUS Fixed View....................................... 8-21
8.6 Tuning the Log Apply Rate for a Physical Standby Database .. 8-22

9 Managing a Logical Standby Database

9.1 Overview of the SQL Apply Architecture... 9-1
9.1.1 Various Considerations for SQL Apply ... 9-2
9.1.1.1 Transaction Size Considerations .. 9-2
9.1.1.2 Pageout Considerations... 9-3
9.1.1.3 Restart Considerations... 9-3
9.1.1.4 DML Apply Considerations.. 9-4
9.1.1.5 DDL Apply Considerations .. 9-4
9.2 Views Related to Managing and Monitoring a Logical Standby Database........................ 9-4
9.2.1 DBA_LOGSTDBY_EVENTS View .. 9-5
9.2.2 DBA_LOGSTDBY_LOG View ... 9-5
9.2.3 V$LOGSTDBY_STATS View ... 9-6
9.2.4 V$LOGSTDBY_PROCESS View.. 9-6
9.2.5 V$LOGSTDBY_PROGRESS View ... 9-8
9.2.6 V$LOGSTDBY_STATE View ... 9-9
9.2.7 V$LOGSTDBY_STATS View ... 9-9
9.3 Monitoring a Logical Standby Database .. 9-10
9.3.1 Monitoring SQL Apply Progress.. 9-10
9.3.2 Automatic Deletion of Log Files... 9-12
9.4 Customizing a Logical Standby Database.. 9-13
9.4.1 Using Real-Time Apply On the Logical Standby Database 9-14

viii

9.4.2 Customizing Logging of Events in the DBA_LOGSTDBY_EVENTS View 9-14
9.4.3 Using DBMS_LOGSTDBY.SKIP to Prevent Changes to Specific Schema Objects.. 9-15
9.4.4 Setting up a Skip Handler for a DDL Statement .. 9-15
9.4.5 Modifying a Logical Standby Database... 9-16
9.4.5.1 Performing DDL on a Logical Standby Database... 9-16
9.4.5.2 Modifying Tables That Are Not Maintained by SQL Apply 9-17
9.4.6 Adding or Re-Creating Tables On a Logical Standby Database................................ 9-18
9.5 Managing Specific Workloads In the Context of a Logical Standby Database............... 9-19
9.5.1 Importing a Transportable Tablespace to the Primary Database 9-19
9.5.2 Using Materialized Views ... 9-20
9.5.3 How Triggers and Constraints Are Handled on a Logical Standby Database........ 9-20
9.5.4 Recovering Through the OPEN RESETLOGS Statement ... 9-20
9.6 Tuning a Logical Standby Database.. 9-21
9.6.1 Create a Primary Key RELY Constraint .. 9-21
9.6.2 Gather Statistics for the Cost-Based Optimizer.. 9-22
9.6.3 Adjust the Number of Processes .. 9-23
9.6.3.1 Adjusting the Number of APPLIER Processes.. 9-23
9.6.3.2 Adjusting the Number of PREPARER Processes.. 9-24
9.6.4 Adjust the Memory Used for LCR Cache.. 9-25
9.6.5 Adjust How Transactions are Applied On the Logical Standby Database 9-26

10 Using RMAN to Back Up and Restore Files

10.1 Backup Procedure .. 10-1
10.1.1 Using Disk as Cache for Tape Backup... 10-1
10.1.2 Performing Backups Directly to Tape.. 10-2
10.2 Effect of Switchovers, Failovers, and Control File Creation on Backups 10-2
10.2.1 Recovery from Loss of Datafiles on the Primary Database .. 10-3
10.2.2 Recovery from Loss of Datafiles on the Standby Database .. 10-3
10.2.3 Recovery from the Loss of a Standby Control File .. 10-4
10.2.4 Recovery from the Loss of the Primary Control File ... 10-4
10.2.5 Recovery from the Loss of an Online Redo Log File ... 10-5
10.2.6 Incomplete Recovery of the Database.. 10-5
10.3 Additional Backup Situations .. 10-7
10.3.1 Standby Databases Too Geographically Distant to Share Backups 10-7
10.3.2 Standby Database Does Not Contain Datafiles, Used as a FAL Server 10-7
10.3.3 Standby Database File Names Are Different than Primary Database 10-8
10.3.4 Deletion Policy for Archived Redo Log Files In Flash Recovery Areas 10-8
10.3.4.1 Reconfiguring the Deletion Policy After a Role Transition................................. 10-9
10.3.4.2 Viewing the Current Deletion Policy ... 10-9

11 Using SQL Apply to Upgrade the Oracle Database

11.1 Benefits of a Rolling Upgrade Using SQL Apply.. 11-1
11.2 Requirements to Perform a Rolling Upgrade Using SQL Apply...................................... 11-2
11.3 Figures and Conventions Used in the Upgrade Instructions .. 11-2
11.4 Prepare to Upgrade ... 11-3
11.5 Upgrade the Databases .. 11-5

ix

12 Data Guard Scenarios

12.1 Setting Up and Verifying Archival Destinations ... 12-1
12.1.1 Configuring a Primary Database and a Physical Standby Database 12-1
12.1.2 Configuring a Primary Database and a Logical Standby Database 12-3
12.1.3 Configuring Both Physical and Logical Standby Databases 12-6
12.1.4 Verifying the Current VALID_FOR Attribute Settings for Each Destination.......... 12-9
12.2 Choosing the Best Available Standby Database for a Role Transition............................. 12-9
12.2.1 Example: Best Physical Standby Database for a Failover ... 12-10
12.2.2 Example: Best Logical Standby Database for a Failover ... 12-16
12.3 Configuring a Logical Standby Database to Support a New Primary Database.......... 12-20
12.3.1 When the New Primary Database Was Formerly a Physical Standby Database .. 12-20
12.3.2 When the New Primary Database Was Formerly a Logical Standby Database 12-21
12.4 Using Flashback Database After a Failover ... 12-23
12.4.1 Flashing Back a Failed Primary Database into a Physical Standby Database 12-24
12.4.2 Flashing Back a Failed Primary Database into a Logical Standby Database 12-25
12.4.3 Flashing Back a Logical Standby Database to a Specific Applied SCN.................. 12-26
12.5 Using Flashback Database After Issuing an Open Resetlogs Statement 12-27
12.5.1 Flashing Back a Physical Standby Database to a Specific Point-in-Time 12-27
12.5.2 Flash Back a Logical Standby Database After Flashing Back the Primary............. 12-28
12.6 Using a Physical Standby Database for Read/Write Testing and Reporting 12-29
12.7 Using RMAN Incremental Backups to Roll Forward a Physical Standby Database ... 12-33
12.7.1 Physical Standby Database Lags Far Behind the Primary Database....................... 12-33
12.7.2 Physical Standby Database Has Nologging Changes On a Subset of Datafiles 12-34
12.7.3 Physical Standby Database Has Widespread Nologging Changes......................... 12-36
12.8 Using a Physical Standby Database with a Time Lag .. 12-37
12.8.1 Establishing a Time Lag on a Physical Standby Database.. 12-37
12.8.2 Failing Over to a Physical Standby Database with a Time Lag 12-38
12.8.3 Switching Over to a Physical Standby Database with a Time Lag.......................... 12-38
12.9 Recovering From a Network Failure... 12-39
12.10 Recovering After the NOLOGGING Clause Is Specified .. 12-40
12.10.1 Recovery Steps for Logical Standby Databases.. 12-41
12.10.2 Recovery Steps for Physical Standby Databases .. 12-41
12.10.3 Determining If a Backup Is Required After Unrecoverable Operations 12-43
12.11 Resolving Archive Gaps Manually ... 12-43
12.11.1 What Causes Archive Gaps? ... 12-43
12.11.1.1 Creation of the Standby Database... 12-43
12.11.1.2 Shutdown of the Standby Database When the Primary Database Is Open 12-44
12.11.1.3 Network Failure Prevents Transmission of Redo... 12-45
12.11.2 Determining If an Archive Gap Exists... 12-45
12.11.3 Manually Transmitting Log Files in the Archive Gap to the Standby Site 12-46
12.11.4 Manually Applying Log Files in the Archive Gap to the Standby Database......... 12-47
12.12 Creating a Standby Database That Uses OMF or ASM.. 12-48

Part II Reference

x

13 Initialization Parameters

14 LOG_ARCHIVE_DEST_n Parameter Attributes

AFFIRM and NOAFFIRM... 14-2

ALTERNATE .. 14-4

ARCH and LGWR.. 14-6

DB_UNIQUE_NAME ... 14-7

DELAY... 14-8

DEPENDENCY .. 14-10

LOCATION and SERVICE ... 14-12

MANDATORY and OPTIONAL... 14-14

MAX_CONNECTIONS... 14-16

MAX_FAILURE.. 14-17

NET_TIMEOUT ... 14-19

NOREGISTER... 14-21

REOPEN .. 14-22

SYNC and ASYNC... 14-23

TEMPLATE... 14-24

VALID_FOR.. 14-26

VERIFY .. 14-28

15 SQL Statements Relevant to Data Guard

15.1 ALTER DATABASE Statements .. 15-1
15.2 ALTER SESSION Statements ... 15-4

16 Views Relevant to Oracle Data Guard

Part III Appendixes

A Troubleshooting Data Guard

A.1 Common Problems .. A-1
A.1.1 Standby Archive Destination Is Not Defined Properly... A-1
A.1.2 Renaming Datafiles with the ALTER DATABASE Statement A-1
A.1.3 Standby Database Does Not Receive Redo Data from the Primary Database........... A-2
A.1.4 You Cannot Mount the Physical Standby Database.. A-3
A.2 Log File Destination Failures.. A-3
A.3 Handling Logical Standby Database Failures.. A-4
A.4 Problems Switching Over to a Standby Database... A-4
A.4.1 Switchover Fails Because Redo Data Was Not Transmitted .. A-4
A.4.2 Switchover Fails Because SQL Sessions Are Still Active .. A-5
A.4.3 Switchover Fails Because User Sessions Are Still Active.. A-6
A.4.4 Switchover Fails with the ORA-01102 Error... A-6
A.4.5 Redo Data Is Not Applied After Switchover .. A-7

xi

A.4.6 Roll Back After Unsuccessful Switchover and Start Over .. A-7
A.5 What to Do If SQL Apply Stops... A-8
A.6 Network Tuning for Redo Data Transmission .. A-9
A.7 Slow Disk Performance on Standby Databases... A-10
A.8 Log Files Must Match to Avoid Primary Database Shutdown ... A-10
A.9 Troubleshooting a Logical Standby Database ... A-10
A.9.1 Recovering from Errors.. A-10
A.9.1.1 DDL Transactions Containing File Specifications .. A-11
A.9.1.2 Recovering from DML Failures ... A-12
A.9.2 Troubleshooting SQL*Loader Sessions ... A-12
A.9.3 Troubleshooting Long-Running Transactions ... A-13
A.9.4 Troubleshooting ORA-1403 Errors with Flashback Transactions A-17

B Upgrading Databases in a Data Guard Configuration

B.1 Before You Upgrade the Oracle Database Software ... B-1
B.2 Upgrading Oracle Database with a Physical Standby Database In Place B-2
B.3 Upgrading Oracle Database with a Logical Standby Database In Place B-4

C Data Type and DDL Support on a Logical Standby Database

C.1 Data Type Considerations .. C-1
C.1.1 Supported Data Types in a Logical Standby Database ... C-1
C.1.2 Unsupported Data Types in a Logical Standby Database .. C-2
C.2 Storage Type Considerations ... C-2
C.2.1 Support Storage Types... C-2
C.2.2 Unsupported Storage Type ... C-2
C.3 PL/SQL Supplied Packages Considerations ... C-2
C.3.1 Supported PL/SQL Supplied Packages .. C-3
C.3.2 Unsupported PL/SQL Supplied Packages ... C-3
C.4 Unsupported Tables, Sequences, and Views ... C-3
C.5 Skipped SQL Statements on a Logical Standby Database ... C-4
C.6 DDL Statements Supported by a Logical Standby Database .. C-5

D Data Guard and Real Application Clusters

D.1 Configuring Standby Databases in a Real Application Clusters Environment D-1
D.1.1 Setting Up a Multi-Instance Primary with a Single-Instance Standby D-1
D.1.2 Setting Up a Multi-Instance Primary with a Multi-Instance Standby D-2
D.2 Configuration Considerations in a Real Application Clusters Environment D-4
D.2.1 Format for Archived Redo Log Filenames.. D-4
D.2.2 Archive Destination Quotas.. D-5
D.2.3 Data Protection Modes... D-5
D.2.4 Role Transitions .. D-5
D.2.4.1 Switchovers .. D-5
D.2.4.2 Failovers.. D-6
D.3 Troubleshooting ... D-6
D.3.1 Switchover Fails in a Real Application Clusters Configuration D-6
D.3.2 Avoiding Downtime in Real Application Clusters During a Network Outage D-6

xii

E Cascaded Destinations

E.1 Configuring Cascaded Destinations ... E-2
E.1.1 Configuring Cascaded Destinations for Physical Standby Databases........................ E-2
E.1.2 Configuring Cascaded Destinations for Logical Standby Databases.......................... E-3
E.2 Role Transitions with Cascaded Destinations ... E-4
E.2.1 Standby Databases Receiving Redo Data from a Physical Standby Database E-4
E.2.2 Standby Databases Receiving Redo Data from a Logical Standby Database E-4
E.3 Examples of Cascaded Destinations ... E-4
E.3.1 Local Physical Standby and Cascaded Remote Physical Standby............................... E-4
E.3.2 Local Physical Standby and Cascaded Remote Logical Standby E-5
E.3.3 Local and Remote Physical Standby and Cascaded Local Logical Standby E-5
E.3.4 Consolidated Reporting with Cascaded Logical Standby Destinations..................... E-6
E.3.5 Temporary Use of Cascaded Destinations During Network Upgrades..................... E-6

F Creating a Standby Database with Recovery Manager

F.1 Preparing to Use RMAN to Create a Standby Database.. F-1
F.1.1 About Standby Database Preparation Using RMAN.. F-2
F.1.2 Creating the Standby Control File with RMAN... F-2
F.1.3 Naming the Standby Database Datafiles When Using RMAN.................................... F-3
F.1.4 Naming the Standby Database Log Files When Using RMAN F-4
F.2 Creating a Standby Database with RMAN: Overview... F-5
F.2.1 RMAN Standby Creation Without Recovery ... F-5
F.2.2 RMAN Standby Creation with Recovery.. F-6
F.3 Setting Up the Standby Database .. F-7
F.3.1 Setting Up a Standby Database When Files Are Not Oracle Managed Files F-7
F.3.2 Setting Up a Standby Database When All Files Are Oracle Managed Files F-8
F.3.3 Setting Up a Standby Databases When a Subset of Files Are Oracle Managed Files F-9
F.4 Creating a Standby Database with the Same Directory Structure...................................... F-9
F.4.1 Creating the Standby Database Without Performing Recovery F-9
F.4.2 Creating the Standby Database and Performing Recovery .. F-10
F.5 Creating a Standby Database with a Different Directory Structure F-10
F.5.1 Naming Standby Database Files with DB_FILE_NAME_CONVERT F-11
F.5.1.1 Creating the Standby Database Without Performing Recovery......................... F-11
F.5.1.2 Creating the Standby Database and Performing Recovery................................. F-11
F.5.2 Naming Standby Database Files with SET NEWNAME ... F-11
F.5.2.1 Creating the Standby Database Without Performing Recovery......................... F-11
F.5.2.2 Creating the Standby Database and Performing Recovery................................. F-12
F.5.3 Naming Standby Database Files with CONFIGURE AUXNAME............................ F-13
F.5.3.1 Creating the Standby Database Without Performing Recovery......................... F-13
F.5.3.2 Creating the Standby Database and Performing Recovery................................. F-14
F.6 Creating a Standby Database on the Local Host ... F-15
F.7 Creating a Standby Database with Image Copies ... F-15
F.7.1 Overview.. F-15
F.7.2 When Copies and Datafiles Use the Same Names... F-17
F.7.3 When Copies and Datafiles Use Different Names... F-17
F.7.3.1 Creating the Standby Database Without Performing Recovery......................... F-17
F.7.3.2 Creating the Standby Database and Performing Recovery................................. F-18

xiii

F.8 Usage Scenario ... F-19

G Setting Archive Tracing

G.1 LOG_ARCHIVE_TRACE Initialization Parameter... G-1
G.2 Determining the Location of the Trace Files .. G-1
G.2.1 Setting the LOG_ARCHIVE_TRACE Initialization Parameter.................................... G-1
G.2.2 Choosing an Integer Value .. G-2

Index

xiv

List of Examples

3–1 Adding a Standby Redo Log File Group to a Specific Thread ... 3-3
3–2 Adding a Standby Redo Log File Group to a Specific Group Number 3-3
3–3 Primary Database: Primary Role Initialization Parameters ... 3-4
3–4 Primary Database: Standby Role Initialization Parameters.. 3-5
3–5 Modifying Initialization Parameters for a Physical Standby Database 3-8
4–1 Primary Database: Logical Standby Role Initialization Parameters.................................... 4-4
4–2 Modifying Initialization Parameters for a Logical Standby Database 4-6
5–1 Specifying a Local Archiving Destination... 5-3
5–2 Specifying a Remote Archiving Destination... 5-4
5–3 Primary Database Initialization Parameters for a Shared Recovery Area.......................... 5-7
5–4 Standby Database Initialization Parameters for a Shared Recovery Area 5-7
5–5 Initialization Parameters for LGWR Synchronous Archival ... 5-11
5–6 Initialization Parameters for LGWR Asynchronous Archiving.. 5-12
5–7 Setting a Retry Time and Limit .. 5-18
5–8 Setting a Mandatory Archiving Destination.. 5-23
11–1 Monitoring Events with DBA_LOGSTDBY_EVENTS ... 11-7
12–1 Finding VALID_FOR Information in the V$ARCHIVE_DEST View 12-9
14–1 Automatically Failing Over to an Alternate Destination ... 14-5
14–2 Defining an Alternate Oracle Net Service Name to the Same Standby Database 14-5
A–1 Setting a Retry Time and Limit .. A-3
A–2 Specifying an Alternate Destination ... A-3
A–3 Warning Messages Reported for ITL Pressure .. A-15

xv

List of Figures

1–1 Typical Data Guard Configuration .. 1-3
1–2 Automatic Updating of a Physical Standby Database .. 1-4
1–3 Automatic Updating of a Logical Standby Database .. 1-5
1–4 Data Guard Overview Page in Oracle Enterprise Manager ... 1-7
2–1 Possible Standby Configurations.. 2-7
5–1 Transmitting Redo Data... 5-2
5–2 Primary Database Archiving When There Is No Standby Database 5-4
5–3 Archiving to Local Destinations Before Archiving to Remote Destinations...................... 5-9
5–4 LGWR SYNC Archival to a Remote Destination with Standby Redo Log Files............. 5-12
5–5 LGWR ASYNC Archival with Network Server (LNSn) Processes................................... 5-13
5–6 Archival Operation to an Alternate Destination Device .. 5-17
5–7 Data Guard Configuration with Dependent Destinations... 5-25
6–1 Applying Redo Data to a Standby Destination Using Real-Time Apply 6-3
7–1 Data Guard Configuration Before Switchover ... 7-4
7–2 Standby Databases Before Switchover to the New Primary Database 7-4
7–3 Data Guard Environment After Switchover ... 7-5
7–4 Failover to a Standby Database... 7-6
8–1 Standby Database Open for Read-Only Access.. 8-3
9–1 SQL Apply Processing ... 9-1
9–2 Progress States During SQL Apply Processing ... 9-10
11–1 Data Guard Configuration Before Upgrade .. 11-2
11–2 Upgrade the Logical Standby Database Release ... 11-6
11–3 Running Mixed Releases... 11-7
11–4 After a Switchover ... 11-9
11–5 Both Databases Upgraded .. 11-10
12–1 Primary and Physical Standby Databases Before a Role Transition 12-2
12–2 Primary and Physical Standby Databases After a Role Transition................................... 12-3
12–3 Configuring Destinations for a Primary Database and a Logical Standby Database 12-4
12–4 Primary and Logical Standby Databases After a Role Transition 12-6
12–5 Configuring a Primary Database with Physical and Logical Standby Databases.......... 12-7
12–6 Primary, Physical, and Logical Standby Databases After a Role Transition................... 12-8
12–7 Using a Physical Standby Database As a Testing and Reporting Database.................. 12-30
12–8 Manual Recovery of Archived Redo Log Files in an Archive Gap................................. 12-44
D–1 Transmitting Redo Data from a Multi-Instance Primary Database.................................... D-2
D–2 Standby Database in Real Application Clusters.. D-3
E–1 Cascaded Destination Configuration Example ... E-1

xvi

List of Tables

2–1 Standby Database Location and Directory Options ... 2-7
3–1 Preparing the Primary Database for Physical Standby Database Creation....................... 3-1
3–2 Creating a Physical Standby Database.. 3-7
4–1 Preparing the Primary Database for Logical Standby Database Creation 4-1
4–2 Creating a Logical Standby Database ... 4-3
5–1 LOG_ARCHIVE_DEST_STATE_n Initialization Parameter Attributes 5-3
5–2 Minimum Requirements for Data Protection Modes .. 5-19
5–3 Wait Events for Destinations Configured with the ARCH Attribute 5-30
5–4 Wait Events for Destinations Configured with the LGWR SYNC Attributes................ 5-31
5–5 Wait Events for Destinations Configured with the LGWR ASYNC Attributes 5-31
8–1 Actions Required on a Standby Database After Changes to a Primary Database 8-6
8–2 Location Where Common Actions on the Primary Database Can Be Monitored 8-14
11–1 Step-by-Step Procedure to Upgrade Oracle Database Software 11-5
12–1 Data Guard Scenarios... 12-1
12–2 Initialization Parameter Settings for Primary and Physical Standby Databases........... 12-2
12–3 Initialization Parameter Settings for Primary and Logical Standby Databases............. 12-4
12–4 Initialization Parameters for Primary, Physical, and Logical Standby Databases 12-7
12–5 Identifiers for the Physical Standby Database Example.. 12-10
12–6 Identifiers for Logical Standby Database Example.. 12-16
13–1 Initialization Parameters for Instances in a Data Guard Configuration 13-1
14–1 Directives for the TEMPLATE Attribute ... 14-24
14–2 VALID_FOR Attribute Values .. 14-27
15–1 ALTER DATABASE Statements Used in Data Guard Environments 15-1
15–2 ALTER SESSION Statement Used in Data Guard Environments 15-4
16–1 Views That Are Pertinent to Data Guard Configurations .. 16-1
A–1 Common Processes That Prevent Switchover .. A-6
A–2 Fixing Typical SQL Apply Errors ... A-9
C–1 Values for stmt Parameter of the DBMS_LOGSTDBY.SKIP procedure C-5
C–2 Statement Options for Skipping SQL DDL Statements... C-7
D–1 Directives for the LOG_ARCHIVE_FORMAT Initialization Parameter D-4
E–1 Initialization Parameters for Primary, Physical, and Logical Standby Databases E-3
F–1 Standby Database Preparation Using RMAN .. F-2
F–2 Order of Precedence for Naming Datafiles in Standby Database...................................... F-4
F–3 Using Image Copies to Create a Standby Database: Scenario.. F-16

xvii

Preface

Oracle Data Guard is the most effective solution available today to protect the core
asset of any enterprise—its data, and make it available on a 24x7 basis even in the face
of disasters and other calamities. This guide describes Oracle Data Guard technology
and concepts, and helps you configure and implement standby databases.

Audience
Oracle Data Guard Concepts and Administration is intended for database administrators
(DBAs) who administer the backup, restoration, and recovery operations of an Oracle
database system.

To use this document, you should be familiar with relational database concepts and
basic backup and recovery administration. You should also be familiar with the
operating system environment under which you are running Oracle software.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

xviii

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents
Readers of Oracle Data Guard Concepts and Administration should also read:

■ The beginning of Oracle Database Concepts, that provides an overview of the
concepts and terminology related to the Oracle database and serves as a
foundation for the more detailed information in this guide.

■ The chapters in the Oracle Database Administrator's Guide that deal with managing
the control files, online redo log files, and archived redo log files.

■ The chapter in the Oracle Database Utilities that discusses LogMiner technology.

■ Oracle Data Guard Broker that describes the graphical user interface and
command-line interface for automating and centralizing the creation,
maintenance, and monitoring of Data Guard configurations.

■ Oracle Enterprise Manager online Help system

Discussions in this book also refer you to the following guides:

■ Oracle Database SQL Reference

■ Oracle Database Reference

■ Oracle Database Backup and Recovery Basics

■ Oracle Database Backup and Recovery Advanced User's Guide

■ Oracle Database Net Services Administrator's Guide

■ SQL*Plus User's Guide and Reference

■ Oracle Database High Availability Overview

Also, see Oracle Streams Concepts and Administration for information about Oracle
Streams and the Streams Downstream Capture Database. The Streams downstream
capture process uses the Oracle Data Guard redo transport services to transfer redo
data to log files on a remote database where a Streams capture process captures
changes in the archived redo log files at the remote destination.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xix

What’s New in Oracle Data Guard?

This preface describes the new features added to Oracle Data Guard in release 10.2 and
provides links to additional information. The features and enhancements described in
this preface were added to Oracle Data Guard in 10g Release 2 (10.2). The new features
are described under the following main areas:

■ New Features Common to Redo Apply and SQL Apply

■ New Features Specific to Redo Apply and Physical Standby Databases

■ New Features Specific to SQL Apply and Logical Standby Databases

New Features Common to Redo Apply and SQL Apply
The following enhancements to Oracle Data Guard in 10g Release 2 (10.2) improve
ease-of-use, manageability, performance, and include innovations that improve
disaster-recovery capabilities:

■ Fast-start failover

Fast-start failover provides the ability to automatically, quickly, and reliably fail
over to a designated, synchronized standby database in the event of loss of the
primary database, without requiring that you perform complex manual steps to
invoke the failover.

Also, after a fast-start failover occurs, the old primary database is automatically
reconfigured as a new standby database upon reconnection to the configuration.
This enables Data Guard to restore disaster protection in the configuration easily,
without complex manual steps, improving the robustness of the disaster-recovery
features of Data Guard, as well as improving Data Guard manageability.

These new capabilities allow you to maintain uptime and increase the availability,
as well the robustness of disaster recovery. Plus, there is less need for manual
intervention, thereby reducing management costs.

■ Flashback Database across Data Guard switchovers

It is now possible to flash back the primary and standby databases to an SCN or a
point in time prior to a switchover operation. When you use this feature of
Flashback Database on a physical standby database, the standby role is preserved.
On a logical standby database, the role of the standby database is changed to what
it was at the target SCN or time.

This feature extends the flashback window, providing more flexibility to detect
and correct human errors.

See Also: Oracle Data Guard Broker

xx

■ Asynchronous Redo Transmission

Asynchronous redo transmission using the log writer process (LGWR ASYNC) has
been improved to reduce the performance impact on the primary database. During
asynchronous redo transmission, the network server (LNSn) process transmits
redo data out of the online redo log files on the primary database and no longer
interacts directly with the log writer process.

This change in behavior allows the log writer process to write redo data to the
current online redo log file and continue processing the next request without
waiting for interprocess communication or network I/O to complete.

■ New MAX_CONNECTIONS attribute on the LOG_ARCHIVE_DEST_n parameter

This attribute specifies how the archiver (ARCn) processes on the primary
database coordinate when sending redo data to standby databases. If the MAX_
CONNECTIONS attribute is set to a nonzero value, redo transport services use
multiple network connections to transmit redo data using archiver processes.

■ Data Guard enhancements in Oracle Enterprise Manager

If you use the Data Guard broker to manage your Data Guard configuration, you
can take advantage of the following enhancements in Oracle Enterprise Manager.

– Estimated Failover Time (seconds)

The approximate number of seconds required to fail over to this standby
database. This accounts for the startup time (if necessary) plus the remaining
time it would require to apply all the available redo data on the standby
database. If it is not necessary to start the database, this metric shows only the
remaining apply time.

– Apply Lag (seconds)

The number of seconds that the standby database is behind the primary
database in applying redo data.

– Redo Generation Rate (KB/second)

Displays the amount of redo generation rate in KB/second on the primary
database.

– Redo Apply Rate (KB/second)

Displays the Redo Apply Rate in KB/second on this standby database.

– Transport Lag (seconds)

The approximate number of seconds of redo data not yet available on this
standby database. This may be because the redo has not yet been shipped or
there may be a gap.

– Data Guard Status

See Also: Section 7.4, "Using Flashback Database After a Role
Transition"

See Also: Section 5.3.2.3, "LGWR ASYNC Archival Processing"
and the SYNC and ASYNC attributes in Chapter 14

See Also: "MAX_CONNECTIONS" attribute on page 14-16

xxi

Use the Data Guard Status metric to check the status of each database in the
Data Guard configuration.

By default, a critical and warning threshold value was set for this metric
column. Alerts will be generated when threshold values are reached. You can
edit the value for a threshold, as required.

– Fast-Start Failover Occurred

When fast-start failover is enabled, this metric generates a critical alert on the
new primary database (old standby database) if a fast-start failover occurs.
The fast-start failover SCN must be initialized to a value before the metric will
alert. This usually takes one collection interval. Once a fast-start failover
occurs and the new primary database is ready, the fast-start failover alert is
generated. The alert is cleared after one collection interval. A critical alert is
configured by default.

* Both primary and standby databases must be configured with SYSDBA
monitoring access.

* Shows the time when a fast-start failover occurred: the value is zero if
fast-start failover has not occurred and one if fast-start failover occurred.

– Fast-Start Failover SCN

When fast-start failover is enabled, this metric generates a critical alert on the
new primary database (old standby database) if a fast-start failover occurs.
The fast-start failover SCN must be initialized to a value before the metric will
alert. This usually takes one collection interval. Once a fast-start failover
occurs and the new primary database is ready, the fast-start failover alert is
generated. The alert is cleared after one collection interval. A critical alert is
configured by default.

* Both primary and standby databases must be configured with SYSDBA
monitoring access.

* Any value indicates the metric is ready to trigger.

– Fast-Start Failover Time

When fast-start failover is enabled, this metric will generate a critical alert on
the new primary database (old standby database) if a fast-start failover occurs.
The fast-start failover SCN must be initialized to a value before the metric will
create an alert. This usually takes one collection interval. Once a fast-start
failover occurs and the new primary database is ready, the fast-start failover
alert fires. It then clears after one collection interval. A critical alert is
configured by default.

* Both primary and standby databases must be configured with SYSDBA
monitoring access.

* A time stamp displays if fast-start failover occurred.

■ New support for Change Data Capture and Streams:

– Distributed (heterogeneous) Asynchronous Change Data Capture

– Downstream Capture Hot Mining

See Also: Oracle Enterprise Manager online Help system

xxii

New Features Specific to Redo Apply and Physical Standby Databases
The following list summarizes the new features that are specific to Redo Apply and
physical standby databases in Oracle Database 10g Release 2 (10.2):

■ Faster Redo Apply failover

Allows you to transition a physical standby database to the primary database role
without doing a database restart, as long as the standby database has not been
opened read-only since the last time it was started.

This enables faster recovery from a failure or outage, increasing the availability of
the system.

■ Easy conversion of a physical standby database to a reporting database

A physical standby database can be activated as a primary database, opened
read/write for reporting purposes, and then flashed back to a point in the past to
be easily converted back to a physical standby database. At this point, Data Guard
automatically synchronizes the standby database with the primary database. This
allows the physical standby database to be utilized for reporting and read/write
cloning activities.

■ New FORCE keyword on RECOVER MANAGED STANDBY DATABASE FINISH

The new FORCE option on the ALTER DATABASE RECOVER MANAGED STANDBY
DATABASE FINISH statement stops active RFS processes on the target standby
database so the failover will proceed immediately, as soon as the logs have been
applied.

■ RMAN automatically re-creates tempfiles after recovery

Temporary datafiles that belong to locally managed temporary tablespaces are
automatically created during the recovery operation by RMAN, thus it is no
longer necessary to create and associate a tempfile with a temporary tablespace on
a physical standby database.

■ Miscellaneous changes improve usage and manageability

By deprecating unnecessary initialization parameters and certain SQL statement
clauses and keywords, the usage and manageability of physical standby databases
has been improved.

See Also: Oracle Streams Concepts and Administration and Oracle
Database Data Warehousing Guide (for Change Data Capture
information)

See Also: Section 7.2.2, "Failovers Involving a Physical Standby
Database"

See Also: Section 12.6, "Using a Physical Standby Database for
Read/Write Testing and Reporting"

See Also: Section 7.2.2, "Failovers Involving a Physical Standby
Database" and the ALTER DATABASE syntax in Oracle Database SQL
Reference

See Also: The SQL statements relevant to Data Guard in Oracle
Database SQL Reference and the LOG_ARCHIVE_DEST_n initialization
parameter in Oracle Database Reference

xxiii

New Features Specific to SQL Apply and Logical Standby Databases
The following list summarizes the new features for SQL Apply and logical standby
databases in Oracle Database 10g Release 2 (10.2):

■ Faster SQL Apply failover

Failover to a logical standby database can now be completed much faster because
it is no longer necessary to restart SQL Apply as a part of the failover operation.
This enables the Data Guard configuration to recover from a failure or outage
much faster, increasing the availability of the system.

■ Additional datatype support for Index Organized Tables

SQL Apply now supports mining of redo records generated by index organized
tables containing LOB columns and overflow segments.

■ Automatic deletion of applied archived redo log files

Archived log files, once they are applied on the logical standby database, will be
automatically deleted by SQL Apply. This reduces storage consumption on the
logical standby database and improves Data Guard manageability.

■ Optimized creation of logical standby database

Creation of a logical standby database no longer requires the creation of a
specialized logical standby control file, which could not be used by RMAN.
Logical standby databases can now be created easily from a physical standby
database. This reduces the specialized manual operations for creating a logical
standby database and improves Data Guard manageability.

■ Added several enhancements for managing logical standby databases:

– New views:

* V$LOGSTDBY_PROCESS (replaces the deprecated V$LOGSTDBY view)

* V$LOGSTDBY_STATE

* V$LOGSTDBY_PROGRESS

* V$LOGSTDBY_TRANSACTION

* V$DATAGUARD_STATS

– New DBMS_LOGSTDBY.REBUILD() subprogram on the DBMS_LOGSTDBY
PL/SQL package

– Tracing

See Also: Section 7.3.2, "Failovers Involving a Logical Standby
Database"

See Also: Section 4.1.1, "Determine Support for Data Types and
Storage Attributes for Tables"

See Also: Section 9.3.2, "Automatic Deletion of Log Files"

See Also: Section 4.2, "Step-by-Step Instructions for Creating a
Logical Standby Database"

See Also: Chapter 9, "Managing a Logical Standby Database"

xxiv

Part I
Concepts and Administration

This part contains the following chapters:

■ Chapter 1, "Introduction to Oracle Data Guard"

■ Chapter 2, "Getting Started with Data Guard"

■ Chapter 3, "Creating a Physical Standby Database"

■ Chapter 4, "Creating a Logical Standby Database"

■ Chapter 5, "Redo Transport Services"

■ Chapter 6, "Log Apply Services"

■ Chapter 7, "Role Transitions"

■ Chapter 8, "Managing a Physical Standby Database"

■ Chapter 9, "Managing a Logical Standby Database"

■ Chapter 10, "Using RMAN to Back Up and Restore Files"

■ Chapter 11, "Using SQL Apply to Upgrade the Oracle Database"

■ Chapter 12, "Data Guard Scenarios"

Introduction to Oracle Data Guard 1-1

1
Introduction to Oracle Data Guard

Oracle Data Guard ensures high availability, data protection, and disaster recovery for
enterprise data. Data Guard provides a comprehensive set of services that create,
maintain, manage, and monitor one or more standby databases to enable production
Oracle databases to survive disasters and data corruptions. Data Guard maintains
these standby databases as transactionally consistent copies of the production
database. Then, if the production database becomes unavailable because of a planned
or an unplanned outage, Data Guard can switch any standby database to the
production role, minimizing the downtime associated with the outage. Data Guard can
be used with traditional backup, restoration, and cluster techniques to provide a high
level of data protection and data availability.

With Data Guard, administrators can optionally improve production database
performance by offloading resource-intensive backup and reporting operations to
standby systems.

This chapter includes the following topics that describe the highlights of Oracle Data
Guard:

■ Data Guard Configurations

■ Data Guard Services

■ Data Guard Broker

■ Data Guard Protection Modes

■ Data Guard and Complementary Technologies

■ Summary of Data Guard Benefits

1.1 Data Guard Configurations
A Data Guard configuration consists of one production database and one or more
standby databases. The databases in a Data Guard configuration are connected by
Oracle Net and may be dispersed geographically. There are no restrictions on where
the databases are located, provided they can communicate with each other. For
example, you can have a standby database on the same system as the production
database, along with two standby databases on other systems at remote locations.

You can manage primary and standby databases using the SQL command-line
interfaces or the Data Guard broker interfaces, including a command-line interface
(DGMGRL) and a graphical user interface that is integrated in Oracle Enterprise
Manager.

Data Guard Configurations

1-2 Oracle Data Guard Concepts and Administration

1.1.1 Primary Database
A Data Guard configuration contains one production database, also referred to as the
primary database, that functions in the primary role. This is the database that is
accessed by most of your applications.

The primary database can be either a single-instance Oracle database or an Oracle Real
Application Clusters database.

1.1.2 Standby Databases
A standby database is a transactionally consistent copy of the primary database. Using
a backup copy of the primary database, you can create up to nine standby databases
and incorporate them in a Data Guard configuration. Once created, Data Guard
automatically maintains each standby database by transmitting redo data from the
primary database and then applying the redo to the standby database.

Similar to a primary database, a standby database can be either a single-instance
Oracle database or an Oracle Real Application Clusters database.

A standby database can be either a physical standby database or a logical standby
database:

■ Physical standby database

Provides a physically identical copy of the primary database, with on disk
database structures that are identical to the primary database on a block-for-block
basis. The database schema, including indexes, are the same. A physical standby
database is kept synchronized with the primary database, though Redo Apply,
which recovers the redo data received from the primary database and applies the
redo to the physical standby database.

A physical standby database can be used for business purposes other than disaster
recovery on a limited basis.

■ Logical standby database

Contains the same logical information as the production database, although the
physical organization and structure of the data can be different. The logical
standby database is kept synchronized with the primary database though SQL
Apply, which transforms the data in the redo received from the primary database
into SQL statements and then executing the SQL statements on the standby
database.

A logical standby database can be used for other business purposes in addition to
disaster recovery requirements. This allows users to access a logical standby
database for queries and reporting purposes at any time. Also, using a logical
standby database, you can upgrade Oracle Database software and patch sets with
almost no downtime. Thus, a logical standby database can be used concurrently
for data protection, reporting, and database upgrades.

1.1.3 Configuration Example
Figure 1–1 shows a typical Data Guard configuration that contains a primary database
that transmits redo data to a standby database. The standby database is remotely
located from the primary database for disaster recovery and backup operations. You
can configure the standby database at the same location as the primary database.
However, for disaster recovery purposes, Oracle recommends you configure standby
databases at remote locations.

Data Guard Services

Introduction to Oracle Data Guard 1-3

Figure 1–1 shows a typical Data Guard configuration in which redo is being applied
out of standby redo log files to a standby database.

Figure 1–1 Typical Data Guard Configuration

1.2 Data Guard Services
The following sections explain how Data Guard manages the transmission of redo
data, the application of redo data, and changes to the database roles:

■ Redo Transport Services

Control the automated transfer of redo data from the production database to one
or more archival destinations.

■ Log Apply Services

Apply redo data on the standby database to maintain transactional
synchronization with the primary database. Redo data can be applied either from
archived redo log files, or, if real-time apply is enabled, directly from the standby
redo log files as they are being filled, without requiring the redo data to be
archived first at the standby database.

■ Role Transitions

Change the role of a database from a standby database to a primary database, or
from a primary database to a standby database using either a switchover or a
failover operation.

1.2.1 Redo Transport Services
Redo transport services control the automated transfer of redo data from the
production database to one or more archival destinations.

Redo transport services perform the following tasks:

■ Transmit redo data from the primary system to the standby systems in the
configuration

■ Manage the process of resolving any gaps in the archived redo log files due to a
network failure

■ Enforce the database protection modes (described in Section 1.4)

■ Automatically detect missing or corrupted archived redo log files on a standby
system and automatically retrieve replacement archived redo log files from the
primary database or another standby database

Apply Redo

Disaster Recovery
Database Backup Operations

Standby
Database

Primary
Database

Transmit Redo

LGWR

Online
Redo Log

Redo
Stream

Standby
Redo Log

Data Guard Services

1-4 Oracle Data Guard Concepts and Administration

1.2.2 Log Apply Services
The redo data transmitted from the primary database is written on the standby system
into standby redo log files, if configured, and then archived into archived redo log
files. Log apply services automatically apply the redo data on the standby database to
maintain consistency with the primary database. It also allows read-only access to the
data.

The main difference between physical and logical standby databases is the manner in
which log apply services apply the archived redo data:

■ For physical standby databases, Data Guard uses Redo Apply technology, which
applies redo data on the standby database using standard recovery techniques of
an Oracle database, as shown in Figure 1–2.

Figure 1–2 Automatic Updating of a Physical Standby Database

■ For logical standby databases, Data Guard uses SQL Apply technology, which
first transforms the received redo data into SQL statements and then executes the
generated SQL statements on the logical standby database, as shown in Figure 1–3.

Data Guard Broker

Introduction to Oracle Data Guard 1-5

Figure 1–3 Automatic Updating of a Logical Standby Database

1.2.3 Role Transitions
An Oracle database operates in one of two roles: primary or standby. Using Data
Guard, you can change the role of a database using either a switchover or a failover
operation.

A switchover is a role reversal between the primary database and one of its standby
databases. A switchover ensures no data loss. This is typically done for planned
maintenance of the primary system. During a switchover, the primary database
transitions to a standby role, and the standby database transitions to the primary role.
The transition occurs without having to re-create either database.

A failover is when the primary database is unavailable. Failover is performed only in
the event of a catastrophic failure of the primary database, and the failover results in a
transition of a standby database to the primary role. The database administrator can
configure Data Guard to ensure no data loss.

The role transitions described in this documentation are invoked manually using SQL
statements. You can also use the Oracle Data Guard broker to simplify role transitions
and automate failovers using Oracle Enterprise Manager or the DGMGRL
command-line interface, as described in Section 1.3.

1.3 Data Guard Broker
The Data Guard broker is a distributed management framework that automates the
creation, maintenance, and monitoring of Data Guard configurations. You can use
either the Oracle Enterprise Manager graphical user interface (GUI) or the Data Guard
command-line interface (DGMGRL) to:

■ Create and enable Data Guard configurations, including setting up redo transport
services and log apply services

■ Manage an entire Data Guard configuration from any system in the configuration

■ Manage and monitor Data Guard configurations that contain Real Application
Clusters primary or standby databases

Primary
Database

Logical
Standby
Database

Read / Write
Transactions Redo

Stream

Redo
Transport

Reports

SQL
Apply

Data Guard Broker

1-6 Oracle Data Guard Concepts and Administration

■ Simplify switchovers and failovers by allowing you to invoke them using either a
single key click in Oracle Enterprise Manager or a single command in the
DGMGRL command-line interface.

■ Enable fast-start failover to fail over automatically when the primary database
becomes unavailable. When fast-start failover is enabled, the Data Guard broker
determines if a failover is necessary and initiates the failover to the specified target
standby database automatically, with no need for DBA intervention and with no
loss of data.

In addition, Oracle Enterprise Manager automates and simplifies:

■ Creating a physical or logical standby database from a backup copy of the primary
database

■ Adding new or existing standby databases to an existing Data Guard
configuration

■ Monitoring log apply rates, capturing diagnostic information, and detecting
problems quickly with centralized monitoring, testing, and performance tools

1.3.1 Using Oracle Enterprise Manager
Oracle Enterprise Manager, also referred to as Enterprise Manager, provides a
web-based interface for viewing, monitoring, and administering primary and standby
databases in a Data Guard configuration. Enterprise Manager's easy-to-use interfaces
combined with the broker's centralized management and monitoring of the Data
Guard configuration enhance the Data Guard solution for high availability, site
protection, and data protection of an enterprise.

From the Enterprise Manager Central Console, all management operations can be
performed locally or remotely. You can view home pages for Oracle databases,
including primary and standby databases and instances, create or add existing
standby databases, start and stop instances, monitor instance performance, view
events, schedule jobs, and perform backup and recovery operations. See Oracle Data
Guard Broker and the Oracle Enterprise Manager online help system.

Figure 1–4 shows the Data Guard management overview page in Enterprise Manager.

See Also: Oracle Data Guard Broker for more information

Data Guard Protection Modes

Introduction to Oracle Data Guard 1-7

Figure 1–4 Data Guard Overview Page in Oracle Enterprise Manager

1.3.2 Using the Data Guard Command-Line Interface
The Data Guard command-line interface (DGMGRL) enables you to control and
monitor a Data Guard configuration from the DGMGRL prompt or within scripts. You
can perform most of the activities required to manage and monitor the databases in the
configuration using DGMGRL. See Oracle Data Guard Broker for complete DGMGRL
reference information and examples.

1.4 Data Guard Protection Modes
In some situations, a business cannot afford to lose data. In other situations, the
availability of the database may be more important than the loss of data. Some
applications require maximum database performance and can tolerate some small
amount of data loss. The following descriptions summarize the three distinct modes of
data protection.

Maximum protection This protection mode ensures that no data loss will occur if the
primary database fails. To provide this level of protection, the redo data needed to
recover each transaction must be written to both the local online redo log and to the
standby redo log on at least one standby database before the transaction commits. To
ensure data loss cannot occur, the primary database shuts down if a fault prevents it
from writing its redo stream to the standby redo log of at least one transactionally
consistent standby database.

Maximum availability This protection mode provides the highest level of data
protection that is possible without compromising the availability of the primary

Data Guard and Complementary Technologies

1-8 Oracle Data Guard Concepts and Administration

database. Like maximum protection mode, a transaction will not commit until the redo
needed to recover that transaction is written to the local online redo log and to the
standby redo log of at least one transactionally consistent standby database. Unlike
maximum protection mode, the primary database does not shut down if a fault
prevents it from writing its redo stream to a remote standby redo log. Instead, the
primary database operates in maximum performance mode until the fault is corrected,
and all gaps in redo log files are resolved. When all gaps are resolved, the primary
database automatically resumes operating in maximum availability mode.

This mode ensures that no data loss will occur if the primary database fails, but only if
a second fault does not prevent a complete set of redo data from being sent from the
primary database to at least one standby database.

Maximum performance This protection mode (the default) provides the highest level
of data protection that is possible without affecting the performance of the primary
database. This is accomplished by allowing a transaction to commit as soon as the redo
data needed to recover that transaction is written to the local online redo log. The
primary database’s redo data stream is also written to at least one standby database,
but that redo stream is written asynchronously with respect to the transactions that
create the redo data.

When network links with sufficient bandwidth are used, this mode provides a level of
data protection that approaches that of maximum availability mode with minimal
impact on primary database performance.

The maximum protection and maximum availability modes require that standby redo
log files are configured on at least one standby database in the configuration. All three
protection modes require that specific log transport attributes be specified on the LOG_
ARCHIVE_DEST_n initialization parameter to send redo data to at least one standby
database. See Section 5.6 for complete information about the data protection modes.

1.5 Data Guard and Complementary Technologies
Oracle Database provides several unique technologies that complement Data Guard to
help keep business critical systems running with greater levels of availability and data
protection than when using any one solution by itself. The following list summarizes
some Oracle high-availability technologies:

■ Oracle Real Application Clusters (RAC)

RAC enables multiple independent servers that are linked by an interconnect to
share access to an Oracle database, providing high availability, scalability, and
redundancy during failures. RAC and Data Guard together provide the benefits of
both system-level, site-level, and data-level protection, resulting in high levels of
availability and disaster recovery without loss of data:

– RAC addresses system failures by providing rapid and automatic recovery
from failures, such as node failures and instance crashes. It also provides
increased scalability for applications.

– Data Guard addresses site failures and data protection through transactionally
consistent primary and standby databases that do not share disks, enabling
recovery from site disasters and data corruption.

Many different architectures using RAC and Data Guard are possible depending
on the use of local and remote sites and the use of nodes and a combination of
logical and physical standby databases. See Appendix D, "Data Guard and Real
Application Clusters" and Oracle Database High Availability Overview for RAC and
Data Guard integration.

Summary of Data Guard Benefits

Introduction to Oracle Data Guard 1-9

■ Flashback Database

The Flashback Database feature provides fast recovery from logical data
corruption and user errors. By allowing you to flash back in time, previous
versions of business information that might have been erroneously changed or
deleted can be accessed once again. This feature:

– Eliminates the need to restore a backup and roll forward changes up to the
time of the error or corruption. Instead, Flashback Database can roll back an
Oracle database to a previous point-in-time, without restoring datafiles.

– Provides an alternative to delaying the application of redo to protect against
user errors or logical corruptions. Therefore, standby databases can be more
closely synchronized with the primary database, thus reducing failover and
switchover times.

– Avoids the need to completely re-create the original primary database after a
failover. The failed primary database can be flashed back to a point in time
before the failover and converted to be a standby database for the new
primary database.

See Oracle Database Backup and Recovery Advanced User's Guide for information
about Flashback Database, and Section 6.2.2 for information delaying the
application of redo data.

■ Recovery Manager (RMAN)

RMAN is an Oracle utility that simplifies backing up, restoring, and recovering
database files. Like Data Guard, RMAN is a feature of the Oracle database and
does not require separate installation. Data Guard is well integrated with RMAN,
allowing you to:

– Use the Recovery Manager DUPLICATE command to create a standby
database from backups of your primary database.

– Take backups on a physical standby database instead of the production
database, relieving the load on the production database and enabling efficient
use of system resources on the standby site. Moreover, backups can be taken
while the physical standby database is applying redo.

– Help manage archived redo log files by automatically deleting the archived
redo log files used for input after performing a backup.

See Appendix F, "Creating a Standby Database with Recovery Manager" and
Oracle Database Backup and Recovery Basics.

1.6 Summary of Data Guard Benefits
Data Guard offers these benefits:

■ Disaster recovery, data protection, and high availability

Data Guard provides an efficient and comprehensive disaster recovery and high
availability solution. Easy-to-manage switchover and failover capabilities allow
role reversals between primary and standby databases, minimizing the downtime
of the primary database for planned and unplanned outages.

■ Complete data protection

Data Guard can ensure no data loss, even in the face of unforeseen disasters. A
standby database provides a safeguard against data corruption and user errors.
Storage level physical corruptions on the primary database do not propagate to

Summary of Data Guard Benefits

1-10 Oracle Data Guard Concepts and Administration

the standby database. Similarly, logical corruptions or user errors that cause the
primary database to be permanently damaged can be resolved. Finally, the redo
data is validated when it is applied to the standby database.

■ Efficient use of system resources

The standby database tables that are updated with redo data received from the
primary database can be used for other tasks such as backups, reporting,
summations, and queries, thereby reducing the primary database workload
necessary to perform these tasks, saving valuable CPU and I/O cycles. With a
logical standby database, users can perform normal data manipulation on tables in
schemas that are not updated from the primary database. A logical standby
database can remain open while the tables are updated from the primary database,
and the tables are simultaneously available for read-only access. Finally, additional
indexes and materialized views can be created on the maintained tables for better
query performance and to suit specific business requirements.

■ Flexibility in data protection to balance availability against performance
requirements

Oracle Data Guard offers maximum protection, maximum availability, and
maximum performance modes to help enterprises balance data availability against
system performance requirements.

■ Automatic gap detection and resolution

If connectivity is lost between the primary and one or more standby databases (for
example, due to network problems), redo data being generated on the primary
database cannot be sent to those standby databases. Once a connection is
reestablished, the missing archived redo log files (referred to as a gap) are
automatically detected by Data Guard, which then automatically transmits the
missing archived redo log files to the standby databases. The standby databases
are synchronized with the primary database, without manual intervention by the
DBA.

■ Centralized and simple management

The Data Guard broker provides a graphical user interface and a command-line
interface to automate management and operational tasks across multiple
databases in a Data Guard configuration. The broker also monitors all of the
systems within a single Data Guard configuration.

■ Integration with Oracle Database

Data Guard is a feature of Oracle Database Enterprise Edition and does not require
separate installation.

■ Automatic role transitions

When fast-start failover is enabled, the Data Guard broker automatically fails over
to a synchronized standby site in the event of a disaster at the primary site,
requiring no intervention by the DBA. In addition, applications are automatically
notified of the role transition.

Getting Started with Data Guard 2-1

2
Getting Started with Data Guard

A Data Guard configuration contains a primary database and up to nine associated
standby databases. This chapter describes the following considerations for getting
started with Data Guard:

■ Standby Database Types

■ User Interfaces for Administering Data Guard Configurations

■ Data Guard Operational Prerequisites

■ Standby Database Directory Structure Considerations

■ Online Redo Logs, Archived Redo Logs, and Standby Redo Logs

2.1 Standby Database Types
A standby database is a transactionally consistent copy of an Oracle production
database that is initially created from a backup copy of the primary database. Once the
standby database is created and configured, Data Guard automatically maintains the
standby database by transmitting primary database redo data to the standby system,
where the redo data is applied to the standby database.

A standby database can be one of two types: a physical standby database or a logical
standby database. If needed, either type of standby database can assume the role of the
primary database and take over production processing. A Data Guard configuration
can include physical standby databases, logical standby databases, or a combination of
both types.

2.1.1 Physical Standby Databases
A physical standby database is physically identical to the primary database, with on
disk database structures that are identical to the primary database on a block-for-block
basis. The database schema, including indexes, are identical.

Data Guard maintains a physical standby database by performing Redo Apply. When
it is not performing recovery, a physical standby database can be open in read-only
mode, or it can be opened temporarily in read/write mode if Flashback Database is
enabled.

■ Redo Apply

The physical standby database is maintained by applying redo data from the
archived redo log files or directly from standby redo log files on the standby
system using the Oracle recovery mechanism. The recovery operation applies
changes in redo blocks to data block using the data-block address. The database
cannot be opened while redo is being applied.

Standby Database Types

2-2 Oracle Data Guard Concepts and Administration

■ Open read-only

A physical standby database can be open in read-only mode so that you can
execute queries on the database. While opened in read-only mode, the standby
database can continue to receive redo data, but application of the redo data from
the log files is deferred until the database resumes Redo Apply.

Although the physical standby database cannot perform both Redo Apply and be
opened in read-only mode at the same time, you can switch between them. For
example, you can perform Redo Apply, then open it in read-only mode for
applications to run reports, and then change it back to perform Redo Apply to
apply any outstanding archived redo log files. You can repeat this cycle,
alternating between Redo Apply and read-only, as necessary.

The physical standby database is available to perform backups. Furthermore, the
physical standby database will continue to receive redo data even if archived redo
log files or standby redo log files are not being applied at that moment.

■ Open read/write

A physical standby database can also be opened for read/write access for
purposes such as creating a clone database or for read/write reporting. While
opened in read/write mode, the standby database does not receive redo data from
the primary database and cannot provide disaster protection.

The physical standby database can be opened temporarily in read/write mode for
development, reporting, or testing purposes, and then flashed back to a point in
the past to be reverted back to a physical standby database. When the database is
flashed back, Data Guard automatically synchronizes the standby database with
the primary database, without the need to re-create the physical standby database
from a backup copy of the primary database.

Benefits of a Physical Standby Database
A physical standby database provides the following benefits:

■ Disaster recovery and high availability

A physical standby database enables a robust and efficient disaster recovery and
high availability solution. Easy-to-manage switchover and failover capabilities
allow easy role reversals between primary and physical standby databases,
minimizing the downtime of the primary database for planned and unplanned
outages.

■ Data protection

Using a physical standby database, Data Guard can ensure no data loss, even in
the face of unforeseen disasters. A physical standby database supports all
datatypes, and all DDL and DML operations that the primary database can
support. It also provides a safeguard against data corruptions and user errors.
Storage level physical corruptions on the primary database do not propagate to
the standby database. Similarly, logical corruptions or user errors that cause the
primary database to be permanently damaged can be resolved. Finally, the redo
data is validated when it is applied to the standby database.

■ Reduction in primary database workload

Oracle Recovery Manager (RMAN) can use physical standby databases to off-load
backups from the primary database saving valuable CPU and I/O cycles. The

See Also: Section 12.6 for usage examples

Standby Database Types

Getting Started with Data Guard 2-3

physical standby database can also be opened in read-only mode for reporting and
queries.

■ Performance

The Redo Apply technology used by the physical standby database applies
changes using low-level recovery mechanisms, which bypass all SQL level code
layers; therefore, it is the most efficient mechanism for applying high volumes of
redo data.

2.1.2 Logical Standby Databases
A logical standby database is initially created as an identical copy of the primary
database, but it later can be altered to have a different structure. The logical standby
database is updated by executing SQL statements. This allows users to access the
standby database for queries and reporting at any time. Thus, the logical standby
database can be used concurrently for data protection and reporting operations.

Data Guard automatically applies information from the archived redo log file or
standby redo log file to the logical standby database by transforming the data in the
log files into SQL statements and then executing the SQL statements on the logical
standby database. Because the logical standby database is updated using SQL
statements, it must remain open. Although the logical standby database is opened in
read/write mode, its target tables for the regenerated SQL are available only for
read-only operations. While those tables are being updated, they can be used
simultaneously for other tasks such as reporting, summations, and queries. Moreover,
these tasks can be optimized by creating additional indexes and materialized views on
the maintained tables.

A logical standby database has some restrictions on datatypes, types of tables, and
types of DDL and DML operations. Section 4.1.1 describes the unsupported datatypes
and storage attributes for tables.

Benefits of a Logical Standby Database
A logical standby database provides similar disaster recovery, high availability, and
data protection benefits as a physical standby database. It also provides the following
specialized benefits:

■ Efficient use of standby hardware resources

A logical standby database can be used for other business purposes in addition to
disaster recovery requirements. It can host additional database schemas beyond
the ones that are protected in a Data Guard configuration, and users can perform
normal DDL or DML operations on those schemas any time. Because the logical
standby tables that are protected by Data Guard can be stored in a different
physical layout than on the primary database, additional indexes and materialized
views can be created to improve query performance and suit specific business
requirements.

■ Reduction in primary database workload

A logical standby database can remain open at the same time its tables are
updated from the primary database, and those tables are simultaneously available
for read access. This makes a logical standby database an excellent choice to do
queries, summations, and reporting activities, thereby off-loading the primary
database from those tasks and saving valuable CPU and I/O cycles.

User Interfaces for Administering Data Guard Configurations

2-4 Oracle Data Guard Concepts and Administration

2.2 User Interfaces for Administering Data Guard Configurations
You can use the following interfaces to configure, implement, and manage a Data
Guard configuration:

■ Oracle Enterprise Manager

Enterprise Manager provides a GUI interface for the Data Guard broker that
automates many of the tasks involved in creating, configuring, and monitoring a
Data Guard environment. See Oracle Data Guard Broker and the Oracle Enterprise
Manager online Help for information about the GUI and its wizards.

■ SQL*Plus Command-line interface

Several SQL*Plus statements use the STANDBY keyword to specify operations on a
standby database. Other SQL statements do not include standby-specific syntax,
but they are useful for performing operations on a standby database. See
Chapter 15 for a list of the relevant statements.

■ Initialization parameters

Several initialization parameters are used to define the Data Guard environment.
See Chapter 13 for a list of the relevant initialization parameters.

■ Data Guard broker command-line interface (DGMGRL)

The DGMGRL command-line interface is an alternative to using Oracle Enterprise
Manager. The DGMGRL command-line interface is useful if you want to use the
broker to manage a Data Guard configuration from batch programs or scripts. See
Oracle Data Guard Broker for complete information.

2.3 Data Guard Operational Prerequisites
 The following sections describe operational requirements for using Data Guard:

■ Hardware and Operating System Requirements

■ Oracle Software Requirements

2.3.1 Hardware and Operating System Requirements
The following list describes hardware and operating system requirements for using
Data Guard:

■ All members of a Data Guard configuration must run an Oracle image that is built
for the same platform.

For example, this means a Data Guard configuration with a primary database on a
32-bit Linux on Intel system can have a standby database that is configured on a
32-bit Linux on Intel system. However, a primary database on a 64-bit HP-UX
system can also be configured with a standby database on a 32-bit HP-UX system,
as long as both servers are running 32-bit images.

■ The hardware (for example, the number of CPUs, memory size, storage
configuration) can be different between the primary and standby systems.

If the standby system is smaller than the primary system, you may have to restrict
the work that can be done on the standby system after a switchover or failover.
The standby system must have enough resources available to receive and apply all
redo data from the primary database. The logical standby database requires
additional resources to translate the redo data into SQL statements and then
execute the SQL on the logical standby database.

Data Guard Operational Prerequisites

Getting Started with Data Guard 2-5

■ The operating system running on the primary and standby locations must be the
same, but the operating system release does not need to be the same. In addition,
the standby database can use a different directory structure from the primary
database.

2.3.2 Oracle Software Requirements
The following list describes Oracle software requirements for using Data Guard:

■ Oracle Data Guard is available only as a feature of Oracle Database Enterprise
Edition. It is not available with Oracle Database Standard Edition. This means the
same release of Oracle Database Enterprise Edition must be installed on the
primary database and all standby databases in a Data Guard configuration.

■ Using Data Guard SQL Apply, you will be able to perform a rolling upgrade of the
Oracle database software from patch set release n (minimally, this must be release
10.1.0.3) to the next database 10.1.0.(n+1) patch set release. During a rolling
upgrade, you can run different releases of the Oracle database on the primary and
logical standby databases while you upgrade them, one at a time. For complete
information, see Chapter 11, "Using SQL Apply to Upgrade the Oracle Database"
and the ReadMe file for the applicable Oracle Database 10g patch set release.

■ The COMPATIBLE initialization parameter must be set to the same value on all
databases in a Data Guard configuration.

■ If you are currently running Oracle Data Guard on Oracle8i database software, see
Oracle Database Upgrade Guide for complete information about upgrading to Oracle
Data Guard.

■ The primary database must run in ARCHIVELOG mode. See Oracle Database
Administrator's Guide for more information.

■ The primary database can be a single instance database or a multi-instance Real
Application Clusters database. The standby databases can be single instance
databases or multi-instance Real Application Clusters (RAC) databases, and these
standby databases can be a mix of both physical and logical types. See Oracle
Database High Availability Overview for more information about configuring and
using Oracle Data Guard with RAC.

■ Each primary database and standby database must have its own control file.

■ If a standby database is located on the same system as the primary database, the
archival directories for the standby database must use a different directory
structure than the primary database. Otherwise, the standby database may
overwrite the primary database files.

■ To protect against unlogged direct writes in the primary database that cannot be
propagated to the standby database, turn on FORCE LOGGING at the primary

Note: It is possible to simulate a standby database environment
with databases running Oracle Database Standard Edition. You can
do this by manually transferring archived redo log files using an
operating system copy utility or using custom scripts that
periodically send archived redo log files from one database to the
other. The consequence is that this configuration does not provide
the ease-of-use, manageability, performance, and disaster-recovery
capabilities available with Data Guard.

Standby Database Directory Structure Considerations

2-6 Oracle Data Guard Concepts and Administration

database before performing datafile backups for standby creation. Keep the
database in FORCE LOGGING mode as long as the standby database is required.

■ The user accounts you use to manage the primary and standby database instances
must have SYSDBA system privileges.

■ Oracle recommends that when you set up Oracle Automatic Storage Management
(ASM) and Oracle Managed Files (OMF) in a Data Guard configuration, set it up
symmetrically on the primary and standby database. That is, if any database in the
Data Guard configuration uses ASM, OMF, or both, then every database in the
configuration should use ASM, OMF, or both, respectively. See the scenario in
Section 12.12 for more information.

2.4 Standby Database Directory Structure Considerations
The directory structure of the various standby databases is important because it
determines the path names for the standby datafiles, archived redo log files, and
standby redo log files. If possible, the datafiles, log files, and control files on the
primary and standby systems should have the same names and path names and use
Optimal Flexible Architecture (OFA) naming conventions. The archival directories on
the standby database should also be identical between sites, including size and
structure. This strategy allows other operations such as backups, switchovers, and
failovers to execute the same set of steps, reducing the maintenance complexity.

Otherwise, you must set the filename conversion parameters (as shown in Table 2–1)
or rename the datafile. Nevertheless, if you need to use a system with a different
directory structure or place the standby and primary databases on the same system,
you can do so with a minimum of extra administration.

The three basic configuration options are illustrated in Figure 2–1. These include:

■ A standby database on the same system as the primary database that uses a
different directory structure than the primary system. This is illustrated in
Figure 2–1 as Standby1.

If you have a standby database on the same system as the primary database, you
must use a different directory structure. Otherwise, the standby database attempts
to overwrite the primary database files.

■ A standby database on a separate system that uses the same directory structure as
the primary system. This is illustrated in Figure 2–1 as Standby2. This is the
recommended method.

■ A standby database on a separate system that uses a different directory structure
than the primary system. This is illustrated in Figure 2–1 as Standby3.

Note: Because some applications that perform updates involving
time-based data cannot handle data entered from multiple time
zones, consider setting the time zone for the primary and remote
standby systems to be the same to ensure the chronological
ordering of records is maintained after a role transition.

Note: if any database in the Data Guard configuration uses ASM,
OMF, or both, then every database in the configuration should use
ASM, OMF, or both, respectively. See Chapter 12 for a scenario
describing how to set up OMF in a Data Guard configuration.

Standby Database Directory Structure Considerations

Getting Started with Data Guard 2-7

Figure 2–1 Possible Standby Configurations

Table 2–1 describes possible configurations of primary and standby databases and the
consequences of each. In the table, note that the service name defaults to the
concatenation of the DB_UNIQUE_NAME and DB_DOMAIN initialization parameters.
You must specify a unique value for the DB_UNIQUE_NAME initialization parameter
when more than one member of a Data Guard configuration resides on the same
system. Oracle recommends that the value of the DB_UNIQUE_NAME initialization
parameter always be unique, even if each database is located on a separate system.

Table 2–1 Standby Database Location and Directory Options

Standby
System

Directory
Structure Consequences

Same as
primary
system

Different
than primary
system
(required)

■ You must set the DB_UNIQUE_NAME initialization parameter.

■ You can either manually rename files or set up the DB_FILE_
NAME_CONVERT and LOG_FILE_NAME_CONVERT
initialization parameters on the standby database to
automatically update the path names for primary database
datafiles and archived redo log files and standby redo log
files in the standby database control file. (See Section 3.1.4.)

■ The standby database does not protect against disasters that
destroy the system on which the primary and standby
databases reside, but it does provide switchover capabilities
for planned maintenance.

Computer System at Location 1

Computer System at Location 2 Computer System at Location 3

Primary1

Standby1

Standby2 Standby3

/oracle/dbs

/oracle/standby/dbs

/oracle/dbs /disk2/FS3/oracle/dbs

Oracle
Net

Oracle
Net

Online Redo Logs, Archived Redo Logs, and Standby Redo Logs

2-8 Oracle Data Guard Concepts and Administration

2.5 Online Redo Logs, Archived Redo Logs, and Standby Redo Logs
The most crucial structures for Data Guard recovery operations are online redo logs,
archived redo logs, and standby redo logs. Redo data transmitted from the primary
database is received by the remote file server (RFS) process on the standby system
where the RFS process writes the redo data to archived log files or standby redo log
files. Redo data can be applied either after the redo is written to the archived redo log
file or standby redo log file, or, if real-time apply is enabled, directly from the standby
redo log file as it is being filled.

This documentation assumes that you already understand the concepts behind online
redo logs and archived redo logs. Section 2.5.1 supplements the basic concepts by
providing information that is specific to Data Guard configurations. Section 2.5.2
provides detailed information about using standby redo log files.

See Oracle Database Administrator's Guide for more information about redo logs and
archive logs, and Section 6.2.1 for information about real-time apply.

2.5.1 Online Redo Logs and Archived Redo Logs
The transmission of redo is integral to maintaining the transactional consistency of the
primary and standby databases. Both online redo logs and archived redo logs are
required in a Data Guard environment:

■ Online redo logs

Every instance of an Oracle primary database and logical standby database has an
online redo log to protect the database in case of an instance failure. Physical
standby databases do not use an online redo log, because physical standby
databases are not opened for read/write I/O. Changes are not made to the
physical standby database and new redo data is not generated.

■ Archived redo logs

An archived redo log is required because archiving is the method used to keep
standby databases transactionally consistent with the primary database. Primary
databases, and both physical and logical standby databases all use an archived
redo log. Oracle databases are set up, by default, to run in ARCHIVELOG mode so

Separate
system

Same as
primary
system

■ You do not need to rename primary database files, archived
redo log files, and standby redo log files in the standby
database control file, although you can still do so if you want
a new naming scheme (for example, to spread the files among
different disks).

■ By locating the standby database on separate physical media,
you safeguard the data on the primary database against
disasters that destroy the primary system.

Separate
system

Different
than primary
system

■ You can either manually rename files or set up the DB_FILE_
NAME_CONVERT and LOG_FILE_NAME_CONVERT
initialization parameters on the standby database to
automatically rename the datafiles (see Section 3.1.4).

■ By locating the standby database on separate physical media,
you safeguard the data on the primary database against
disasters that destroy the primary system.

Table 2–1 (Cont.) Standby Database Location and Directory Options

Standby
System

Directory
Structure Consequences

Online Redo Logs, Archived Redo Logs, and Standby Redo Logs

Getting Started with Data Guard 2-9

that the archiver (ARCn) process automatically copies each filled online redo log
file to one or more archived redo log files.

Unlike physical standby databases, logical standby databases are open databases
that generate redo data and have multiple log files, including online redo log files,
archived redo log files, and standby redo log files (if configured).

Both the size of the online redo log files and the frequency with which a log switch
occurs can affect the generation of the archived redo log files at the primary site. The
Oracle Database High Availability Overview provides recommendations for log group
sizing.

An Oracle database will attempt a checkpoint at each log switch. Therefore, if the size
of the online redo log file is too small, frequent log switches lead to frequent
checkpointing and negatively affect system performance on the standby database.

2.5.2 Standby Redo Logs
A standby redo log is similar to an online redo log, except that a standby redo log is
used to store redo data received from another database.

A standby redo log is required if you want to implement:

■ The maximum protection and maximum availability levels of data protection
(described in Section 1.4 and in more detail in Section 5.6)

■ Real-time apply (described in Section 6.2)

■ Cascaded destinations (described in Appendix E)

A standby redo log provides a number of advantages:

■ Standby redo log files can reside on raw devices, which may be important if either
or both the primary and standby databases reside in a Real Application Clusters
environment.

■ Standby redo log files can be multiplexed using multiple members, improving
reliability over archived log files.

■ During a failover, Data Guard can recover and apply more redo data from standby
redo log files than from the archived log files alone.

■ The archiver (ARCn) process or the log writer (LGWR) process on the primary
database can transmit redo data directly to remote standby redo log files,
potentially eliminating the need to register a partial archived log file (for example,
to recover after a standby database crashes). See Chapter 5 for more information.

Section 3.1.3 describes how to configure standby redo log files.

See Also: Oracle Database Administrator's Guide for more details
about configuring redo logs, archive logs, and log groups

Online Redo Logs, Archived Redo Logs, and Standby Redo Logs

2-10 Oracle Data Guard Concepts and Administration

Creating a Physical Standby Database 3-1

3
Creating a Physical Standby Database

This chapter steps you through the process of creating a physical standby database. It
includes the following main topics:

■ Preparing the Primary Database for Standby Database Creation

■ Step-by-Step Instructions for Creating a Physical Standby Database

■ Post-Creation Steps

The steps described in this chapter configure the standby database for maximum
performance mode, which is the default data protection mode. Chapter 5 provides
information about configuring the different data protection modes. The discussions in
this chapter assume that you specify initialization parameters in a server parameter
file (SPFILE), instead of a text initialization parameter file (PFILE).

See also:

■ Oracle Database Administrator's Guide for information about creating and using
server parameter files

■ Oracle Data Guard Broker and the Enterprise Manager online help system for
information about using the graphical user interface to automatically create a
physical standby database

3.1 Preparing the Primary Database for Standby Database Creation
Before you create a standby database you must first ensure the primary database is
properly configured.

Table 3–1 provides a checklist of the tasks that you perform on the primary database to
prepare for physical standby database creation. There is also a reference to the section
that describes the task in more detail.

Table 3–1 Preparing the Primary Database for Physical Standby Database Creation

Reference Task

Section 3.1.1 Enable Forced Logging

Section 3.1.2 Create a Password File

Section 3.1.3 Configure a Standby Redo Log

Section 3.1.4 Set Primary Database Initialization Parameters

Section 3.1.5 Enable Archiving

Preparing the Primary Database for Standby Database Creation

3-2 Oracle Data Guard Concepts and Administration

3.1.1 Enable Forced Logging
Place the primary database in FORCE LOGGING mode after database creation using
the following SQL statement:

SQL> ALTER DATABASE FORCE LOGGING;

This statement can take a considerable amount of time to complete, because it waits
for all unlogged direct write I/O to finish.

3.1.2 Create a Password File
Create a password file if one does not already exist. Every database in a Data Guard
configuration must use a password file, and the password for the SYS user must be
identical on every system for redo data transmission to succeed. See Oracle Database
Administrator's Guide.

3.1.3 Configure a Standby Redo Log
A standby redo log is required for the maximum protection and maximum availability
modes and the LGWR ASYNC transport mode is recommended for all databases. Data
Guard can recover and apply more redo data from a standby redo log than from
archived redo log files alone.

You should plan the standby redo log configuration and create all required log groups
and group members when you create the standby database. For increased availability,
consider multiplexing the standby redo log files, similar to the way that online redo
log files are multiplexed.

Perform the following steps to configure the standby redo log.

Step 1 Ensure log file sizes are identical on the primary and standby databases.
The size of the current standby redo log files must exactly match the size of the current
primary database online redo log files. For example, if the primary database uses two
online redo log groups whose log files are 200K, then the standby redo log groups
should also have log file sizes of 200K.

Step 2 Determine the appropriate number of standby redo log file groups.
Minimally, the configuration should have one more standby redo log file group than
the number of online redo log file groups on the primary database. However, the
recommended number of standby redo log file groups is dependent on the number of
threads on the primary database. Use the following equation to determine an
appropriate number of standby redo log file groups:

(maximum number of logfiles for each thread + 1) * maximum number of threads

Using this equation reduces the likelihood that the primary instance’s log writer
(LGWR) process will be blocked because a standby redo log file cannot be allocated on
the standby database. For example, if the primary database has 2 log files for each
thread and 2 threads, then 6 standby redo log file groups are needed on the standby
database.

Note: Perform these preparatory tasks only once. After you
complete these steps, the database is prepared to serve as the
primary database for one or more standby databases.

Preparing the Primary Database for Standby Database Creation

Creating a Physical Standby Database 3-3

Step 3 Verify related database parameters and settings.
Verify the values used for the MAXLOGFILES and MAXLOGMEMBERS clauses on the SQL
CREATE DATABASE statement will not limit the number of standby redo log file
groups and members that you can add. The only way to override the limits specified
by the MAXLOGFILES and MAXLOGMEMBERS clauses is to re-create the primary
database or control file.

See Oracle Database SQL Reference and your operating system specific Oracle
documentation for the default and legal values of the MAXLOGFILES and
MAXLOGMEMBERS clauses.

Step 4 Create standby redo log file groups.
To create new standby redo log file groups and members, you must have the ALTER
DATABASE system privilege. The standby database begins using the newly created
standby redo data the next time there is a log switch on the primary database.
Example 3–1 and Example 3–2 show how to create a new standby redo log file group
using the ALTER DATABASE statement with variations of the ADD STANDBY
LOGFILE GROUP clause.

Example 3–1 Adding a Standby Redo Log File Group to a Specific Thread

The following statement adds a new standby redo log file group to a standby database
and assigns it to THREAD 5:

SQL> ALTER DATABASE ADD STANDBY LOGFILE THREAD 5
 2> ('/oracle/dbs/log1c.rdo','/oracle/dbs/log2c.rdo') SIZE 500M;

The THREAD clause is required only if you want to add one or more standby redo log
file groups to a specific primary database thread. If you do not include the THREAD
clause and the configuration uses Real Application Clusters (RAC), Data Guard will
automatically assign standby redo log file groups to threads at runtime as they are
needed by the various RAC instances.

Example 3–2 Adding a Standby Redo Log File Group to a Specific Group Number

You can also specify a number that identifies the group using the GROUP clause:

SQL> ALTER DATABASE ADD STANDBY LOGFILE GROUP 10
 2> ('/oracle/dbs/log1c.rdo','/oracle/dbs/log2c.rdo') SIZE 500M;

Using group numbers can make administering standby redo log file groups easier.
However, the group number must be between 1 and the value of the MAXLOGFILES
clause. Do not skip log file group numbers (that is, do not number groups 10, 20, 30,
and so on), or you will use additional space in the standby database control file.

Note: Logical standby databases may require more standby redo
log files (or additional ARCn processes) depending on the
workload. This is because logical standby databases also write to
online redo log files, which take precedence over standby redo log
files. Thus, the standby redo log files may not be archived as
quickly as the online redo log files. Also, see Section 5.7.3.1.

Preparing the Primary Database for Standby Database Creation

3-4 Oracle Data Guard Concepts and Administration

Step 5 Verify the standby redo log file groups were created.
To verify the standby redo log file groups are created and running correctly, invoke a
log switch on the primary database, and then query either the V$STANDBY_LOG view
or the V$LOGFILE view on the standby database once it has been created. For
example:

SQL> SELECT GROUP#,THREAD#,SEQUENCE#,ARCHIVED,STATUS FROM V$STANDBY_LOG;

GROUP# THREAD# SEQUENCE# ARC STATUS
---------- ---------- ---------- --- ----------
 3 1 16 NO ACTIVE
 4 0 0 YES UNASSIGNED
 5 0 0 YES UNASSIGNED

3.1.4 Set Primary Database Initialization Parameters
On the primary database, you define initialization parameters that control redo
transport services while the database is in the primary role. There are additional
parameters you need to add that control the receipt of the redo data and log apply
services when the primary database is transitioned to the standby role.

Example 3–3 shows the primary role initialization parameters that you maintain on the
primary database. This example represents a Data Guard configuration with a primary
database located in Chicago and one physical standby database located in Boston. The
parameters shown in Example 3–3 are valid for the Chicago database when it is
running in either the primary or the standby database role. The configuration
examples use the names shown in the following table:

Example 3–3 Primary Database: Primary Role Initialization Parameters

DB_NAME=chicago
DB_UNIQUE_NAME=chicago
LOG_ARCHIVE_CONFIG='DG_CONFIG=(chicago,boston)'
CONTROL_FILES='/arch1/chicago/control1.ctl', '/arch2/chicago/control2.ctl'
LOG_ARCHIVE_DEST_1=
 'LOCATION=/arch1/chicago/
 VALID_FOR=(ALL_LOGFILES,ALL_ROLES)
 DB_UNIQUE_NAME=chicago'
LOG_ARCHIVE_DEST_2=
 'SERVICE=boston LGWR ASYNC
 VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
 DB_UNIQUE_NAME=boston'
LOG_ARCHIVE_DEST_STATE_1=ENABLE

Note: Although the standby redo log is only used when the
database is running in the standby role, Oracle recommends that
you create a standby redo log on the primary database so that the
primary database can switch over quickly to the standby role
without the need for additional DBA intervention. Consider using
Oracle Enterprise Manager to automatically configure standby redo
log on both your primary and standby databases.

Database DB_UNIQUE_NAME Oracle Net Service Name

Primary chicago chicago

Physical standby boston boston

Preparing the Primary Database for Standby Database Creation

Creating a Physical Standby Database 3-5

LOG_ARCHIVE_DEST_STATE_2=ENABLE
REMOTE_LOGIN_PASSWORDFILE=EXCLUSIVE
LOG_ARCHIVE_FORMAT=%t_%s_%r.arc
LOG_ARCHIVE_MAX_PROCESSES=30

These parameters control how redo transport services transmit redo data to the
standby system and the archiving of redo data on the local file system. Note that the
example specifies the LGWR process and asynchronous (ASYNC) network transmission
to transmit redo data on the LOG_ARCHIVE_DEST_2 initialization parameter. These
are the recommended settings and require standby redo log files (see Section 3.1.3,
"Configure a Standby Redo Log" on page 3-2).

Example 3–4 shows the additional standby role initialization parameters on the
primary database. These parameters take effect when the primary database is
transitioned to the standby role.

Example 3–4 Primary Database: Standby Role Initialization Parameters

FAL_SERVER=boston
FAL_CLIENT=chicago
DB_FILE_NAME_CONVERT='boston','chicago'
LOG_FILE_NAME_CONVERT=
 '/arch1/boston/','/arch1/chicago/','/arch2/boston/','/arch2/chicago/'
STANDBY_FILE_MANAGEMENT=AUTO

Specifying the initialization parameters shown in Example 3–4 sets up the primary
database to resolve gaps, converts new datafile and log file path names from a new
primary database, and archives the incoming redo data when this database is in the
standby role. With the initialization parameters for both the primary and standby roles
set as described, none of the parameters need to change after a role transition.

The following table provides a brief explanation about each parameter setting shown
in Example 3–3 and Example 3–4.

Parameter Recommended Setting

DB_NAME Specify an 8-character name. Use the same name for all standby databases.

DB_UNIQUE_NAME Specify a unique name for each database. This name stays with the database and
does not change, even if the primary and standby databases reverse roles.

LOG_ARCHIVE_CONFIG Specify the DG_CONFIG attribute on this parameter to list the DB_UNIQUE_
NAME of the primary and standby databases in the Data Guard configuration;
this enables the dynamic addition of a standby database to a Data Guard
configuration that has a Real Application Clusters primary database running in
either maximum protection or maximum availability mode. By default, the
LOG_ARCHIVE_CONFIG parameter enables the database to send and receive
redo; after a role transition, you may need to specify these settings again using
the SEND, NOSEND, RECEIVE, or NORECEIVE keywords.

CONTROL_FILES Specify the path name for the control files on the primary database.
Example 3–3 shows how to do this for two control files. It is recommended that
a second copy of the control file is available so an instance can be easily
restarted after copying the good control file to the location of the bad control
file.

Preparing the Primary Database for Standby Database Creation

3-6 Oracle Data Guard Concepts and Administration

LOG_ARCHIVE_DEST_n Specify where the redo data is to be archived on the primary and standby
systems. In Example 3–3:

■ LOG_ARCHIVE_DEST_1 archives redo data generated by the primary
database from the local online redo log files to the local archived redo log
files in /arch1/chicago/.

■ LOG_ARCHIVE_DEST_2 is valid only for the primary role. This destination
transmits redo data to the remote physical standby destination boston.

Note: If a flash recovery area was configured (with the DB_RECOVERY_FILE_
DEST initialization parameter) and you have not explicitly configured a local
archiving destination with the LOCATION attribute, Data Guard automatically
uses the LOG_ARCHIVE_DEST_10 initialization parameter as the default
destination for local archiving. See Section 5.2.3 for more information. Also, see
Chapter 14 for complete LOG_ARCHIVE_DEST_n information.

LOG_ARCHIVE_DEST_STATE_n Specify ENABLE to allow redo transport services to transmit redo data to the
specified destination.

REMOTE_LOGIN_
PASSWORDFILE

Set the same password for SYS on both the primary and standby databases. The
recommended setting is either EXCLUSIVE or SHARED.

LOG_ARCHIVE_FORMAT Specify the format for the archived redo log files using a thread (%t), sequence
number (%s), and resetlogs ID (%r). See Section 5.7.1 for another example.

LOG_ARCHIVE_MAX_
PROCESSES =integer

Specify the maximum number (from 1 to 30) of archiver (ARCn) processes you
want Oracle software to invoke initially. The default value is 4. See
Section 5.3.1.2 for more information about ARCn processing.

FAL_SERVER Specify the Oracle Net service name of the FAL server (typically this is the
database running in the primary role). When the Chicago database is running in
the standby role, it uses the Boston database as the FAL server from which to
fetch (request) missing archived redo log files if Boston is unable to
automatically send the missing log files. See Section 5.8.

FAL_CLIENT Specify the Oracle Net service name of the Chicago database. The FAL server
(Boston) copies missing archived redo log files to the Chicago standby database.
See Section 5.8.

DB_FILE_NAME_CONVERT Specify the path name and filename location of the primary database datafiles
followed by the standby location. This parameter converts the path names of the
primary database datafiles to the standby datafile path names. If the standby
database is on the same system as the primary database or if the directory
structure where the datafiles are located on the standby site is different from the
primary site, then this parameter is required. Note that this parameter is used
only to convert path names for physical standby databases. Multiple pairs of
paths may be specified by this parameter.

LOG_FILE_NAME_CONVERT Specify the location of the primary database online redo log files followed by
the standby location. This parameter converts the path names of the primary
database log files to the path names on the standby database. If the standby
database is on the same system as the primary database or if the directory
structure where the log files are located on the standby system is different from
the primary system, then this parameter is required. Multiple pairs of paths may
be specified by this parameter.

STANDBY_FILE_MANAGEMENT Set to AUTO so when datafiles are added to or dropped from the primary
database, corresponding changes are made automatically to the standby
database.

Parameter Recommended Setting

Step-by-Step Instructions for Creating a Physical Standby Database

Creating a Physical Standby Database 3-7

3.1.5 Enable Archiving
If archiving is not enabled, issue the following statements to put the primary database
in ARCHIVELOG mode and enable automatic archiving:

SQL> SHUTDOWN IMMEDIATE;
SQL> STARTUP MOUNT;
SQL> ALTER DATABASE ARCHIVELOG;
SQL> ALTER DATABASE OPEN;

See Oracle Database Administrator's Guide for information about archiving.

3.2 Step-by-Step Instructions for Creating a Physical Standby Database
This section describes the tasks you perform to create a physical standby database.

Table 3–2 provides a checklist of the tasks that you perform to create a physical
standby database and the database or databases on which you perform each task.
There is also a reference to the section that describes the task in more detail.

3.2.1 Create a Backup Copy of the Primary Database Datafiles
You can use any backup copy of the primary database to create the physical standby
database, as long as you have the necessary archived redo log files to completely
recover the database. Oracle recommends that you use the Recovery Manager utility
(RMAN).

See Oracle High Availability Architecture and Best Practices for backup recommendations
and Oracle Database Backup and Recovery Advanced User's Guide to perform an RMAN
backup operation.

Caution: Review the initialization parameter file for additional
parameters that may need to be modified. For example, you may
need to modify the dump destination parameters (BACKGROUND_
DUMP_DEST, CORE_DUMP_DEST, USER_DUMP_DEST) if the
directory location on the standby database is different from those
specified on the primary database. In addition, you may have to
create directories on the standby system if they do not already exist.

Table 3–2 Creating a Physical Standby Database

Reference Task Database

Section 3.2.1 Create a Backup Copy of the Primary Database Datafiles Primary

Section 3.2.2 Create a Control File for the Standby Database Primary

Section 3.2.3 Prepare an Initialization Parameter File for the Standby Database Primary

Section 3.2.4 Copy Files from the Primary System to the Standby System Primary

Section 3.2.5 Set Up the Environment to Support the Standby Database Standby

Section 3.2.6 Start the Physical Standby Database Standby

Section 3.2.7 Verify the Physical Standby Database Is Performing Properly Standby

Step-by-Step Instructions for Creating a Physical Standby Database

3-8 Oracle Data Guard Concepts and Administration

3.2.2 Create a Control File for the Standby Database
If the backup procedure required you to shut down the primary database, issue the
following SQL*Plus statement to start the primary database:

SQL> STARTUP MOUNT;

Then, create the control file for the standby database, and open the primary database
to user access, as shown in the following example:

SQL> ALTER DATABASE CREATE STANDBY CONTROLFILE AS '/tmp/boston.ctl';
SQL> ALTER DATABASE OPEN;

3.2.3 Prepare an Initialization Parameter File for the Standby Database
Perform the following steps to create a standby initialization parameter file.

Step 1 Copy the primary database parameter file to the standby database.
Create a text initialization parameter file (PFILE) from the server parameter file
(SPFILE) used by the primary database; a text initialization parameter file can be
copied to the standby location and modified. For example:

SQL> CREATE PFILE='/tmp/initboston.ora' FROM SPFILE;

Later, in Section 3.2.5, you will convert this file back to a server parameter file after it is
modified to contain the parameter values appropriate for use with the physical
standby database.

Step 2 Set initialization parameters on the physical standby database.
Although most of the initialization parameter settings in the text initialization
parameter file that you copied from the primary system are also appropriate for the
physical standby database, some modifications need to be made.

Example 3–5 shows the portion of the standby initialization parameter file where
values were modified for the physical standby database. Parameter values that are
different from Example 3–3 and Example 3–4 are shown in bold typeface. The
parameters shown in Example 3–5 are valid for the Boston database when it is running
in either the primary or the standby database role.

Example 3–5 Modifying Initialization Parameters for a Physical Standby Database

.

.

.
DB_NAME=chicago
DB_UNIQUE_NAME=boston
LOG_ARCHIVE_CONFIG='DG_CONFIG=(chicago,boston)'
CONTROL_FILES='/arch1/boston/control1.ctl', '/arch2/boston/control2.ctl'
DB_FILE_NAME_CONVERT='chicago','boston'
LOG_FILE_NAME_CONVERT=
 '/arch1/chicago/','/arch1/boston/','/arch2/chicago/','/arch2/boston/'
LOG_ARCHIVE_FORMAT=log%t_%s_%r.arc
LOG_ARCHIVE_DEST_1=
 'LOCATION=/arch1/boston/
 VALID_FOR=(ALL_LOGFILES,ALL_ROLES)

Note: You cannot use a single control file for both the primary and
standby databases.

Step-by-Step Instructions for Creating a Physical Standby Database

Creating a Physical Standby Database 3-9

 DB_UNIQUE_NAME=boston'
LOG_ARCHIVE_DEST_2=
 'SERVICE=chicago LGWR ASYNC
 VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
 DB_UNIQUE_NAME=chicago'
LOG_ARCHIVE_DEST_STATE_1=ENABLE
LOG_ARCHIVE_DEST_STATE_2=ENABLE
REMOTE_LOGIN_PASSWORDFILE=EXCLUSIVE
STANDBY_FILE_MANAGEMENT=AUTO
FAL_SERVER=chicago
FAL_CLIENT=boston
.
.
.
Note that the example assumes the use of the LGWR process to transmit redo data to
both the local and remote destinations on the LOG_ARCHIVE_DEST_2 initialization
parameter.

In addition, ensure the COMPATIBLE initialization parameter is set to the same value
on both the primary and standby databases. If the values differ, redo transport services
may be unable to transmit redo data from the primary database to the standby
databases. In a Data Guard configuration, COMPATIBLE must be set to a minimum of
9.2.0.1.0. However, if you want to take advantage of new Oracle Database 10g features,
set the COMPATIBLE parameter to 10.2.0.0 or higher.

It is always a good practice to use the SHOW PARAMETERS command to verify no other
parameters need to be changed.

The following table provides a brief explanation about the parameter settings shown
in Example 3–5 that have different settings from the primary database.

Parameter Recommended Setting

DB_UNIQUE_NAME Specify a unique name for this database. This name stays with the database and
does not change even if the primary and standby databases reverse roles.

CONTROL_FILES Specify the path name for the control files on the standby database. Example 3–5
shows how to do this for two control files. It is recommended that a second copy
of the control file is available so an instance can be easily restarted after copying
the good control file to the location of the bad control file.

DB_FILE_NAME_CONVERT Specify the path name and filename location of the primary database datafiles
followed by the standby location. This parameter converts the path names of the
primary database datafiles to the standby datafile path names. If the standby
database is on the same system as the primary database or if the directory
structure where the datafiles are located on the standby site is different from the
primary site, then this parameter is required.

LOG_FILE_NAME_CONVERT Specify the location of the primary database online redo log files followed by
the standby location. This parameter converts the path names of the primary
database log files to the path names on the standby database. If the standby
database is on the same system as the primary database or if the directory
structure where the log files are located on the standby system is different from
the primary system, then this parameter is required.

Step-by-Step Instructions for Creating a Physical Standby Database

3-10 Oracle Data Guard Concepts and Administration

3.2.4 Copy Files from the Primary System to the Standby System
Use an operating system copy utility to copy the following binary files from the
primary system to the standby system:

■ Backup datafiles created in Section 3.2.1

■ Standby control file created in Section 3.2.2

■ Initialization parameter file created in Section 3.2.3

3.2.5 Set Up the Environment to Support the Standby Database
Perform the following steps to create a Windows-based service, create a password file,
set up the Oracle Net environment, and create a SPFILE.

Step 1 Create a Windows-based service.
If the standby system is running on a Windows-based system, use the ORADIM utility
to create a Windows Service and password file. For example:

WINNT> oradim -NEW -SID boston -INTPWD password -STARTMODE manual

See Oracle Database Platform Guide for Microsoft Windows (32-Bit) for more information
about using the ORADIM utility.

LOG_ARCHIVE_DEST_n Specify where the redo data is to be archived. In Example 3–5:

■ LOG_ARCHIVE_DEST_1 archives redo data received from the primary
database to archived redo log files in /arch1/boston/.

■ LOG_ARCHIVE_DEST_2 is currently ignored because this destination is
valid only for the primary role. If a switchover occurs and this instance
becomes the primary database, then it will transmit redo data to the remote
Chicago destination.

Note: If a flash recovery area was configured (with the DB_RECOVERY_FILE_
DEST initialization parameter) and you have not explicitly configured a local
archiving destination with the LOCATION attribute, Data Guard automatically
uses the LOG_ARCHIVE_DEST_10 initialization parameter as the default
destination for local archiving. See Section 5.2.3 for more information. Also, see
Chapter 14 for complete information about LOG_ARCHIVE_DEST_n.

FAL_SERVER Specify the Oracle Net service name of the FAL server (typically this is the
database running in the primary role). When the Boston database is running in
the standby role, it uses the Chicago database as the FAL server from which to
fetch (request) missing archived redo log files if Chicago is unable to
automatically send the missing log files. See Section 5.8.

FAL_CLIENT Specify the Oracle Net service name of the Boston database. The FAL server
(Chicago) copies missing archived redo log files to the Boston standby database.
See Section 5.8.

Caution: Review the initialization parameter file for additional
parameters that may need to be modified. For example, you may
need to modify the dump destination parameters (BACKGROUND_
DUMP_DEST, CORE_DUMP_DEST, USER_DUMP_DEST) if the
directory location on the standby database is different from those
specified on the primary database. In addition, you may have to
create directories on the standby system if they do not already exist.

Parameter Recommended Setting

Step-by-Step Instructions for Creating a Physical Standby Database

Creating a Physical Standby Database 3-11

Step 2 Create a password file.
On platforms other than Windows, create a password file, and set the password for the
SYS user to the same password used by the SYS user on the primary database. The
password for the SYS user on every database in a Data Guard configuration must be
identical for redo transmission to succeed. See Oracle Database Administrator's Guide.

Step 3 Configure listeners for the primary and standby databases.
On both the primary and standby sites, use Oracle Net Manager to configure a listener
for the respective databases.

To restart the listeners (to pick up the new definitions), enter the following LSNRCTL
utility commands on both the primary and standby systems:

% lsnrctl stop
% lsnrctl start

See Oracle Database Net Services Administrator's Guide.

Step 4 Create Oracle Net service names.
On both the primary and standby systems, use Oracle Net Manager to create a
network service name for the primary and standby databases that will be used by redo
transport services.

The Oracle Net service name must resolve to a connect descriptor that uses the same
protocol, host address, port, and service that you specified when you configured the
listeners for the primary and standby databases. The connect descriptor must also
specify that a dedicated server be used.

See the Oracle Database Net Services Administrator's Guide and the Oracle Database
Administrator's Guide.

Step 5 Create a server parameter file for the standby database.
On an idle standby database, use the SQL CREATE statement to create a server
parameter file for the standby database from the text initialization parameter file that
was edited in Step 2 on page 3-8. For example:

SQL> CREATE SPFILE FROM PFILE='initboston.ora';

3.2.6 Start the Physical Standby Database
Perform the following steps to start the physical standby database and Redo Apply.

Step 1 Start the physical standby database.
On the standby database, issue the following SQL statement to start and mount the
database:

SQL> STARTUP MOUNT;

Step 2 Start Redo Apply.
On the standby database, issue the following command to start Redo Apply:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE DISCONNECT FROM SESSION;

The statement includes the DISCONNECT FROM SESSION option so that Redo Apply
runs in a background session. See Section 6.3, "Applying Redo Data to Physical
Standby Databases" for more information.

Step-by-Step Instructions for Creating a Physical Standby Database

3-12 Oracle Data Guard Concepts and Administration

Step 3 Test archival operations to the physical standby database.
In this example, the transmission of redo data to the remote standby location does not
occur until after a log switch. A log switch occurs, by default, when an online redo log
file becomes full. To force a log switch so that redo data is transmitted immediately,
use the following ALTER SYSTEM statement on the primary database. For example:

SQL> ALTER SYSTEM SWITCH LOGFILE;

3.2.7 Verify the Physical Standby Database Is Performing Properly
Once you create the physical standby database and set up redo transport services, you
may want to verify database modifications are being successfully transmitted from the
primary database to the standby database.

To see that redo data is being received on the standby database, you should first
identify the existing archived redo log files on the standby database, force a log switch
and archive a few online redo log files on the primary database, and then check the
standby database again. The following steps show how to perform these tasks.

Step 1 Identify the existing archived redo log files.
On the standby database, query the V$ARCHIVED_LOG view to identify existing files
in the archived redo log. For example:

SQL> SELECT SEQUENCE#, FIRST_TIME, NEXT_TIME
 2 FROM V$ARCHIVED_LOG ORDER BY SEQUENCE#;

 SEQUENCE# FIRST_TIME NEXT_TIME
---------- ------------------ ------------------
 8 11-JUL-02 17:50:45 11-JUL-02 17:50:53
 9 11-JUL-02 17:50:53 11-JUL-02 17:50:58
 10 11-JUL-02 17:50:58 11-JUL-02 17:51:03

3 rows selected.

Step 2 Force a log switch to archive the current online redo log file.
On the primary database, issue the ALTER SYSTEM SWITCH LOGFILE statement to
force a log switch and archive the current online redo log file group:

SQL> ALTER SYSTEM SWITCH LOGFILE;

Step 3 Verify the new redo data was archived on the standby database.
On the standby database, query the V$ARCHIVED_LOG view to verify the redo data
was received and archived on the standby database:

SQL> SELECT SEQUENCE#, FIRST_TIME, NEXT_TIME
 2> FROM V$ARCHIVED_LOG ORDER BY SEQUENCE#;

 SEQUENCE# FIRST_TIME NEXT_TIME
---------- ------------------ ------------------
 8 11-JUL-02 17:50:45 11-JUL-02 17:50:53
 9 11-JUL-02 17:50:53 11-JUL-02 17:50:58
 10 11-JUL-02 17:50:58 11-JUL-02 17:51:03
 11 11-JUL-02 17:51:03 11-JUL-02 18:34:11
4 rows selected.

The archived redo log files are now available to be applied to the physical standby
database.

Post-Creation Steps

Creating a Physical Standby Database 3-13

Step 4 Verify new archived redo log files were applied.
On the standby database, query the V$ARCHIVED_LOG view to verify the archived
redo log files were applied.

SQL> SELECT SEQUENCE#,APPLIED FROM V$ARCHIVED_LOG
 2 ORDER BY SEQUENCE#;

SEQUENCE# APP
--------- ---
 8 YES
 9 YES
 10 YES
 11 YES

4 rows selected.

See Section 5.9.1, "Monitoring Log File Archival Information" and Section 8.5.4,
"Monitoring Log Apply Services on Physical Standby Databases" to verify redo
transport services and log apply services are working correctly.

3.3 Post-Creation Steps
At this point, the physical standby database is running and can provide the maximum
performance level of data protection. The following list describes additional
preparations you can take on the physical standby database:

■ Upgrade the data protection mode

The Data Guard configuration is initially set up in the maximum performance
mode (the default). See Section 5.6 for information about the data protection
modes and how to upgrade or downgrade the current protection mode.

■ Enable Flashback Database

Flashback Database removes the need to re-create the primary database after a
failover. Flashback Database enables you to return a database to its state at a time
in the recent past much faster than traditional point-in-time recovery, because it
does not require restoring datafiles from backup nor the extensive application of
redo data. You can enable Flashback Database on the primary database, the
standby database, or both. See Section 12.4 and Section 12.5 for scenarios showing
how to use Flashback Database in a Data Guard environment. Also, see Oracle
Database Backup and Recovery Advanced User's Guide for more information about
Flashback Database.

Post-Creation Steps

3-14 Oracle Data Guard Concepts and Administration

Creating a Logical Standby Database 4-1

4
Creating a Logical Standby Database

This chapter steps you through the process of creating a logical standby database. It
includes the following main topics:

■ Prerequisite Conditions for Creating a Logical Standby Database

■ Step-by-Step Instructions for Creating a Logical Standby Database

■ Post-Creation Steps

4.1 Prerequisite Conditions for Creating a Logical Standby Database
Before you create a logical standby database, you must first ensure the primary
database is properly configured. Table 4–1 provides a checklist of the tasks that you
perform on the primary database to prepare for logical standby database creation.
There is also a reference to the section that describes the task in more detail.

4.1.1 Determine Support for Data Types and Storage Attributes for Tables
Before setting up a logical standby database, ensure the logical standby database can
maintain the data types and tables in your primary database. See Appendix C for a
complete list of data type and storage type considerations.

4.1.2 Ensure Table Rows in the Primary Database Can Be Uniquely Identified
The physical organization in a logical standby database is different from that of the
primary database, even though the logical standby database is created from a backup
copy of the primary database. Thus, ROWIDs contained in the redo records generated
by the primary database cannot be used to identify the corresponding row in the
logical standby database.

See Also:

■ Oracle Database Administrator's Guide for information about
creating and using server parameter files

■ Oracle Data Guard Broker and the Oracle Enterprise Manager
online help system for information about using the graphical user
interface to automatically create a logical standby database

Table 4–1 Preparing the Primary Database for Logical Standby Database Creation

Reference Task

Section 4.1.1 Determine Support for Data Types and Storage Attributes for Tables

Section 4.1.2 Ensure Table Rows in the Primary Database Can Be Uniquely Identified

Prerequisite Conditions for Creating a Logical Standby Database

4-2 Oracle Data Guard Concepts and Administration

Oracle uses primary-key or unique-constraint/index supplemental logging to logically
identify a modified row in the logical standby database. When database-wide
primary-key and unique-constraint/index supplemental logging is enabled, each
UPDATE statement also writes the column values necessary in the redo log to uniquely
identify the modified row in the logical standby database.

■ If a table has a primary key defined, then the primary key is logged along with the
modified columns as part of the UPDATE statement to identify the modified row.

■ In the absence of a primary key, the shortest nonnull unique-constraint/index is
logged along with the modified columns as part of the UPDATE statement to
identify the modified row.

■ In the absence of both a primary key and a nonnull unique constraint/index, all
columns of bounded size are logged as part of the UPDATE statement to identify
the modified row. In other words, all columns except those with the following
types are logged: LONG, LOB, LONG RAW, object type, and collections.

Oracle recommends that you add a primary key or a nonnull unique index to tables in
the primary database, whenever possible, to ensure that SQL Apply can efficiently
apply redo data updates to the logical standby database.

Perform the following steps to ensure SQL Apply can uniquely identify rows of each
table being replicated in the logical standby database.

Step 1 Find tables without unique logical identifier in the primary database.
Query the DBA_LOGSTDBY_NOT_UNIQUE view to display a list of tables that SQL
Apply may not be able to uniquely identify. For example:

SQL> SELECT OWNER, TABLE_NAME FROM DBA_LOGSTDBY_NOT_UNIQUE
 2> WHERE (OWNER, TABLE_NAME) NOT IN
 3> (SELECT DISTINCT OWNER, TABLE_NAME FROM DBA_LOGSTDBY_UNSUPPORTED)
 4> AND BAD_COLLUMN = 'Y'

Step 2 Add a disabled primary-key RELY constraint.
If your application ensures the rows in a table are unique, you can create a disabled
primary key RELY constraint on the table. This avoids the overhead of maintaining a
primary key on the primary database.

To create a disabled RELY constraint on a primary database table, use the ALTER
TABLE statement with a RELY DISABLE clause. The following example creates a
disabled RELY constraint on a table named mytab, for which rows can be uniquely
identified using the id and name columns:

SQL> ALTER TABLE mytab ADD PRIMARY KEY (id, name) RELY DISABLE;

When you specify the RELY constraint, the system will assume that rows are unique.
Because you are telling the system to rely on the information, but are not validating it
on every modification done to the table, you must be careful to select columns for the
disabled RELY constraint that will uniquely identify each row in the table. If such
uniqueness is not present, then SQL Apply will not correctly maintain the table.

To improve the performance of SQL Apply, add a unique-constraint/index to the
columns to identify the row on the logical standby database. Failure to do so results in
full table scans during UPDATE or DELETE statements carried out on the table by SQL
Apply.

Step-by-Step Instructions for Creating a Logical Standby Database

Creating a Logical Standby Database 4-3

4.2 Step-by-Step Instructions for Creating a Logical Standby Database
This section describes the tasks you perform to create a logical standby database.

Table 4–2 provides a checklist of the tasks that you perform to create a logical standby
database and specifies on which database you perform each task. There is also a
reference to the section that describes the task in more detail.

4.2.1 Create a Physical Standby Database
You create a logical standby database by first creating a physical standby database and
then transitioning it to a logical standby database. Follow the instructions in Chapter 3,
"Creating a Physical Standby Database" to create a physical standby database.

4.2.2 Stop Redo Apply on the Physical Standby Database
You can run Redo Apply on the new physical standby database for any length of time
before converting it to a logical standby database. However, before converting to a
logical standby database, stop Redo Apply on the physical standby database. Stopping
Redo Apply is necessary to avoid applying changes past the redo that contains the
LogMiner dictionary (described in Section 4.2.3.2, "Build a Dictionary in the Redo
Data" on page 4-4).

To stop Redo Apply, issue the following statement on the physical standby database. If
the database is a RAC database comprised of multiple instances, then you must first
stop all RAC instances except one before issuing this statement:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

4.2.3 Prepare the Primary Database to Support a Logical Standby Database
This section contains the following topics:

■ Prepare the Primary Database for Role Transitions

See Also:

■ See Oracle Database Reference for information about the DBA_
LOGSTDBY_NOT_UNIQUE view

■ Oracle Database SQL Reference for information about the ALTER
TABLE statement syntax and creating RELY constraints

■ Section 9.6.1, "Create a Primary Key RELY Constraint" on
page 9-21 for information about RELY constraints and actions you
can take to increase performance on a logical standby database

Table 4–2 Creating a Logical Standby Database

Reference Task Database

Section 4.2.1 Create a Physical Standby Database Primary

Section 4.2.2 Stop Redo Apply on the Physical Standby Database Standby

Section 4.2.3 Prepare the Primary Database to Support a Logical Standby Database Primary

Section 4.2.4 Transition to a Logical Standby Database Standby

Section 4.2.5 Open the Logical Standby Database Standby

Section 4.2.6 Verify the Logical Standby Database Is Performing Properly Standby

Step-by-Step Instructions for Creating a Logical Standby Database

4-4 Oracle Data Guard Concepts and Administration

■ Build a Dictionary in the Redo Data

4.2.3.1 Prepare the Primary Database for Role Transitions
In Section 3.1.4, "Set Primary Database Initialization Parameters" on page 3-4, you set
up several standby role initialization parameters to take effect when the primary
database is transitioned to the physical standby role. If you plan to transition the
primary database to the logical standby role, then you must also include a LOG_
ARCHIVE_DEST_3 destination on the primary database, as shown in Example 4–1, so
that no parameters need to change after a role transition. This parameter only takes
effect when the primary database is transitioned to the standby role.

Example 4–1 Primary Database: Logical Standby Role Initialization Parameters

LOG_ARCHIVE_DEST_3=
 'LOCATION=/arch2/chicago/
 VALID_FOR=(STANDBY_LOGFILES,STANDBY_ROLE)
 DB_UNIQUE_NAME=chicago'
LOG_ARCHIVE_DEST_STATE_3=ENABLE

To dynamically set the LOG_ARCHIVE_DEST_3 parameter, use the SQL ALTER
SYSTEM SET statement and include the SCOPE=BOTH clause so that the change takes
effect immediately and persists after the database is shut down and started up again.

The following table describes the archival processing defined by the initialization
parameters shown in Example 4–1.

4.2.3.2 Build a Dictionary in the Redo Data
A LogMiner dictionary must be built into the redo data so that the LogMiner
component of SQL Apply can properly interpret changes it sees in the redo. As part of
building LogMiner Multiversioned Data Dictionary, supplemental logging is
automatically set up to log primary key and unique-constraint/index columns. The
supplemental logging information ensures each update contains enough information
to logically identify each row that is modified by the statement.

To build the LogMiner dictionary, issue the following statement:

SQL> EXECUTE DBMS_LOGSTDBY.BUILD;

The DBMS_LOGSTDBY.BUILD procedure waits for all existing transactions to
complete. Long-running transactions executed on the primary database will affect the
timeliness of this command.

The DBMS_LOGSTDBY.BUILD procedure uses Flashback Query to obtain a consistent
snapshot of the data dictionary that is then logged in the redo stream. Oracle
recommends setting the UNDO_RETENTION initialization parameter to 3600 on both
the primary and logical standby databases.

When the Chicago Database Is
Running in the Primary Role

When the Chicago Database Is Running in
the Logical Standby Role

LOG_ARCHIVE_DEST_3 Is ignored; LOG_ARCHIVE_DEST_3 is
valid only when chicago is running
in the standby role.

Archives redo data received from the
primary database to the local archived redo
log files in /arch2/chicago/.

See Also: The DBMS_LOGSTDBY.BUILD PL/SQL package in Oracle
Database PL/SQL Packages and Types Reference and the UNDO_
RETENTION initialization parameter in Oracle Database Reference

Step-by-Step Instructions for Creating a Logical Standby Database

Creating a Logical Standby Database 4-5

4.2.4 Transition to a Logical Standby Database
This section describes how to prepare the physical standby database to transition to a
logical standby database. It contains the following topics:

■ Convert to a Logical Standby Database

■ Create a New Password File

■ Adjust Initialization Parameters for the Logical Standby Database

4.2.4.1 Convert to a Logical Standby Database
The redo logs contain the information necessary to convert your physical standby
database to a logical standby database. To continue applying redo data to the physical
standby database until it is ready to convert to a logical standby database, issue the
following SQL statement:

SQL> ALTER DATABASE RECOVER TO LOGICAL STANDBY db_name;

For db_name, specify a database name to identify the new logical standby database. If
you are using a server parameter file (spfile) at the time you issue this statement, then
the database will update the file with appropriate information about the new logical
standby database. If you are not using an spfile, then the database issues a message
reminding you to set the name of the DB_NAME parameter after shutting down the
database.

The statement waits, applying redo data until the LogMiner dictionary is found in the
log files. This may take several minutes, depending on how long it takes redo
generated in Section 4.2.3.2, "Build a Dictionary in the Redo Data" to be transmitted to
the standby database, and how much redo data need to be applied. If a dictionary
build is not successfully performed on the primary database, this command will never
complete. You can cancel the SQL statement by issuing the ALTER DATABASE
RECOVER MANAGED STANDBY DATABASE CANCEL statement from another SQL
session.

4.2.4.2 Create a New Password File
Because the conversion process changes the database name (that was originally set
with the DB_NAME initialization parameter) for the logical standby database, you must
re-create the password file. See Oracle Database Administrator's Guide for more
information on creating a secure authentication scheme.

4.2.4.3 Adjust Initialization Parameters for the Logical Standby Database
On the logical standby database, shutdown the instance and issue the STARTUP
MOUNT statement to start and mount the database. Do not open the database; it should
remain closed to user access until later in the creation process. For example:

SQL> SHUTDOWN;
SQL> STARTUP MOUNT;

You need to modify the LOG_ARCHIVE_DEST_n parameters because, unlike physical
standby databases, logical standby databases are open databases that generate redo
data and have multiple log files (online redo log files, archived redo log files, and
standby redo log files). It is good practice to specify separate local destinations for:

■ Archived redo log files that store redo data generated by the logical standby
database. In Example 4–2, this is configured as the LOG_ARCHIVE_DEST_
1=LOCATION=/arch1/boston destination.

Step-by-Step Instructions for Creating a Logical Standby Database

4-6 Oracle Data Guard Concepts and Administration

■ Archived redo log files that store redo data received from the primary database. In
Example 4–2, this is configured as the LOG_ARCHIVE_DEST_
3=LOCATION=/arch2/boston destination.

Example 4–2 shows the initialization parameter changes that were modified for the
logical standby database. The parameters shown are valid for the Boston logical
standby database when it is running in either the primary or standby database role.

Example 4–2 Modifying Initialization Parameters for a Logical Standby Database

LOG_ARCHIVE_DEST_1=
 'LOCATION=/arch1/boston/
 VALID_FOR=(ONLINE_LOGFILES,ALL_ROLES)
 DB_UNIQUE_NAME=boston'
LOG_ARCHIVE_DEST_2=
 'SERVICE=chicago LGWR ASYNC
 VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
 DB_UNIQUE_NAME=chicago'
LOG_ARCHIVE_DEST_3=
 'LOCATION=/arch2/boston/
 VALID_FOR=(STANDBY_LOGFILES,STANDBY_ROLE)
 DB_UNIQUE_NAME=boston'
LOG_ARCHIVE_DEST_STATE_1=ENABLE
LOG_ARCHIVE_DEST_STATE_2=ENABLE
LOG_ARCHIVE_DEST_STATE_3=ENABLE

The following table describes the archival processing defined by the initialization
parameters shown in Example 4–2.

When the Boston Database Is
Running in the Primary Role

When the Boston Database Is Running in
the Logical Standby Role

LOG_ARCHIVE_DEST_1 Directs archival of redo data generated
by the primary database from the local
online redo log files to the local
archived redo log files in
/arch1/boston/.

Directs archival of redo data generated by the
logical standby database from the local
online redo log files to the local archived redo
log files in /arch1/boston/.

LOG_ARCHIVE_DEST_2 Directs transmission of redo data to the
remote logical standby database
chicago.

Is ignored; LOG_ARCHIVE_DEST_2 is valid
only when boston is running in the primary
role.

LOG_ARCHIVE_DEST_3 Is ignored; LOG_ARCHIVE_DEST_3 is
valid only when boston is running in
the standby role.

Directs archival of redo data received from
the primary database to the local archived
redo log files in /arch2/boston/.

Note: The DB_FILE_NAME_CONVERT initialization parameter is not
honored once a physical standby database is converted to a logical
standby database. If necessary, you should register a skip handler and
provide SQL Apply with a replacement DDL string to execute by
converting the path names of the primary database datafiles to the
standby datafile path names. See the DBMS_LOGSTDBY package in
Oracle Database PL/SQL Packages and Types Reference. for information
about the SKIP procedure.

Post-Creation Steps

Creating a Logical Standby Database 4-7

4.2.5 Open the Logical Standby Database
The new database is logically the same as your primary database, but it is
transactionally inconsistent with the primary database, and thus incompatible for
recovery operations.

To open the new logical standby database, you must open it with the RESETLOGS
option by issuing the following statement:

SQL> ALTER DATABASE OPEN RESETLOGS;

Because this is the first time the database is being opened, the database’s global name
is adjusted automatically to match the new DB_NAME initialization parameter.

Issue the following statement to begin applying redo data to the logical standby
database. For example:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

4.2.6 Verify the Logical Standby Database Is Performing Properly
See the following sections for help verifying that the logical standby database is
performing properly:

■ Section 5.9.1, "Monitoring Log File Archival Information" on page 5-29

■ Section 6.4.3, "Monitoring SQL Apply on Logical Standby Databases" on page 6-6

■ Chapter 9, "Managing a Logical Standby Database" on page 9-1

4.3 Post-Creation Steps
At this point, the logical standby database is running and can provide the maximum
performance level of data protection. The following list describes additional
preparations you can take on the logical standby database:

■ Upgrade the data protection mode

The Data Guard configuration is initially set up in the maximum performance
mode (the default). See Section 5.6, "Setting Up a Data Protection Mode" on
page 5-18 for information about the data protection modes and how to upgrade or
downgrade the current protection mode.

■ Enable Flashback Database

Flashback Database removes the need to re-create the primary database after a
failover. Flashback Database enables you to return a database to its state at a time
in the recent past much faster than traditional point-in-time recovery, because it
does not require restoring datafiles from backup nor the extensive application of
redo data. You can enable Flashback Database on the primary database, the
standby database, or both. See Section 12.4, "Using Flashback Database After a
Failover" on page 12-23 and Section 12.5, "Using Flashback Database After Issuing
an Open Resetlogs Statement" on page 12-27 for scenarios showing how to use
Flashback Database in a Data Guard environment. Also, see Oracle Database Backup
and Recovery Advanced User's Guide for more information about Flashback
Database.

Post-Creation Steps

4-8 Oracle Data Guard Concepts and Administration

Redo Transport Services 5-1

5
Redo Transport Services

This chapter describes how to configure redo transport services to transmit redo from
a production database to one or more destinations. It contains the following topics:

■ Introduction to Redo Transport Services

■ Where to Send Redo Data

■ How to Send Redo Data

■ When Redo Data Should Be Sent

■ What to Do If Errors Occur

■ Setting Up a Data Protection Mode

■ Managing Log Files

■ Managing Archive Gaps

■ Verification

5.1 Introduction to Redo Transport Services
Redo transport services control the automated transfer of redo data from a database
destination to one or more destinations. Redo transport services also manage the
process of resolving any gaps in the archived redo log files due to a network failure.

Redo transport services can transmit redo data to local and remote destinations.
Remote destinations can include any of the following types: physical and logical
standby databases, archived redo log repositories, Oracle Change Data Capture
staging databases, and Oracle Streams downstream capture databases.

Figure 5–1 shows a simple Data Guard configuration with redo transport services
archiving redo data to a local destination on the primary database while also
transmitting it to archived redo log files or standby redo log files on a remote standby
database destination.

Where to Send Redo Data

5-2 Oracle Data Guard Concepts and Administration

Figure 5–1 Transmitting Redo Data

5.2 Where to Send Redo Data
This section contains the following topics:

■ Destination Types

■ How to Send Redo Data

■ Setting Up Flash Recovery Areas

5.2.1 Destination Types
There are several types of destinations supported by redo transport services:

■ Oracle Data Guard standby databases

Standby database destinations can be either physical standby databases or logical
standby databases. Section 1.1.2 discusses standby databases.

■ Archived redo log repository

This type of destination allows off-site archiving of redo data. An archive log
repository is created by using a physical standby control file, starting the instance,
and mounting the database. This database contains no datafiles and cannot be
used for switchover or failover. This alternative is useful as a way of holding
archived redo log files for a short period of time, perhaps a day, after which the log
files can then be deleted. This avoids most of the storage and processing expense
of another fully configured standby database.

Oracle recommends using an archived redo log repository for temporary storage
of archived redo log files. This can be accomplished by configuring the repository
destination for archiver-based transport (using the ARCH attribute on LOG_
ARCHIVE_DEST_n parameter) in a Data Guard configuration running in
maximum performance mode. For a no data loss environment, you should use a
fully configured standby database using the LGWR, SYNC, and AFFIRM transport
settings in a Data Guard configuration and running in either maximum protection
mode or maximum availability mode.

■ Oracle Streams real-time downstream capture database

Oracle
Net

Primary
Database

Online Redo Log Files

Archived Redo Log Files

 Redo Generation

 Redo Transport Services

Standby Redo Log Files

Arcxhived Redo Log Files

Standby
Database Log Apply Services

Where to Send Redo Data

Redo Transport Services 5-3

This destination type allows Oracle Streams to configure a capture process on a
remote downstream database. The Streams downstream capture process uses redo
transport services to transfer redo data to the downstream database where a
Streams capture process captures changes in the standby redo log files and
archived redo log files on the remote destination. See Oracle Streams Concepts and
Administration for more information.

■ Oracle Change Data Capture staging database

This destination type supports a Change Data Capture Asynchronous AutoLog
configuration remotely at a staging database. Redo data is copied from the source
database to the staging database using redo transport services. The Change Data
Capture configuration captures changes from the redo data. See Oracle Database
Data Warehousing Guide for more information.

For discussion purposes, this guide refers to the production database as a primary
database and to archival destinations as standby databases (as defined in Section 1.1).
If you are using Oracle Change Data Capture, substitute the terms source and staging
database for primary and standby database, respectively. If you are using Oracle
Streams, substitute the terms source and downstream capture database for primary
and standby database, respectively.

5.2.2 Configuring Destinations with the LOG_ARCHIVE_DEST_n Parameter
The LOG_ARCHIVE_DEST_n initialization parameter defines up to ten (where n = 1, 2,
3, ... 10) destinations, each of which must specify either the LOCATION or the SERVICE
attribute to specify where to archive the redo data.

The LOCATION and SERVICE attributes describe either a local disk location or an
Oracle Net service name that represents a standby destination to which redo transport
services will transmit redo data. Specifying remote destinations with the SERVICE
attribute allows Data Guard to maintain a transactionally consistent remote copy of
the primary database for disaster recovery.

For every LOG_ARCHIVE_DEST_n initialization parameter that you define, specify a
corresponding LOG_ARCHIVE_DEST_STATE_n parameter. The LOG_ARCHIVE_
DEST_STATE_n (where n is an integer from 1 to 10) initialization parameter specifies
whether the corresponding destination is currently on (enabled) or off (disabled).
Table 5–1 describes the LOG_ARCHIVE_DEST_STATE_n parameter attributes.

Example 5–1 provides an example of one destination with the LOCATION attribute.

Example 5–1 Specifying a Local Archiving Destination

LOG_ARCHIVE_DEST_1='LOCATION=/arch1/chicago/'
LOG_ARCHIVE_DEST_STATE_1=ENABLE

Table 5–1 LOG_ARCHIVE_DEST_STATE_n Initialization Parameter Attributes

Attribute Description

ENABLE Redo transport services can transmit redo data to this destination. This is the
default.

DEFER Redo transport services will not transmit redo data to this destination. This is a
valid but unused destination.

ALTERNATE This destination is not enabled, but it will become enabled if communication to
its associated destination fails.

RESET Functions the same as DEFER, but clears any error messages for the destination
if it had previously failed.

Where to Send Redo Data

5-4 Oracle Data Guard Concepts and Administration

Figure 5–2 shows what this simple configuration, consisting of a single local
destination, would look like. The log writer process writes redo data to the online redo
log file. As each online redo log file is filled, a log switch occurs and an ARCn process
archives the filled online redo log file to an archived redo log file. The filled online
redo log file is now available for reuse.

Figure 5–2 Primary Database Archiving When There Is No Standby Database

It is important to note that the configuration shown in Figure 5–2 does not include a
standby database and thus does not provide disaster-recovery protection. To make this
simple configuration into a Data Guard configuration that provides disaster recovery,
add a standby database at a remote destination by specifying the SERVICE attribute.

Example 5–2 shows the initialization parameters that enable redo transport services to
archive the online redo log on the local destination chicago and transmit redo data to
a remote standby database with the Oracle Net service name boston. The example
takes the default values for all of the other LOG_ARCHIVE_DEST_n attributes:

Example 5–2 Specifying a Remote Archiving Destination

LOG_ARCHIVE_DEST_1='LOCATION=/arch1/chicago/'
LOG_ARCHIVE_DEST_STATE_1=ENABLE
LOG_ARCHIVE_DEST_2='SERVICE=boston'
LOG_ARCHIVE_DEST_STATE_2=ENABLE

These initialization parameters set up a Data Guard configuration that uses archiver
(ARCn) processes to archive to both the local and remote destinations. This
configuration provides the maximum performance level of data protection.

Primary
Database

Transactions

LGWR

ARC0

Online
Redo Log Files

Archived
Redo Log Files

Where to Send Redo Data

Redo Transport Services 5-5

Although you can create a Data Guard configuration by specifying only the LOCATION
or the SERVICE attributes on the LOG_ARCHIVE_DEST_n parameter, you can
optionally specify more attributes to further define each destination’s behavior.
Chapter 14 provides reference information for all of the LOG_ARCHIVE_DEST_n
parameter attributes.

5.2.2.1 Changing Destination Attributes
You can dynamically update most of the attribute values of the LOG_ARCHIVE_DEST_
n and the LOG_ARCHIVE_DEST_STATE_n parameters using the ALTER SYSTEM SET
statement.

The modifications take effect after the next log switch on the primary database. For
example, to defer redo transport services from transmitting redo data to the remote
standby database named boston, issue the following statements on the primary
database:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_2='SERVICE=boston
 2> VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)';
SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=DEFER;

5.2.2.2 Viewing Attribute with V$ARCHIVE_DEST
Query the V$ARCHIVE_DEST view to see current settings of the LOG_ARCHIVE_
DEST_n initialization parameter.

5.2.3 Setting Up Flash Recovery Areas
The Oracle database enables you to configure a disk area called a flash recovery area that
is a directory or Oracle Storage Manager disk group that serves as the default storage
area for files related to recovery.

To configure a flash recovery area, use the DB_RECOVERY_FILE_DEST initialization
parameter. LOG_ARCHIVE_DEST_10 is implicitly set to USE_DB_RECOVERY_FILE_
DEST (meaning that archived redo log files will be sent to the flash recovery area) if
you create a recovery area and do not set any other local archiving destinations. (See
Oracle Database Backup and Recovery Basics to configure the flash recovery area and
Oracle Database Administrator's Guide for more information about Oracle Storage
Manager and Oracle Managed Files.)

This section contains the following topics:

■ Using the LOG_ARCHIVE_DEST_10 Destination

■ Using Other LOG_ARCHIVE_DEST_n Destinations

■ Using the STANDBY_ARCHIVE_DEST Destination

■ Sharing a Flash Recovery Area Between Primary and Standby Databases

Note: The filenames for archived redo log files stored in a flash
recovery area are generated automatically by Oracle Managed Files
(OMF); the filenames are not based on the format specified by the
LOG_ARCHIVE_FORMAT initialization parameter.

Note: A primary database cannot write redo data to the flash
recovery area of a logical standby database.

Where to Send Redo Data

5-6 Oracle Data Guard Concepts and Administration

See Oracle Database Backup and Recovery Basics to configure flash recovery areas and
Section 10.3.4 for information about setting up a deletion policy for archived redo log
files in flash recovery areas.

5.2.3.1 Using the LOG_ARCHIVE_DEST_10 Destination
If a flash recovery area has been configured and no local destinations are defined, Data
Guard implicitly uses the LOG_ARCHIVE_DEST_10 destination as the flash recovery
area.

When the LOG_ARCHIVE_DEST_10 destination is used, Data Guard automatically
uses the default values for all of the LOG_ARCHIVE_DEST_10 parameter attributes. To
override the defaults, you can dynamically set the values for most of the attributes by
explicitly specifying the LOG_ARCHIVE_DEST_10 parameter. For example, the
following ALTER SYSTEM SET statement specifies several attributes on the LOG_
ARCHIVE_DEST_10 initialization parameter:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_10='LOCATION=USE_DB_RECOVERY_FILE_DEST LGWR
MANDATORY REOPEN=5 VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)'

When setting LOG_ARCHIVE_DEST_n attributes, the TEMPLATE attribute of a LOG_
ARCHIVE_DEST_n parameter will override all other specifications for the flash
recovery area. If the TEMPLATE attribute is specified for a remote destination and that
destination archives redo data to a flash recovery area, the archived redo log file will
use the directory and file name specified by the TEMPLATE attribute.

5.2.3.2 Using Other LOG_ARCHIVE_DEST_n Destinations
You can explicitly set up one or more other LOG_ARCHIVE_DEST_n destinations to
point to a flash recovery area. For example, you can optionally:

■ Configure destinations other than LOG_ARCHIVE_DEST_10

For example, an existing Data Guard configuration may have already used the
LOG_ARCHIVE_DEST_10 destination for another purpose, or you may want to
release the LOG_ARCHIVE_DEST_10 destination for other uses.

To configure another archival destination to point to the flash recovery area, you
must specify the LOCATION=USE_DB_RECOVERY_FILE_DEST attribute to define
the new destination. For example:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_1='LOCATION=USE_DB_RECOVERY_FILE_DEST
ARCH MANDATORY REOPEN=5 VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)'

The implicit setting (for LOG_ARCHIVE_DEST_10 to use the flash recovery area)
will be cleared.

■ Configure destinations in addition to LOG_ARCHIVE_DEST_10 destination for use
after a role transition

For example, you can configure one destination to be valid for standby redo log
archival when the database operates in the standby role and another destination to
be valid for online redo log archival when the database operates in the primary
role.

To configure a LOG_ARCHIVE_DEST_n destination in addition to LOG_ARCHIVE_
DEST_10, you must explicitly specify both destinations:

LOG_ARCHIVE_DEST_9='LOCATION=USE_DB_RECOVERY_FILE_DEST ARCH MANDATORY REOPEN=5
VALID_FOR=(STANDBY_LOGFILES,STANDBY_ROLE)'
LOG_ARCHIVE_DEST_10='LOCATION=USE_DB_RECOVERY_FILE_DEST ARCH MANDATORY REOPEN=5
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)'

How to Send Redo Data

Redo Transport Services 5-7

5.2.3.3 Using the STANDBY_ARCHIVE_DEST Destination
On a physical standby database, you can define the STANDBY_ARCHIVE_DEST
parameter to point to the flash recovery area. For example:

STANDBY_ARCHIVE_DEST='LOCATION=USE_DB_RECOVERY_FILE_DEST'

5.2.3.4 Sharing a Flash Recovery Area Between Primary and Standby Databases
You can share a flash recovery area between databases provided each database that
shares the flash recovery area has a unique database name, specified with the DB_
UNIQUE_NAME initialization parameter.

The following examples show how to specify initialization parameters on the primary
and standby databases that will share a flash recovery area in the /arch/oradata
location. Although the DB_UNIQUE_NAME parameter is not specified in Example 5–3, it
defaults to PAYROLL, which is the name specified for the DB_NAME initialization
parameter.

Example 5–3 Primary Database Initialization Parameters for a Shared Recovery Area

DB_NAME=PAYROLL
LOG_ARCHIVE_DEST_1='LOCATION=USE_DB_RECOVERY_FILE_DEST'
DB_RECOVERY_FILE_DEST='/arch/oradata'
DB_RECOVERY_FILE_DEST_SIZE=20G

Example 5–4 Standby Database Initialization Parameters for a Shared Recovery Area

DB_NAME=PAYROLL
DB_UNIQUE_NAME=boston
LOG_ARCHIVE_DEST_1='LOCATION=USE_DB_RECOVERY_FILE_DEST'
STANDBY_ARCHIVE_DEST='LOCATION=USE_DB_RECOVERY_FILE_DEST'
DB_RECOVERY_FILE_DEST='/arch/oradata'
DB_RECOVERY_FILE_DEST_SIZE=5G

See Oracle Database Backup and Recovery Advanced User's Guide for more information
about sharing a flash recovery area among multiple databases.

5.3 How to Send Redo Data
On the primary database, Oracle Data Guard uses archiver processes (ARCn) or the
log writer process (LGWR) to collect transaction redo data and transmit it to standby
destinations. Although you cannot use both the archiver and log writer processes to
send redo data to the same destination, you can choose to use the log writer process
for some destinations, while archiver processes send redo data to other destinations.

This section contains the following topics:

■ Using Archiver Processes (ARCn) to Archive Redo Data

■ Using the Log Writer Process (LGWR) to Archive Redo Data

■ Providing for Secure Redo Data Transmission

Note: Flash recovery area destinations pointed to by the
STANDBY_ARCHIVE_DEST parameter on logical standby databases
(SQL Apply) are ignored.

How to Send Redo Data

5-8 Oracle Data Guard Concepts and Administration

Data Guard also uses the fetch archive log (FAL) client and server to send archived
redo log files to standby destinations following a network outage, for automatic gap
resolution, and resynchronization. The FAL process and gap resolution are discussed
in Section 5.8.

5.3.1 Using Archiver Processes (ARCn) to Archive Redo Data
By default, redo transport services use ARCn processes to archive the online redo log
files on the primary database. ARCn archival processing supports only the maximum
performance level of data protection in Data Guard configurations. You must use the
LGWR process to transmit redo data to standby locations that operate in other data
protection modes. (See Section 5.6 for more information about the Data Guard data
protection modes.)

The following sections discuss these topics:

■ Initialization Parameters That Control ARCn Archival Behavior

■ ARCn Archival Processing

5.3.1.1 Initialization Parameters That Control ARCn Archival Behavior
The following descriptions tell how to use the LOG_ARCHIVE_DEST_n and the LOG_
ARCHIVE_MAX_PROCESSES initialization parameters.

Enabling ARCn Processes to Archive to Local or Remote Destinations
You specify attributes on the LOG_ARCHIVE_DEST_n initialization parameter to
control the automated transfer of redo data from the primary database to other
destinations. Because ARCn archiver processing is the default archival behavior,
specifying the ARCH attribute on the LOG_ARCHIVE_DEST_n parameter is optional.
However, you must specify either the LOCATION attribute to archive to a local
destination or the SERVICE attribute for remote archival (as described in Section 5.2.2).

Specifying the Number of ARCn Processes to be Invoked
The LOG_ARCHIVE_MAX_PROCESSES initialization parameter specifies the maximum
number of ARCn processes. By default, 4 archiver processes are invoked when the
primary database instance starts and Oracle Database dynamically adjusts the number
of processes to balance the archiver workload. Thus, the actual number of archiver
processes may vary at any time.

If you anticipate a heavy workload for archiving, you can increase the maximum
number of archiver processes to as many as 30 by setting the initialization parameter
LOG_ARCHIVE_MAX_PROCESSES. This initialization parameter is dynamic and can be
altered by the ALTER SYSTEM command to increase or decrease the maximum
number of archiver processes. For example:

ALTER SYSTEM SET LOG_ARCHIVE_MAX_PROCESSES = 20;

5.3.1.2 ARCn Archival Processing
Figure 5–3 shows an example of archival processing in a Data Guard configuration,
with a primary database located in Chicago and one physical standby database located
in Boston.

Archiving happens when a log switch occurs on the primary database:

■ On the primary database, after the ARC0 process successfully archives the local
online redo log to the local destination (LOG_ARCHIVE_DEST_1), the ARC1

How to Send Redo Data

Redo Transport Services 5-9

process transmits redo from the local archived redo log files (instead of the online
redo log files) to the remote standby destination (LOG_ARCHIVE_DEST_2).

■ On the remote destination, the remote file server process (RFS) will, in turn, write
the redo data to an archived redo log file from a standby redo log file. Log apply
services use Redo Apply (MRP process1) or SQL Apply (LSP process2) to apply the
redo to the standby database.

Because the online redo log files are archived locally first, the LGWR process reuses
the online redo log files much earlier than would be possible if the ARCn processes
archived to the standby database concurrently with the local destination.

As shown in Figure 5–3, you need to have at least 2 ARCn processes to separate local
archival from remote archival. This can be done by setting the LOG_ARCHIVE_MAX_
PROCESSES initialization parameter (the default setting is 4, but the maximum value
is 30).

Figure 5–3 Archiving to Local Destinations Before Archiving to Remote Destinations

Because the default ARCn archival processing disassociates local archiving from
remote archiving, sites that may have policies to delete archived redo log files on the
primary database immediately after backing them up must make sure that the standby
destinations receive the corresponding redo data before deleting the archived redo log

1 The managed recovery process (MRP) applies archived redo log files to the physical standby
database, and automatically determines the optimal number of parallel recovery processes at
the time it starts. The number of parallel recovery slaves spawned is based on the number of
CPUs available on the standby server.

2 The logical standby process (LSP) uses parallel execution (Pnnn) processes to apply archived
redo log files to the logical standby database, using SQL interfaces.

Primary
Database

Transactions

LGWR

Online
Redo Log Files

RFS

Standby
DatabaseMRP

or LSP

Archived
Redo Log Files

Archived
Redo Log Files

Oracle Net

LOG_ARCHIVE_DEST_1

LO
G_
AR
CH
IV
E_
DE
ST
_2

ARC1ARC0

Primary System Standby System

Standby
Redo Log Files

(Real Time
Apply)

ARCn

How to Send Redo Data

5-10 Oracle Data Guard Concepts and Administration

files on the primary database. You can query the V$ARCHIVED_LOG view to verify the
redo data was received on standby destinations.

5.3.2 Using the Log Writer Process (LGWR) to Archive Redo Data
You can optionally enable redo transport services to use the LGWR process to transmit
redo data to remote destinations.

Using the LGWR process differs from ARCn processing (described in Section 5.3.1),
because instead of waiting for the online redo log to switch at the primary database
and then writing the entire archived redo log at the remote destination all at once, the
LGWR process selects a standby redo log file at the standby site that reflects the log
sequence number (and size) of the current online redo log file of the primary database.
Then, as redo is generated at the primary database, it is also transmitted to the remote
destination. The transmission to the remote destination will either be synchronous or
asynchronous, based on whether the SYNC or the ASYNC attribute is set on the LOG_
ARCHIVE_DEST_n parameter. Synchronous LGWR processing is required for the
maximum protection and maximum availability modes of data protection in Data
Guard configurations. (See Section 5.6 for information about the Data Guard data
protection modes.)

This section contains the following topics:

■ LOG_ARCHIVE_DEST_n Attributes for LGWR Archival Processing

■ LGWR SYNC Archival Processing

■ LGWR ASYNC Archival Processing

5.3.2.1 LOG_ARCHIVE_DEST_n Attributes for LGWR Archival Processing
The following sections describe the LGWR, SYNC, and ASYNC attributes.

Enabling Redo Transport Services to Use the LGWR Process
You must specify the LGWR and SERVICE attributes on the LOG_ARCHIVE_DEST_n
parameter to enable redo transport services to use the LGWR process to transmit redo
data to remote archival destinations.

Specifying Synchronous or Asynchronous Network Transmission
The LGWR process synchronously writes to the local online redo log files at the same
time it transmits redo data to the remote destination:

■ The SYNC attribute performs all network I/O synchronously, in conjunction with
each write operation to the online redo log file, and waits for the network I/O to
complete. Section 5.3.2.2 shows an example of synchronous network transmission
in a Data Guard configuration. This is the default network transmission setting.

■ The ASYNC attribute performs all network I/O asynchronously and control is
returned to the executing application or user immediately, without waiting for the
network I/O to complete. Section 5.3.2.3 shows an example of asynchronous
network transmission in a Data Guard configuration.

Note: If you configure a destination to use the LGWR process, but
for some reason the LGWR process becomes unable to archive to
the destination, then redo transport will revert to using the ARCn
process to complete archival operations.

How to Send Redo Data

Redo Transport Services 5-11

5.3.2.2 LGWR SYNC Archival Processing
Example 5–5 shows the primary role LOG_ARCHIVE_DEST_n parameters that
configure the LGWR process for synchronous network transmission.

Example 5–5 Initialization Parameters for LGWR Synchronous Archival

LOG_ARCHIVE_DEST_1='LOCATION=/arch1/chicago'
LOG_ARCHIVE_DEST_2='SERVICE=boston LGWR SYNC NET_TIMEOUT=30'
LOG_ARCHIVE_DEST_STATE_1=ENABLE
LOG_ARCHIVE_DEST_STATE_2=ENABLE

Specifying the SYNC attribute on the LOG_ARCHIVE_DEST_n parameter is optional,
because this is the default for LGWR archival processing. The NET_TIMEOUT attribute
is recommended, because it controls the amount of time that the LGWR process waits
for status from the network server process before terminating the network connection.
If there is no reply within NET_TIMEOUT seconds, then the LGWR process returns an
error message.

Figure 5–4 shows a Data Guard configuration that uses the LGWR process to
synchronously transmit redo data to the standby system at the same time it is writing
redo data to the online redo log file on the primary database:

■ On the primary database, the LGWR process submits the redo data to one or more
network server (LNSn) processes, which then initiate the network I/O in parallel
to multiple remote destinations. Transactions are not committed on the primary
database until the redo data necessary to recover the transaction is received by all
LGWR SYNC destinations.

■ On the standby system, the remote file server (RFS) receives redo data over the
network from the LGWR process and writes the redo data to the standby redo log
files.

A log switch on the primary database triggers a log switch on the standby database,
causing ARCn processes on the standby database to archive the standby redo log files
to archived redo log files on the standby database. Then, Redo Apply (MRP process) or
SQL Apply (LSP process) applies the redo data to the standby database. If real-time
apply is enabled, Data Guard recovers redo data directly from the current standby
redo log file as it is being filled up by the RFS process.

How to Send Redo Data

5-12 Oracle Data Guard Concepts and Administration

Figure 5–4 LGWR SYNC Archival to a Remote Destination with Standby Redo Log Files

5.3.2.3 LGWR ASYNC Archival Processing
Example 5–6 shows the primary role LOG_ARCHIVE_DEST_n parameters that
configure the LGWR process for asynchronous network transmission.

Example 5–6 Initialization Parameters for LGWR Asynchronous Archiving

LOG_ARCHIVE_DEST_1='LOCATION=/arch1/chicago'
LOG_ARCHIVE_DEST_2='SERVICE=boston LGWR ASYNC'
LOG_ARCHIVE_DEST_STATE_1=ENABLE
LOG_ARCHIVE_DEST_STATE_2=ENABLE

Figure 5–5 shows the LNSn process collecting redo data from the online redo log files
and transmitting it over Oracle Net to the RFS process on the standby database.

When the LGWR and ASYNC attributes are specified, the log writer process writes to the
local online redo log file, while the network server (LNSn) processes (one for each
destination) asynchronously transmit the redo to remote destinations. The LGWR
process continues processing the next request without waiting for the LNS network
I/O to complete.

If redo transport services transmit redo data to multiple remote destinations, the LNSn
processes (one for each destination) initiate the network I/O to all of the destinations
in parallel.

When an online redo log file fills up, a log switch occurs and an archiver process
archives the log file locally, as usual.

Primary
Database

Transactions

LGWR

ARCn

 Online
Redo Log Files

Oracle Net

RFS

ARCn

Standby
Redo Log Files

Archived
Redo Log File

Archived
Redo Log File

Primary Site Standby Site

LNSn

Standby
DatabaseMRP

or LSP
Synchronous

(Real Time
Apply)

How to Send Redo Data

Redo Transport Services 5-13

Figure 5–5 LGWR ASYNC Archival with Network Server (LNSn) Processes

5.3.3 Providing for Secure Redo Data Transmission
Data Guard provides a secure environment and prevents the possible tampering of
redo data as it is being transferred to the standby database.

Redo transport services use authenticated network sessions to transfer redo data.
These sessions are authenticated using the SYS user password contained in the
password file. All databases in the Data Guard configuration must use a password file,
and the SYS password contained in this password file must be identical on all systems.
This authentication can be performed even if Oracle Advanced Security is not
installed, and provides some level of security when shipping redo.

Note: Beginning with Oracle Database 10g Release 10.2, it is
unnecessary to specify the NET_TIMEOUT attribute on the LOG_
ARCHIVE_DEST_n destinations configured with both the LGWR and
ASYNC attributes. This is because the log writer process never waits
for the LNSn for any reason in release 10.2. Thus, specifying the NET_
TIMEOUT attribute is not required.

Note: Do not use the LOG_ARCHIVE_DEST or the LOG_ARCHIVE_
DUPLEX_DEST initialization parameters to specify a flash recovery
area destination.

Primary
Database

Transactions

LGWR

ARCn

 Online
Redo Log Files

Oracle Net

RFS

ARCn

Standby
Redo Log Files

Archived
Redo Log File

Archived
Redo Log File

Primary Site Standby Site

LNSn

Standby
DatabaseMRP

or LSP

Asynchronous

(Real Time
Apply)

When Redo Data Should Be Sent

5-14 Oracle Data Guard Concepts and Administration

Perform the following steps on the primary database and each standby database:

1. Create a password file (using the orapwd utility) on the primary and all standby
databases. For example:

ORAPWD FILE=orapw PASSWORD=mypassword ENTRIES=10

This example creates a password file with 10 entries, where the password for SYS
is mypassword. For redo data transmission to succeed, ensure you set the password
for the SYS user account identically for every primary and standby database.

2. Set the REMOTE_LOGIN_PASSWORDFILE initialization parameter to EXCLUSIVE
or SHARED to enable Oracle to check for a password file and to specify how many
databases can use the password file. For example:

REMOTE_LOGIN_PASSWORDFILE=EXCLUSIVE

See the Oracle Database Reference for more information about this parameter.

5.4 When Redo Data Should Be Sent
This section contains the following topics:

■ Specifying Role-Based Destinations with the VALID_FOR Attribute

■ Specify Unique Names for Primary and Standby Databases

5.4.1 Specifying Role-Based Destinations with the VALID_FOR Attribute
The VALID_FOR attribute enables you to configure destination attributes for both the
primary and standby database roles in one server parameter file (SPFILE), so that your
Data Guard configuration operates properly after a role transition. This simplifies
switchovers and failovers by removing the need to enable and disable the role-specific
parameter files after a role transition.

When you specify the VALID_FOR attribute of the LOG_ARCHIVE_DEST_n parameter,
it identifies when redo transport services can transmit redo data to destinations based
on the following factors:

■ Whether the database is currently running in the primary or the standby role

■ Whether archival of the online redo log file, standby redo log file, or both is
required depending on the current role of the database

To configure these factors for each LOG_ARCHIVE_DEST_n destination, you specify
this attribute with a pair of keywords: VALID_FOR=(redo_log_type,database_
role). The redo_log_type keyword identifies the destination as valid for archiving the
following: ONLINE_LOGFILE, STANDBY_LOGFILE, or ALL_LOGFILES. The database_
role keyword identifies the role in which the current database must be in for the
destination to be valid: PRIMARY_ROLE, STANDBY_ROLE, or ALL_ROLES.

If you do not specify the VALID_FOR attribute for a destination, by default, archiving
the online redo log and standby redo log is enabled to the destination, regardless of

Note: To further protect redo (for example, to encrypt redo or
compute an integrity checksum value for redo traffic over the
network to disallow redo tampering on the network), Oracle
recommends that you install and use Oracle Advanced Security. See
the Oracle Database Advanced Security Administrator's Guide.

When Redo Data Should Be Sent

Redo Transport Services 5-15

the database role. This default behavior is equivalent to setting the (ALL_
LOGFILES,ALL_ROLES) keyword pair on the VALID_FOR attribute. For example:

LOG_ARCHIVE_DEST_1='LOCATION=/ARCH1/CHICAGO/ VALID_FOR=(ALL_LOGFILES,ALL_ROLES)'

Although the (ALL_LOGFILES,ALL_ROLES) keyword pair is the default, it is not
recommended for every destination. For example, logical standby databases, unlike
physical standby databases, are open databases that generate redo data and have
multiple log files (online redo log files, archived redo log files, and standby redo log
files). In most cases, the online redo log files generated by the logical standby database
are located in the same directory as the standby redo logs files that are receiving redo
from the primary database.

Therefore, it is recommended that you define a VALID_FOR attribute for each
destination so that your Data Guard configuration operates properly, including after a
role transition. See the scenarios in Section 12.1 for examples of the VALID_FOR
attribute settings for various Data Guard configurations,

If you choose not to use the VALID_FOR attribute to configure destinations, you must
maintain two database server parameter files (SPFILEs) for each database: one for
when the database is in the primary role and the other for the standby role. See
Chapter 12 for more configuration examples.

5.4.2 Specify Unique Names for Primary and Standby Databases
The DB_UNIQUE_NAME attribute enables you to specify unique database names when
you configure destinations. This makes it possible to dynamically add a standby
database to a Data Guard configuration that contains a Real Applications Clusters
primary database, when that primary database is operating in either the maximum
protection or the maximum availability level of protection. The DB_UNIQUE_NAME
initialization parameter is required if the LOG_ARCHIVE_CONFIG parameter has been
defined.

Together, the DB_UNIQUE_NAME attribute of the LOG_ARCHIVE_DEST_n parameter
and the DG_CONFIG attribute of the LOG_ARCHIVE_CONFIG parameter specify the
unique name of each database of the Data Guard configuration. The names you supply
must match what was defined for each database with the DB_UNIQUE_NAME
initialization parameter.

For example, the following initialization parameters show the DB_UNIQUE_NAME and
LOG_ARCHIVE_CONFIG definitions for the primary database (chicago) in the Data
Guard configuration described in Chapter 3:

DB_NAME=chicago
DB_UNIQUE_NAME=chicago
LOG_ARCHIVE_CONFIG='DG_CONFIG=(chicago, boston)'
LOG_ARCHIVE_DEST_1='LOCATION=/arch1/chicago/ VALID_FOR=(ALL_LOGFILES,ALL_ROLES)
LOG_ARCHIVE_DEST_2=
 'SERVICE=boston LGWR ASYNC
 VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
 DB_UNIQUE_NAME=boston'

Note: If the standby database on a remote destination has not
been identified using the DB_UNIQUE_NAME initialization
parameter, the standby database must be accessible before the
primary instance is started.

What to Do If Errors Occur

5-16 Oracle Data Guard Concepts and Administration

The DB_UNIQUE_NAME attribute is required for remote destinations specified with the
SERVICE attribute. In the example, the LOG_ARCHIVE_DEST_2 parameter specifies
the DB_UNIQUE_NAME=boston for the remote destination; redo transport services
validate this information at the remote destination. If the names do not match, the
connection to that destination is refused.

The LOG_ARCHIVE_CONFIG parameter also has SEND, NOSEND, RECEIVE, and
NORECEIVE attributes:

■ SEND enables a database to send redo data to remote destinations

■ RECEIVE enables the standby database to receive redo from another database

To disable these settings, use the NOSEND and NORECEIVE keywords.

For example, to ensure the primary database never accidentally receives any archived
redo data, set the LOG_ARCHIVE_CONFIG initialization parameter to NORECEIVE on
the primary database, as follows:

LOG_ARCHIVE_CONFIG='NORECEIVE,DG_CONFIG=(chicago,boston)'

However, keep in mind that specifying either the NOSEND or the NORECEIVE
attributes may limit the database instance’s capabilities after a role transition. For
example, if a standby database with the NOSEND attribute set is transitioned to the
primary role, it would not be able to transmit redo data to other standby databases
until you reset the parameter value to SEND. Similarly, a database that has the
NORECEIVE attribute specified cannot receive redo from the primary database.

By default, the LOG_ARCHIVE_CONFIG parameter allows the primary database to
send redo data to the standby database and allows the standby database to receive
redo from the primary database for archiving. This is equivalent to setting both SEND
and RECEIVE attributes on the LOG_ARCHIVE_CONFIG parameter.

5.5 What to Do If Errors Occur
To handle archiving failures, you can use the REOPEN, MAX_FAILURES, and
ALTERNATE attributes of the LOG_ARCHIVE_DEST_n parameter to specify what
actions are to be taken when archival processing to a destination fails. These actions
include:

■ Retrying the archival operation to a failed destination after a specified period of
time, up to a limited number of times

■ Using an alternate or substitute destination

■ Controlling the number of attempts to reestablish communication and resume
sending redo data to a failed destination.

5.5.1 Retrying the Archival Operation
Use the REOPEN attribute to determine if and when the ARCn process or the LGWR
process attempts to transmit redo data again to a failed destination following an error.

Use the REOPEN=seconds attribute to specify the minimum number of seconds that
must elapse following an error before the archiving process will try again to access a

Note: The LOG_ARCHIVE_CONFIG initialization parameter
replaces the REMOTE_ARCHIVE_ENABLE initialization parameter,
which is deprecated. Do not specify both parameters in the same
SPFILE or text initialization parameter file.

What to Do If Errors Occur

Redo Transport Services 5-17

failed destination. The default value is 300 seconds. The value set for the REOPEN
attribute applies to all errors, not just connection failures. You can turn off the option
by specifying REOPEN=0, which prevents the destination from being retried after a
failure occurs.

If transmission to the alternate destination fails and the REOPEN attribute is set to zero
(0), redo transport services will attempt to send redo data to the alternate destination
the next time redo data is archived.

5.5.2 Using an Alternate Destination
The ALTERNATE attribute defines an alternate archiving destination that can be used
when the original archiving destination fails. If no alternate destination is specified,
the destination does not automatically change to another destination upon failure.

Figure 5–6 shows a scenario where redo data is archived to a local disk device. If the
original destination device becomes full or unavailable, the archival operation is
automatically redirected to the alternate destination device.

Figure 5–6 Archival Operation to an Alternate Destination Device

The REOPEN attribute takes precedence over the ALTERNATE attribute. The alternate
destination is used only if one of the following conditions is true:

■ A value of zero (0) is specified for the REOPEN attribute.

■ A nonzero REOPEN attribute and a nonzero MAX_FAILURE count have been
exceeded.

The ALTERNATE attribute takes precedence over the MANDATORY attribute. This means
that a destination fails over to a valid alternate destination even if the current
destination is mandatory.

5.5.3 Controlling the Number of Retry Attempts
Use the MAX_FAILURE attribute to specify the maximum number of consecutive times
that redo transport services attempt to transmit redo data to a failed destination. To
limit the number of consecutive attempts that will be made to reestablish
communication with a failed destination, use the REOPEN attribute in conjunction with

See Also: The ALTERNATE attribute on page 14-4

Instance
A

Original
Destination
Device

Alternate
Destination
Device

Instance
A

Original
Destination
Device

Alternate
Destination
Device

Setting Up a Data Protection Mode

5-18 Oracle Data Guard Concepts and Administration

the MAX_FAILURE attribute. Once the specified number of consecutive attempts is
exceeded, the destination is treated as if the REOPEN attribute was set to zero.

The REOPEN attribute is required when you use the MAX_FAILURE attribute.
Example 5–7 shows how to set a retry time of 60 seconds and limit retries to 3
attempts.

Example 5–7 Setting a Retry Time and Limit

LOG_ARCHIVE_DEST_1='LOCATION=/arc_dest REOPEN=60 MAX_FAILURE=3'

5.6 Setting Up a Data Protection Mode
Data Guard provides three modes of data protection: maximum protection, maximum
availability, and maximum performance. The level of data protection you choose
controls what happens if the primary database loses its connection to the standby
database. This section contains the following topics:

■ Choosing a Data Protection Mode

■ Setting the Data Protection Mode of a Data Guard Configuration

5.6.1 Choosing a Data Protection Mode
To determine the appropriate data protection mode to use, review the following
descriptions of the data protection modes to help assess your business requirements
for data availability against user demands for response time and performance. Also,
see Section 5.6.2 for information about setting up the data protection mode.

5.6.1.1 Maximum Protection Mode
This protection mode ensures that no data loss will occur if the primary database fails.
To provide this level of protection, the redo data needed to recover each transaction
must be written to both the local online redo log and to the standby redo log on at least
one standby database before the transaction commits. To ensure data loss cannot occur,
the primary database shuts down if a fault prevents it from writing its redo stream to
at least one remote standby redo log. For multiple-instance RAC databases, Data
Guard shuts down the primary database if it is unable to write the redo records to at
least one properly configured database instance. The maximum protection mode
requires that at least one standby instance has a standby redo log and the LGWR, SYNC,
and AFFIRM attributes be used on the LOG_ARCHIVE_DEST_n parameter for this
destination.

5.6.1.2 Maximum Availability Mode
This protection mode provides the highest level of data protection that is possible
without compromising the availability of the primary database. Like maximum
protection mode, a transaction will not commit until the redo needed to recover that
transaction is written to the local online redo log and to at least one remote standby
redo log. Unlike maximum protection mode, the primary database does not shut down
if a fault prevents it from writing its redo stream to a remote standby redo log. Instead,
the primary database operates in maximum performance mode until the fault is
corrected and all gaps in redo log files are resolved. When all gaps are resolved, the
primary database automatically resumes operating in maximum availability mode.

This mode ensures that no data loss will occur if the primary database fails, but only if
a second fault does not prevent a complete set of redo data from being sent from the
primary database to at least one standby database.

Setting Up a Data Protection Mode

Redo Transport Services 5-19

Like maximum protection mode, the maximum availability mode requires that you:

■ Configure standby redo log files on at least one standby database.

■ Set the SYNC, LGWR, and AFFIRM attributes of the LOG_ARCHIVE_DEST_n
parameter for at least 1 standby database.

5.6.1.3 Maximum Performance Mode
This protection mode (the default) provides the highest level of data protection that is
possible without affecting the performance of the primary database. This is
accomplished by allowing a transaction to commit as soon as the redo data needed to
recover that transaction is written to the local online redo log. The primary database’s
redo data stream is also written to at least one standby database, but that redo stream
is written asynchronously with respect to the commitment of the transactions that
create the redo data.

When network links with sufficient bandwidth are used, this mode provides a level of
data protection that approaches that of maximum availability mode with minimal
impact on primary database performance.

The maximum performance mode enables you to either set the LGWR and ASYNC
attributes, or set the ARCH attribute on the LOG_ARCHIVE_DEST_n parameter for the
standby database destination. If the primary database fails, you can reduce the amount
of data that is not received on the standby destination by setting the LGWR and ASYNC
attributes.

5.6.2 Setting the Data Protection Mode of a Data Guard Configuration
To set up redo transport services and specify a level of data protection for the Data
Guard configuration, perform the following steps.

Step 1 Configure the LOG_ARCHIVE_DEST_n parameters on the primary
database.
On the primary database, configure the LOG_ARCHIVE_DEST_n parameter attributes
appropriately. Each of the Data Guard data protection modes requires that at least one
standby database in the configuration meet the minimum set of requirements listed in
Table 5–2.

Table 5–2 Minimum Requirements for Data Protection Modes

Maximum Protection Maximum Availability Maximum Performance

Redo archival process LGWR LGWR LGWR or ARCH

Network transmission
mode

SYNC SYNC SYNC or ASYNC when using
LGWR process. SYNC if using
ARCH process

Disk write option AFFIRM AFFIRM AFFIRM or NOAFFIRM

Standby redo log required? Yes Yes No, but it is recommended

Note: Oracle recommends that a Data Guard configuration that is
running in maximum protection mode contains at least two standby
databases that meet the requirements listed in Table 5–2. That way,
the primary database can continue processing if one of the standby
databases cannot receive redo data from the primary database.

Setting Up a Data Protection Mode

5-20 Oracle Data Guard Concepts and Administration

The following example shows how to configure the maximum availability mode:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_2='SERVICE=chicago
 2> OPTIONAL LGWR SYNC AFFIRM
 3> VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
 4> DB_UNIQUE_NAME=chicago';

If they are not already specified in the SPFILE, you should also specify unique names
with the DB_UNIQUE_NAME initialization parameter and list all databases on the LOG_
ARCHIVE_CONFIG parameter with the DG_CONFIG attribute. For example:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(chicago,boston)'

This will enable the dynamic addition of a standby database to a Data Guard
configuration that has a Real Application Clusters primary database running in either
maximum protection or maximum availability mode.

Step 1 If you are upgrading the protection mode, perform this step.
Perform this step only if you are upgrading the protection mode (for example, from
maximum performance to maximum availability mode). Otherwise, go to Step 3.

Assume this example is upgrading the Data Guard configuration from the maximum
performance mode to the maximum availability mode. Shut down the primary
database and restart it in mounted mode:

SQL> SHUTDOWN IMMEDIATE;
SQL> STARTUP MOUNT;

For a Real Application Clusters database, shut down all of the primary instances but
start and mount only one primary instance.

Step 2 Set the data protection mode.
To specify a data protection mode, issue the SQL ALTER DATABASE SET STANDBY
DATABASE TO MAXIMIZE {PROTECTION | AVAILABILITY | PERFORMANCE}
statement on the primary database. For example, the following statement specifies the
maximum availability mode:

SQL> ALTER DATABASE SET STANDBY DATABASE TO MAXIMIZE AVAILABILITY;

Step 3 Open the primary database.
If you performed Step 1 to upgrade the protection mode, open the database:

SQL> ALTER DATABASE OPEN;

If you are downgrading the protection mode, the database will already be open.

Step 4 Configure the LOG_ARCHIVE_DEST_n parameters on standby databases.
On the standby databases, configure the LOG_ARCHIVE_DEST_n parameter attributes
so the configuration can continue to operate in the new protection mode after a
switchover.

For example:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_2='SERVICE=boston
 2> OPTIONAL LGWR SYNC AFFIRM
 3> VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
 4> DB_UNIQUE_NAME=boston';

Managing Log Files

Redo Transport Services 5-21

Step 5 Confirm the configuration is operating in the new protection mode.
Query the V$DATABASE view to confirm the Data Guard configuration is operating in
the new protection mode. For example:

SQL> SELECT PROTECTION_MODE, PROTECTION_LEVEL FROM V$DATABASE;

PROTECTION_MODE PROTECTION_LEVEL
--------------------- ---------------------
MAXIMUM AVAILABILITY MAXIMUM AVAILABILITY

See Chapter 15 and Oracle Database SQL Reference for information about SQL
statements.

5.7 Managing Log Files
This section contains the following topics:

■ Specifying Alternate Directory Locations for Archived Redo Log Files

■ Reusing Online Redo Log Files

■ Managing Standby Redo Log Files

■ Planning for Growth and Reuse of the Control Files

■ Sharing a Log File Destination Among Multiple Standby Databases

5.7.1 Specifying Alternate Directory Locations for Archived Redo Log Files
Typically, when redo data is received from the primary database, the redo data is
written to archived redo log files that are stored in the directory you specify with the
LOCATION attribute of the LOG_ARCHIVE_DEST_n parameter. Alternatively, you can
specify the STANDBY_ARCHIVE_DEST initialization parameter on the standby
database to indicate an alternate directory where the archived redo log files are to be
stored when received from the primary database.

If both parameters are specified, the STANDBY_ARCHIVE_DEST initialization
parameter overrides the directory location specified with the LOG_ARCHIVE_DEST_n
parameter.

The location where archived redo log files are stored on the standby database is
determined according to the following list of rules. When the database instance is
started, the archived redo log files are evaluated in the list order:

1. If the STANDBY_ARCHIVE_DEST initialization parameter is specified on the
standby database, that location is used.

2. If the LOG_ARCHIVE_DEST_n parameter contains the VALID_FOR=(STANDBY_
LOGFILE,*) attribute, then the location specified for this destination is used.

3. If the COMPATIBLE parameter is set to 10.0 or greater and none of the LOG_
ARCHIVE_DEST_n parameters contain the VALID_FOR=(STANDBY_
LOGFILE,*)attribute, then an arbitrary LOG_ARCHIVE_DEST_n parameter that is
valid for the destination is used.

4. If none of the initialization parameters have been specified, then archived redo log
files are stored in the default location for the STANDBY_ARCHIVE_DEST
initialization parameter.

To see the implicit default value of the STANDBY_ARCHIVE_DEST initialization
parameter, query the V$ARCHIVE_DEST view:

Managing Log Files

5-22 Oracle Data Guard Concepts and Administration

SQL> SELECT DEST_NAME, DESTINATION FROM V$ARCHIVE_DEST
 2> WHERE DEST_NAME='STANDBY_ARCHIVE_DEST';

DEST_NAME

DESTINATION

STANDBY_ARCHIVE_DEST
/oracle/dbs/arch

Redo transport services use the value specified with the STANDBY_ARCHIVE_DEST
initialization parameter in conjunction with the LOG_ARCHIVE_FORMAT parameter to
generate the filenames for the archived redo log files on the standby site. For example:

STANDBY_ARCHIVE_DEST='/arc_dest/arls'
LOG_ARCHIVE_FORMAT=log%t_%s_%r.arc

In the example, %s corresponds to the sequence number, and %r corresponds to the
resetlogs ID. Together, these ensure unique names are constructed for the archived
redo log files across multiple incarnations of the database. The %t, which is required
for Real Application Clusters configurations, corresponds to the thread number.

For a physical standby database, redo transport services store the fully qualified
filenames in the standby database control file, and Redo Apply uses this information
to perform recovery on the standby database.

To display the list of archived redo log files that are on the standby system, query the
V$ARCHIVED_LOG view on the standby database:

SQL> SELECT NAME FROM V$ARCHIVED_LOG;
NAME
--
/arc_dest/log_1_771.arc
/arc_dest/log_1_772.arc
/arc_dest/log_1_773.arc
/arc_dest/log_1_774.arc
/arc_dest/log_1_775.arc

5.7.2 Reusing Online Redo Log Files
You can specify a policy for reusing the online redo log file by setting the OPTIONAL or
MANDATORY attribute of the LOG_ARCHIVE_DEST_n parameter. By default, remote
destinations are set to OPTIONAL. The archival operation of an optional destination
can fail, and the online redo log file can be reused even though transmitting the redo
data and writing the log contents was not successful. If the archival operation of a
mandatory destination fails, online redo log files cannot be overwritten until the failed
archive is completed to the mandatory destination.

By default, one local destination is mandatory even if you designate all destinations to
be optional.

Note: If you have specified the TEMPLATE attribute of the LOG_
ARCHIVE_DEST_n parameter, it will override the filename
generated with the STANDBY_ARCHIVE_DEST and LOG_ARCHIVE_
FORMAT parameter. See Chapter 14 for information about the
TEMPLATE attributes.

Managing Log Files

Redo Transport Services 5-23

Example 5–8 shows how to set a mandatory local archiving destination and enable
that destination. When specifying the MANDATORY attribute, also consider specifying
the REOPEN and MAX_FAILURE attributes as described in Section 5.5 to handle failure
conditions.

Example 5–8 Setting a Mandatory Archiving Destination

LOG_ARCHIVE_DEST_3 = 'LOCATION=/arc_dest MANDATORY'

5.7.3 Managing Standby Redo Log Files
This section contains the following topics:

■ Determining If a Standby Redo Log File Group Configuration Is Adequate

■ Adding Standby Redo Log Members to an Existing Group

5.7.3.1 Determining If a Standby Redo Log File Group Configuration Is Adequate
The easiest way to verify the standby redo log has an appropriate number of log file
groups is to examine the RFS process trace file and database alert log. If either log
contains messages that indicate the RFS process frequently has to wait for a group
because archiving did not complete, then add more log file groups to the standby redo
log. The additional standby redo log file groups give the archival operation time to
complete before the standby redo log file is reused by the RFS process.

5.7.3.2 Adding Standby Redo Log Members to an Existing Group
In some cases, it might not be necessary to create a complete group of standby redo log
files. A group could already exist, but may not be complete because one or more
members were dropped (for example, because of disk failure). In this case, you can
add new members to an existing group.

To add new members to a standby redo log file group, use the ALTER DATABASE
statement with the ADD STANDBY LOGFILE MEMBER clause. The following statement
adds a new member to the standby redo log file group number 2:

SQL> ALTER DATABASE ADD STANDBY LOGFILE MEMBER '/disk1/oracle/dbs/log2b.rdo'
 2> TO GROUP 2;

Use fully qualified filenames of new members to indicate where the file should be
created. Otherwise, files will be created in either the default or current directory of the
database, depending on your operating system.

5.7.4 Planning for Growth and Reuse of the Control Files
This section describes:

■ Sizing the Disk Volumes that Contain the Control Files

■ Specifying the Reuse of Records in the Control File

Caution: Whenever you add an online redo log file group to the
primary database, you must add a corresponding standby redo log
file group to the standby database. If the number of standby redo
log file groups is inadequate, the primary database will shut down
if it is operating in maximum protection mode or switch to
maximum performance mode if it is operating in maximum
availability mode.

Managing Log Files

5-24 Oracle Data Guard Concepts and Administration

5.7.4.1 Sizing the Disk Volumes that Contain the Control Files
As archived redo log files are generated and RMAN backups are made, Oracle adds
new records to the reusable section of the control file. If no records are available for
reuse (because all records are still within the number of days specified by CONTROL_
FILE_RECORD_KEEP_TIME), then the control file is expanded and new records are
added to the control file.

The maximum control file size is 20000 database blocks. If DB_BLOCK_SIZE equals
8192, then the maximum control file size is 156 MB. If the control files are stored in
pre-created volumes, then the volumes that contain the primary and standby control
files should be sized to accommodate a control file of maximum size. If the control file
volume is too small and cannot be extended, then existing records in the control file
will be overwritten before their intended reuse. This behavior is indicated by the
following message in the alert log:

krcpwnc: following controlfile record written over:

5.7.4.2 Specifying the Reuse of Records in the Control File
The CONTROL_FILE_RECORD_KEEP_TIME initialization parameter specifies the
minimum number of days that must pass before a reusable record in the control file
can be reused. Setting this parameter appropriately prevents redo transport services
from overwriting a reusable record in the control file and ensures redo information
remains available on the standby database:

■ Set CONTROL_FILE_RECORD_KEEP_TIME to a value that allows all on disk
backup information to be retained in the control file. CONTROL_FILE_RECORD_
KEEP_TIME specifies the number of days that records are kept within the control
file before becoming a candidate for reuse.

■ Set CONTROL_FILE_RECORD_KEEP_TIME to a value slightly longer than the
oldest backup file that you intend to keep on disk, as determined by the size of the
backup area.

For example, if the backup area is sized to maintain two full backups that are
taken every 7 days, as well as daily incremental backups and archived redo log
files, then set CONTROL_FILE_RECORD_KEEP_TIME to a value of 21 or 30.
Records older than this will be reused. However, the backup metadata will still be
available in the RMAN recovery catalog.

Make sure you specify a large enough value if an apply delay is also set for the
standby database (described in Section 6.2.2). The range of values for this parameter is
0 to 365 days. The default value is 7 days.

See Oracle Database Reference for more details about the CONTROL_FILE_RECORD_
KEEP_TIME initialization parameter and Oracle Database Backup and Recovery Advanced
User's Guide.

5.7.5 Sharing a Log File Destination Among Multiple Standby Databases
Use the DEPENDENCY attribute of the LOG_ARCHIVE_DEST_n initialization parameter
to define one archival destination to receive redo data on behalf of several
destinations, rather than transmitting redo data to each individual destination.

Figure 5–7 shows a Data Guard configuration in which the primary database
transports redo data to one archiving destination that shares its archived redo log files
with both a logical standby database and a physical standby database. These
destinations are dependent on the successful completion of archival operations to the
parent destination.

Managing Archive Gaps

Redo Transport Services 5-25

Figure 5–7 Data Guard Configuration with Dependent Destinations

Specifying a destination dependency can be useful in the following situations:

■ When you configure a physical standby database and a logical standby database
on the same system.

■ When you configure the standby database and the primary database on the same
system. Therefore, the archived redo log files are implicitly accessible to the
standby database.

■ When clustered file systems are used to provide remote standby databases with
access to the primary database archived redo log files.

■ When operating system-specific network file systems are used, providing remote
standby databases with access to the primary database archived redo log files.

For example, assume there are two standby databases stdby1 and stdby2 that reside
on the same piece of hardware. There is no need to use network bandwidth and disk
space to send the same redo data to both destinations. The databases can share the
same archived redo log files if you use the DEPENDENCY attribute to designate one of
the destinations as being a dependent destination. That is, the primary database sends
redo to be archived on the destination that is not defined as the dependent destination.
If the redo data successfully arrives at that destination, the primary database considers
it archived to both destinations. For example:

LOG_ARCHIVE_DEST_1='LOCATION=DISK1 MANDATORY'
LOG_ARCHIVE_DEST_2='SERVICE=stdby1 OPTIONAL'
LOG_ARCHIVE_DEST_3='SERVICE=stdby2 OPTIONAL DEPENDENCY=LOG_ARCHIVE_DEST_2'

With these parameter definitions, the primary database transmits redo data to stdby1
but not to stdby2. The stdby2 database instead recovers redo from the archived redo
log files that are shipped to stdby1.

5.8 Managing Archive Gaps
An archive gap can occur on the standby system when it is has not received one or
more archived redo log files generated by the primary database. The missing archived
redo log files are the gap. If there is a gap, it is automatically detected and resolved by
Data Guard by copying the missing sequence of log files to the standby destination.

See Also: The DEPENDENCY attribute on page 14-10

Primary
Database

Physical
Standby

Database

 Redo Transport Services

Remote Archived Redo Log FilesLocal Archived Redo Log Files

 Log Apply Services

Logical
Standby

Database

Oracle
Net

Managing Archive Gaps

5-26 Oracle Data Guard Concepts and Administration

For example, an archive gap can occur when the network becomes unavailable and
automatic archiving from the primary database to the standby database temporarily
stops. When the network is available again, automatic transmission of the redo data
from the primary database to the failed standby database resumes.

Data Guard requires no manual intervention by the DBA to detect and resolve such
gaps. The following sections describe gap detection and resolution.

5.8.1 When Is an Archive Gap Discovered?
An archive gap can occur whenever the primary database archives a log locally, but
the log is not received at the standby site. Every minute, the primary database polls its
standby databases to see if there are gaps in the sequence of archived redo log files.

5.8.2 How Is a Gap Resolved?
Gap recovery is handled through the polling mechanism. For physical and logical
standby databases, Oracle Change Data Capture, and Oracle Streams, Data Guard
performs gap detection and resolution by automatically retrieving missing archived
redo log files from the primary database. No extra configuration settings are required
to poll the standby databases, to detect any gaps, or to resolve the gaps.

The important consideration here is that automatic gap recovery is contingent on the
availability of the primary database. If the primary database is not available and you
have a configuration with multiple physical standby databases, you can set up
additional initialization parameters so that the Redo Apply can resolve archive gaps
from another standby database, as described in Section 5.8.3.

See Section 12.11 for a scenario that shows how to resolve a gap manually.

5.8.3 Using the Fetch Archive Log (FAL) to Resolve Archive Gaps
The fetch archive log (FAL) client and server resolve gaps detected in the range of
archived redo log files generated at the primary database and received at the physical
standby database.

■ The FAL client requests the transfer of archived redo log files automatically.

■ The FAL server services the FAL requests coming from the FAL client.

The FAL mechanism handles the following types of archive gaps and problems:

■ When creating a physical or logical standby database, the FAL mechanism can
automatically retrieve any archived redo log files generated during a hot backup
of the primary database.

■ When there are problems with archived redo log files that have already been
received on the standby database, the FAL mechanism can automatically retrieve
archived redo log files to resolve any of the following situations:

– When the archived redo log file is deleted from disk before it is applied to the
standby database.

– When the archived redo log file cannot be applied because of a disk
corruption.

Note: Prior to Oracle Database 10g Release 1, the FAL client and
server were used to resolve gaps from the primary database.

Managing Archive Gaps

Redo Transport Services 5-27

– When the archived redo log file is accidentally replaced by another file (for
example, a text file) that is not an archived redo log file before the redo data
has been applied to the standby database.

■ When you have multiple physical standby databases, the FAL mechanism can
automatically retrieve missing archived redo log files from another physical
standby database.

The FAL client and server are configured using the FAL_CLIENT and FAL_SERVER
initialization parameters that are set on the standby database. Define the FAL_CLIENT
and FAL_SERVER initialization parameters only for physical standby databases in the
initialization parameter file as shown in the following table:

5.8.4 Manually Determining and Resolving Archive Gaps
In some situations, automatic gap recovery may not take place and you will need to
perform gap recovery manually. For example, you will need to perform gap recovery
manually if you are using logical standby databases and the primary database is not
available.

The following sections describe how to query the appropriate views to determine
which log files are missing and perform manual recovery.

On a physical standby database
To determine if there is an archive gap on your physical standby database, query the
V$ARCHIVE_GAP view as shown in the following example:

SQL> SELECT * FROM V$ARCHIVE_GAP;
 THREAD# LOW_SEQUENCE# HIGH_SEQUENCE#
----------- ------------- --------------
 1 7 10

The output from the previous example indicates your physical standby database is
currently missing log files from sequence 7 to sequence 10 for thread 1. After you
identify the gap, issue the following SQL statement on the primary database to locate
the archived redo log files on your primary database (assuming the local archive
destination on the primary database is LOG_ARCHIVE_DEST_1):

SQL> SELECT NAME FROM V$ARCHIVED_LOG WHERE THREAD#=1 AND DEST_ID=1 AND
 2> SEQUENCE# BETWEEN 7 AND 10;

NAME
--
/primary/thread1_dest/arcr_1_7.arc
/primary/thread1_dest/arcr_1_8.arc

Parameter Function Syntax

FAL_SERVER Specifies the network
service name that the
standby database should
use to connect to the FAL
server. It can consist of
multiple values in a list.

Syntax

FAL_SERVER=net_service_name

Example

FAL_SERVER=standby2_db,standby3_db

FAL_CLIENT Specifies the network
service name that the FAL
server should use to
connect to the standby
database.

Syntax

FAL_CLIENT=net_service_name

Example

FAL_CLIENT=standby1_db

Managing Archive Gaps

5-28 Oracle Data Guard Concepts and Administration

/primary/thread1_dest/arcr_1_9.arc

Copy these log files to your physical standby database and register them using the
ALTER DATABASE REGISTER LOGFILE statement on your physical standby
database. For example:

SQL> ALTER DATABASE REGISTER LOGFILE
'/physical_standby1/thread1_dest/arcr_1_7.arc';
SQL> ALTER DATABASE REGISTER LOGFILE
'/physical_standby1/thread1_dest/arcr_1_8.arc';

After you register these log files on the physical standby database, you can restart
Redo Apply.

On a logical standby database:
To determine if there is an archive gap, query the DBA_LOGSTDBY_LOG view on the
logical standby database. For example, the following query indicates there is a gap in
the sequence of archived redo log files because it displays two files for THREAD 1 on
the logical standby database. (If there are no gaps, the query will show only one file for
each thread.) The output shows that the highest registered file is sequence number 10,
but there is a gap at the file shown as sequence number 6:

SQL> COLUMN FILE_NAME FORMAT a55
SQL> SELECT THREAD#, SEQUENCE#, FILE_NAME FROM DBA_LOGSTDBY_LOG L
 2> WHERE NEXT_CHANGE# NOT IN
 3> (SELECT FIRST_CHANGE# FROM DBA_LOGSTDBY_LOG WHERE L.THREAD# = THREAD#)
 4> ORDER BY THREAD#,SEQUENCE#;

 THREAD# SEQUENCE# FILE_NAME
---------- ---------- ---
 1 6 /disk1/oracle/dbs/log-1292880008_6.arc
 1 10 /disk1/oracle/dbs/log-1292880008_10.arc

Copy the missing log files, with sequence numbers 7, 8, and 9, to the logical standby
system and register them using the ALTER DATABASE REGISTER LOGICAL
LOGFILE statement on your logical standby database.

For example:

SQL> ALTER DATABASE REGISTER LOGICAL LOGFILE '/disk1/oracle/dbs/log-1292880008_10.arc';

After you register these log files on the logical standby database, you can restart SQL
Apply.

Note: The V$ARCHIVE_GAP fixed view on a physical standby
database only returns the next gap that is currently blocking Redo
Apply from continuing. After resolving the gap and starting Redo
Apply, query the V$ARCHIVE_GAP fixed view again on the
physical standby database to determine the next gap sequence, if
there is one. Repeat this process until there are no more gaps.

Note: The DBA_LOGSTDBY_LOG view on a logical standby
database only returns the next gap that is currently blocking SQL
Apply from continuing. After resolving the identified gap and
starting SQL Apply, query the DBA_LOGSTDBY_LOG view again on
the logical standby database to determine the next gap sequence, if
there is one. Repeat this process until there are no more gaps.

Verification

Redo Transport Services 5-29

5.9 Verification
This section contains the following topics:

■ Monitoring Log File Archival Information

■ Monitoring the Performance of Redo Transport Services

5.9.1 Monitoring Log File Archival Information
This section describes using views to monitor redo log archival activity for the primary
database. See Oracle Data Guard Broker and Oracle Enterprise Manager online help for
more information about the graphical user interface that automates many of the tasks
involved in monitoring a Data Guard environment

Step 1 Determine the status of redo log files.
Enter the following query on the primary database to determine the status of all online
redo log files:

SQL> SELECT THREAD#, SEQUENCE#, ARCHIVED, STATUS FROM V$LOG;

Step 2 Determine the most recent archived redo log file.
Enter the following query on the primary database to determine recently archived
thread and sequence number:

SQL> SELECT MAX(SEQUENCE#), THREAD# FROM V$ARCHIVED_LOG GROUP BY THREAD#;

Step 3 Determine the most recent archived redo log file at each destination.
Enter the following query on the primary database to determine which archived redo
log file was most recently transmitted to each of the archiving destinations:

SQL> SELECT DESTINATION, STATUS, ARCHIVED_THREAD#, ARCHIVED_SEQ#
 2> FROM V$ARCHIVE_DEST_STATUS
 3> WHERE STATUS <> 'DEFERRED' AND STATUS <> 'INACTIVE';

DESTINATION STATUS ARCHIVED_THREAD# ARCHIVED_SEQ#
------------------ ------ ---------------- -------------
/private1/prmy/lad VALID 1 947
standby1 VALID 1 947

The most recently written archived redo log file should be the same for each archive
destination listed. If it is not, a status other than VALID might identify an error
encountered during the archival operation to that destination.

Step 4 Find out if archived redo log files have been received.
You can issue a query at the primary database to find out if an archived redo log file
was not received at a particular site. Each destination has an ID number associated
with it. You can query the DEST_ID column of the V$ARCHIVE_DEST fixed view on
the primary database to identify each destination’s ID number.

Assume the current local destination is 1, and one of the remote standby destination
IDs is 2. To identify which log files are missing at the standby destination, issue the
following query:

SQL> SELECT LOCAL.THREAD#, LOCAL.SEQUENCE# FROM
 2> (SELECT THREAD#, SEQUENCE# FROM V$ARCHIVED_LOG WHERE DEST_ID=1)
 3> LOCAL WHERE
 4> LOCAL.SEQUENCE# NOT IN
 5> (SELECT SEQUENCE# FROM V$ARCHIVED_LOG WHERE DEST_ID=2 AND

Verification

5-30 Oracle Data Guard Concepts and Administration

 6> THREAD# = LOCAL.THREAD#);

 THREAD# SEQUENCE#
--------- ---------
 1 12
 1 13
 1 14

See Appendix A for details about monitoring the archiving status of the primary
database.

Step 5 Trace the progression of transmitted redo on the standby site.
To see the progression of the transmission of redo data to the standby destination, set
the LOG_ARCHIVE_TRACE parameter in the primary and standby initialization
parameter files. See Appendix G for complete details and examples.

5.9.2 Monitoring the Performance of Redo Transport Services
This section describes the wait events that monitor the performance of the redo
transport services that were specified on the primary database with the ARCH, LGWR,
SYNC, and ASYNC attributes on the LOG_ARCHIVE_DEST_n initialization parameter.

The following sections describe the wait events and associated timing information that
are displayed by the V$SYSTEM_EVENT view:

■ ARCn Process Wait Events

■ LGWR SYNC Wait Events

■ LGWR ASYNC Wait Events

5.9.2.1 ARCn Process Wait Events
For ARCn archival processing, Table 5–3 shows several of the wait events that monitor
the time it takes to spawn or delete RFS connections and to send the redo data to the
standby database when using ARCH for the transport mode. See Section 5.3.1 for
information about ARCn archival processing.

5.9.2.2 LGWR SYNC Wait Events
For LGWR SYNC archival processing, Table 5–4 shows several of the wait events that
monitor the time it takes for the LGWR process on the primary database to:

■ Complete writing to the online redo log files on the primary database

■ Transmit the redo data to the remote standby destination

■ Wait for the redo data to be written to the standby redo log files

■ Receive acknowledgment from the remote standby destination

See Section 5.3.2 for information about LGWR SYNC archival processing.

Table 5–3 Wait Events for Destinations Configured with the ARCH Attribute

Wait Event Monitors the Amount of Time Spent By . . .

ARCH wait on ATTACH All ARCn processes to spawn an RFS connection.

ARCH wait on SENDREQ All ARCn processes to write the received redo data to disk as
well as open and close the remote archived redo log files.

ARCH wait on DETACH All ARCn processes to delete an RFS connection.

Verification

Redo Transport Services 5-31

5.9.2.3 LGWR ASYNC Wait Events
For LGWR ASYNC archival processing, Table 5–5 shows several of the wait events that
monitor the time it takes to write the redo data to the online redo log files on the
primary database. See Section 5.3.2 for information about LGWR ASYNC archival
processing.

Table 5–4 Wait Events for Destinations Configured with the LGWR SYNC Attributes

Wait Event Monitors the Amount of Time Spent By . . .

LGWR wait on LNS The LGWR process waiting to receive messages from the LNSn
process.

LNS wait on ATTACH All network servers to spawn an RFS connection.

LNS wait on SENDREQ All network servers to write the received redo data to disk as
well as open and close the remote archived redo log files.

LNS wait on DETACH All network servers to delete an RFS connection.

Table 5–5 Wait Events for Destinations Configured with the LGWR ASYNC Attributes

Wait Event Monitors the Amount of Time Spent By . . .

LNS wait on DETACH All network servers to delete an RFS connection.

LNS wait on ATTACH All network servers to spawn an RFS connection.

LNS wait on SENDREQ All network servers to write the received redo data to disk as
well as open and close the remote archived redo log files.

True ASYNC Control
FileTXN Wait

The LNSn process to get hold of the control file transaction
during its lifetime.

True ASYNC Wait for
ARCH log

The LNSn process waiting to see the archived redo log (if the
LNSn process is archiving a current log file and the log is
switched out).

Waiting for ASYNC dest
activation

The LNSn process waiting for an inactive destination to become
active.

True ASYNC log-end-of-file
wait

The LNSn process waiting for the next bit of redo after it has
reached the logical end of file.

Verification

5-32 Oracle Data Guard Concepts and Administration

Log Apply Services 6-1

6
Log Apply Services

This chapter describes how redo data is applied to a standby database. It includes the
following topics:

■ Introduction to Log Apply Services

■ Log Apply Services Configuration Options

■ Applying Redo Data to Physical Standby Databases

■ Applying Redo Data to Logical Standby Databases

6.1 Introduction to Log Apply Services
Log apply services automatically apply redo to standby databases to maintain
synchronization with the primary database and allow transactionally consistent access
to the data.

By default, log apply services wait for the full archived redo log file to arrive on the
standby database before applying it to the standby database. Section 5.3.1 and
Section 5.3.2 describe how redo data transmitted from the primary database is received
by the remote file server process (RFS) on the standby system where the RFS process
writes the redo data to either archived redo log files or standby redo log files.
However, if you use standby redo log files, you can enable real-time apply, which
allows Data Guard to recover redo data from the current standby redo log file as it is
being filled up by the RFS process. Real-time apply is described in more detail in
Section 6.2.1.

Log apply services use the following methods to maintain physical and logical
standby databases:

■ Redo apply (physical standby databases only)

Uses media recovery to keep the primary and physical standby databases
synchronized.

Caution: You can also open a physical standby database in
read-only mode to allow users to query the standby database for
reporting purposes. While open, redo data is still received;
however, Redo Apply stops and the physical standby database is
not kept synchronized with the primary database. If a failure occurs
during this time, it can prolong the time it takes for a failover
operation to complete. See Section 8.2, "Opening a Standby
Database for Read-Only or Read/Write Access" for more
information.

Log Apply Services Configuration Options

6-2 Oracle Data Guard Concepts and Administration

■ SQL Apply (logical standby databases only)

Reconstitutes SQL statements from the redo received from the primary database
and executes the SQL statements against the logical standby database.

Logical standby databases can be opened in read/write mode, but the target tables
being maintained by the logical standby database are opened in read-only mode
for reporting purposes (providing the database guard was set appropriately). SQL
Apply enables you to use the logical standby database for reporting activities,
even while SQL statements are being applied.

The sections in this chapter describe Redo Apply, SQL Apply, real-time apply, and
delayed apply in more detail.

6.2 Log Apply Services Configuration Options
This section contains the following topics:

■ Using Real-Time Apply to Apply Redo Data Immediately

■ Specifying a Time Delay for the Application of Archived Redo Log Files

6.2.1 Using Real-Time Apply to Apply Redo Data Immediately
If the real-time apply feature is enabled, log apply services can apply redo data as it is
received, without waiting for the current standby redo log file to be archived. This
results in faster switchover and failover times because the standby redo log files have
been applied already to the standby database by the time the failover or switchover
begins.

Use the ALTER DATABASE statement to enable the real-time apply feature, as follows:

■ For physical standby databases, issue the ALTER DATABASE RECOVER MANAGED
STANDBY DATABASE USING CURRENT LOGFILE statement.

■ For logical standby databases, issue the ALTER DATABASE START LOGICAL
STANDBY APPLY IMMEDIATE statement.

Standby redo log files are required to use real-time apply.

Figure 6–1 shows a Data Guard configuration with a local destination and a standby
destination. As the remote file server (RFS) process writes the redo data to standby
redo log files on the standby database, log apply services can recover redo from
standby redo log files as they are being filled.

Log Apply Services Configuration Options

Log Apply Services 6-3

Figure 6–1 Applying Redo Data to a Standby Destination Using Real-Time Apply

6.2.2 Specifying a Time Delay for the Application of Archived Redo Log Files
In some cases, you may want to create a time lag between the time when redo data is
received from the primary site and when it is applied to the standby database. You can
specify a time interval (in minutes) to protect against the application of corrupted or
erroneous data to the standby database. When you set a DELAY interval, it does not
delay the transport of the redo data to the standby database. Instead, the time lag you
specify begins when the redo data is completely archived at the standby destination.

Specifying a Time Delay
You can set a time delay on primary and standby databases using the
DELAY=minutes attribute of the LOG_ARCHIVE_DEST_n initialization parameter to
delay applying archived redo log files to the standby database. By default, there is no
time delay. If you specify the DELAY attribute without specifying a value, then the
default delay interval is 30 minutes.

Canceling a Time Delay
You can cancel a specified delay interval as follows:

■ For physical standby databases, use the NODELAY keyword of the RECOVER
MANAGED STANDBY DATABASE clause:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE NODELAY;

Note: If you define a delay for a destination that has real-time
apply enabled, the delay is ignored.

Primary
Database

Transactions

LGWR

ARCn

Online
Redo Log Files

Oracle Net

RFS

ARCn

Standby
Redo Log Files

Standby
DatabaseMRP

or LSP

Archived
Redo Log Files

Archived
Redo Log Files

Synchronous

(Real Time
Apply)

Applying Redo Data to Physical Standby Databases

6-4 Oracle Data Guard Concepts and Administration

■ For logical standby databases, specify the following SQL statement:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY NODELAY;

These commands result in log apply services immediately beginning to apply archived
redo log files to the standby database, before the time interval expires. Also, see:

■ Section 12.8, "Using a Physical Standby Database with a Time Lag"

■ Oracle Database SQL Reference for the DELAY attribute of the ALTER DATABASE
RECOVER MANAGED STANDBY DATABASE statement

6.2.2.1 Using Flashback Database as an Alternative to Setting a Time Delay
As an alternative to setting an apply delay, you can use Flashback Database to recover
from the application of corrupted or erroneous data to the standby database.
Flashback Database can quickly and easily flash back a standby database to an
arbitrary point in time.

See Chapter 12 for scenarios showing how to use Data Guard with Flashback
Database, and Oracle Database Backup and Recovery Basics for more information about
enabling and using Flashback Database.

6.3 Applying Redo Data to Physical Standby Databases
By default, the redo data is applied from archived redo log files. When performing
Redo Apply, a physical standby database can use the real-time apply feature to apply
redo directly from the standby redo log files as they are being written by the RFS
process. Note that log apply services cannot apply redo data to a physical standby
database when it is opened in read-only mode.

This section contains the following topics:

■ Starting Redo Apply

■ Stopping Redo Apply

■ Monitoring Redo Apply on Physical Standby Databases

6.3.1 Starting Redo Apply
To start log apply services on a physical standby database, ensure the physical standby
database is started and mounted and then start Redo Apply using the SQL ALTER
DATABASE RECOVER MANAGED STANDBY DATABASE statement.

You can specify that Redo Apply runs as a foreground session or as a background
process, and enable it with real-time apply.

■ To start Redo Apply in the foreground, issue the following SQL statement:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE;

If you start a foreground session, control is not returned to the command prompt
until recovery is canceled by another session.

■ To start Redo Apply in the background, include the DISCONNECT keyword on the
SQL statement. For example:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE DISCONNECT;

Applying Redo Data to Logical Standby Databases

Log Apply Services 6-5

This statement starts a detached server process and immediately returns control to
the user. While the managed recovery process is performing recovery in the
background, the foreground process that issued the RECOVER statement can
continue performing other tasks. This does not disconnect the current SQL session.

■ To start real-time apply, include the USING CURRENT LOGFILE clause on the
SQL statement. For example:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE USING CURRENT LOGFILE;

6.3.2 Stopping Redo Apply
To stop Redo Apply, issue the following SQL statement in another window:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

6.3.3 Monitoring Redo Apply on Physical Standby Databases
To monitor the status of log apply services on a physical standby database, see
Section 8.5.4. You can also monitor the standby database using Oracle Enterprise
Manager. Also, see the Oracle Database Reference for complete reference information
about views.

6.4 Applying Redo Data to Logical Standby Databases
SQL Apply converts the data from the archived redo log or standby redo log in to SQL
statements and then executes these SQL statements on the logical standby database.
Because the logical standby database remains open, tables that are maintained can be
used simultaneously for other tasks such as reporting, summations, and queries.

This section contains the following topics:

■ Starting SQL Apply

■ Stopping SQL Apply on a Logical Standby Database

■ Monitoring SQL Apply on Logical Standby Databases

6.4.1 Starting SQL Apply
To start SQL Apply, start the logical standby database and issue the following
statement:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY;

To start real-time apply on the logical standby database to immediately apply redo
data from the standby redo log files on the logical standby database, include the
IMMEDIATE keyword as shown in the following statement:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

6.4.2 Stopping SQL Apply on a Logical Standby Database
To stop SQL Apply, issue the following statement on the logical standby database:

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;

When you issue this statement, SQL Apply waits until it has committed all complete
transactions that were in the process of being applied. Thus, this command may not
stop the SQL Apply processes immediately.

Applying Redo Data to Logical Standby Databases

6-6 Oracle Data Guard Concepts and Administration

If you want to stop SQL Apply immediately, issue the following statement:

SQL> ALTER DATABASE ABORT LOGICAL STANDBY APPLY;

6.4.3 Monitoring SQL Apply on Logical Standby Databases
To monitor SQL Apply, see Section 9.2. You can also monitor the standby database
using Oracle Enterprise Manager. See Appendix A, "Troubleshooting Data Guard" and
Oracle Data Guard Broker.

Also, see the discussion about the V$ARCHIVE_DEST_STATUS fixed view in
Section 8.5.4.3 and the Oracle Database Reference for complete reference information
about views.

Role Transitions 7-1

7
Role Transitions

A Data Guard configuration consists of one database that functions in the primary role
and one or more databases that function in standby roles. Typically, the role of each
database does not change. However, if Data Guard is used to maintain service in
response to a primary database outage, you must initiate a role transition between the
current primary database and one standby database in the configuration. To see the
current role of the databases, query the DATABASE_ROLE column in the V$DATABASE
view.

The number, location, and type (physical or logical) of standby databases in the Data
Guard configuration and the way in which redo data from the primary database is
propagated to each standby database determine the role-management options
available to you in response to a primary database outage.

This chapter describes how to manage role transitions in a Data Guard configuration.
It contains the following topics:

■ Introduction to Role Transitions

■ Role Transitions Involving Physical Standby Databases

■ Role Transitions Involving Logical Standby Databases

■ Using Flashback Database After a Role Transition

The role transitions described in this chapter are invoked manually using SQL
statements. You can also use the Oracle Data Guard broker to simplify role transitions
and automate failovers.

7.1 Introduction to Role Transitions
A database operates in one of the following mutually exclusive roles: primary or
standby. Data Guard enables you to change these roles dynamically by issuing the

See Also: Oracle Data Guard Broker for information about using the
Oracle Data Guard broker to:

■ Simplify switchovers and failovers by allowing you to invoke
them using either a single key click in Oracle Enterprise Manager
or a single command in the DGMGRL command-line interface.

■ Enable fast-start failover to fail over automatically when the
primary database becomes unavailable. When fast-start failover is
enabled, the Data Guard broker determines if a failover is
necessary and initiates the failover to the specified target standby
database automatically, with no need for DBA intervention and
with no loss of data.

Introduction to Role Transitions

7-2 Oracle Data Guard Concepts and Administration

SQL statements described in this chapter, or by using either of the Data Guard broker’s
interfaces. Oracle Data Guard supports the following role transitions:

■ Switchover

Allows the primary database to switch roles with one of its standby databases.
There is no data loss during a switchover. After a switchover, each database
continues to participate in the Data Guard configuration with its new role.

■ Failover

Changes a standby database to the primary role in response to a primary database
failure. If the primary database was not operating in either maximum protection
mode or maximum availability mode before the failure, some data loss may occur.
If Flashback Database is enabled on both the primary and standby databases, the
failed database may be reinstated as a standby for the new primary database once
the reason for the failure is corrected.

Section 7.1.1, "Preparing for a Role Transition (Failover or Switchover)" on page 7-2
helps you choose the role transition that best minimizes downtime and risk of data
loss. Switchovers and failovers are described in more detail in Section 7.1.3,
"Switchovers" on page 7-4 and Section 7.1.4, "Failovers" on page 7-6, respectively.

7.1.1 Preparing for a Role Transition (Failover or Switchover)
Before starting any role transition, perform the following preparations:

■ Verify the initialization parameters for each database are configured correctly. See
Chapter 3, "Creating a Physical Standby Database" and Chapter 4, "Creating a
Logical Standby Database" for information about how to configure initialization
parameters on the primary and standby databases so that the Data Guard
configuration operates properly after the role transition.

Also, see Section 3.1.3, "Configure a Standby Redo Log" on page 3-2 for
information about manually adding redo log files when creating a physical
standby database.

■ Verify the standby database that will become the new primary database is
operating in ARCHIVELOG mode.

■ Ensure temporary files exist on the standby database that match the temporary
files on the primary database.

■ Remove any delay in applying redo that may be in effect on the standby database
that will become the new primary database.

■ Verify that all but one RAC instance on the standby databases in a Real
Application Clusters configuration are shut down.

Note: You must define the LOG_ARCHIVE_DEST_n and LOG_
ARCHIVE_DEST_STATE_n parameters on each standby database so
that when a switchover or failover occurs, all standby sites continue to
receive redo data from the new primary database. See Section 5.4.1,
"Specifying Role-Based Destinations with the VALID_FOR Attribute"
on page 5-14 and Chapter 14, "LOG_ARCHIVE_DEST_n Parameter
Attributes" for information about using the LOG_ARCHIVE_DEST_n
VALID_FOR attribute to define role-based destinations in preparation
for future role transitions.

Introduction to Role Transitions

Role Transitions 7-3

For a Real Application Clusters database, only one RAC instance on the standby
database can be online during the role transition. Shut down all other instances
before starting the role transition. Then, after the role transition completes, bring
these instances back online.

7.1.2 Choosing a Target Standby Database for a Role Transition
For a Data Guard configuration with multiple standby databases, there are a number
of factors to consider when choosing the target standby database for a role transition.
These include the following:

■ Locality of the standby database.

■ The capability of the standby database (hardware specifications—such as the
number of CPUs, I/O bandwidth available, and so on).

■ The time it will take to perform the role transition. This is affected by how far
behind the standby database is in terms of application of redo data, and how
much flexibility you have in terms of trading off application availability with data
loss.

Data Guard provides the V$DATAGUARD_STATS view that can be used to estimate the
viability of each standby database in terms of the currency of the data in the standby
database, and the time it will take to perform a role transition if all available redo data
is applied to the standby database. For example:

SQL> COLUMN NAME FORMAT A18
SQL> COLUMN VALUE FORMAT A16
SQL> COLUMN TIME_COMPUTED FORMAT A24
SQL> SELECT * FROM V$DATAGUARD_STATS;
NAME VALUE TIME_COMPUTED
------------------ ---------------- ------------------------
apply finish time +00 00:00:02.4 15-MAY-2005 10:32:49
 second(1)
 interval
apply lag +00 0:00:04 15-MAY-2005 10:32:49
 second(0)
 interval
transport lag +00 00:00:00 15-MAY-2005 10:32:49
 second(0)
 interval

This shows that for this standby database, there is no transport lag, that log apply
services have not applied the redo generated in the last 4 seconds (apply lag), and
that it will take log apply services 2.4 seconds to finish applying the unapplied redo
(apply finish time). The time at which each of the statistics is computed is shown
in the TIME_COMPUTED column.

If the configuration contains both physical and logical standby databases, consider
choosing a physical standby database to be the target standby database. A switchover
or failover to a physical standby database is preferable because all databases in the
configuration will be viable as standby databases to the new primary database after
the role transition completes. Whereas a switchover or failover to a logical standby
database will invalidate the other physical standby databases to the original primary

Note: Even though only one RAC instance on the standby database
is open during the switchover, all other standby database instances
will automatically undergo a transition to their new role correctly
when they are opened.

Introduction to Role Transitions

7-4 Oracle Data Guard Concepts and Administration

database. You will then need to re-create the physical standby databases from a
backup of the new primary database before you can reenable them.

7.1.3 Switchovers
A switchover is typically used to reduce primary database downtime during planned
outages, such as operating system or hardware upgrades, or rolling upgrades of the
Oracle database software and patch sets (described in Chapter 11, "Using SQL Apply
to Upgrade the Oracle Database").

A switchover takes place in two phases. In the first phase, the existing primary
database undergoes a transition to a standby role. In the second phase, a standby
database undergoes a transition to the primary role.

Figure 7–1 shows a two-site Data Guard configuration before the roles of the databases
are switched. The primary database is in San Francisco, and the standby database is in
Boston.

Figure 7–1 Data Guard Configuration Before Switchover

Figure 7–2 shows the Data Guard environment after the original primary database was
switched over to a standby database, but before the original standby database has
become the new primary database. At this stage, the Data Guard configuration
temporarily has two standby databases.

Figure 7–2 Standby Databases Before Switchover to the New Primary Database

San Francisco

Boston
Application

Application
0001

0002

Online Redo
 Log Files

Local
Archiving

Primary Database

Read/Write
Transactions

Read-Only
Access

Oracle Net

Standby Database

Archived Redo
 Log Files

Archived Redo
 Log Files

Boston

Application Application

Standby Database Archived Redo
 Log Files

Standby Database Archived Redo
 Log Files

San Francisco

Introduction to Role Transitions

Role Transitions 7-5

Figure 7–3 shows the Data Guard environment after a switchover took place. The
original standby database became the new primary database. The primary database is
now in Boston, and the standby database is now in San Francisco.

Figure 7–3 Data Guard Environment After Switchover

Preparing for a Switchover
Ensure the prerequisites listed in Section 7.1.1 are satisfied. In addition, the following
prerequisites must be met for a switchover:

■ For switchovers involving a physical standby database, verify the primary
database instance is open and the standby database instance is mounted.

The standby database that you plan to change to the primary role must be
mounted before you begin the switchover. Ideally, the physical standby database
will also be actively applying redo when the database roles are switched. If the
physical standby database is open for read-only access, the switchover still will
take place, but will require additional time. See Section 6.3, "Applying Redo Data
to Physical Standby Databases" on page 6-4 for more information about Redo
Apply.

■ For switchovers involving a logical standby database, verify both the primary and
standby database instances are open and that SQL Apply is active. See Section 6.4,
"Applying Redo Data to Logical Standby Databases" on page 6-5 for more
information about SQL Apply.

■ For switchovers involving a primary database in a Real Applications Cluster, all
but one instance must be shut down. Once the switchover is performed
successfully, you can bring all other instances back online.

When a database transitions from one role to another, the DB_ROLE_CHANGE system
event fires. You can write a trigger that's associated with this system event to manage
tasks after a switchover occurs. The event fires when the database opens for the first
time after the switchover regardless of its new role (that is, regardless of whether the
switchover caused it to open for the first time as a primary database, as a logical
standby, or as a physical standby in read-only mode). You can query the DATABASE_
ROLE column of the V$DATABASE view to determine a database’s current role. See the
table of system manager events in Oracle Database Application Developer's Guide -
Fundamentals for more details.

Application

Application

Standby Database Archived Redo
 Log Files

San Francisco

0001

0002

Online Redo
 Log Files

Local
Archiving

Primary Database Archived Redo
 Log Files

Read-Only
Access

Boston

Read/Write
Transactions

Oracle Net

Introduction to Role Transitions

7-6 Oracle Data Guard Concepts and Administration

7.1.4 Failovers
A failover is typically used only when the primary database becomes unavailable, and
there is no possibility of restoring it to service within a reasonable period of time. The
specific actions performed during a failover vary based on whether a logical or a
physical standby database is involved in the failover, the state of the Data Guard
configuration at the time of the failover, and on the specific SQL statements used to
initiate the failover.

Figure 7–4 shows the result of a failover from a primary database in San Francisco to a
physical standby database in Boston.

Figure 7–4 Failover to a Standby Database

Preparing for a Failover
If possible, before performing a failover, you should transfer as much of the available
and unapplied primary database redo data as possible to the standby database.

Ensure the prerequisites listed in Section 7.1.1, "Preparing for a Role Transition
(Failover or Switchover)" on page 7-2 are satisfied. In addition, the following
prerequisites must be met for a failover:

■ If a standby database currently running in maximum protection mode will be
involved in the failover, first place it in maximum performance mode by issuing
the following statement on the standby database:

SQL> ALTER DATABASE SET STANDBY DATABASE TO MAXIMIZE PERFORMANCE;

Then, if appropriate standby databases are available, you can reset the desired
protection mode on the new primary database after the failover completes.

This is required because you cannot fail over to a standby database that is in
maximum protection mode. In addition, if a primary database in maximum
protection mode is still actively communicating with the standby database, issuing
the ALTER DATABASE statement to change the standby database from maximum
protection mode to maximum performance mode will not succeed. Because a
failover removes the original primary database from the Data Guard
configuration, these features serve to protect a primary database operating in
maximum protection mode from the effects of an unintended failover.

San Francisco

Boston

0001

0002

Online Redo
 Log Files

Local
Archiving

Primary Database Archived Redo
 Log Files

Application

0001

0002

Standby Database
Becomes

Primary Database

Local
Archiving

Read/Write
Transactions

Archived Redo
 Log FilesOnline Redo

 Log Files

Role Transitions Involving Physical Standby Databases

Role Transitions 7-7

When a database transitions from one role to another, the DB_ROLE_CHANGE system
event fires. You can write a trigger that's associated with this system event to manage
tasks after a failover occurs. The event fires when the database opens for the first time
after the failover regardless of its new role (in the case of a failover to a physical
standby database, the system event will fire when the database is opened for the first
time after a failover operation). You can query the DATABASE_ROLE column of the
V$DATABASE view to determine a database’s current role. See the table of system
manager events in Oracle Database Application Developer's Guide - Fundamentals for more
details.

To perform a failover involving a physical standby database, see Section 7.2.2,
"Failovers Involving a Physical Standby Database" on page 7-9. To perform a failover
involving a logical standby database, see Section 7.3.2, "Failovers Involving a Logical
Standby Database" on page 7-16. To perform a failover using the Data Guard broker,
see the chapter about "Switchover and Failover Operations" in Oracle Data Guard
Broker.

7.2 Role Transitions Involving Physical Standby Databases
This section describes how to perform switchovers and failovers involving a physical
standby database.

7.2.1 Switchovers Involving a Physical Standby Database
This section describes how to perform a switchover. A switchover must be initiated on
the current primary database and completed on the target standby database. The
following steps describe how to perform a switchover.

Step 1 Verify it is possible to perform a switchover.
On the current primary database, query the SWITCHOVER_STATUS column of the
V$DATABASE fixed view on the primary database to verify it is possible to perform a
switchover. For example:

SQL> SELECT SWITCHOVER_STATUS FROM V$DATABASE;
SWITCHOVER_STATUS

 TO STANDBY
 1 row selected

The TO STANDBY value in the SWITCHOVER_STATUS column indicates that it is
possible to switch the primary database to the standby role. If the TO STANDBY value
is not displayed, then verify the Data Guard configuration is functioning correctly (for
example, verify all LOG_ARCHIVE_DEST_n parameter values are specified correctly).

If the value in the SWITCHOVER_STATUS column is SESSIONS ACTIVE, perform the
steps described in Section A.4, "Problems Switching Over to a Standby Database" on
page A-4 to identify and terminate active user or SQL sessions that might prevent a

Note: Do not fail over to a standby database to test whether or not
the standby database is being updated correctly. Instead:

■ See Section 3.2.7, "Verify the Physical Standby Database Is
Performing Properly"

■ See Section 4.2.6, "Verify the Logical Standby Database Is
Performing Properly"

Role Transitions Involving Physical Standby Databases

7-8 Oracle Data Guard Concepts and Administration

switchover from being processed. If, after performing these steps, the SWITCHOVER_
STATUS column still displays SESSIONS ACTIVE, you can successfully perform a
switchover by appending the WITH SESSION SHUTDOWN clause to the ALTER
DATABASE COMMIT TO SWITCHOVER TO PHYSICAL STANDBY statement
described in Step 2.

See Oracle Database Reference for information about other valid values for the
SWITCHOVER_STATUS column of the V$DATABASE view.

Step 2 Initiate the switchover on the primary database.
To change the current primary database to a physical standby database role, use the
following SQL statement on the primary database:

SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO PHYSICAL STANDBY;

After this statement completes, the primary database is converted into a standby
database. The current control file is backed up to the current SQL session trace file
before the switchover. This makes it possible to reconstruct a current control file, if
necessary.

Step 3 Shut down and restart the former primary instance.
Shut down the former primary instance, and restart and mount the database:

SQL> SHUTDOWN IMMEDIATE;
SQL> STARTUP MOUNT;

At this point in the switchover process, both databases are configured as standby
databases (see Figure 7–2).

Step 4 Verify the switchover status in the V$DATABASE view.
After you change the primary database to the physical standby role and the
switchover notification is received by the standby databases in the configuration, you
should verify if the switchover notification was processed by the target standby
database by querying the SWITCHOVER_STATUS column of the V$DATABASE fixed
view on the target standby database.

For example:

SQL> SELECT SWITCHOVER_STATUS FROM V$DATABASE;
SWITCHOVER_STATUS

TO_PRIMARY
1 row selected

If the value in the SWITCHOVER_STATUS column is SESSIONS ACTIVE, perform the
steps described in Section A.4, "Problems Switching Over to a Standby Database" on
page A-4 to identify and terminate active user or SQL sessions that might prevent a
switchover from being processed. If, after performing these steps, the SWITCHOVER_
STATUS column still displays SESSIONS ACTIVE, you can proceed to Step 5, and
append the WITH SESSION SHUTDOWN clause to the switchover statement. See Oracle
Database Reference for information about other valid values for the SWITCHOVER_
STATUS column of the V$DATABASE view

Step 5 Switch the target physical standby database role to the primary role.
You can switch a physical standby database from the standby role to the primary role
when the standby database instance is either mounted in Redo Apply mode or open
for read-only access. It must be in one of these modes so that the primary database

Role Transitions Involving Physical Standby Databases

Role Transitions 7-9

switchover request can be coordinated. After the standby database is in an appropriate
mode, issue the following SQL statement on the physical standby database that you
want to change to the primary role:

SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY;

Step 6 Finish the transition of the standby database to the primary role.
The task you perform is dependent on if the physical standby database has ever been
opened in read-only mode:

■ If the physical standby database has not been opened in read-only mode since the
last time it was started, issue the SQL ALTER DATABASE OPEN statement to open
the new primary database:

SQL> ALTER DATABASE OPEN;

Then, go to step 7 on page 7-9.

■ If the physical standby database has been opened in read-only mode since the last
time it was started, you must shut down the target standby database and restart it:

SQL> SHUTDOWN IMMEDIATE;
SQL> STARTUP;

The target physical standby database has now undergone a transition to the primary
database role. See Section 5.4.1, "Specifying Role-Based Destinations with the VALID_
FOR Attribute" and Chapter 14, "LOG_ARCHIVE_DEST_n Parameter Attributes" for
information about using the LOG_ARCHIVE_DEST_n VALID_FOR attribute to ensure
the Data Guard configuration operates properly after a role transition.

Step 7 If necessary, restart log apply services on the standby databases.
For the new physical standby database and for each other physical or logical standby
database in the Data Guard configuration, if log apply services were not previously
configured to continue operating through a switchover, use an appropriate command
to restart log apply services. See Chapter 6, "Log Apply Services" for more information
about how to configure and start log apply services.

Step 8 Begin sending redo data to the standby databases.
Issue the following statement on the new primary database:

SQL> ALTER SYSTEM SWITCH LOGFILE;

7.2.2 Failovers Involving a Physical Standby Database
This section describes how to perform failovers involving a physical standby database.

During failovers involving a physical standby database:

■ In all cases, after a failover, the original primary database can no longer participate
in the Data Guard configuration.

Note: There is no need to shut down and restart other standby
databases (not involved in the switchover) that are online at the
time of the switchover. These standby databases will continue to
function normally after the switchover completes.

Role Transitions Involving Physical Standby Databases

7-10 Oracle Data Guard Concepts and Administration

■ In most cases, other logical or physical standby databases not directly
participating in the failover remain in the configuration and do not have to be shut
down or restarted.

■ In some cases, it might be necessary to re-create all standby databases after
configuring the new primary database.

These cases are described, where appropriate, within the failover steps below.

Before starting the failover, perform as many of the steps documented in Section 7.1.4,
"Failovers" as possible to prepare the selected standby database for a failover, then
proceed to Section 7.2.2, "Failovers Involving a Physical Standby Database" for the
failover steps.

Failover Steps
This section describes the steps that must be performed to transition the selected
physical standby database to the primary role. Any other physical or logical standby
databases that are also part of the configuration will remain in the configuration and
will not need to be shut down or restarted.

If the target standby database was operating in maximum protection mode or
maximum availability mode using the log writer process (LGWR), no gaps in the
archived redo log files should exist, and you can proceed directly to Step 4. Otherwise,
begin with Step 1 to determine if any manual gap resolution steps must be performed.

Step 1 Identify and resolve any gaps in the archived redo log files.
To determine if there are gaps in the archived redo log files on the target standby
database, query the V$ARCHIVE_GAP view.

The V$ARCHIVE_GAP view contains the sequence numbers of the archived redo log
files that are known to be missing for each thread. The data returned reflects the
highest gap only.

For example:

SQL> SELECT THREAD#, LOW_SEQUENCE#, HIGH_SEQUENCE# FROM V$ARCHIVE_GAP;
THREAD# LOW_SEQUENCE# HIGH_SEQUENCE#
---------- ------------- --------------
 1 90 92

In this example the gap comprises archived redo log files with sequences 90, 91, and 92
for thread 1. If possible, copy all of the identified missing archived redo log files to the
target standby database from the primary database and register them. This must be
done for each thread.

For example:

SQL> ALTER DATABASE REGISTER PHYSICAL LOGFILE 'filespec1';

Step 2 Repeat Step 1 until all gaps are resolved.
The query executed in Step 1 displays information for the highest gap only. After
resolving that gap, you must repeat Step 1 until the query returns no rows.

Note: Oracle recommends you use only the failover steps and
commands described in the following sections to perform a
failover. Do not use the ALTER DATABASE ACTIVATE STANDBY
DATABASE to perform a failover, because this statement may cause
data loss.

Role Transitions Involving Physical Standby Databases

Role Transitions 7-11

Step 3 Copy any other missing archived redo log files.
To determine if there are any other missing archived redo log files, query the
V$ARCHIVED_LOG view on the target standby database to obtain the highest sequence
number for each thread.

For example:

SQL> SELECT UNIQUE THREAD# AS THREAD, MAX(SEQUENCE#)
 2> OVER (PARTITION BY thread#) AS LAST from V$ARCHIVED_LOG;

 THREAD LAST
---------- ----------
 1 100

Copy any available archived redo log files from the primary database that contains
sequence numbers higher than the highest sequence number available on the target
standby database to the target standby database and register them. This must be done
for each thread.

For example:

SQL> ALTER DATABASE REGISTER PHYSICAL LOGFILE 'filespec1';

After all available archived redo log files have been registered, query the V$ARCHIVE_
GAP view as described in Step 1 to verify no additional gaps were introduced in Step 3.

Step 4 Initiate a failover on the target physical standby database.
Issue the following statement to initiate the failover:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE FINISH FORCE;

The FORCE keyword terminates active RFS processes on the target physical standby
database, so that failover can proceed immediately without waiting for network
connections to time out:

Step 5 Convert the physical standby database to the primary role.
Once the SQL ALTER DATABASE RECOVER MANAGED STANDBY
DATABASE...FINISH FORCE statement completes successfully, change the physical
standby database to the primary database role by issuing the following SQL statement:

SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY;

Note: If, while performing Steps 1 through 3, you are not able to
resolve gaps in the archived redo log files (for example, because
you do not have access to the system that hosted the failed primary
database), some data loss will occur during the failover.

Note: Failover adds an end-of-redo marker to the header of the
last log file being archived and sends the redo to all enabled
destinations that are valid for the primary role (specified with the
VALID_FOR=(PRIMARY_ROLE, *_LOGFILES) or the VALID_
FOR=(ALL_ROLES, *_LOGFILES) attributes).

Note: The FINISH keyword must follow all other keywords in the
SQL statement, except for FORCE, WAIT, or NOWAIT.

Role Transitions Involving Physical Standby Databases

7-12 Oracle Data Guard Concepts and Administration

After issuing this SQL statement, the target standby database is undergoes a transition
to the primary role. As a result, you can no longer use this database as a standby
database and any subsequent redo received from the original primary database cannot
be applied. During the failover process, the standby redo log files were automatically
archived and recovered on all other standby databases derived from the original
primary database. This will happen only if the standby destinations are correctly
defined on the new primary database.

There is no need to shut down and restart any of the other standby databases in the
configuration that were not participants in the failover.

Step 6 Finish the transition of the standby database to the primary database role.
The task you perform in this step depends on if the physical standby database was
ever opened in read-only mode:

■ If the physical standby database has not been opened in read-only mode since the
last time it was started, issue the SQL ALTER DATABASE OPEN statement to open
the new primary database:

SQL> ALTER DATABASE OPEN;

Then, go to step 7.

■ If the physical standby database has been opened in read-only mode since the last
time it was started, you must shut down the target standby database and restart it:

SQL> SHUTDOWN IMMEDIATE;
SQL> STARTUP;

The target physical standby database has now undergone a transition to the primary
database role.

See Section 5.4.1, "Specifying Role-Based Destinations with the VALID_FOR Attribute"
and Chapter 14, "LOG_ARCHIVE_DEST_n Parameter Attributes" for information
about using the LOG_ARCHIVE_DEST_n VALID_FOR attribute so the Data Guard
configuration operates properly after a role transition.

Step 7 Back up the new primary database.
Before issuing the STARTUP statement, back up the new primary database. Performing
a backup immediately is a necessary safety measure, because you cannot recover
changes made after the failover without a complete backup copy of the database.

As a result of the failover, the original primary database can no longer participate in
the Data Guard configuration, and all other standby databases are now receiving and
applying redo data from the new primary database.

Step 8 Optionally, restore the failed primary database.
After a failover, the original primary database no longer participates in the
configuration. After performing a failover, you may be able to restore the failed
primary database as a new standby database using either of the following methods:

■ Use Flashback Database to restore the failed primary database to a point in time
before the failover occurred and then convert it into a standby database following
the procedure in Section 12.4, "Using Flashback Database After a Failover" on
page 12-23.

Role Transitions Involving Logical Standby Databases

Role Transitions 7-13

■ Re-create the failed database and add it to the configuration as a new standby
database. To reuse the old primary database in the new configuration, you must
re-create it as a standby database using a backup copy of the new primary
database. This procedure is described in Section 3.2, "Step-by-Step Instructions for
Creating a Physical Standby Database"or Section 4.2, "Step-by-Step Instructions for
Creating a Logical Standby Database".

■ Use Oracle Enterprise Manager or the DGMGRL REINSTATE DATABASE
command to re-create the failed primary database as a standby database in the
new configuration when a connection to it is reestablished. Step-by-step
instructions for reinstatement are described in Oracle Data Guard Broker. This
option requires that Flashback Database is enabled prior to the failover.

Once the failed primary database has been restored and is running in the standby role,
you can optionally perform a switchover to perform a role transition of the databases
to their original (pre-failure) roles. See Section 7.2.1, "Switchovers Involving a Physical
Standby Database" for more information.

7.3 Role Transitions Involving Logical Standby Databases
This section describes how to perform switchovers and failovers involving a logical
standby database.

7.3.1 Switchovers Involving a Logical Standby Database
When you perform a switchover that changes roles between a primary database and a
logical standby database, always initiate the switchover on the primary database and
complete it on the logical standby database. These steps must be performed in the
order in which they are described or the switchover will not succeed.

Step 1 Verify it is possible to perform a switchover on the primary database.
On the current primary database, query the SWITCHOVER_STATUS column of the
V$DATABASE fixed view on the primary database to verify it is possible to perform a
switchover.

For example:

SQL> SELECT SWITCHOVER_STATUS FROM V$DATABASE;
SWITCHOVER_STATUS

Note: You must have already enabled Flashback Database on the
old primary database before the failover. See Oracle Database Backup
and Recovery Basics for more information.

Note: If the primary database is a RAC database, ensure that all but
one instance are shut down, and the corresponding threads are
disabled before initiating the switchover. Similarly, if the logical
standby database is a RAC database, ensure that all instances except
the one where SQL Apply is running are shut down, and the
corresponding threads are disabled before initiating the switchover.
You can reenable the threads and start the instances once the
switchover operation has completed successfully. Although the
instances are shut down, the role change will be automatically
propagated to these instances when they are restarted.

Role Transitions Involving Logical Standby Databases

7-14 Oracle Data Guard Concepts and Administration

TO STANDBY
1 row selected

A value of TO STANDBY or SESSIONS ACTIVE in the SWITCHOVER_STATUS column
indicates that it is possible to switch the primary database to the logical standby role. If
one of these values is not displayed, then verify the Data Guard configuration is
functioning correctly (for example, verify all LOG_ARCHIVE_DEST_n parameter
values are specified correctly). See Oracle Database Reference for information about
other valid values for the SWITCHOVER_STATUS column of the V$DATABASE view.

Step 2 Prepare the current primary database for the switchover.
To prepare the current primary database for a logical standby database role, issue the
following SQL statement on the primary database:

SQL> ALTER DATABASE PREPARE TO SWITCHOVER TO LOGICAL STANDBY;

This statement notifies the current primary database that it will soon switch to the
logical standby role and begin receiving redo data from a new primary database. You
perform this step on the primary database in preparation to receive the LogMiner
Multiversioned Data Dictionary to be recorded in the redo stream of the current logical
standby database, as described in step 3.

The value PREPARING SWITCHOVER is displayed in the V$DATABASE.SWITCHOVER_
STATUS column if this operation succeeds.

Step 3 Prepare the target logical standby database for the switchover.
Use the following statement to build a LogMiner Multiversioned Data Dictionary on
the logical standby database that is the target of the switchover:

SQL> ALTER DATABASE PREPARE TO SWITCHOVER TO PRIMARY;

This statement also starts redo transport services on the logical standby database that
begins transmitting its redo data to the current primary database and to other standby
databases in the Data Guard configuration. The sites receiving redo data from this
logical standby database accept the redo data but they do not apply it.

Depending on the work to be done and the size of the database, the switchover can
take some time to complete.

The V$DATABASE.SWITCHOVER_STATUS on the logical standby database initially
shows PREPARING DICTIONARY while the LogMiner Multiversioned Data
Dictionary is being recorded in the redo stream. Once this has completed successfully,
the SWITCHOVER_STATUS column shows PREPARING SWITCHOVER.

Step 4 Ensure the current primary database is ready for the future primary
database’s redo stream.
Before you can complete the role transition of the primary database to the logical
standby role, verify the LogMiner Multiversioned Data Dictionary was received by the
primary database by querying the SWITCHOVER_STATUS column of the V$DATABASE
fixed view on the primary database. Without the receipt of the LogMiner
Multiversioned Data Dictionary, the switchover cannot proceed, because the current
primary database will not be able to interpret the redo records sent from the future
primary database. The SWITCHOVER_STATUS column shows the progress of the
switchover.

When the query returns the TO LOGICAL STANDBY value, you can proceed with Step
5. For example:

Role Transitions Involving Logical Standby Databases

Role Transitions 7-15

SQL> SELECT SWITCHOVER_STATUS FROM V$DATABASE;
SWITCHOVER_STATUS

TO LOGICAL STANDBY
1 row selected

Step 5 Switch the primary database to the logical standby database role.
To complete the role transition of the primary database to a logical standby database,
issue the following SQL statement:

SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO LOGICAL STANDBY;

This statement waits for all current transactions on the primary database to end and
prevents any new users from starting new transactions, and establishes a point in time
where the switchover will be committed.

Executing this statement will also prevent users from making any changes to the data
being maintained in the logical standby database. To ensure faster execution, ensure
the primary database is in a quiet state with no update activity before issuing the
switchover statement (for example, have all users temporarily log off the primary
database). You can query the V$TRANSACTIONS view for information about the status
of any current in-progress transactions that could delay execution of this statement.

The primary database has now undergone a role transition to run in the standby
database role.

When a primary database undergoes a role transition to a logical standby database
role, you do not have to shut down and restart the database.

Step 6 Ensure all available redo has been applied to the target logical standby
database that is about to become the new primary database.
After you complete the role transition of the primary database to the logical standby
role and the switchover notification is received by the standby databases in the
configuration, you should verify the switchover notification was processed by the
target standby database by querying the SWITCHOVER_STATUS column of the
V$DATABASE fixed view on the target standby database. Once all available redo
records are applied to the logical standby database, SQL Apply automatically shuts
down in anticipation of the expected role transition.

The SWITCHOVER_STATUS value is updated to show progress during the switchover.
When the status is TO PRIMARY, you can proceed with Step 7.

For example:

SQL> SELECT SWITCHOVER_STATUS FROM V$DATABASE;
SWITCHOVER_STATUS

TO PRIMARY
1 row selected

Note: You can cancel the switchover operation by issuing the
following statements in the following order:

1. Cancel switchover on the primary database:

SQL> ALTER DATABASE PREPARE TO SWITCHOVER CANCEL;

2. Cancel the switchover on the logical standby database:

SQL> ALTER DATABASE PREPARE TO SWITCHOVER CANCEL;

Role Transitions Involving Logical Standby Databases

7-16 Oracle Data Guard Concepts and Administration

See Oracle Database Reference for information about other valid values for the
SWITCHOVER_STATUS column of the V$DATABASE view.

Step 7 Switch the target logical standby database to the primary database role.
On the logical standby database that you want to switch to the primary role, use the
following SQL statement to switch the logical standby database to the primary role:

SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY;

There is no need to shut down and restart any logical standby databases that are in the
Data Guard configuration. Other existing logical standby databases will continue to
function normally after a switchover completes. All existing physical standby
databases, however, are rendered unable to participate in the Data Guard
configuration after the switchover.

Step 8 Start SQL Apply on the new logical standby database.
On the new logical standby database, start SQL Apply:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY;

7.3.2 Failovers Involving a Logical Standby Database
This section describes how to perform failovers involving a logical standby database.
A failover role transition involving a logical standby database necessitates taking
corrective actions on the failed primary database and on all bystander logical standby
databases. If Flashback Database was not enabled on the failed primary database, you
must re-create the database from backups taken from the current primary database.
Otherwise, you can follow the procedure described in Section 12.4 to convert a failed
primary database to be a logical standby database for the new primary database.

Depending on the protection mode for the configuration and the attributes you chose
for redo transport services, it might be possible to automatically recover all or some of
the primary database modifications.

If the target standby database was operating in a no data loss mode, no gaps in
archived redo log files will exist and you can proceed directly to Step 2. Otherwise,
begin with Step 1 to determine if any manual gap resolution steps must be performed.

Step 1 Copy and register any missing archived redo log files to the target
logical standby database slated to become the new primary database.
Depending on the condition of the components in the configuration, you might have
access to the archived redo log files on the primary database. If so, do the following:

1. Determine if any archived redo log files are missing on the logical standby
database.

2. Copy missing log files from the primary database to the logical standby database.

3. Register the copied log files.

You can register an archived redo log files with the logical standby database by issuing
the following statement. For example:

SQL> ALTER DATABASE REGISTER LOGICAL LOGFILE
 2> '/disk1/oracle/dbs/log-%r_%s_%t.arc';
Database altered.

Role Transitions Involving Logical Standby Databases

Role Transitions 7-17

Step 2 Ensure all available archived redo log files were applied.
On the logical standby database you are transitioning to the primary role, verify all
available archived redo log files were applied by querying the V$LOGSTDBY_
PROGRESS view. For example:

SQL> SELECT APPLIED_SCN, LATEST_SCN FROM V$LOGSTDBY_PROGRESS;

APPLIED_SCN LATEST_SCN
----------- ----------
 190725 190725

When the APPLIED_SCN and LATEST_SCN values are equal, all attainable data is
applied and the logical standby database now contains as much data as possible from
the primary database.

See Chapter 9, "Managing a Logical Standby Database" and Chapter 12, "Data Guard
Scenarios" for information about the V$LOGSTDBY_PROGRESS view.

Step 3 Enable remote destinations.
If you have not previously configured role-based destinations as described in
Section 5.4.1, "Specifying Role-Based Destinations with the VALID_FOR Attribute" on
page 5-14, identify the initialization parameters that correspond to the remote logical
standby destinations for the new primary database, and manually enable archiving of
redo data for each of these destinations.

For example, to enable archiving for the remote destination defined by the LOG_
ARCHIVE_DEST_2 parameter, issue the following statement:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE SCOPE=BOTH;

To ensure this change will persist if the new primary database is later restarted, update
the appropriate text initialization parameter file or server parameter file. In general,
when the database operates in the primary role, you must enable archiving to remote
destinations, and when the database operates in the standby role, you must disable
archiving to remote destinations.

See Section 5.4.1, "Specifying Role-Based Destinations with the VALID_FOR Attribute"
on page 5-14 and Chapter 14, "LOG_ARCHIVE_DEST_n Parameter Attributes" for
information about using the LOG_ARCHIVE_DEST_n VALID_FOR attribute to define
role-based destinations in preparation for future role transitions.

Step 4 Activate the new primary database.
Issue the following statement on the target logical standby database (that you are
transitioning to the new primary role):

SQL> ALTER DATABASE ACTIVATE LOGICAL STANDBY DATABASE FINISH APPLY;

This statement stops the RFS process, applies remaining redo data in the standby redo
log file before the logical standby database becomes a primary database, stops SQL
Apply, and activates the database in the primary database role.

Note: If SQL Apply is not active on the target logical standby
database, issue the following statement on the target standby
database to start SQL Apply:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY FINISH;
Database altered.

Role Transitions Involving Logical Standby Databases

7-18 Oracle Data Guard Concepts and Administration

If the FINISH APPLY clause is not specified, then unapplied redo from the current
standby redo log file will not be applied before the standby database becomes the
primary database.

Step 5 Prepare to recover the other standby databases.
Depending on how much redo data you were able to apply to the new primary
database, you might be able to add other existing logical standby databases back into
the Data Guard configuration to serve as standby databases for the new primary
database. Perform the following steps on each logical standby database to prepare to
add it back into the Data Guard configuration:

1. Create a database link on each logical standby database.

Use the ALTER SESSION DISABLE GUARD statement to bypass the database
guard and allow modifications to the tables in the logical standby database. For
example, the following creates a database link to the primary database chicago:

SQL> ALTER SESSION DISABLE GUARD;
SQL> CREATE DATABASE LINK chicago
 2> CONNECT TO username IDENTIFIED BY password USING 'chicago';
SQL> ALTER SESSION ENABLE GUARD;

The database user account specified in the CREATE DATABASE LINK statement
must have the SELECT_CATALOG_ROLE role granted to it on the primary
database.

See Oracle Database Administrator's Guide for more information about creating
database links.

2. Verify the database link.

On the logical standby database, verify the database link was configured correctly
by executing the following query using the database link:

SQL> SELECT * FROM DBA_LOGSTDBY_PARAMETERS@chicago;

If the query succeeds, then that confirms the database link created in Step 1 can be
used during role transitions.

Step 6 Start SQL Apply.
Start SQL Apply on each logical standby database.

For example, the following statement starts SQL Apply on the chicago database:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY NEW PRIMARY chicago;

When this statement completes, all remaining archived redo log files will have been
applied. Depending on the work to be done, this operation can take some time to
complete.

If the ORA-16109 error is returned, you must re-create the logical standby database
from a backup copy of the new primary database, and then add it to the Data Guard
configuration.

Note: You must perform the dictionary build operation after the
primary database has been opened but before any DDL statements
have been executed. If any DDL statements are executed before the
dictionary build operation is performed, the backup will be
invalidated as a source for creating a logical standby database.

Role Transitions Involving Logical Standby Databases

Role Transitions 7-19

The following example shows a failed attempt to start SQL Apply on a logical standby
database in the new configuration where chicago is the service name that points to
the new primary database:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY NEW PRIMARY chicago;
ALTER DATABASE START LOGICAL STANDBY APPLY NEW PRIMARY chicago
 *
ERROR at line 1:
ORA-16109: failed to apply log data from previous primary

Step 7 Back up the new primary database.
Back up the new primary database immediately after the Data Guard database
failover. Immediately performing a backup is a necessary safety measure, because you
cannot recover changes made after the failover without a complete backup copy of the
database.

Step 8 Restore the failed primary database.
After performing a failover, you can optionally restore the failed primary database as a
new standby database using one of the following methods:

■ Use Flashback Database to convert the failed primary database to a point in time
before the failover occurred and then convert it into a standby database following
the procedure in Section 12.4, "Using Flashback Database After a Failover" on
page 12-23.

■ Use the DBMS_LOGSTDBY.REBUILD PL/SQL procedure to rebuild the primary
database as a new standby database. Before you run the procedure, you must
verify:

– Query the V$STANDBY_LOG or V$LOGFILE view to verify that standby redo
log files have been archived

– Query the DBA_LOGSTDBY_EVENTS view to verify that the LogMiner
dictionary build completed successfully

■ Use Oracle Enterprise Manager or the DGMGRL REINSTATE DATABASE
command to re-create the failed primary database as a standby database in the
new configuration when a connection to it is reestablished. Step-by-step
instructions for reinstatement are described in Oracle Data Guard Broker.

Re-create the failed database and add it to the configuration as a new standby database
following the procedure in Section 3.2, "Step-by-Step Instructions for Creating a
Physical Standby Database" on page 3-7 or Section 4.2, "Step-by-Step Instructions for
Creating a Logical Standby Database" on page 4-3.

Once the failed primary database has been restored and is running in the standby role,
you can optionally perform a switchover to transition the databases to their original
(pre-failure) roles. See Section 7.3.1, "Switchovers Involving a Logical Standby
Database" on page 7-13 for more information.

Note: You must have already enabled Flashback Database on the
old primary database before the failover. See Oracle Database Backup
and Recovery Basics for more information.

See Also: The DBMS_LOGSTDBY package in Oracle Database PL/SQL
Packages and Types Reference for information about the REBUILD
subprogram

Using Flashback Database After a Role Transition

7-20 Oracle Data Guard Concepts and Administration

7.4 Using Flashback Database After a Role Transition
After a role transition, you can optionally use the FLASHBACK DATABASE command
to revert the databases to a point in time or system change number (SCN) prior to
when the role transition occurred.

In a physical standby database environment, you may need to flash back the primary
database and all standby databases to maintain the Data Guard configuration. If you
flash back the primary database to a certain SCN or time, you must flash back all the
standby databases to either the same (or earlier) SCN or time. This way, after starting
Redo Apply, the physical standby databases will automatically begin applying redo
data received from the primary database.

When flashing back primary or standby databases in this way, you do not have to be
aware of past switchovers. Oracle can automatically flashback across past switchovers
if the SCN/time is before any past switchover.

7.4.1 Using Flashback Database After a Switchover
After a switchover, you can return databases to a time or system change number
(SCN) prior to when the switchover occurred using the FLASHBACK DATABASE
command.

If the switchover involved a physical standby database, the primary and standby
database roles are preserved during the flashback operation. That is, the role in which
the database is running does not change when the database is flashed back to the
target SCN or time to which you flashed back the database. A database running in the
physical standby role after the switchover but prior to the flashback will still be
running in the physical standby database role after the Flashback Database operation.

If the switchover involved a logical standby database, flashing back changes the role of
the standby database to what it was at the target SCN or time to which you flashed
back the database.

7.4.2 Using Flashback Database After a Failover
You can use Flashback Database to convert the failed primary database to a point in
time before the failover occurred and then convert it into a standby database. See
Section 12.4, "Using Flashback Database After a Failover" for the complete step-by-step
procedure.

Note: Flashback Database must be enabled on the databases
before the role transition occurs. See Oracle Database Backup and
Recovery Basics for more information.

Managing a Physical Standby Database 8-1

8
Managing a Physical Standby Database

This chapter describes how to manage physical standby databases. This chapter
contains the following topics:

■ Starting Up and Shutting Down a Physical Standby Database

■ Opening a Standby Database for Read-Only or Read/Write Access

■ Managing Primary Database Events That Affect the Standby Database

■ Recovering Through the OPEN RESETLOGS Statement

■ Monitoring the Primary and Standby Databases

■ Tuning the Log Apply Rate for a Physical Standby Database

The topics in this chapter describe how to use SQL statements, initialization
parameters, and views to manage physical standby databases.

See Oracle Data Guard Broker to use the Data Guard broker to automate the
management tasks described in this chapter.

8.1 Starting Up and Shutting Down a Physical Standby Database
This section describes the SQL*Plus statements used to start up and shut down a
physical standby database.

8.1.1 Starting Up a Physical Standby Database
To start a physical standby database, use SQL*Plus to connect to the database with
administrator privileges, and then use either the SQL*Plus STARTUP or STARTUP
MOUNT statement. When used on a physical standby database:

■ The STARTUP statement starts the database, mounts the database as a physical
standby database, and opens the database for read-only access.

■ The STARTUP MOUNT statement starts and mounts the database as a physical
standby database, but does not open the database.

Once mounted, the database can receive archived redo data from the primary
database. You then have the option of either starting Redo Apply or real-time apply, or
opening the database for read-only access.

For example:

1. Start and mount the physical standby database:

SQL> STARTUP MOUNT;

Opening a Standby Database for Read-Only or Read/Write Access

8-2 Oracle Data Guard Concepts and Administration

2. Start Redo Apply or real-time apply:

To start Redo Apply, issue the following statement:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE
 2> DISCONNECT FROM SESSION;

To start real-time apply, issue the following statement:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE
 2> USING CURRENT LOGFILE;

On the primary database, query the RECOVERY_MODE column in the V$ARCHIVED_
DEST_STATUS view, which displays the standby database’s operation as MANAGED_
RECOVERY for Redo Apply and MANAGED REAL TIME APPLY for real-time apply.

See Section 6.3 for information about Redo Apply, Section 6.2.1 for information about
real-time apply, and Section 8.2 for information about opening a physical standby
database for read-only or read/write access.

8.1.2 Shutting Down a Physical Standby Database
To shut down a physical standby database and stop Redo Apply, use the SQL*Plus
SHUTDOWN statement. Control is not returned to the session that initiates a database
shutdown until shutdown is complete.

If the primary database is up and running, defer the destination on the primary
database and perform a log switch before shutting down the standby database.

To stop Redo Apply before shutting down the database, use the following steps:

1. Issue the following query to find out if the standby database is performing Redo
Apply or real-time apply. If the MRP0 or MRP process exists, then the standby
database is applying redo.

SQL> SELECT PROCESS, STATUS FROM V$MANAGED_STANDBY;

2. If Redo Apply is running, cancel it as shown in the following example:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

3. Shut down the standby database.

SQL> SHUTDOWN IMMEDIATE;

8.2 Opening a Standby Database for Read-Only or Read/Write Access
When a standby database is open for read-only access, users can query the standby
database but cannot update it. Thus, you can reduce the load on the primary database
by using the standby database for reporting purposes. You can periodically open the
standby database for read-only access and perform ad hoc queries to verify Redo

Note: When you first start Redo Apply on a newly created
physical standby database that has not yet received any redo data
from the primary database, an ORA-01112 message may be
returned. This indicates that Redo Apply is unable to determine the
starting sequence number for media recovery. If this occurs, you
must either manually retrieve and register an archived redo log file
on the standby database, or wait for the automatic archiving to
occur before restarting Redo Apply.

Opening a Standby Database for Read-Only or Read/Write Access

Managing a Physical Standby Database 8-3

Apply is updating the standby database correctly. (Note that for distributed queries,
you must first issue the ALTER DATABASE SET TRANSACTION READ ONLY
statement before you can issue a query on the read-only database.)

Figure 8–1 shows a standby database open for read-only access.

Figure 8–1 Standby Database Open for Read-Only Access

A physical standby database can be opened temporarily in read/write mode for
development, reporting, or testing purposes, and then flashed back to a point in the
past to be reverted back to a physical standby database. When the database is flashed
back, Data Guard automatically synchronizes the standby database with the primary
database, without the need to re-create the physical standby database from a backup
copy of the primary database.

8.2.1 Assessing Whether or Not to Open a Standby Database
As you decide whether or not to open a physical standby database for read-only or
read/write access, consider the following:

■ Opening the physical standby database read-only may lengthen the time it takes
to recover from a failure or outage, because the database must be restarted after a
failover.

See Also:

■ Assessing Whether or Not to Open a Standby Database

■ Opening a Physical Standby Database for Read-Only Access

See Also: Section 12.6 for a scenario that describes activating a
physical standby database as a read/write reporting database, and
then resynchronizing the database with the primary database

Primary
Database

0001

0002

Online Redo
Logs

San Francisco

Boston

Standby
Database

in Read-Only
Mode

Archived
Redo Logs

Application

Archived Redo
Logs

0001

0002

0003

Read / Write
Transactions

Local
Archiving

Log
Transport
Services

Log
Apply

Services

Queries

Opening a Standby Database for Read-Only or Read/Write Access

8-4 Oracle Data Guard Concepts and Administration

As long as the physical standby database has not been opened read-only since the
last time it was started, a restart is unnecessary after failover, thus increasing
system availability.

■ While a standby database is open for read-only or read/write access, it does not
apply redo data received from the primary database, thus it is not kept
transactionally consistent with the primary database.

When a physical standby database is open, redo data from the primary database is
received by the standby database, but the log files are not applied. At some point,
you need to resume Redo Apply on the standby database, and apply the archived
redo log files to resynchronize the standby database with the primary database.
Because of the additional time required to apply any accumulated archived redo
log files, having a standby database open for read-only access can increase the
time required to complete failovers or switchovers.

You can use a physical standby database for reporting purposes or as a clone database
while also maintaining the ability to complete a failover or switchover quickly if you
configure more than one standby database on the standby system.

For example, based on your business requirements, you might:

■ Configure two physical standby databases with one standby database always
performing Redo Apply to be as current as possible with the primary database
and the other standby database open in read-only mode during business hours for
reporting purposes.

■ Configure a physical standby database to maintain a copy of the primary database
for disaster recovery purposes and also configure a logical standby database to
off-load reporting tasks that require access to the latest data from the primary
database.

When configuring more than one standby database on the same system, consider
using the DEPENDENCY attribute of the LOG_ARCHIVE_DEST_n initialization
parameter to define one archival destination to receive redo data on behalf of all of the
destinations, rather than transmitting redo data to each individual destination. See
Section 5.7.5 for more information.

8.2.2 Opening a Physical Standby Database for Read-Only Access
You can alternate between having a physical standby database open for read-only
access and performing Redo Apply using the following procedures.

To open a standby database for read-only access when it is currently shut
down:
Start, mount, and open the database for read-only access using the following
statement:

SQL> STARTUP;

To open a standby database for read-only access when it is currently
performing Redo Apply:
1. Cancel Redo Apply:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

2. Open the database for read-only access:

SQL> ALTER DATABASE OPEN;

Managing Primary Database Events That Affect the Standby Database

Managing a Physical Standby Database 8-5

You do not need to shut down the instance to open it for read-only access.

To change the standby database from being open for read-only access to
performing Redo Apply:
1. Terminate all active user sessions on the standby database.

2. Restart Redo Apply. To start Redo Apply, issue the following statement:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE
 2> DISCONNECT FROM SESSION;

To enable real-time apply, include the USING CURRENT LOGFILE clause:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE
 2> USING CURRENT LOGFILE;

You do not need to shut down the instance to start either of these apply modes.

8.3 Managing Primary Database Events That Affect the Standby Database
To prevent possible problems, you must be aware of events on the primary database
that affect a standby database and learn how to respond to them. This section
describes these events and the recommended responses to these events.

In some cases, the events or changes that occur on a primary database are
automatically propagated through redo data to the standby database and thus require
no extra action on the standby database. In other cases, you might need to perform
maintenance tasks on the standby database.

Table 8–1 indicates whether or not a change made on the primary database requires
additional intervention by the database administrator (DBA) to be propagated to the
standby database. It also briefly describes how to respond to these events. Detailed
descriptions of the responses are described in the section references provided.

The following events are automatically administered by redo transport services and
Redo Apply, and therefore require no intervention by the database administrator:

■ A SQL ALTER DATABASE statement is issued with the ENABLE THREAD or
DISABLE THREAD clause.

■ The status of a tablespace changes (changes to read/write or read-only, placed
online or taken offline).

■ A datafile is added or tablespace is created when the STANDBY_FILE_
MANAGEMENT initialization parameter is set to AUTO.

Note: By default, the ALTER DATABASE OPEN statement opens
physical standby databases in read-only mode. The Oracle database
determines if this is a physical standby database based on
information in the control file.

Managing Primary Database Events That Affect the Standby Database

8-6 Oracle Data Guard Concepts and Administration

8.3.1 Adding a Datafile or Creating a Tablespace
The initialization parameter, STANDBY_FILE_MANAGEMENT, enables you to control
whether or not adding a datafile to the primary database is automatically propagated
to the standby database, as follows:

■ If you set the STANDBY_FILE_MANAGEMENT initialization parameter in the
standby database server parameter file (SPFILE) to AUTO, any new datafiles
created on the primary database are automatically created on the standby database
as well.

■ If you do not specify the STANDBY_FILE_MANAGEMENT initialization parameter
or if you set it to MANUAL, then you must manually copy the new datafile to the
standby database when you add a datafile to the primary database.

Note that if you copy an existing datafile from another database to the primary
database, then you must also copy the new datafile to the standby database and
re-create the standby control file, regardless of the setting of STANDBY_FILE_
MANAGEMENT initialization parameter.

The following sections provide examples of adding a datafile to the primary and
standby databases when the STANDBY_FILE_MANAGEMENT initialization parameter is
set to AUTO and MANUAL, respectively.

8.3.1.1 When STANDBY_FILE_MANAGEMENT Is Set to AUTO
The following example shows the steps required to add a new datafile to the primary
and standby databases when the STANDBY_FILE_MANAGEMENT initialization
parameter is set to AUTO.

1. Add a new tablespace to the primary database:

SQL> CREATE TABLESPACE new_ts DATAFILE '/disk1/oracle/oradata/payroll/t_
db2.dbf'
 2> SIZE 1m AUTOEXTEND ON MAXSIZE UNLIMITED;

2. Archive the current online redo log file so the redo data will be transmitted to and
applied on the standby database:

Table 8–1 Actions Required on a Standby Database After Changes to a Primary Database

Reference Change Made on Primary Database Action Required on Standby Database

Section 8.3.1 Add a datafile or create a tablespace If you did not set the STANDBY_FILE_MANAGEMENT
initialization parameter to AUTO, you must copy the new
datafile to the standby database.

Section 8.3.2 Drop or delete a tablespace or datafile Delete datafiles from primary and standby databases after
the archived redo log file containing the DROP or DELETE
command was applied.

Section 8.3.3 Use transportable tablespaces Move tablespaces between the primary and standby
databases.

Section 8.3.4 Rename a datafile Rename the datafile on the standby database.

Section 8.3.5 Add or drop redo log files Synchronize changes on the standby database.

Section 8.3.6 Perform a DML or DDL operation
using the NOLOGGING or
UNRECOVERABLE clause

Send the datafile containing the unlogged changes to the
standby database.

Chapter 13 Change initialization parameters Dynamically change the standby parameters or shut down
the standby database and update the initialization
parameter file.

Managing Primary Database Events That Affect the Standby Database

Managing a Physical Standby Database 8-7

SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

3. Verify the new datafile was added to the primary database:

SQL> SELECT NAME FROM V$DATAFILE;
NAME
--
/disk1/oracle/oradata/payroll/t_db1.dbf
/disk1/oracle/oradata/payroll/t_db2.dbf

4. Verify the new datafile was added to the standby database:

SQL> SELECT NAME FROM V$DATAFILE;
NAME
--
/disk1/oracle/oradata/payroll/s2t_db1.dbf
/disk1/oracle/oradata/payroll/s2t_db2.dbf

8.3.1.2 When STANDBY_FILE_MANAGEMENT Is Set to MANUAL
This section shows how to add a new datafile to the primary and standby database
when the STANDBY_FILE_MANAGEMENT initialization parameter is set to MANUAL.
You must set the STANDBY_FILE_MANAGEMENT initialization parameter to MANUAL
when the standby datafiles reside on raw devices. This section also describes how to
recover from errors after they have occurred.

8.3.1.2.1 Using the STANDBY_FILE_MANAGEMENT Parameter with Raw Devices

By setting the STANDBY_FILE_MANAGEMENT parameter to AUTO whenever new
datafiles are added or dropped on the primary database, corresponding changes are
made in the standby database without manual intervention. This is true as long as the
standby database is using a file system. If the standby database is using raw devices
for datafiles, then the STANDBY_FILE_MANAGEMENT initialization parameter will
continue to work, but manual intervention is needed. This manual intervention
involves ensuring the raw devices exist before log apply services on the standby
database recover the redo data that will create the new datafile.

On the primary database, create a new tablespace where the datafiles reside in a raw
device. At the same time, create the same raw device on the standby database. For
example:

SQL> CREATE TABLESPACE MTS2 DATAFILE '/dev/raw/raw100' size 1m;
Tablespace created.

SQL> ALTER SYSTEM SWITCH LOGFILE;
System altered.

The standby database automatically adds the datafile as the raw devices exist. The
standby alert log shows the following:

Fri Apr 8 09:49:31 2005
Media Recovery Log /u01/MILLER/flash_recovery_area/MTS_STBY/archivelog/2005_04_
08/o1_mf_1_7_15ffgt0z_.arc
Recovery created file /dev/raw/raw100

Note: Do not use the following procedure with databases that use
Oracle Managed Files. Also, if the raw device path names are not the
same on the primary and standby servers, use the DB_FILE_NAME_
CONVERT initialization parameter to convert the path names.

Managing Primary Database Events That Affect the Standby Database

8-8 Oracle Data Guard Concepts and Administration

Successfully added datafile 6 to media recovery
Datafile #6: '/dev/raw/raw100'
Media Recovery Waiting for thread 1 sequence 8 (in transit)

However, if the raw device was created on the primary system but not on the standby,
then the MRP process will shut down due to file-creation errors. For example, issue the
following statements on the primary database:

SQL> CREATE TABLESPACE MTS3 DATAFILE '/dev/raw/raw101' size 1m;
Tablespace created.

SQL> ALTER SYSTEM SWITCH LOGFILE;
System altered.

The standby system does not have the /Dave/raw/raw101 raw device created. The
standby alert log shows the following messages when recovering the archive:

Fri Apr 8 10:00:22 2005
Media Recovery Log /u01/MILLER/flash_recovery_area/MTS_STBY/archivelog/2005_04_
08/o1_mf_1_8_15ffjrov_.arc
File #7 added to control file as 'UNNAMED00007'.
Originally created as:
'/dev/raw/raw101'
Recovery was unable to create the file as:
'/dev/raw/raw101'
MRP0: Background Media Recovery terminated with error 1274
Fri Apr 8 10:00:22 2005
Errors in file /u01/MILLER/MTS/dump/mts_mrp0_21851.trc:
ORA-01274: cannot add datafile '/dev/raw/raw101' - file could not be created
ORA-01119: error in creating database file '/dev/raw/raw101'
ORA-27041: unable to open file
Linux Error: 13: Permission denied
Additional information: 1
Some recovered datafiles maybe left media fuzzy
Media recovery may continue but open resetlogs may fail
Fri Apr 8 10:00:22 2005
Errors in file /u01/MILLER/MTS/dump/mts_mrp0_21851.trc:
ORA-01274: cannot add datafile '/dev/raw/raw101' - file could not be created
ORA-01119: error in creating database file '/dev/raw/raw101'
ORA-27041: unable to open file
Linux Error: 13: Permission denied
Additional information: 1
Fri Apr 8 10:00:22 2005
MTS; MRP0: Background Media Recovery process shutdown
ARCH: Connecting to console port...

8.3.1.2.2 Recovering From Errors

To correct the problems described in Section 8.3.1.2.1, perform the following steps:

1. Create the raw slice on the standby database and assign permissions to the Oracle
user.

2. Query the V$DATAFILE view. For example:

SQL> SELECT NAME FROM V$DATAFILE;

NAME

-
/u01/MILLER/MTS/system01.dbf
/u01/MILLER/MTS/undotbs01.dbf

Managing Primary Database Events That Affect the Standby Database

Managing a Physical Standby Database 8-9

/u01/MILLER/MTS/sysaux01.dbf
/u01/MILLER/MTS/users01.dbf
/u01/MILLER/MTS/mts.dbf
/dev/raw/raw100
/u01/app/oracle/product/10.1.0/dbs/UNNAMED00007

SQL> ALTER SYSTEM SET STANDBY_FILE_MANAGEMENT=MANUAL;

SQL> ALTER DATABASE CREATE DATAFILE
 2 '/u01/app/oracle/product/10.1.0/dbs/UNNAMED00007'
 3 AS
 4 '/dev/raw/raw101';

3. In the standby alert log you should see information similar to the following:

Fri Apr 8 10:09:30 2005
alter database create datafile
'/dev/raw/raw101' as '/dev/raw/raw101'
Fri Apr 8 10:09:30 2005
Completed: alter database create datafile
'/dev/raw/raw101' a

4. On the standby database, set STANDBY_FILE_MANAGEMENT to AUTO and restart
Redo Apply:

SQL> ALTER SYSTEM SET STANDBY_FILE_MANAGEMENT=AUTO;
SQL> RECOVER MANAGED STANDBY DATABASE DISCONNECT;

At this point Redo Apply uses the new raw device datafile and recovery continues.

8.3.2 Dropping Tablespaces and Deleting Datafiles
When you delete one or more datafiles or drop one or more tablespaces in the primary
database, you also need to delete the corresponding datafiles to the standby database.
The following sections provide examples of dropping tablespaces and deleting
datafiles when the STANDBY_FILE_MANAGEMENT initialization parameter is set to
AUTO or MANUAL.

8.3.2.1 When STANDBY_FILE_MANAGEMENT Is Set to AUTO or MANUAL
The following procedure works whether the STANDBY_FILE_MANAGEMENT
initialization parameter is set to either MANUAL or AUTO, as follows:

1. Drop the tablespace from the primary database:

SQL> DROP TABLESPACE tbs_4;
SQL> ALTER SYSTEM SWITCH LOGFILE;

2. Make sure that Redo Apply is running (so that the change is applied to the
standby database). If the following query returns the MRP or MRP0 process, Redo
Apply is running.

SQL> SELECT PROCESS, STATUS FROM V$MANAGED_STANDBY;

To verify that deleted datafiles are no longer part of the database, query the
V$DATAFILE view.

3. Delete the corresponding datafile on the standby system after the archived redo
log file was applied to the standby database. For example:

% rm /disk1/oracle/oradata/payroll/s2tbs_4.dbf

Managing Primary Database Events That Affect the Standby Database

8-10 Oracle Data Guard Concepts and Administration

4. On the primary database, after ensuring the standby database applied the redo
information for the dropped tablespace, you can remove the datafile for the
tablespace. For example:

% rm /disk1/oracle/oradata/payroll/tbs_4.dbf

8.3.2.2 Using DROP TABLESPACE INCLUDING CONTENTS AND DATAFILES
You can issue the SQL DROP TABLESPACE INCLUDING CONTENTS AND
DATAFILES statement on the primary database to delete the datafiles on both the
primary and standby databases. To use this statement, the STANDBY_FILE_
MANAGEMENT initialization parameter must be set to AUTO. For example, to drop the
tablespace at the primary site:

SQL> DROP TABLESPACE INCLUDING CONTENTS AND DATAFILES tbs_4;
SQL> ALTER SYSTEM SWITCH LOGFILE;

8.3.3 Using Transportable Tablespaces with a Physical Standby Database
You can use the Oracle transportable tablespaces feature to move a subset of an Oracle
database and plug it in to another Oracle database, essentially moving tablespaces
between the databases.

To move or copy a set of tablespaces into a primary database when a physical standby
is being used, perform the following steps:

1. Generate a transportable tablespace set that consists of datafiles for the set of
tablespaces being transported and an export file containing structural information
for the set of tablespaces.

2. Transport the tablespace set:

a. Copy the datafiles and the export file to the primary database.

b. Copy the datafiles to the standby database.

The datafiles must be copied in a directory defined by the DB_FILE_NAME_
CONVERT initialization parameter. If DB_FILE_NAME_CONVERT is not defined,
then issue the ALTER DATABASE RENAME FILE statement to modify the standby
control file after the redo data containing the transportable tablespace has been
applied and has failed. The STANDBY_FILE_MANAGEMENT initialization
parameter must be set to AUTO.

3. Plug in the tablespace.

Invoke the Data Pump utility to plug the set of tablespaces into the primary
database. Redo data will be generated and applied at the standby site to plug the
tablespace into the standby database.

For more information about transportable tablespaces, see Oracle Database
Administrator's Guide.

8.3.4 Renaming a Datafile in the Primary Database
When you rename one or more datafiles in the primary database, the change is not
propagated to the standby database. Therefore, if you want to rename the same
datafiles on the standby database, you must manually make the equivalent
modifications on the standby database because the modifications are not performed
automatically, even if the STANDBY_FILE_MANAGEMENT initialization parameter is set
to AUTO.

Managing Primary Database Events That Affect the Standby Database

Managing a Physical Standby Database 8-11

The following steps describe how to rename a datafile in the primary database and
manually propagate the changes to the standby database.

1. To rename the datafile in the primary database, take the tablespace offline:

SQL> ALTER TABLESPACE tbs_4 OFFLINE;

2. Exit from the SQL prompt and issue an operating system command, such as the
following UNIX mv command, to rename the datafile on the primary system:

% mv /disk1/oracle/oradata/payroll/tbs_4.dbf
/disk1/oracle/oradata/payroll/tbs_x.dbf

3. Rename the datafile in the primary database and bring the tablespace back online:

SQL> ALTER TABLESPACE tbs_4 RENAME DATAFILE
 2> '/disk1/oracle/oradata/payroll/tbs_4.dbf'
 3> TO '/disk1/oracle/oradata/payroll/tbs_x.dbf';
SQL> ALTER TABLESPACE tbs_4 ONLINE;

4. Connect to the standby database, query the V$ARCHIVED_LOG view to verify all
of the archived redo log files are applied, and then stop Redo Apply:

SQL> SELECT SEQUENCE#,APPLIED FROM V$ARCHIVED_LOG ORDER BY SEQUENCE#;
SEQUENCE# APP
--------- ---
8 YES
9 YES
10 YES
11 YES
4 rows selected.

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

5. Shut down the standby database:

SQL> SHUTDOWN;

6. Rename the datafile at the standby site using an operating system command, such
as the UNIX mv command:

% mv /disk1/oracle/oradata/payroll/tbs_4.dbf /disk1/oracle/oradata/payroll/tbs_
x.dbf

7. Start and mount the standby database:

SQL> STARTUP MOUNT;

8. Rename the datafile in the standby control file. Note that the STANDBY_FILE_
MANAGEMENT initialization parameter must be set to MANUAL.

SQL> ALTER DATABASE RENAME FILE '/disk1/oracle/oradata/payroll/tbs_4.dbf'
 2> TO '/disk1/oracle/oradata/payroll/tbs_x.dbf';

9. On the standby database, restart Redo Apply:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE
 2> DISCONNECT FROM SESSION;

If you do not rename the corresponding datafile at the standby system, and then try to
refresh the standby database control file, the standby database will attempt to use the
renamed datafile, but it will not find it. Consequently, you will see error messages
similar to the following in the alert log:

Managing Primary Database Events That Affect the Standby Database

8-12 Oracle Data Guard Concepts and Administration

ORA-00283: recovery session canceled due to errors
ORA-01157: cannot identify/lock datafile 4 - see DBWR trace file
ORA-01110: datafile 4: '/Disk1/oracle/oradata/payroll/tbs_x.dbf'

8.3.5 Adding or Dropping Online Redo Log Files
Changing the size and number of the online redo log files is sometimes done to tune
the database. You can add or drop online redo log file groups or members to the
primary database without affecting the standby database. Similarly, you can drop log
file groups or members from the primary database without affecting your standby
database. However, these changes do affect the performance of the standby database
after switchover.

For example, if the primary database has 10 online redo log files and the standby
database has 2, and then you switch over to the standby database so that it functions
as the new primary database, the new primary database is forced to archive more
frequently than the original primary database.

Consequently, when you add or drop an online redo log file at the primary site, it is
important that you synchronize the changes in the standby database by following
these steps:

1. If Redo Apply is running, you must cancel Redo Apply before you can change the
log files.

2. If the STANDBY_FILE_MANAGEMENT initialization parameter is set to AUTO,
change the value to MANUAL.

3. Add or drop an online redo log file:

■ To add an online redo log file, use a SQL statement such as this:

SQL> ALTER DATABASE ADD LOGFILE '/disk1/oracle/oradata/payroll/prmy3.log'
SIZE 100M;

■ To drop an online redo log file, use a SQL statement such as this:

SQL> ALTER DATABASE DROP LOGFILE '/disk1/oracle/oradata/payroll/prmy3.log';

4. Repeat the statement you used in Step 3 on each standby database.

5. Restore the STANDBY_FILE_MANAGEMENT initialization parameter and the Redo
Apply options to their original states.

8.3.6 NOLOGGING or Unrecoverable Operations
When you perform a DML or DDL operation using the NOLOGGING or
UNRECOVERABLE clause, the standby database is invalidated and might require
substantial DBA administrative activities to repair. You can specify the SQL ALTER
DATABASE or SQL ALTER TABLESPACE statement with the FORCELOGGING clause to
override the NOLOGGING setting. However, this statement will not repair an already
invalidated database.

See Section 12.10 for information about recovering after the NOLOGGING clause is used.

Caution: Whenever you add an online redo log file to the primary
database, you should add corresponding online and standby redo
log files to the standby database.

Monitoring the Primary and Standby Databases

Managing a Physical Standby Database 8-13

8.4 Recovering Through the OPEN RESETLOGS Statement
Data Guard allows recovery on a physical standby database to continue after the
primary database has been opened with the RESETLOGS option. When an ALTER
DATABASE OPEN RESETLOGS statement is issued on the primary database, the
incarnation of the database changes, creating a new branch of redo data.

When a physical standby database receives a new branch of redo data, Redo Apply
automatically takes the new branch of redo data. For physical standby databases, no
manual intervention is required if the standby database did not apply redo data past
the new resetlogs SCN (past the start of the new branch of redo data). The following
table describes how to resynchronize the standby database with the primary database
branch.

See Oracle Database Backup and Recovery Advanced User's Guide for more information
about database incarnations, recovering through an OPEN RESETLOGS operation, and
Flashback Database.

8.5 Monitoring the Primary and Standby Databases
This section gives you a general overview on where to find information for monitoring
the primary and standby databases in a Data Guard environment.

This section contains the following topics:

■ Alert Log

■ Dynamic Performance Views (Fixed Views)

■ Monitoring Recovery Progress

■ Monitoring Log Apply Services on Physical Standby Databases

If the standby database. . . Then. . . Perform these steps. . .

Has not applied redo data past the
new resetlogs SCN (past the start of
the new branch of redo data)

Redo Apply automatically
takes the new branch of redo.

No manual intervention is necessary. The
MRP automatically resynchronizes the
standby database with the new branch of
redo data.

Has applied redo data past the new
resetlogs SCN (past the start of the
new branch of redo data) and
Flashback Database is enabled on
the standby database

The standby database is
recovered in the future of the
new branch of redo data.

1. Follow the procedure in Section 12.5.1 to
flash back a physical standby database.

2. Restart Redo Apply to continue
application of redo data onto new reset
logs branch.

The MRP automatically resynchronizes the
standby database with the new branch.

Has applied redo data past the new
resetlogs SCN (past the start of the
new branch of redo data) and
Flashback Database is not enabled
on the standby database

The primary database has
diverged from the standby
on the indicated primary
database branch.

Re-create the physical standby database
following the procedures in Chapter 3.

Is missing intervening archived
redo log files from the new branch
of redo data

The MRP cannot continue
until the missing log files are
retrieved.

Locate and register missing archived redo log
files from each branch.

Is missing archived redo log files
from the end of the previous
branch of redo data.

The MRP cannot continue
until the missing log files are
retrieved.

Locate and register missing archived redo log
files from the previous branch.

Monitoring the Primary and Standby Databases

8-14 Oracle Data Guard Concepts and Administration

Table 8–2 summarizes common events that occur on the primary database and
pointers to the files and views where you can monitor these events on the primary and
standby sites.

Table 8–2 Location Where Common Actions on the Primary Database Can Be Monitored

Primary Database Event Primary Site Information Standby Site Information

A SQL ALTER DATABASE statement
is issued with the ENABLE THREAD
or DISABLE THREAD clause specified

■ Alert log

■ V$THREAD view

Alert log

Current database role, protection
mode and level, switchover status,
and fast-start failover information

V$DATABASE V$DATABASE

Redo log changed ■ Alert log

■ V$LOG view

■ STATUS column of
V$LOGFILE view

Alert log

CREATE CONTROLFILE statement
issued

Alert log Alert log

Managed recovery performed Alert log Alert log

Tablespace status changes made
(made read/write or read-only,
placed online or offline)

■ DBA_TABLESPACES view

■ Alert log

V$RECOVER_FILE view

Datafile added or tablespace created ■ DBA_DATA_FILES view

■ Alert log

V$DATAFILE view

Alert log

Tablespace dropped ■ DBA_DATA_FILES view

■ Alert log

V$DATAFILE view

Alert log

Tablespace or datafile taken offline, or
datafile is deleted offline

■ V$RECOVER_FILE view

■ Alert log

■ DBA_TABLESPACES

V$RECOVER_FILE view

DBA_TABLESPACES

Rename datafile ■ V$DATAFILE

■ Alert log

V$DATAFILE view

Alert log

Unlogged or unrecoverable
operations

■ V$DATAFILE view

■ V$DATABASE view

Alert log

Recovery progress ■ V$ARCHIVE_DEST_STATUS
view

■ Alert log

V$ARCHIVED_LOG view

V$LOG_HISTORY view

V$MANAGED_STANDBY view

Alert log

Redo transport status and progress ■ V$ARCHIVE_DEST_STATUS
view

■ V$ARCHIVED_LOG view

■ V$ARCHIVE_DEST view

■ Alert log

V$ARCHIVED_LOG view

Alert log

Auto extend a datafile Alert log Alert log

Issue OPEN RESETLOGS or CLEAR
UNARCHIVED LOGFILES statements

Alert log Alert log

Change initialization parameter Alert log Alert log

Monitoring the Primary and Standby Databases

Managing a Physical Standby Database 8-15

8.5.1 Alert Log
The database alert log is a chronological record of messages and errors. In addition to
providing information about the Oracle database, it also includes information about
operations specific to Data Guard, including the following:

■ Messages related to administrative operations such as the following SQL
statements: ALTER DATABASE RECOVER MANAGED STANDBY, STARTUP,
SHUTDOWN, ARCHIVE LOG, and RECOVER

■ Errors related to administrative operations that are reported by background
processes, such as ARC0, MRP0, RFS, LGWR

■ The completion timestamp for administrative operations

The alert log also provides pointers to the trace or dump files generated by a specific
process.

8.5.2 Dynamic Performance Views (Fixed Views)
The Oracle database contains a set of underlying views. These views are often called
dynamic performance views because they are continuously updated while a database
is open and in use, and their contents relate primarily to performance. These views are
also called fixed views because they cannot be altered or removed by the database
administrator.

These view names are prefixed with either V$ or GV$, for example, V$ARCHIVE_DEST
or GV$ARCHIVE_DEST.

Standard dynamic performance views (V$ fixed views) store information about the
local instance. In contrast, global dynamic performance views (GV$ fixed views), store
information about all open instances in a Real Applications Cluster (RAC). Each V$
fixed view has a corresponding GV$ fixed view. Selects on GV$ fixed views use
parallel query slaves to obtain information on all instances. See Chapter 16, "Views
Relevant to Oracle Data Guard" and Oracle Database Reference for additional
information.

8.5.3 Monitoring Recovery Progress
This section shows some samples of the types of views discussed in Section 8.5.2 for
monitoring recovery progress in a Data Guard environment. It contains the following
examples:

■ Monitoring the Process Activities

■ Determining the Progress of Redo Apply

■ Determining the Location and Creator of the Archived Redo Log Files

■ Viewing Database Incarnations Before and After OPEN RESETLOGS

■ Viewing the Archived Redo Log History

■ Determining Which Log Files Were Applied to the Standby Database

■ Determining Which Log Files Were Not Received by the Standby Site

8.5.3.1 Monitoring the Process Activities
You can obtain information about Redo Apply on a standby database by monitoring
the activities performed by the following processes:

Monitoring the Primary and Standby Databases

8-16 Oracle Data Guard Concepts and Administration

The V$MANAGED_STANDBY view on the standby database site shows you the activities
performed by both redo transport and Redo Apply processes in a Data Guard
environment. The CLIENT_P column in the output of the following query identifies
the corresponding primary database process.

SQL> SELECT PROCESS, CLIENT_PROCESS, SEQUENCE#, STATUS FROM V$MANAGED_STANDBY;

PROCESS CLIENT_P SEQUENCE# STATUS
------- -------- ---------- ------------
ARCH ARCH 0 CONNECTED
ARCH ARCH 0 CONNECTED
MRP0 N/A 204 WAIT_FOR_LOG
RFS LGWR 204 WRITING
RFS N/A 0 RECEIVING

8.5.3.2 Determining the Progress of Redo Apply
The V$ARCHIVE_DEST_STATUS view on either a primary or standby database site
provides you information such as the online redo log files that were archived, the
archived redo log files that are applied, and the log sequence numbers of each. The
following query output shows the standby database is two archived redo log files
behind in applying the redo data received from the primary database.

SQL> SELECT ARCHIVED_THREAD#, ARCHIVED_SEQ#, APPLIED_THREAD#, APPLIED_SEQ#
 2> FROM V$ARCHIVE_DEST_STATUS;

ARCHIVED_THREAD# ARCHIVED_SEQ# APPLIED_THREAD# APPLIED_SEQ#
---------------- ------------- --------------- ------------
1 947 1 945

8.5.3.3 Determining the Location and Creator of the Archived Redo Log Files
Query the V$ARCHIVED_LOG view on the standby database to find additional
information about the archived redo log. Some information you can get includes the
location of the archived redo log, which process created the archived redo log, redo log
sequence number of each archived redo log file, when each log file was archived, and
whether or not the archived redo log file was applied. For example:

SQL> SELECT NAME, CREATOR, SEQUENCE#, APPLIED, COMPLETION_TIME
 2> FROM V$ARCHIVED_LOG;

NAME CREATOR SEQUENCE# APP COMPLETIO
-- ------- --------- --- ---------
H:\ORACLE\ORADATA\PAYROLL\STANDBY\ARC00198.001 ARCH 198 YES 30-MAY-02
H:\ORACLE\ORADATA\PAYROLL\STANDBY\ARC00199.001 ARCH 199 YES 30-MAY-02
H:\ORACLE\ORADATA\PAYROLL\STANDBY\ARC00200.001 ARCH 200 YES 30-MAY-02
H:\ORACLE\ORADATA\PAYROLL\STANDBY\ARC00201.001 LGWR 201 YES 30-MAY-02
H:\ORACLE\ORADATA\PAYROLL\STANDBY\ARC00202.001 ARCH 202 YES 30-MAY-02
H:\ORACLE\ORADATA\PAYROLL\STANDBY\ARC00203.001 LGWR 203 YES 30-MAY-02

6 rows selected.

Reference Name System Process Names

ARCH ARC0,ARC1,ARC2,…

MRP MRP, MRP0

RFS ORACLE{SID}

Monitoring the Primary and Standby Databases

Managing a Physical Standby Database 8-17

8.5.3.4 Viewing Database Incarnations Before and After OPEN RESETLOGS
Query the V$DATABASE_INCARNATION view on the standby database to monitor
database incarnations and the RESETLOGS_ID column.

The following queries were issued on the standby database before an OPEN
RESETLOGS statement was issued on the primary database:

SQL> SELECT INCARNATION#, RESETLOGS_ID, STATUS FROM V$DATABASE_INCARNATION ;

INCARNATION# RESETLOGS_ID STATUS
------------ ------------ -------
 1 509191005 PARENT
 2 509275501 CURRENT

SQL> SELECT RESETLOGS_ID,THREAD#,SEQUENCE#,STATUS,ARCHIVED FROM V$ARCHIVED_LOG
 2 ORDER BY RESETLOGS_ID,SEQUENCE# ;

RESETLOGS_ID THREAD# SEQUENCE# S ARC
------------ ------- --------- - ----
 509275501 1 1 A YES
 509275501 1 2 A YES
 509275501 1 3 A YES
 509275501 1 4 A YES
 509275501 1 5 A YES

5 rows selected.

The following queries were issued on the standby database after an OPEN RESETLOGS
statement was issued on the primary database and the standby database started to
receive redo data on the new branch of redo:

SQL> SELECT INCARNATION#, RESETLOGS_ID, STATUS FROM V$DATABASE_INCARNATION ;

INCARNATION# RESETLOGS_ID STATUS
------------ ------------ -------
 1 509191005 PARENT
 2 509275501 PARENT
 3 509278970 CURRENT

SQL> SELECT RESETLOGS_ID,THREAD#,SEQUENCE#,STATUS,ARCHIVED FROM V$ARCHIVED_LOG
 2 ORDER BY RESETLOGS_ID,SEQUENCE# ;

RESETLOGS_ID THREAD# SEQUENCE# S ARC
------------ ------- --------- - ---
 509275501 1 1 A YES
 509275501 1 2 A YES
 509275501 1 3 A YES
 509275501 1 4 A YES
 509275501 1 5 A YES
 509278970 1 1 A YES
 509278970 1 2 A YES
 509278970 1 3 A YES
8 rows selected.

8.5.3.5 Viewing the Archived Redo Log History
The V$LOG_HISTORY on the standby site shows you a complete history of the
archived redo log, including information such as the time of the first entry, the lowest
SCN in the log, the highest SCN in the log, and the sequence numbers for the archived
redo log files.

Monitoring the Primary and Standby Databases

8-18 Oracle Data Guard Concepts and Administration

SQL> SELECT FIRST_TIME, FIRST_CHANGE#, NEXT_CHANGE#, SEQUENCE# FROM V$LOG_HISTORY;

FIRST_TIM FIRST_CHANGE# NEXT_CHANGE# SEQUENCE#
--------- ------------- ------------ ----------
13-MAY-02 190578 214480 1
13-MAY-02 214480 234595 2
13-MAY-02 234595 254713 3
.
.
.
30-MAY-02 3418615 3418874 201
30-MAY-02 3418874 3419280 202
30-MAY-02 3419280 3421165 203
203 rows selected.

8.5.3.6 Determining Which Log Files Were Applied to the Standby Database
Query the V$LOG_HISTORY view on the standby database, which records the latest
log sequence number that was applied. For example, issue the following query:

SQL> SELECT THREAD#, MAX(SEQUENCE#) AS "LAST_APPLIED_LOG"
 2> FROM V$LOG_HISTORY
 3> GROUP BY THREAD#;

THREAD# LAST_APPLIED_LOG
------- ----------------
 1 967

In this example, the archived redo log file with log sequence number 967 is the most
recently applied log file.

You can also use the APPLIED column in the V$ARCHIVED_LOG fixed view on the
standby database to find out which log files were applied on the standby database. For
example:

SQL> SELECT THREAD#, SEQUENCE#, APPLIED FROM V$ARCHIVED_LOG;
 THREAD# SEQUENCE# APP
---------- ---------- ---
 1 2 YES
 1 3 YES
 1 4 YES
 1 5 YES
 1 6 YES
 1 7 YES
 1 8 YES
 1 9 YES
 1 10 YES
 1 11 NO
10 rows selected.

8.5.3.7 Determining Which Log Files Were Not Received by the Standby Site
Each archive destination has a destination ID assigned to it. You can query the DEST_
ID column in the V$ARCHIVE_DEST fixed view to find out your destination ID. You
can then use this destination ID in a query on the primary database to discover log
files that were not sent to a particular standby site.

For example, assume the current local archive destination ID on your primary
database is 1, and the destination ID of one of your remote standby databases is 2. To
find out which log files were not received by this standby destination, issue the
following query on the primary database:

SQL> SELECT LOCAL.THREAD#, LOCAL.SEQUENCE# FROM

Monitoring the Primary and Standby Databases

Managing a Physical Standby Database 8-19

 2> (SELECT THREAD#, SEQUENCE# FROM V$ARCHIVED_LOG WHERE DEST_ID=1) LOCAL
 3> WHERE LOCAL.SEQUENCE# NOT IN
 5> (SELECT SEQUENCE# FROM V$ARCHIVED_LOG WHERE DEST_ID=2 AND
 6> THREAD# = LOCAL.THREAD#);
 THREAD# SEQUENCE#
---------- ----------
 1 12
 1 13
 1 14

The preceding example shows the log files that were not received by standby
destination 2.

8.5.4 Monitoring Log Apply Services on Physical Standby Databases
To monitor the status of log apply services on a physical standby database, query the
fixed views described in this section. You can also monitor the standby database using
the Oracle Enterprise Manager GUI.

This section contains the following topics:

■ Accessing the V$DATABASE View

■ Accessing the V$MANAGED_STANDBY Fixed View

■ Accessing the V$ARCHIVE_DEST_STATUS Fixed View

■ Accessing the V$ARCHIVED_LOG Fixed View

■ Accessing the V$LOG_HISTORY Fixed View

■ Accessing the V$DATAGUARD_STATUS Fixed View

Also, see Oracle Database Reference for complete reference information about views.

8.5.4.1 Accessing the V$DATABASE View
Issue the following query to show information about the protection mode, the
protection level, the role of the database, and switchover status:

SQL> SELECT DATABASE_ROLE, DB_UNIQUE_NAME INSTANCE, OPEN_MODE, -
 PROTECTION_MODE, PROTECTION_LEVEL, SWITCHOVER_STATUS -
 FROM V$DATABASE;

Issue the following query to show information about fast-start failover:

SQL> SELECT FS_FAILOVER_STATUS FSFO_STATUS, FS_FAILOVER_CURRENT_TARGET -
 TARGET_STANDBY, FS_FAILOVER_THRESHOLD THRESHOLD, -
 FS_FAILOVER_OBSERVER_PRESENT OBS_PRES -
 FROM V$DATABASE;

8.5.4.2 Accessing the V$MANAGED_STANDBY Fixed View
Query the physical standby database to monitor Redo Apply and redo transport
services activity at the standby site.

SQL> SELECT PROCESS, STATUS, THREAD#, SEQUENCE#, BLOCK#, BLOCKS
 2> FROM V$MANAGED_STANDBY;

PROCESS STATUS THREAD# SEQUENCE# BLOCK# BLOCKS
------- ------------ ---------- ---------- ---------- ----------
RFS ATTACHED 1 947 72 72
MRP0 APPLYING_LOG 1 946 10 72

Monitoring the Primary and Standby Databases

8-20 Oracle Data Guard Concepts and Administration

The previous query output shows that an RFS process completed archiving a redo log
file with sequence number 947. The output also shows that Redo Apply is actively
applying an archived redo log file with the sequence number 946. The recovery
operation is currently recovering block number 10 of the 72-block archived redo log
file.

8.5.4.3 Accessing the V$ARCHIVE_DEST_STATUS Fixed View
To quickly determine the level of synchronization for the standby database, issue the
following query on the physical standby database:

SQL> SELECT ARCHIVED_THREAD#, ARCHIVED_SEQ#, APPLIED_THREAD#, APPLIED_SEQ#
 2> FROM V$ARCHIVE_DEST_STATUS;

ARCHIVED_THREAD# ARCHIVED_SEQ# APPLIED_THREAD# APPLIED_SEQ#
---------------- ------------- --------------- ------------
1 947 1 945

The previous query output shows that the standby database is two archived redo log
files behind the primary database.

To determine if real-time apply is enabled, query the RECOVERY_MODE column of the
V$ARCHIVE_DEST_STATUS view. It will contain the value MANAGED REAL TIME
APPLY when real-time apply is enabled, as shown in the following example:

SQL> SELECT RECOVERY_MODE FROM V$ARCHIVE_DEST_STATUS WHERE DEST_ID=2 ;

RECOVERY_MODE

MANAGED REAL TIME APPLY

8.5.4.4 Accessing the V$ARCHIVED_LOG Fixed View
The V$ARCHIVED_LOG fixed view on the physical standby database shows all the
archived redo log files received from the primary database. This view is only useful
after the standby site starts receiving redo data; before that time, the view is populated
by old archived redo log records generated from the primary control file.

For example, you can execute the following SQL*Plus statement:

SQL> SELECT REGISTRAR, CREATOR, THREAD#, SEQUENCE#, FIRST_CHANGE#,
 2> NEXT_CHANGE# FROM V$ARCHIVED_LOG;

REGISTRAR CREATOR THREAD# SEQUENCE# FIRST_CHANGE# NEXT_CHANGE#
--------- ------- ---------- ---------- ------------- ------------
RFS ARCH 1 945 74651 74739
RFS ARCH 1 946 74739 74772
RFS ARCH 1 947 74772 74774

The previous query output shows three archived redo log files received from the
primary database.

8.5.4.5 Accessing the V$LOG_HISTORY Fixed View
Query the V$LOG_HISTORY fixed view on the physical standby database to show all
the archived redo log files that were applied:

SQL> SELECT THREAD#, SEQUENCE#, FIRST_CHANGE#, NEXT_CHANGE#
 2> FROM V$LOG_HISTORY;

THREAD# SEQUENCE# FIRST_CHANGE# NEXT_CHANGE#
---------- ---------- ------------- ------------

Monitoring the Primary and Standby Databases

Managing a Physical Standby Database 8-21

1 945 74651 74739

The previous query output shows that the most recently applied archived redo log file
was sequence number 945.

8.5.4.6 Accessing the V$DATAGUARD_STATUS Fixed View
The V$DATAGUARD_STATUS fixed view displays events that would typically be
triggered by any message to the alert log or server process trace files.

The following example shows output from the V$DATAGUARD_STATUS view on a
primary database:

SQL> SELECT MESSAGE FROM V$DATAGUARD_STATUS;

MESSAGE
--
ARC0: Archival started
ARC1: Archival started
Archivelog destination LOG_ARCHIVE_DEST_2 validated for no-data-loss
recovery
Creating archive destination LOG_ARCHIVE_DEST_2: 'dest2'
ARCH: Transmitting activation ID 0
LGWR: Completed archiving log 3 thread 1 sequence 11
Creating archive destination LOG_ARCHIVE_DEST_2: 'dest2'
LGWR: Transmitting activation ID 6877c1fe
LGWR: Beginning to archive log 4 thread 1 sequence 12
ARC0: Evaluating archive log 3 thread 1 sequence 11
ARC0: Archive destination LOG_ARCHIVE_DEST_2: Previously completed
ARC0: Beginning to archive log 3 thread 1 sequence 11
Creating archive destination LOG_ARCHIVE_DEST_1:
'/oracle/arch/arch_1_11.arc'
ARC0: Completed archiving log 3 thread 1 sequence 11
ARC1: Transmitting activation ID 6877c1fe
15 rows selected.

The following example shows the contents of the V$DATAGUARD_STATUS view on a
physical standby database:

SQL> SELECT MESSAGE FROM V$DATAGUARD_STATUS;

MESSAGE
--
ARC0: Archival started
ARC1: Archival started
RFS: Successfully opened standby logfile 6: '/oracle/dbs/sorl2.log'
ARC1: Evaluating archive log 6 thread 1 sequence 11
ARC1: Beginning to archive log 6 thread 1 sequence 11
Creating archive destination LOG_ARCHIVE_DEST_1:
'/oracle/arch/arch_1_11.arc'
ARC1: Completed archiving log 6 thread 1 sequence 11
RFS: Successfully opened standby logfile 5: '/oracle/dbs/sorl1.log'
Attempt to start background Managed Standby Recovery process
Media Recovery Log /oracle/arch/arch_1_9.arc

10 rows selected.

Tuning the Log Apply Rate for a Physical Standby Database

8-22 Oracle Data Guard Concepts and Administration

8.6 Tuning the Log Apply Rate for a Physical Standby Database
Consider using the following methods to optimize the time it takes to apply redo to
physical standby databases. Also, see the Oracle Media Recovery Best Practices white
paper for more information:
http://otn.oracle.com/deploy/availability/htdocs/maa.htm.

Set Parallel Recovery to Twice the Number of CPUs on One Standby Host
During media recovery or Redo Apply, the redo log file is read, and data blocks that
require redo application are parsed out. With parallel media recovery, these data
blocks are subsequently distributed evenly to all recovery processes to be read into the
buffer cache. The default is serial recovery or zero parallelism, which implies that the
same recovery process reads the redo, reads the data blocks from disk, and applies the
redo changes.

To implement parallel media recovery or Redo Apply, add the optional PARALLEL
clause to the recovery command. Furthermore, set the database parameter PARALLEL_
MAX_SERVERS to at least the degree of parallelism. The following examples show how
to set recovery parallelism:

RECOVER STANDBY DATABASE PARALLEL #CPUs * 2;

You should compare several serial and parallel recovery runs to determine optimal
recovery performance.

Set DB_BLOCK_CHECKING=FALSE for Faster Redo Apply Rates
Setting the DB_BLOCK_CHECKING=FALSE parameter during standby or media
recovery can provide as much as a twofold increase in the apply rate. The lack of block
checking during recovery must be an accepted risk. Block checking should be enabled
on the primary database. The DB_BLOCK_CHECKSUM=TRUE (the default) should be
enabled for both production and standby databases. Because the DB_BLOCK_
CHECKING parameter is dynamic, it can be toggled without shutting down the
standby database.

Set PARALLEL_EXECUTION_MESSAGE_SIZE = 4096
When using parallel media recovery or parallel standby recovery, increasing the
PARALLEL_EXECUTION_MESSAGE_SIZE database parameter to 4K (4096) can
improve parallel recovery by as much as 20 percent. Set this parameter on both the
primary and standby databases in preparation for switchover operations. Increasing
this parameter requires more memory from the shared pool by each parallel execution
slave process.

The PARALLEL_EXECUTION_MESSAGE_SIZE parameter is also used by parallel
query operations and should be tested with any parallel query operations to ensure
there is sufficient memory on the system. A large number of parallel query slaves on a
32-bit installation may reach memory limits and prohibit increasing the PARALLEL_
EXECUTION_MESSAGE_SIZE from the default 2K (2048) to 4K.

Tune Disk I/O
The biggest bottlenecks encountered during recovery are read and write I/O. To
relieve the bottleneck, use native asynchronous I/O and set the database parameter
DISK_ASYNCH_IO to TRUE (the default). The DISK_ASYNCH_IO parameter controls
whether or not disk I/O to datafiles is asynchronous. Asynchronous I/O should
significantly reduce database file parallel reads and should improve overall recovery
time.

Managing a Logical Standby Database 9-1

9
Managing a Logical Standby Database

This chapter contains the following topics:

■ Overview of the SQL Apply Architecture

■ Views Related to Managing and Monitoring a Logical Standby Database

■ Monitoring a Logical Standby Database

■ Customizing a Logical Standby Database

■ Managing Specific Workloads In the Context of a Logical Standby Database

■ Tuning a Logical Standby Database

9.1 Overview of the SQL Apply Architecture
SQL Apply uses a collection of parallel execution servers and background processes to
apply changes from the primary database to the logical standby database.

Figure 9–1 shows the flow of information and the role that each process performs.

Figure 9–1 SQL Apply Processing

Redo Data
from

Primary
Database

Reader

Redo
Records

Logical Change
Reords Not Grouped

Into Transactions

Log Mining

Apply
Processing

Preparer

LCR
LCR
LCR

.

.

.

Shared Pool

Builder

Transaction
Groups

AnalyzerApplier Coordinator

Datafiles

Transactions
to be Applied

Transactions
Sorted in

Dependency Order

LCR

Overview of the SQL Apply Architecture

9-2 Oracle Data Guard Concepts and Administration

The different processes involved and their functions during log mining and apply
processing are as follows:

During log mining:

■ The READER process reads redo records from the archived redo log files or standby
redo log files.

■ The PREPARER process converts block changes contained in redo records into
logical change records (LCRs). Multiple PREPARER processes can be active for a
given archived redo log file or standby redo log file. The LCRs are staged in the
shared pool of the system global area (SGA), known as the LCR cache.

■ The BUILDER process groups LCRs into transactions, and performs other tasks,
such as memory management in the LCR cache, checkpointing related to SQL
Apply restart and filtering out of uninteresting changes.

During apply processing:

■ The ANALYZER process examines the transaction chunks containing a group of
LCRs, possibly filtering out uninteresting transactions, and identifying
dependencies between different transactions.

■ The COORDINATOR process (LSP):

– Assigns transactions

– Monitors dependencies between transactions and coordinates scheduling

– Authorizes the commitment of changes to the logical standby database

■ The APPLIER processes:

– Applies the LCRs to the database

– Asks the COORDINATOR process to approve transactions with unresolved
dependencies

– Commits the transactions

You can query the V$LOGSTDBY_PROCESS view to examine the activity of the SQL
Apply processes. Another view that provides information about current activity is the
V$LOGSTDBY_STATS view that displays statistics, current state, and status
information for the logical standby database during SQL Apply activities. These and
other relevant views are discussed in more detail in Section 9.2, "Views Related to
Managing and Monitoring a Logical Standby Database".

9.1.1 Various Considerations for SQL Apply
This section contains the following topics:

■ Transaction Size Considerations

■ Pageout Considerations

■ Restart Considerations

■ DML Apply Considerations

■ DDL Apply Considerations

9.1.1.1 Transaction Size Considerations
SQL Apply categorizes transactions into two classes: small and large:

Overview of the SQL Apply Architecture

Managing a Logical Standby Database 9-3

■ Small transactions—SQL Apply starts applying LCRs belonging to a small
transaction once it has encountered the commit record for the transaction in the
redo log files.

■ Large transactions—SQL Apply breaks large transactions into smaller pieces
called transaction chunks, and starts applying the chunks before the commit record
for the large transaction is seen in the redo log files. This is done to reduce
memory pressure on the LCR cache and to reduce the overall failover time.

For example, without breaking into smaller pieces, a SQL*Loader load of ten
million rows, each 100 bytes in size, would use more than 1 GB of memory in the
LCR cache. If the memory allocated to the LCR cache was less than 1 GB, it would
result in pageouts from the LCR cache.

Apart from the memory considerations, if SQL Apply did not start applying the
changes related to the ten million row SQL*Loader load until it encountered the
COMMIT record for the transaction, it could stall a role transition. A switchover or a
failover that is initiated after the transaction commit cannot finish until SQL Apply
has applied the transaction on the logical standby database.

All transactions start out categorized as small transactions. Depending on the amount
of memory available for the LCR cache and the amount of memory consumed by
LCRs belonging to a transaction, SQL Apply determines when to recategorize a
transaction as a large transaction.

9.1.1.2 Pageout Considerations
Pageouts occur in the context of SQL Apply when memory in the LCR cache is
exhausted and space needs to be released for SQL Apply to make progress.

For example, assume the memory allocated to the LCR cache is 100 MB and SQL
Apply encounters an INSERT transaction to a table with a LONG column of size 300
MB. In this case, the log-mining component will page out the first part of the LONG
data to read the later part of the column modification. In a well-tuned logical standby
database, pageout activities will occur occasionally and should not effect the overall
throughput of the system.

9.1.1.3 Restart Considerations
Modifications made to the logical standby database do not become persistent until the
commit record of the transaction is mined from the redo log files and applied to the
logical standby database. Thus, every time SQL Apply is stopped, whether as a result
of a user directive or because of a system failure, SQL Apply must go back and mine
the earliest uncommitted transaction again.

In cases where a transaction does little work but remains open for a long period of
time, restarting SQL Apply is prohibitively costly. This is because SQL Apply may
have to mine a large number of archived redo log files again, just to read the redo data
for a few uncommitted transactions. To mitigate this, SQL Apply periodically
checkpoints old uncommitted data. The SCN at which the checkpoint is taken is
reflected in the RESTART_SCN column of V$LOGSTDBY_PROGRESS view.

Upon restarting, SQL Apply starts mining redo records that are generated at an SCN
greater than value shown by the RESTART_SCN column. Archived redo log files that
are not needed for restart are automatically deleted by SQL Apply.

See Also: See Section 9.4, "Customizing a Logical Standby Database"
for more information about how to identify problematic pageouts and
perform corrective actions

Views Related to Managing and Monitoring a Logical Standby Database

9-4 Oracle Data Guard Concepts and Administration

Certain workloads, such as large DDL transactions, parallel DML statements (PDML),
and direct-path loads, will prevent the RESTART_SCN from advancing for the duration
of the workload.

9.1.1.4 DML Apply Considerations
SQL Apply has the following characteristics when applying DML transactions that
affect the throughput and latency on the logical standby database:

■ Batch updates or deletes done on the primary database, where a single statement
results in multiple rows being modified, are applied as individual row
modifications on the logical standby database. Thus, it is imperative for each
maintained table to have a unique or a primary key. See Section 4.1.2, "Ensure
Table Rows in the Primary Database Can Be Uniquely Identified" for more
information.

■ Direct path inserts performed on the primary database are applied using a
conventional INSERT statement on the logical standby database.

■ Parallel DML (PDML) transactions are not executed in parallel on the logical
standby database.

9.1.1.5 DDL Apply Considerations
SQL Apply has the following characteristics when applying DDL transactions that
affect the throughput and latency on the logical standby database:

■ Parallel DDL (PDDL) transactions are not performed in parallel on a logical
standby database.

■ DDL transactions are applied serially on the logical standby database. Thus, DDL
transactions applied concurrently on the primary database are applied one at a
time on the logical standby database.

■ CREATE TABLE AS SELECT (CTAS) statements are executed such that the DML
activities (that are part of the CTAS statement) are suppressed on the logical
standby database. The rows inserted in the newly created table as part of the CTAS
statement are mined from the redo log files and applied to the logical standby
database using INSERT statements.

9.2 Views Related to Managing and Monitoring a Logical Standby
Database

The following performance views monitor the behavior of SQL Apply maintaining a
logical standby database. The following sections describe the key views that can be
used to monitor a logical standby database:

■ DBA_LOGSTDBY_EVENTS View

■ DBA_LOGSTDBY_LOG View

■ V$LOGSTDBY_STATS View

■ V$LOGSTDBY_PROCESS View

■ V$LOGSTDBY_PROGRESS View

■ V$LOGSTDBY_STATE View

■ V$LOGSTDBY_STATS View

Views Related to Managing and Monitoring a Logical Standby Database

Managing a Logical Standby Database 9-5

9.2.1 DBA_LOGSTDBY_EVENTS View
The DBA_LOGSTDBY_EVENTS view record interesting events that occurred during the
operation of SQL Apply. By default, the view records the most recent 100 events.
However, you can change the number of recorded events by calling DBMS_
LOGSTDBY.APPLY_SET() PL/SQL procedure. If SQL Apply should stop
unexpectedly, the reason for the problem is also recorded in this view.

The view also contains other information, such as which DDL transactions were
applied and which were skipped. For example:

SQL> ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YY HH24:MI:SS';
Session altered.
SQL> COLUMN STATUS FORMAT A60
SQL> SELECT EVENT_TIME, STATUS, EVENT FROM DBA_LOGSTDBY_EVENTS
 2 ORDER BY EVENT_TIMESTAMP, COMMIT_SCN;

EVENT_TIME STATUS
--
EVENT

23-JUL-02 18:20:12 ORA-16111: log mining and apply setting up
23-JUL-02 18:25:12 ORA-16128: User initiated shut down successfully completed
23-JUL-02 18:27:12 ORA-16112: log mining and apply stopping
23-JUL-02 18:55:12 ORA-16128: User initiated shut down successfully completed
23-JUL-02 18:57:09 ORA-16111: log mining and apply setting up
23-JUL-02 20:21:47 ORA-16204: DDL successfully applied
create table hr.test_emp (empno number, ename varchar2(64))
23-JUL-02 20:22:55 ORA-16205: DDL skipped due to skip setting
create database link link_to_boston connect to system identified by change_on_inst
7 rows selected.

This query shows that SQL Apply was started and stopped a few times. It also shows
what DDL was applied and skipped. If SQL Apply had stopped, the last record in the
query would have shown the cause of the problem.

9.2.2 DBA_LOGSTDBY_LOG View
The DBA_LOGSTDBY_LOG view provides dynamic information about archived logs
being processed by SQL Apply.

For example:

SQL> COLUMN DICT_BEGIN FORMAT A10;
SQL> SET NUMF 9999999
SQL> SELECT FILE_NAME, SEQUENCE# AS SEQ#, FIRST_CHANGE# AS FCHANGE#, -
 NEXT_CHANGE# AS NCHANGE#, TIMESTAMP, -
 DICT_BEGIN AS BEG, DICT_END AS END, -
 THREAD# AS THR# FROM DBA_LOGSTDBY_LOG -
 ORDER BY SEQUENCE#;

Note: Errors that cause SQL Apply to stop are recorded in the events
table These events are put into the ALERT.LOG file as well, with the
LOGSTDBY keyword included in the text. When querying the view,
select the columns in order by EVENT_TIME_STAMP, COMMIT_SCN,
and CURRENT_SCN. This ordering ensures a shutdown failure appears
last in the view.

See Also: DBA_LOGSTDBY_EVENTS view in Oracle Database Reference

Views Related to Managing and Monitoring a Logical Standby Database

9-6 Oracle Data Guard Concepts and Administration

FILE_NAME SEQ# F_SCN N_SCN TIMESTAM BEG END THR# APPLIED
------------------------- ---- ------- ------- -------- --- --- --- ---------
/oracle/dbs/hq_nyc_2.log 2 101579 101588 11:02:58 NO NO 1 YES
/oracle/dbs/hq_nyc_3.log 3 101588 142065 11:02:02 NO NO 1 YES
/oracle/dbs/hq_nyc_4.log 4 142065 142307 11:02:10 NO NO 1 YES
/oracle/dbs/hq_nyc_5.log 5 142307 142739 11:02:48 YES YES 1 YES
/oracle/dbs/hq_nyc_6.log 6 142739 143973 12:02:10 NO NO 1 YES
/oracle/dbs/hq_nyc_7.log 7 143973 144042 01:02:11 NO NO 1 YES
/oracle/dbs/hq_nyc_8.log 8 144042 144051 01:02:01 NO NO 1 YES
/oracle/dbs/hq_nyc_9.log 9 144051 144054 01:02:16 NO NO 1 YES
/oracle/dbs/hq_nyc_10.log 10 144054 144057 01:02:21 NO NO 1 YES
/oracle/dbs/hq_nyc_11.log 11 144057 144060 01:02:26 NO NO 1 CURRENT
/oracle/dbs/hq_nyc_12.log 12 144060 144089 01:02:30 NO NO 1 CURRENT
/oracle/dbs/hq_nyc_13.log 13 144089 144147 01:02:41 NO NO 1 NO

The YES entries in the BEG and END columns indicate that a LogMiner dictionary build
starts at log file sequence number 5. The most recent archived redo log file is sequence
number 13, and it was received at the logical standby database at 01:02:41.

The APPLIED column indicates that SQL Apply has applied all redo before SCN
144057. Since transactions can span multiple archived log files, multiple archived log
files may show the value CURRENT in the APPLIED column.

9.2.3 V$LOGSTDBY_STATS View
This view provides information related to the failover characteristics of the logical
standby database, including:

■ The time to failover (apply finish time)

■ How current is the committed data in the logical standby database (lag time)

■ What the potential data loss will be in the event of a disaster (potential data
loss).

For example:

SQL> SELECT NAME, VALUE, TIME_COMPUTED FROM V$LOGSTDBY_STATS;

NAME VALUE TIME_COMPUTED
------------------ -------------- ---------------------
apply finish time +00 00:00:00.1 07-APR-2005 08:29:23
lag time +00 00:00:00.1 07-APR-2005 08:29:23
potential data loss +00 00:00:00 07-APR-2005 08:29:23

The unit (metric) of each of the columns displayed is in day (2) to second (1) interval.
The output identifies a logical standby database that is caught up within 0.1 second of
the primary database, and no data loss will occur in the event of a primary failure.

9.2.4 V$LOGSTDBY_PROCESS View
This view provides information about the current state of the various processes
involved with SQL Apply, including;

■ Identifying information (sid | serial# | spid)

■ SQL Apply process: COORDINATOR, READER, BUILDER, PREPARER, ANALYZER, or
APPLIER (type)

See Also: DBA_LOGSTDBY_LOG view in Oracle Database Reference

See Also: V$LOGSTDBY_STATS view in Oracle Database Reference

Views Related to Managing and Monitoring a Logical Standby Database

Managing a Logical Standby Database 9-7

■ Status of the process’s current activity (status_code | status)

■ Highest redo record processed by this process (high_scn)

For example:

SQL> COLUMN LID FORMAT 9999
SQL> COLUMN SERIAL# FORMAT 9999
SQL> COLUMN SID FORMAT 9999
SQL> SELECT SID, SERIAL#, LOGSTDBY_ID AS LID, SPID, TYPE, HIGH_SCN FROM
V$LOGSTDBY_PROCESS;

 SID SERIAL# LID SPID TYPE HIGH_SCN
 ----- ------- ----- ------------ ---------------- ----------
 48 6 -1 11074 COORDINATOR 7178242899
 56 56 0 10858 READER 7178243497
 46 1 1 10860 BUILDER 7178242901
 45 1 2 10862 PREPARER 7178243295
 37 1 3 10864 ANALYZER 7178241034
 36 1 4 10866 APPLIER 7178239467
 35 3 5 10868 APPLIER 7178239463
 34 7 6 10870 APPLIER 7178239461
 33 1 7 10872 APPLIER 7178239472

9 rows selected.

The HIGH_SCN column shows that the reader process is ahead of all other processes,
and the PREPARER and BUILDER process ahead of the rest.

SQL> COLUMN STATUS FORMAT A40
SQL> SELECT TYPE, STATUS_CODE, STATUS FROM V$LOGSTDBY_PROCESS;

TYPE STATUS_CODE STATUS
---------------- ----------- ---
COORDINATOR 16117 ORA-16117: processing
READER 16127 ORA-16127: stalled waiting for additional
 transactions to be applied
BUILDER 16116 ORA-16116: no work available
PREPARER 16116 ORA-16117: processing
ANALYZER 16120 ORA-16120: dependencies being computed for
 transaction at SCN 0x0001.abdb440a
APPLIER 16124 ORA-16124: transaction 1 13 1427 is waiting
 on another transaction
APPLIER 16121 ORA-16121: applying transaction with commit
 SCN 0x0001.abdb4390
APPLIER 16123 ORA-16123: transaction 1 23 1231 is waiting
 for commit approval
APPLIER 16116 ORA-16116: no work available

The output shows a snapshot of SQL Apply running. On the mining side, the READER
process is waiting for additional memory to become available before it can read more,
the PREPARER process is processing redo records, and the BUILDER process has no
work available. On the apply side, the COORDINATOR is assigning more transactions to
APPLIER processes, the ANALYZER is computing dependencies at SCN 7178241034,
one APPLIER has no work available, while two have outstanding dependencies that
are not yet satisfied.

See Also: V$LOGSTDBY_PROCESS view in Oracle Database Reference
for reference information and Section 9.3.1, "Monitoring SQL Apply
Progress" for example output

Views Related to Managing and Monitoring a Logical Standby Database

9-8 Oracle Data Guard Concepts and Administration

9.2.5 V$LOGSTDBY_PROGRESS View
This view provides detailed information regarding progress made by SQL Apply,
including:

■ SCN or time at which all transactions that have been committed on the primary
database have been applied to the logical standby database (applied_scn |
applied_time)

■ SCN or time at which SQL Apply would begin reading redo records (restart_
scn | restart_time) on restart

■ SCN or time of the latest redo record received on the logical standby database
(latest_scn | latest_time)

■ SCN or time of the latest record processed by the BUILDER process (mining_scn
| mining_time)

For example:

SQL> SELECT APPLIED_SCN, LATEST_SCN, MINING_SCN, RESTART_SCN FROM V$LOGSTDBY_
PROGRESS;

APPLIED_SCN LATEST_SCN MINING_SCN RESTART_SCN
----------- ----------- ---------- -----------
 7178240496 7178240507 7178240507 7178219805

According to the output:

■ SQL Apply has applied all transactions committed on or before SCN of 7178240496

■ The latest redo record received at the logical standby database was generated at
SCN 7178240507

■ The mining component has processed all redo records generate on or before SCN
7178240507

■ If SQL Apply stops and restarts for any reason, it will start mining redo records
generated on or after SCN 7178219805

SQL> ALTER SESSION SET NLS_DATE_FORMAT='yy-mm-dd hh24:mi:ss';
Session altered

SQL> SELECT APPLIED_TIME, LATEST_TIME, MINING_TIME, RESTART_TIME FROM V$LOGSTDBY_
PROGRESS;

APPLIED_TIME LATEST_TIME MINING_TIME RESTART_TIME
----------------- ----------------- ----------------- -----------------
05-05-12 10:38:21 05-05-12 10:41:21 05-05-12 10:41:53 05-05-12 10:09:30

According to the output:

■ SQL Apply has applied all transactions committed on or before the time 05-05-12
10:38:21 (APPLIED_TIME)

■ The last redo was generated at time 05-05-12 10:41:53 at the primary database
(LATEST_TIME)

■ The mining engine has processed all redo records generated on or before 05-05-12
10:41:21 (MINING_TIME)

■ In the event of a restart, SQL Apply will start mining redo records generated after
the time 05-05-12 10:09:30

Views Related to Managing and Monitoring a Logical Standby Database

Managing a Logical Standby Database 9-9

9.2.6 V$LOGSTDBY_STATE View
This view provides a synopsis of the current state of SQL Apply, including:

■ The DBID of the primary database (primary_dbid).

■ The LogMiner session ID allocated to SQL Apply (session_id).

■ Whether or not SQL Apply is applying in real time (realtime_apply).

■ Where SQL Apply is currently with regard to loading the LogMiner
Multiversioned Data Dictionary (described in Section 4.2.3.2, "Build a Dictionary
in the Redo Data"), receiving redo from the primary database, and applying redo
data (STATE)

For example:

SQL> COLUMN REALTIME_APPLY FORMAT a15
SQL> COLUMN STATE FORMAT a16
SQL> SELECT * FROM V$LOGSTDBY_STATE;

PRIMARY_DBID SESSION_ID REALTIME_APPLY STATE
------------ ---------- --------------- ----------------
 1562626987 1 Y APPLYING

The output shows that SQL Apply is running in the real-time apply mode and is
currently applying redo data received from the primary database, the primary
database's DBID is 1562626987 and the LogMiner session identifier associated the SQL
Apply session is 1.

9.2.7 V$LOGSTDBY_STATS View
This view provides SQL Apply statistics.

For example:

SQL> COLUMN NAME FORMAT a32
SQL> COLUMN VALUE FORMAT a32
SQL> SELECT * FROM V$LOGSTDBY_STATS;

NAME VALUE
-------------------------------- --------------------------------
number of preparers 1
number of appliers 4
maximum SGA for LCR cache 30
parallel servers in use 8
maximum events recorded 1000
preserve commit order TRUE
record skip errors Y
record skip DDL Y
record applied DDL N
record unsupported operations N
coordinator state APPLYING
transactions ready 132412

See Also: V$DATAGUARD_PROGRESS view in Oracle Database
Reference for reference information and Section 9.3.1, "Monitoring SQL
Apply Progress" for example output

See Also: V$LOGSTDBY_STATE view in Oracle Database Reference for
reference information and Section 9.3.1, "Monitoring SQL Apply
Progress" for example output

Monitoring a Logical Standby Database

9-10 Oracle Data Guard Concepts and Administration

transactions applied 132118
coordinator uptime 132102
realtime logmining Y
apply delay 0
Log Miner session ID 1
bytes of redo processed 130142100140
txns delivered to client 131515
DML txns delivered 128
DDL txns delivered 23
CTAS txns delivered 0
Recursive txns delivered 874
Rolled back txns seen 40
LCRs delivered to client 2246414
bytes paged out 0
secs spent in pageout 0
bytes checkpointed 0
secs spent in checkpoint 0
bytes rolled back 0
secs spent in rollback 0
secs system is idle 2119

32 rows selected.

9.3 Monitoring a Logical Standby Database
This section contains the following topics:

■ Monitoring SQL Apply Progress

■ Automatic Deletion of Log Files

9.3.1 Monitoring SQL Apply Progress
SQL Apply can be in any of six states of progress: initializing SQL Apply, waiting for
dictionary logs, loading the LogMiner Multiversioned Data Dictionary, applying (redo
data), waiting for an archive gap to be resolved, and idle. Figure 9–2 shows the flow of
these states.

Figure 9–2 Progress States During SQL Apply Processing

See Also: V$LOGSTDBY_STATS view in Oracle Database Reference

Initializing

Applying

Loading
Dictionary

Waiting
for Gap

Idle

Waiting for Dictionary Logs

Monitoring a Logical Standby Database

Managing a Logical Standby Database 9-11

The following subsections describe each state in more detail.

Initializing State
When you start SQL Apply by issuing ALTER DATABASE START LOGICAL
STANDBY APPLY statement, it goes in the initializing state.

To determine the current state of SQL Apply, query the V$LOGSTDBY_STATE view.
For example:

SQL> SELECT SESSION_ID, STATE FROM V$LOGSTDBY_STATE;

SESSION_ID STATE
---------- -------------
1 INITIALIZING

The SESSION_ID column identifies the persistent LogMiner session created by SQL
Apply to mine the archived redo log files generated by the primary database.

Waiting for Dictionary Logs
The first time the SQL Apply is started, it needs to load the LogMiner MultiVersioned
Data Dictionary captured in the redo log files. SQL Apply will stay in the WAITING
FOR DICTIONARY LOGS state until it has received all redo data required to load the
LogMiner MultiVersioned Data Dictionary.

Loading Dictionary State
This loading dictionary state can persist for a while. Loading the LogMiner
multiversioned data dictionary on a large database can take a long time. Querying the
V$LOGSTDBY_STATE view returns the following output when loading the dictionary:

SQL> SELECT SESSION_ID, STATE FROM V$LOGSTDBY_STATE;

SESSION_ID STATE
---------- ------------------
1 LOADING DICTIONARY

Only the COORDINATOR process and the mining processes are spawned until the
LogMiner dictionary is fully loaded. Therefore, if you query the V$LOGSTDBY_
PROCESS at this point, you will not see any of the APPLIER processes. For example:

SQL> SELECT SID, SERIAL#, SPID, TYPE FROM V$LOGSTDBY_PROCESS;

SID SERIAL# SPID TYPE
------ --------- --------- ---------------------
47 3 11438 COORDINATOR
50 7 11334 READER
45 1 11336 BUILDER
44 2 11338 PREPARER
43 2 11340 PREPARER

You can get more detailed information about the progress in loading the dictionary by
querying the V$LOGMNR_DICTIONARY_LOAD view. The dictionary load happens in
three phases:

1. The relevant archived redo log files or standby redo logs files are mined to gather
the redo changes relevant to load the LogMiner multiversioned data dictionary.

2. The changes are processed and loaded in staging tables inside the database.

3. The LogMiner multiversioned data dictionary tables are loaded by issuing a series
of DDL statements.

Monitoring a Logical Standby Database

9-12 Oracle Data Guard Concepts and Administration

For example:

SQL> SELECT PERCENT_DONE, COMMAND
 FROM V$LOGMNR_DICTIONARY_LOAD
 WHERE SESSION_ID = (SELECT SESSION_ID FROM V$LOGSTDBY_STATE);

PERCENT_DONE COMMAND
------------- -------------------------------
40 alter table SYSTEM.LOGMNR_CCOL$ exchange partition
 P101 with table SYS.LOGMNRLT_101_CCOL$ excluding
 indexes without validation

If the PERCENT_DONE or the COMMAND column does not change for a long time, query
the V$SESSION_LONGOPS view to monitor the progress of the DDL transaction in
question.

Applying State
In this state, SQL Apply has successfully loaded the initial snapshot of the LogMiner
multiversioned data dictionary, and is currently applying redo data to the logical
standby database.

For detailed information about the SQL Apply progress, query the V$LOGSTDBY_
PROGRESS view:

SQL> ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YYYY HH24:MI:SS';
SQL> SELECT APPLIED_TIME, APPLIED_SCN, MINING_TIME, MINING_SCN,
 FROM V$LOGSTDBY_PROGRESS;

APPLIED_TIME APPLIED_SCN MINING_TIME MINING_SCN
-------------------- ----------- -------------------- -----------
10-JAN-2005 12:00:05 346791023 10-JAN-2005 12:10:05 3468810134

All committed transactions seen at or before APPLIED_SCN (or APPLIED_TIME) on
the primary database have been applied to the logical standby database. The mining
engine has processed all redo records generated at or before MINING_SCN (and
MINING_TIME) on the primary database. At steady state, the value of MINING_SCN
(and MINING_TIME) will always be ahead of APPLIED_SCN (and APPLIED_TIME).

Waiting On Gap State
This state occurs when SQL Apply has mined and applied all available redo records,
and is waiting for a new log file (or a missing log file) to be archived by the RFS
process.

SQL> SELECT STATUS FROM V$LOGSTBDY_PROCESS WHERE TYPE = 'READER';

STATUS
--
ORA:01291 Waiting for logfile

Idle State
SQL Apply enters this state once it has applied all redo generated by the primary
database.

9.3.2 Automatic Deletion of Log Files
SQL Apply automatically deletes archived redo log files when they are no longer
needed.

This behavior can be overridden by executing the following PL/SQL procedure:

Customizing a Logical Standby Database

Managing a Logical Standby Database 9-13

SQL> EXECUTE DBMS_LOGSTDBY.APPLY_SET('LOG_AUTO_DELETE', FALSE);

Although SQL Apply automatically deletes archived redo log files when they are no
longer needed on the logical standby database, there may be times when you want to
manually remove them (for example, to reclaim disk space).

If you are overriding the default automatic log deletion capability, perform the
following steps to identify and delete archived redo log files that are no longer needed
by SQL Apply:

1. To purge the logical standby session of metadata that is no longer needed, enter
the following PL/SQL statement:

SQL> EXECUTE DBMS_LOGSTDBY.PURGE_SESSION;

This statement also updates the DBA_LOGMNR_PURGED_LOG view that displays
the archived redo log files that are no longer needed.

2. Query the DBA_LOGMNR_PURGED_LOG view to list the archived redo log files that
can be removed:

SQL> SELECT * FROM DBA_LOGMNR_PURGED_LOG;

 FILE_NAME

 /boston/arc_dest/arc_1_40_509538672.log
 /boston/arc_dest/arc_1_41_509538672.log
 /boston/arc_dest/arc_1_42_509538672.log
 /boston/arc_dest/arc_1_43_509538672.log
 /boston/arc_dest/arc_1_44_509538672.log
 /boston/arc_dest/arc_1_45_509538672.log
 /boston/arc_dest/arc_1_46_509538672.log
 /boston/arc_dest/arc_1_47_509538672.log

3. Use an operating system-specific command to delete the archived redo log files
listed by the query.

9.4 Customizing a Logical Standby Database
This section contains the following topics:

Note: By default, SQL Apply will delete archived redo log files that
it no longer needs. If you flash back the logical standby database, it
may bring the logical standby database to a state, where an archived
redo log file is present in SQL Apply metadata (as reflected in the
DBA_LOGSTDBY_LOGS view) but absent in the file system. An attempt
to restart SQL Apply following a Flashback Database operation may
fail with the following error in the alert log:

Errors in file /home/oracle/DGR2/logical/stdl/bdump/stdl_lsp0_
11310.trc:
ORA-00308: cannot open archived log
'/home/oracle/DGR2/logical/stdl/stlog/1_15_559399019.dbf'
ORA-27037: unable to obtain file status

You need to copy the archived redo log files that have been deleted by
the automatic deletion policy to the appropriate directory and restart
SQL Apply.

Customizing a Logical Standby Database

9-14 Oracle Data Guard Concepts and Administration

■ Using Real-Time Apply On the Logical Standby Database

■ Customizing Logging of Events in the DBA_LOGSTDBY_EVENTS View

■ Using DBMS_LOGSTDBY.SKIP to Prevent Changes to Specific Schema Objects

■ Setting up a Skip Handler for a DDL Statement

■ Modifying a Logical Standby Database

■ Adding or Re-Creating Tables On a Logical Standby Database

9.4.1 Using Real-Time Apply On the Logical Standby Database
By default, Data Guard waits for the full archived redo log file to arrive on the standby
database before applying it to the standby database. However, if you have configured
a standby redo log on the standby database, you can optionally enable real-time apply.
With real-time apply enabled, SQL Apply applies redo data from standby redo log
files at the same time the log files are being written to, as opposed to applying from an
archived redo log file after a log switch occurs. Immediately applying standby redo log
files in this manner keeps the logical standby database closely caught up with the
primary database, without requiring the standby redo log files to be archived at the
standby site. This can result in quicker switchovers and failovers.

To start real-time apply on the logical standby database, issue the following statement:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

Oracle recommends that you run SQL Apply in the real-time apply mode. See also
Section 3.1.3, "Configure a Standby Redo Log" for more information about configuring
a standby redo log.

9.4.2 Customizing Logging of Events in the DBA_LOGSTDBY_EVENTS View
The DBA_LOGSTDBY_EVENTS view can be thought of as a circular log containing the
most recent interesting events that occurred in the context of SQL Apply. By default
the last 100 events are remembered in the event view. You can change the number of
events logged by invoking the DBMS_LOGSTDBY.APPLY_SET procedure. For
example, to ensure that the last 10,000 events are recorded, you can issue the following
statement:

SQL> EXECUTE DBMS_LOGSTDBY.APPLY_SET ('MAX_EVENTS_RECORDED', '10000');

Additionally, you can specify what types of events are recorded in the view. For
example, to record applied DDL transactions to the DBA_LOGSTDBY_EVENTS view,
issue the following statement:

SQL> EXECUTE DBMS_LOGSTDBY.APPLY_SET ('RECORD_APPLIED_DDL', 'TRUE');

See Also: The DBMS_LOGSTDBY package in Oracle Database PL/SQL
Packages and Types Reference

Note: In Oracle Database 10g release 1 (10.1), the DBMS_
LOGSTDBY.MAX_EVENTS constant was called DBMS_LOGSTDBY_
PUBLIC.MAX_EVENTS. The effect of the two constants is the same,
but in release 2 (10.2) the DBMS_LOGSTDBY_PUBLIC package has been
eliminated and the definition of the constant moved to the DBMS_
LOGSTDBY package.

Customizing a Logical Standby Database

Managing a Logical Standby Database 9-15

Errors that cause SQL Apply to stop are always recorded in the events view (unless
there is insufficient space in the system tablespace). These events are always put into
the ALERT.LOG file as well, with the keyword LOGSTDBY included in the text. When
querying the view, select the columns in order by EVENT_TIME, COMMIT_SCN, and
CURRENT_SCN. This ordering ensures a shutdown failure appears last in the view.

9.4.3 Using DBMS_LOGSTDBY.SKIP to Prevent Changes to Specific Schema Objects
By default, all supported tables in the primary database are replicated in the logical
standby database. You can change the default behavior by specifying rules to skip
applying modifications to specific tables. For example, to omit changes to the
HR.EMPLOYEES table, you can specify rules to prevent application of DML and DDL
changes to the specific table. For example:

1. Stop SQL Apply:

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;

2. Register the SKIP rules:

SQL> EXECUTE DBMS_LOGSTDBY.SKIP (stmt => 'DML', schema_name => 'HR', -
 object_name => 'EMPLOYEES', proc_name => null);
SQL> EXECUTE DBMS_LOGSTDBY.SKIP (stmt => 'SCHEMA_DDL', schema_name => 'HR', -
 object_name => 'EMPLOYEES', proc_name => null);

3. Start SQL Apply:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

9.4.4 Setting up a Skip Handler for a DDL Statement
You can create a procedure to intercept certain DDL statements and replace the
original DDL statement with a different one. For example, if the file system
organization in the logical standby database is different than that in the primary
database, you can write a DBMS_LOGSTDBY.SKIP procedure to transparently handle
DDL transactions with file specifications.

The following procedure can handle different file system organization between the
primary database and standby database, as long as you use a specific naming
convention for your file-specification string.

1. Create the skip procedure to handle tablespace DDL transactions:

CREATE OR REPLACE PROCEDURE SYS.HANDLE_TBS_DDL (
 OLD_STMT IN VARCHAR2,
 STMT_TYP IN VARCHAR2,
 SCHEMA IN VARCHAR2,
 NAME IN VARCHAR2,
 XIDUSN IN NUMBER,
 XIDSLT IN NUMBER,
 XIDSQN IN NUMBER,
 ACTION OUT NUMBER,
 NEW_STMT OUT VARCHAR2
) AS
BEGIN

-- All primary file specification that contains a directory
-- /usr/orcl/primary/dbs
-- should go to /usr/orcl/stdby directory specification

Customizing a Logical Standby Database

9-16 Oracle Data Guard Concepts and Administration

 NEW_STMT = REPLACE(OLD_STMT,
 '/usr/orcl/primary/dbs',
 '/usr/orcl/stdby');

 ACTION := DBMS_LOGSTDBY.SKIP_ACTION_REPLACE;

EXCEPTION
 WHEN OTHERS THEN
 ACTION := DBMS_LOGSTDBY.SKIP_ACTION_ERROR;
 NEW_STMT := NULL;
END HANDLE_TBS_DDL;

2. Stop SQL Apply:

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;

3. Register the skip procedure with SQL Apply:

SQL> EXECUTE DBMS_LOGSTDBY.SKIP (stmt => 'TABLESPACE', -
 proc_name => 'sys.handle_tbs_ddl');

4. Start SQL Apply:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

9.4.5 Modifying a Logical Standby Database
Logical standby database can be used for reporting activities, even while SQL
statements are being applied. The database guard controls user access to tables in a
logical standby database, and the ALTER SESSION DATABASE DISABLE GUARD
statement is used to bypass the database guard and allow modifications to the tables
in the logical standby database.

By default, a logical standby database operates with the database guard set to ALL,
which is its most restrictive setting, and does not allow any user changes to be
performed to the database. You can override the database guard to allow changes to
the logical standby database by executing the ALTER SESSION DISABLE GUARD
statement. Privileged users can issue this statement to turn the database guard off for
the current session.

The following sections provide some examples. The discussions in these sections
assume that the database guard is set to ALL or STANDBY.

9.4.5.1 Performing DDL on a Logical Standby Database
This section describes how to add a constraint to a table maintained through SQL
Apply.

By default, only accounts with SYS privileges can modify the database while the
database guard is set to ALL or STANDBY. If you are logged in as SYSTEM or another
privileged account, you will not be able to issue DDL statements on the logical
standby database without first bypassing the database guard for the session.

The following example shows how to stop SQL Apply, bypass the database guard,
execute SQL statements on the logical standby database, and then reenable the guard:

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;
Database altered.

SQL> ALTER SESSION DISABLE GUARD;
PL/SQL procedure successfully completed.

Customizing a Logical Standby Database

Managing a Logical Standby Database 9-17

SQL> ALTER TABLE SCOTT.EMP ADD CONSTRAINT EMPID UNIQUE (EMPNO);
Table altered.

SQL> ALTER SESSION ENABLE GUARD;
PL/SQL procedure successfully completed.

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY;
Database altered.

Oracle recommends that you do not perform DML operations on tables maintained by
SQL Apply while the database guard bypass is enabled. This will introduce deviations
between the primary and standby databases that will make it impossible for the logical
standby database to be maintained.

9.4.5.2 Modifying Tables That Are Not Maintained by SQL Apply
Sometimes, a reporting application must collect summary results and store them
temporarily or track the number of times a report was run. Although the main
purpose of the application is to perform reporting activities, the application might
need to issue DML (insert, update, and delete) operations on a logical standby
database. It might even need to create or drop tables.

You can set up the database guard to allow reporting operations to modify data as
long as the data is not being maintained through SQL Apply. To do this, you must:

■ Specify the set of tables on the logical standby database to which an application
can write data by executing the DBMS_LOGSTDBY.SKIP procedure. Skipped tables
are not maintained through SQL Apply.

■ Set the database guard to protect only standby tables.

In the following example, it is assumed that the tables to which the report is writing
are also on the primary database.

The example stops SQL Apply, skips the tables, and then restarts SQL Apply so that
changes can be applied to the logical standby database. The reporting application will
be able to write to MYTABLES% in MYSCHEMA. They will no longer be maintained
through SQL Apply.

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;
Database altered.

SQL> EXECUTE DBMS_LOGSTDBY.SKIP(stmt => 'SCHEMA_DDL',-
 schema_name => 'HR', -
 object_name => 'TESTEMP%');
PL/SQL procedure successfully completed.

SQL> EXECUTE DBMS_LOGSTDBY.SKIP('DML','HR','TESTEMP%');
PL/SQL procedure successfully completed.

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;
Database altered.

Once SQL Apply starts, it needs to update metadata on the standby database for the
newly specified tables added in the skip rules. Attempts to modify the newly skipped
table until SQL Apply has had a chance to update the metadata will fail. You can find
out if SQL Apply has successfully taken into account the SKIP rule you just added by
issuing the following query:

SQL> SELECT VALUE FROM DBA_LOGSDTBY_PARAMETERS
 WHERE NAME = 'GUARD_STANDBY';

Customizing a Logical Standby Database

9-18 Oracle Data Guard Concepts and Administration

VALUE

Ready

Once the VALUE column displays "Ready" SQL Apply has successfully updated all
relevant metadata for the skipped table, and it is safe to modify the table.

9.4.6 Adding or Re-Creating Tables On a Logical Standby Database
Typically, you use table instantiation to re-create a table after an unrecoverable
operation. You can also use the procedure to enable SQL Apply on a table that was
formerly skipped.

Before you can create a table, it must meet the requirements described in Section 4.1.2,
"Ensure Table Rows in the Primary Database Can Be Uniquely Identified". Then, you
can use the following steps to re-create a table named HR.EMPLOYEES and resume
SQL Apply. The directions assume that there is already a database link BOSTON
defined to access the primary database.

The following list shows how to re-create a table and restart SQL Apply on that table:

1. Stop SQL Apply:

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;

2. Ensure no operations are being skipped for the table in question by querying the
DBA_LOGSTDBY_SKIP view:

SQL> SELECT * FROM DBA_LOGSTDBY_SKIP;
ERROR STATEMENT_OPT OWNER NAME PROC
----- ------------------- ------------- ---------------- -----
N SCHEMA_DDL HR EMPLOYEES
N DML HR EMPLOYEES
N SCHEMA_DDL OE TEST_ORDER
N DML OE TEST_ORDER

Because you already have skip rules associated with the table that you want to
re-create on the logical standby database, you must first delete those rules. You can
accomplish that by calling the DBMS_LOGSTDBY.UNSKIP procedure. For example:

SQL> EXECUTE DBMS_LOGSTDBY.UNSKIP(stmt => 'DML', -
 schema_name => 'HR', -
 object_name => 'EMPLOYEES');
SQL> EXECUTE DBMS_LOGSTDBY.UNSKIP(stmt => 'SCHEMA_DDL', -
 schema_name => 'HR', -
 object_name => 'EMPLOYEES');

3. Re-create the table HR.EMPLOYEES with all its data in the logical standby database
by using the DBMS_LOGSTDBY.INSTANTIATE_TABLE procedure. For example:

SQL> EXECUTE DBMS_LOGSTDBY.INSTANTIATE_TABLE(shema_name => 'HR', -
 object-+_name => 'EMPLOYEES', -
 dblink => 'BOSTON');

4. Start SQL Apply:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

See Also: Section C.6, "DDL Statements Supported by a Logical
Standby Database" and the DBMS_LOGSTDBY package in Oracle
Database PL/SQL Packages and Types Reference

Managing Specific Workloads In the Context of a Logical Standby Database

Managing a Logical Standby Database 9-19

To ensure a consistent view across the newly instantiated table and the rest of the
database, wait for SQL Apply to catch up with the primary database before querying
this table. You can do this by performing the following steps:

1. On the primary database, determine the current SCN by querying the
V$DATABASE view:

SQL> SELECT CURRENT_SCN FROM V$DATABASE@BOSTON;
CURRENT_SCN

345162788

2. Make sure SQL Apply has applied all transactions committed before the
CURRENT_SCN returned in the previous query:

SQL> SELECT APPLIED_SCN FROM V$LOGSTDBY_PROGRESS;

APPLIED_SCN

345161345

When the APPLIED_SCN returned in this query is greater than the CURRENT_SCN
returned in the first query, it is safe to query the newly re-created table.

9.5 Managing Specific Workloads In the Context of a Logical Standby
Database

This section contains the following topics:

■ Importing a Transportable Tablespace to the Primary Database

■ Using Materialized Views

■ How Triggers and Constraints Are Handled on a Logical Standby Database

■ Recovering Through the OPEN RESETLOGS Statement

9.5.1 Importing a Transportable Tablespace to the Primary Database
Perform the following steps to import a tablespace to the primary database.

1. Disable the guard setting so that you can modify the logical standby database:

SQL> ALTER SESSION DISABLE GUARD;

2. Import the tablespace at the logical standby database.

3. Enable the database guard setting (or disconnect from the session):

SQL> ALTER SESSION ENABLE GUARD;

4. Import the tablespace at the primary database.

See Also: Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_LOGSTDBY.UNSKIP and the DBMS_
LOGSTDBY.INSTANTIATE_TABLE procedures

Managing Specific Workloads In the Context of a Logical Standby Database

9-20 Oracle Data Guard Concepts and Administration

9.5.2 Using Materialized Views
SQL Apply does not support these DDL statements related to materialized views:

■ CREATE, ALTER, or DROP MATERIALIZED VIEW

■ CREATE, ALTER, or DROP MATERIALIZED VIEW LOG

Thus, new materialized views that have been created, altered, or dropped on the
primary database after the logical standby database has been created are not reflected
on the logical standby database. However, materialized views created on the primary
database before the logical standby database has been created are also present on the
logical standby database.

■ For materialized views that exist on both the primary and logical standby
databases, an ON-COMMIT materialized view is refreshed on the logical standby
database when the transaction commit occurs.

An ON-DEMAND materialized view is not automatically refreshed by SQL Apply.
You must execute the DBMS_MVIEW.REFRESH procedure to refresh it. For
example, to refresh an ON-DEMAND materialized view named HR.DEPARTMENTS_
MV on a logical standby database using the fast refresh method, issue the following
command:

SQL> EXECUTE DBMS_MVIEW.REFRESH (-
 LIST => 'HR.DEPARTMENTS_MV', -
 METHOD => 'F');

■ Additional ON-COMMIT materialized views created on the logical standby
database are automatically maintained.

■ Additional ON-DEMAND materialized views created on the logical standby
database are not maintained by SQL Apply, and you must refresh these using the
DBMS_MVIEW.REFRESH procedure.

9.5.3 How Triggers and Constraints Are Handled on a Logical Standby Database
By default, triggers and constraints are automatically enabled and handled on logical
standby databases.

For triggers and constraints on tables maintained by SQL Apply:

■ Constraints — Check constraints are evaluated on the primary database and do
not need to be re-evaluated on the logical standby database

■ Triggers — The effects of the triggers executed on the primary database are logged
and applied on the standby database

For triggers and constraints on tables not maintained by SQL Apply:

■ Constraints are evaluated

■ Triggers are fired

9.5.4 Recovering Through the OPEN RESETLOGS Statement
When a logical standby database receives a new branch of redo data, SQL Apply
automatically takes the new branch of redo data. For logical standby databases, no
manual intervention is required if the standby database did not apply redo data past
the new resetlogs SCN (past the start of the new branch of redo data). The following
table describes how to resynchronize the standby database with the primary database
branch.

Tuning a Logical Standby Database

Managing a Logical Standby Database 9-21

See Oracle Database Backup and Recovery Advanced User's Guide for more information
about database incarnations, recovering through an OPEN RESETLOGS operation, and
Flashback Database.

9.6 Tuning a Logical Standby Database
This section contains the following topics:

■ Create a Primary Key RELY Constraint

■ Gather Statistics for the Cost-Based Optimizer

■ Adjust the Number of Processes

■ Adjust the Memory Used for LCR Cache

■ Adjust How Transactions are Applied On the Logical Standby Database

9.6.1 Create a Primary Key RELY Constraint
On the primary database, if a table does not have a primary key or a unique index and
you are certain the rows are unique, then create a primary key RELY constraint. On the
logical standby database, create an index on the columns that make up the primary
key. The following query generates a list of tables with no index information that can
be used by a logical standby database to apply to uniquely identify rows. By creating
an index on the following tables, performance can be improved significantly.

SQL> SELECT OWNER, TABLE_NAME FROM DBA_TABLES
 2> WHERE OWNER NOT IN('SYS','SYSTEM','OUTLN','DBSNMP')
 3> MINUS
 3> SELECT DISTINCT TABLE_OWNER, TABLE_NAME FROM DBA_INDEXES

If the standby database. . . Then. . . Perform these steps. . .

Has not applied redo data past the
new resetlogs SCN (past the start of
the new branch of redo data)

SQL Apply automatically
takes the new branch of redo
data.

No manual intervention is necessary. SQL
Apply automatically resynchronizes the
standby database with the new branch of
redo data.

Has applied redo data past the new
resetlogs SCN (past the start of the
new branch of redo data) and
Flashback Database is enabled on
the standby database

The standby database is
recovered in the future of the
new branch of redo data.

1. Follow the procedure in Section 12.5.2,
"Flash Back a Logical Standby Database
After Flashing Back the Primary" to flash
back a logical standby database.

2. Restart SQL Apply to continue
application of redo onto the new reset
logs branch.

SQL Apply automatically resynchronizes the
standby database with the new branch.

Has applied redo data past the new
resetlogs SCN (past the start of the
new branch of redo data) and
Flashback Database is not enabled
on the standby database

The primary database has
diverged from the standby
on the indicated primary
database branch.

Re-create the logical standby database
following the procedures in Chapter 4,
"Creating a Logical Standby Database".

Is missing intervening archived
redo log files from the new branch
of redo data

SQL Apply cannot continue
until the missing log files are
retrieved.

Locate and register missing archived redo log
files from each branch.

Is missing archived redo log files
from the end of the previous
branch of redo data

SQL Apply cannot continue
until the missing log files are
retrieved.

Locate and register missing archived redo log
files from the previous branch.

Tuning a Logical Standby Database

9-22 Oracle Data Guard Concepts and Administration

 4> WHERE INDEX_TYPE NOT LIKE ('FUNCTION-BASED%')
 5> MINUS
 6> SELECT OWNER, TABLE_NAME FROM DBA_LOGSTDBY_UNSUPPORTED;

You can add a rely primary key constraint to a table on the primary database, as
follows:

1. Add the primary key rely constraint at the primary database

SQL> ALTER TABLE HR.TEST_EMPLOYEES ADD PRIMARY KEY (EMPNO) RELY DISABLE;
SQL> ALTER SESSION DISABLE GUARD;

This will ensure that the EMPNO column, which can be used to uniquely identify
the rows in HR.TEST_EMPLOYEES table, will be supplementally logged as part of
any updates done on that table.

Note that the HR.TEST_EMPLOYEES table still does not have any unique index
specified on the logical standby database. This may cause UPDATE statements to
do full table scans on the logical standby database. You can remedy that by adding
a unique index on the EMPNO column on the logical standby database.

See Section 4.1.2, "Ensure Table Rows in the Primary Database Can Be Uniquely
Identified" and Oracle Database SQL Reference for more information about RELY
constraints.

2. Stop SQL Apply:

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;

3. Disable the guard so that you can modify a maintained table on the logical
standby database:

SQL> ALTER SESSION DISABLE GUARD;

4. Add a unique index on EMPNO column:

SQL> CREATE UNIQUE INDEX UI_TEST_EMP ON HR.TEST_EMPLOYEES (EMPNO);

5. Enable the guard:

SQL> ALTER SESSION ENABLE GUARD;

6. Start SQL Apply:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

9.6.2 Gather Statistics for the Cost-Based Optimizer
Statistics should be gathered on the standby database because the cost-based optimizer
(CBO) uses them to determine the optimal query execution path. New statistics should
be gathered after the data or structure of a schema object is modified in ways that
make the previous statistics inaccurate. For example, after inserting or deleting a
significant number of rows into a table, collect new statistics on the number of rows.

Statistics should be gathered on the standby database because DML and DDL
operations on the primary database are executed as a function of the workload. While
the standby database is logically equivalent to the primary database, SQL Apply might
execute the workload in a different way. This is why using the STATS pack on the
logical standby database and the V$SYSSTAT view can be useful in determining which
tables are consuming the most resources and table scans.

Tuning a Logical Standby Database

Managing a Logical Standby Database 9-23

9.6.3 Adjust the Number of Processes
The following sections describe:

■ Adjusting the Number of APPLIER Processes

■ Adjusting the Number of PREPARER Processes

9.6.3.1 Adjusting the Number of APPLIER Processes
Perform the following steps to find out whether adjusting the number of APPLIER
processes will help you achieve greater throughput:

1. Determine if APPLIER processes are busy by issuing the following query:

SQL> SELECT COUNT(*) AS IDLE_APPLIER
 FROM V$LOGSTDBY_PROCESS
 WHERE TYPE = 'APPLIER' and status_code = 16166;

IDLE_APPLIER

0

2. Once you are sure there are no idle APPLIER processes, issue the following query
to ensure there is enough work available for additional APPLIER processes if you
choose to adjust the number of APPLIERS:

SQL> SELECT NAME, VALUE FROM V$LOGSTDBY_STATS
 WHERE NAME LIKE 'TRANSACTIONS%';

NAME VALUE
--------------------- -------
transactions ready 27896
transactions applied 25671

These two statistics keep a cumulative total of transactions that are ready to be
applied by the APPLIER processes and the number of transactions that have
already been applied.

If the number (transactions ready - transactions applied) is higher
than twice the number of APPLIER processes available, an improvement in
throughput is possible if you increase the number of APPLIER processes.

To adjust the number of APPLIER processes to 20 from the default value of 5,
perform the following steps:

a. Stop SQL Apply:

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;

See Also: Section 4.1.2, "Ensure Table Rows in the Primary
Database Can Be Uniquely Identified" and Oracle Database SQL
Reference for more information about RELY constraints

Note: The number is a rough measure of ready work. The workload
may be such that an interdependency between ready transactions will
prevent additional available APPLIER processes from applying them.
For instance, if the majority of the transactions that are ready to be
applied are DDL transactions, adding more APPLIER processes will
not result in a higher throughput.

Tuning a Logical Standby Database

9-24 Oracle Data Guard Concepts and Administration

Database altered

b. Set the number of APPLY_SERVERS to 20:

SQL> EXECUTE DBMS_LOGSTDBY.APPLY_SET('APPLY_SERVERS', 20);
PL/SQL procedure successfully completed

c. Start SQL Apply:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;
Database altered

9.6.3.2 Adjusting the Number of PREPARER Processes
In only rare cases do you need to adjust the number of PREPARER processes. Before
you decide to increase the number of PREPARER processes, ensure the following
conditions are true:

■ All PREPARER processes are busy

■ The number of transactions ready to be applied is less than the number of
APPLIER processes available

■ There are idle APPLIER processes

The following steps show how to determine these conditions are true:

1. Ensure all PREPARER processes are busy:

SQL> SELECT COUNT(*) AS IDLE_PREPARER
 FROM V$LOGSTDBY_PROCESS
 WHERE TYPE = 'PREPARER' and status_code = 16166;
IDLE_PREPARER

0

2. Ensure the number of transactions ready to be applied is less than the number of
APPLIER processes:

SQL> SELECT NAME, VALUE FROM V$LOGSTDBY_STATS
 WHERE NAME LIKE 'transactions%';
NAME VALUE
--------------------- -------
transactions ready 27896
transactions applied 27892

SQL> SELECT COUNT(*) AS APPLIER_COUNT
 FROM V$LOGSTDBY_PROCESS WHERE TYPE = 'APPLIER';
APPLIER_COUNT

20

Note: Issue this query several times to ensure this is not a transient event.

3. Ensure there are idle APPLIER processes:

SQL> SELECT COUNT(*) AS IDLE_APPLIER
 FROM V$LOGSTDBY_PROCESS
 WHERE TYPE = 'APPLIER' and status_code = 16166;
IDLE_APPLIER

19

Tuning a Logical Standby Database

Managing a Logical Standby Database 9-25

In the example, all conditions have been satisfied. Therefore, you can now increase the
number of PREPARER processes to 4 (from the default value of 1), by performing the
following steps:

1. Stop SQL Apply:

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;
Database altered

2. Set the number of PREPARE_SERVERS to 4:

SQL> EXECUTE DBMS_LOGSTDBY.APPLY_SET('PREPARE_SERVERS', 4);
PL/SQL procedure successfully completed

3. Start SQL Apply:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;
Database altered

9.6.4 Adjust the Memory Used for LCR Cache
For some workloads, SQL Apply may use a large number of pageout operations,
thereby reducing the overall throughput of the system. To find out whether increasing
memory allocated to LCR cache will be beneficial, perform the following steps:

1. Issue the following query to obtain a snapshot of pageout activity:

SQL> SELECT NAME, VALUE FROM V$LOGSTDBY_STATS
 WHERE NAME LIKE '%PAGE%' OR
 NAME LIKE '%UPTIME%' OR NAME LIKE '%idle%';
NAME VALUE
-------------------------- ---------------
coordinator uptime in secs 894856
bytes paged out 20000
seconds spent in pageout 2
system idle time in secs 1000

2. Issue the query again in 5 minutes:

SQL> SELECT NAME, VALUE FROM V$LOGSTDBY_STATS
 WHERE NAME LIKE '%PAGE%' OR
 NAME LIKE '%UPTIME%' OR NAME LIKE '%idle%';
NAME VALUE
-------------------------- ---------------
coordinator uptime in secs 895156
bytes paged out 1020000
seconds spent in pageout 100
system idle time in secs 1000

3. Compute the normalized pageout activity. For example:

Change in coordinator uptime (C)= (895156 – 894856) = 300 secs
Amount of additional idle time (I)= (1000 – 1000) = 0
Change in time spent in pageout (P) = (100 – 2) = 98 secs
Pageout time in comparison to uptime = P/(C-I) = 98/300 ~ 32.67%

Ideally, the pageout activity should not consume more than 5 percent of the total
uptime. If you continue to take snapshots over an extended interval and you find the
pageout activities continue to consume a significant portion of the apply time,
increasing the memory size may provide some benefits. You can increase the memory
allocated to SQL Apply by performing the following steps:

Tuning a Logical Standby Database

9-26 Oracle Data Guard Concepts and Administration

1. Stop SQL Apply:

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;
Database altered

2. Set the memory allocated to LCR cache (for this example, the SGA is set to 1 GB):

SQL> EXECUTE DBMS_LOGSTDBY.APPLY_SET('MAX_SGA', 1024);
PL/SQL procedure successfully completed

Because the MAX_SGA is specified in megabytes (MB), increasing the memory to 1
GB is specified as 1024 (MB) in the example.

3. Start SQL Apply:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;
Database altered

9.6.5 Adjust How Transactions are Applied On the Logical Standby Database
By default transactions are applied on the logical standby database in the exact order
in which they were committed on the primary database. The default order of
committing transactions allow any reporting application to run transparently on the
logical standby database. However, there are times (such as after a prolonged outage
of the logical standby database due to hardware failure or upgrade) when you want
the logical standby database to catch up with the primary database, and can tolerate
not running the reporting applications for a while. In this case, you can change the
default apply mode by performing the following steps:

1. Stop SQL Apply:

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;
Database altered

2. Issue the following to allow transactions to be applied out of order from how they
were committed on the primary databases:

SQL> EXECUTE DBMS_LOGSTDBY.APPLY_SET('PRESERVE_COMMIT_ORDER', 'FALSE');
PL/SQL procedure successfully completed

3. Start SQL Apply:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;
Database altered

Once you have caught up with the primary database (verify this by querying the
V$LOGSTDBY_STATS view), and you are ready to open the logical standby database
for reporting applications, you can change the apply mode as follows:

1. Stop SQL Apply:

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;
Database altered

2. Restore the default value for the PRESERVE_COMMIT_ORDER parameter:

SQL> EXECUTE DBMS_LOGSTDBY.APPLY_UNSET('PRESERVE_COMMIT_ORDER');
PL/SQL procedure successfully completed

3. Start SQL Apply:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;
Database altered

Tuning a Logical Standby Database

Managing a Logical Standby Database 9-27

For a typical online transaction processing (OLTP) workload, the nondefault mode can
provide a 50 percent or better throughput improvement over the default apply mode.

Tuning a Logical Standby Database

9-28 Oracle Data Guard Concepts and Administration

Using RMAN to Back Up and Restore Files 10-1

10
Using RMAN to Back Up and Restore Files

This chapter describes backup strategies using Oracle Recovery Manager utility
(RMAN) with Data Guard and standby databases. RMAN can perform backups with
minimal effect on the primary database and quickly recover from the loss of individual
datafiles, or the entire database. RMAN and Data Guard can be used together to
simplify the administration of a Data Guard configuration.

This chapter contains the following topics:

■ Backup Procedure

■ Effect of Switchovers, Failovers, and Control File Creation on Backups

■ Additional Backup Situations

10.1 Backup Procedure
In a standby environment, backing up datafiles and archived redo log files taken on
the primary or standby system are usable on either system for recovery. Although
some files such as the control file and SPFILE must be backed up on the primary
database, the process of backing up datafiles and archived redo log files can be
off-loaded to the standby system, to minimize the effect of backups on the production
system.

Only those archived redo log files that were created by the standby instance can be
backed up at the standby site. If there were any archived redo log files generated
before the standby database was started, they must be backed up on the primary
database. For example, if the first log sent from the primary database to the standby is
log sequence 100 thread 1, then the backup of archived redo log files whose log
sequence is less than 100 must be done on the primary database.

If the flash recovery area is configured, Oracle software deletes the files from the flash
recovery area on an on-demand basis. The flash recovery area acts as disk cache for
tape backups.

10.1.1 Using Disk as Cache for Tape Backup
The following instructions assume the flash recovery area is configured (as described
in Section 5.2.3) and other RMAN persistent configurations are set. Perform the
following steps:

Note: Because a logical standby database is not a block-for-block
copy of the primary database, you cannot use a logical standby
database to back up the primary database.

Effect of Switchovers, Failovers, and Control File Creation on Backups

10-2 Oracle Data Guard Concepts and Administration

1. On the primary database, issue the following RMAN commands to make a current
backup of the control file and SPFILE, and back up files in the flash recovery area
created by the primary instance to tape:

BACKUP DEVICE TYPE DISK CURRENT CONTROLFILE;
BACKUP RECOVERY AREA;

Issue these commands (or use them in a script) every day or once a week,
depending on how much application of redo data can be tolerated in the event of
the loss of all current control files (see Section 10.2.4).

2. On the standby database, issue the following RMAN commands every day to roll
forward a level 0 copy of the database:

RECOVER COPY OF DATABASE WITH TAG 'OSS';
BACKUP DEVICE TYPE DISK INCREMENTAL LEVEL 1 FOR RECOVER OF COPY WITH TAG 'OSS'
DATABASE;
BACKUP DEVICE TYPE DISK ARCHIVELOG ALL NOT BACKED UP 2 TIMES;
BACKUP RECOVERY AREA;

These commands apply the level 1 incremental backup taken a day before, create a
new level 1 incremental backup, back up archived redo log files to the flash
recovery area, and back up files created by the standby instance from the flash
recovery area to tape.

10.1.2 Performing Backups Directly to Tape
If all backups are written directly to tape, configure the default device type to SBT
using the RMAN CONFIGURE DEFAULT DEVICE TYPE TO SBT command.

On the primary database, use the following RMAN commands to back up the current
control file and copy auto backups created by the primary instance to tape:

BACKUP AS BACKUPSET CURRENT CONTROLFILE;
BACKUP RECOVERY AREA;

Issue these commands every day or once a week, depending on how much application
of redo data can be tolerated in the event of loss of all current control files (refer to
Section 10.2.4).

Assuming that a complete database backup is taken every Sunday, the following
commands can be issued on the standby database to take a level 0 database backup:

BACKUP AS BACKUPSET INCREMENTAL LEVEL 0 DATABASE PLUS ARCHIVELOG NOT BACKED UP 2 TIMES;

On the other days of the backup cycle, run the following commands to create a level 1
incremental backup of the database and all archived redo log files that have not
already been backed up 2 times:

BACKUP AS BACKUPSET INCREMENTAL LEVEL 1 DATABASE PLUS ARCHIVELOG NOT BACKED UP 2 TIMES;

10.2 Effect of Switchovers, Failovers, and Control File Creation on
Backups

All the archived redo log files that were generated after the last backup on the system
where backups are done must be manually cataloged using the RMAN CATALOG
ARCHIVELOG 'archivelog_name_complete_path' command after any of the following
events:

■ The primary or standby control file is re-created.

Effect of Switchovers, Failovers, and Control File Creation on Backups

Using RMAN to Back Up and Restore Files 10-3

■ The primary database role changes to standby after a switchover.

■ The standby database role changes to primary after switchover or failover.

If the new archived redo log files are not cataloged, RMAN will not back them up.

The examples in the following sections assume you are restoring files from tape to the
same system on which the backup was created. If you need to restore files to a
different system, you may need to either change media configuration or specify
different parameters on the RMAN channels during restore, or both. See the Media
Management documentation for more information about how to access RMAN
backups from different systems.

10.2.1 Recovery from Loss of Datafiles on the Primary Database
Issue the following RMAN commands to restore and recover datafiles. You must be
connected to both the primary and recovery catalog databases.

RESTORE DATAFILE n,m...;
RECOVER DATAFILE n,m...;

Issue the following RMAN commands to restore and recover tablespaces. You must be
connected to both the primary and recovery catalog databases.

RESTORE TABLESPACE tbs_name1, tbs_name2, ...
RECOVER TABLESPACE tbs_name1, tbs_name2, ...

10.2.2 Recovery from Loss of Datafiles on the Standby Database
To recover the standby database after the loss of one or more datafiles, you must
restore the lost files to the standby database from the backup using the RMAN
RESTORE DATAFILE command. If all the archived redo log files required for recovery
of damaged files are accessible on disk by the standby database, restart Redo Apply.

If the archived redo log files required for recovery are not accessible on disk, use
RMAN to recover the restored datafiles to an SCN/log sequence greater than the last
log applied to the standby database, and then restart Redo Apply to continue the
application of redo data, as follows:

1. Stop Redo Apply.

2. Determine the value of the UNTIL_SCN column, by issuing the following query:

SQL> SELECT MAX(NEXT_CHANGE#)+1 UNTIL_SCN FROM V$LOG_HISTORY LH, V$DATABASE DB
WHERE LH.RESETLOGS_CHANGE#=DB.RESETLOGS_CHANGE# AND LH.RESETLOGS_TIME =
DB.RESETLOGS_TIME;
UNTIL_SCN
------- ----------------
967786

3. Issue the following RMAN commands to restore and recover datafiles on the
standby database. You must be connected to both the standby and recovery
catalog databases (use the TARGET keyword to connect to standby instance):

RESTORE DATAFILE <n,m,...>;
RECOVER DATABASE UNTIL SCN 967786;

To restore a tablespace, use the RMAN 'RESTORE TABLESPACE tbs_name1,
tbs_name2, ...' command.

4. Restart Redo Apply.

Effect of Switchovers, Failovers, and Control File Creation on Backups

10-4 Oracle Data Guard Concepts and Administration

10.2.3 Recovery from the Loss of a Standby Control File
Oracle software allows multiplexing of the standby control file. To ensure the standby
control file is multiplexed, check the CONTROL_FILES initialization parameter, as
follows:

SQL> SHOW PARAMETER CONTROL_FILES
NAME TYPE VALUE
 ------------------------------------ ----------- ------------------------------
control_files string <cfilepath1>,<cfilepath2>

If one of the multiplexed standby control files is lost or is not accessible, Oracle
software stops the instance and writes the following messages to the alert log:

ORA-00210: cannot open the specified controlfile
ORA-00202: controlfile: '/ade/banand_hosted6/oracle/dbs/scf3_2.f'
ORA-27041: unable to open file

You can copy an intact copy of the control file over the lost copy, then restart the
standby instance using the following SQL statements:

SQL> STARTUP MOUNT;
SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE DISCONNECT FROM SESSION;

If all standby control files are lost, then you must create a new control file from the
primary database, copy it to all multiplexed locations on the standby database, and
restart the standby instance and Redo Apply. The created control file loses all
information about archived redo log files generated before its creation. Because RMAN
looks into the control file for the list of archived redo log files to back up, all the
archived redo log files generated since the last backup must be manually cataloged.

10.2.4 Recovery from the Loss of the Primary Control File
Oracle software allows multiplexing of the control file on the primary database. If one
of the control files cannot be updated on the primary database, the primary database
instance is shut down automatically. As described in Section 10.2.3, you can copy an
intact copy of the control file and restart the instance without having to perform
restore or recovery operations.

If you lose all of your control files, you can choose among the following procedures,
depending on the amount of downtime that is acceptable.

Create a new control file If all control file copies are lost, you can create a new
control file using the NORESETLOGS option and open the database after doing media
recovery. An existing standby database instance can generate the script to create a new
control file by using the following statement:

SQL> ALTER DATABASE BACKUP CONTROLFILE TO TRACE NORESETLOGS;

Note that if the database filenames are different in the primary and standby databases,
then you must edit the generated script to correct the filenames.

This statement can be used periodically to generate a control file creation script. If you
are going to use control file creation as part of your recovery plan, then you should use
this statement after any physical structure change, such as adding or dropping a
datafile, tablespace, or redo log member.

The created control file loses all information about the archived redo log files
generated before control file creation time. If archived redo log file backups are being

Effect of Switchovers, Failovers, and Control File Creation on Backups

Using RMAN to Back Up and Restore Files 10-5

performed on the primary database, all the archived redo log files generated since the
last archived redo log file backup must be manually cataloged.

Recover using a backup control file If you are unable to create a control file using
the previous procedure, then you can use a backup control file, perform complete
recovery, and open the database with the RESETLOGS option.

To restore the control file and recover the database, issue the following RMAN
commands after connecting to the primary instance (in NOMOUNT state) and catalog
database:

RESTORE CONTROLFILE;
ALTER DATABASE MOUNT;
RECOVER DATABASE;
ALTER DATABASE OPEN RESETLOGS;

Beginning with Oracle Release 10.1.0, all the backups taken before a RESETLOGS
operation can be used for recovery. Hence, it is not necessary to back up the database
before making it available for production.

10.2.5 Recovery from the Loss of an Online Redo Log File
Oracle recommends multiplexing the online redo log files. The loss of all members of
an online redo log group causes Oracle software to terminate the instance. If only some
members of a log file group cannot be written, they will not be used until they become
accessible. The views V$LOGFILE and V$LOG contain more information about the
current status of log file members in the primary database instance.

When Oracle software is unable to write to one of the online redo log file members, the
following alert messages are returned:

ORA-00313: open failed for members of log group 1 of thread 1
ORA-00312: online log 1 thread 1: '/ade/banand_hosted6/oracle/dbs/t1_log1.f'
ORA-27037: unable to obtain file status
SVR4 Error: 2: No such file or directory
Additional information: 3

If the access problem is temporary due to a hardware issue, correct the problem and
processing will continue automatically. If the loss is permanent, a new member can be
added and the old one dropped from the group.

To add a new member to a redo log group, issue the following statement:

SQL> ALTER DATABASE ADD LOGFILE MEMBER 'log_file_name' REUSE TO GROUP n

You can issue this statement even when the database is open, without affecting
database availability.

If all members of an inactive group that has been archived are lost, the group can be
dropped and re-created.

In all other cases (loss of all online log members for the current ACTIVE group, or an
inactive group which has not yet been archived), you must fail over to the standby
database. Refer to Chapter 7 for the failover procedure.

10.2.6 Incomplete Recovery of the Database
Incomplete recovery of the primary database is normally done in cases such as when
the database is logically corrupted (by some user or an application) or when a
tablespace or datafile was accidentally dropped from database.

Effect of Switchovers, Failovers, and Control File Creation on Backups

10-6 Oracle Data Guard Concepts and Administration

Depending on the current database checkpoint SCN on the standby database
instances, you can use one of the following procedures to perform incomplete recovery
of the database. All the procedures are in order of preference, starting with the one that
is the least time consuming.

Using Flashback Database Using Flashback Database is the recommended
procedure when the Flashback Database feature is enabled on the primary database,
none of the database files are lost, and the point-in-time recovery is greater than the
oldest flashback SCN or the oldest flashback time. See Section 12.5 for the procedure to
use Flashback Database to do point-in-time recovery.

Using the standby database instance This is the recommended procedure when the
standby database is behind the desired incomplete recovery time, and Flashback
Database is not enabled on the primary or standby databases:

1. Recover the standby database to the desired point in time.

RECOVER DATABASE UNTIL TIME 'time';

Alternatively, incomplete recovery time can be specified using the SCN or log
sequence number:

RECOVER DATABASE UNTIL SCN incomplete recovery SCN'
RECOVER DATABASE UNTIL LOGSEQ incomplete recovery log sequence number THREAD
thread number

2. Open the standby database in read-only mode to verify the state of database.

If the state is not what is desired, use the LogMiner utility to look at the archived
redo log files to find the right target time or SCN for incomplete recovery.
Alternatively, you can start by recovering the standby database to a point that you
know is before the target time, and then open the database in read-only mode to
examine the state of the data. Repeat this process until the state of the database is
verified to be correct. Note that if you recover the database too far (that is, past the
SCN where the error occurred) you cannot return it to an earlier SCN.

3. Activate the standby database using the SQL ALTER DATABASE ACTIVATE
STANDBY DATABASE statement. This converts the standby database to a primary
database, creates a new resetlogs branch, and opens the database. See Section 8.4
to learn how the standby database reacts to the new reset logs branch.

Using the primary database instance If all of the standby database instances have
already been recovered past the desired point in time and Flashback Database is
enabled on the primary or standby database, then this is your only option.

Use the following procedure to perform incomplete recovery on the primary database:

1. Use LogMiner or another means to identify the time or SCN at which all the data
in the database is known to be good.

2. Using the time or SCN, issue the following RMAN commands to do incomplete
database recovery and open the database with the RESETLOGS option (after
connecting to catalog database and primary instance that is in MOUNT state):

RUN
{
SET UNTIL TIME 'time';
RESTORE DATABASE;
RECOVER DATABASE;
}
ALTER DATABASE OPEN RESETLOGS;

Additional Backup Situations

Using RMAN to Back Up and Restore Files 10-7

After this process, all standby database instances must be reestablished in the Data
Guard configuration.

10.3 Additional Backup Situations
The following sections describe how to modify the backup procedures for other
configurations, such as when the standby and primary databases cannot share backup
files; the standby instance is only used to remotely archive redo log files; or the
standby database filenames are different than the primary database.

10.3.1 Standby Databases Too Geographically Distant to Share Backups
In this case, the backups taken on a standby system are not easily accessible by the
primary system or other standby systems. Perform a complete backup of the database
on all systems to perform recovery operations. The flash recovery area can reside
locally on the primary and standby systems (for example, the flash recovery area is not
the same for the primary and standby databases).

In this scenario, you can still use the general strategies described in Section 10.2, with
the following exceptions:

■ Backup files created by RMAN must be tagged with the local system name, and
with RESTORE operations that tag must be used to restrict RMAN from selecting
backups taken on the same host. In other words, the BACKUP command must use
the TAG node name option when creating backups; the RESTORE command must
use the FROM TAG node name option; and the RECOVER command must use FROM
TAG node name ARCHIVELOG TAG node name option.

■ Disaster recovery of the standby site:

1. Start the standby instance in the NOMOUNT state using the same parameter files
with which the standby was operating earlier.

2. Create a standby control file on the primary instance using the SQL ALTER
DATABASE CREATE STANDBY CONTROLFILE AS filename statement, and
use the created control file to mount the standby instance.

3. Issue the following RMAN commands to restore and recover the database
files:

RESTORE DATABASE FROM TAG 'node name'
RECOVER DATABASE FROM TAG 'node name' ARCHIVELOG TAG 'node name'

4. Restart Redo Apply.

The standby instance will fetch the remaining archived redo log files as described in
Section 5.8.

10.3.2 Standby Database Does Not Contain Datafiles, Used as a FAL Server
Use the same procedure described in Section 10.1, with the exception that the RMAN
commands that back up database files cannot be run against the FAL server. The FAL
server can be used as a backup source for all archived redo log files, thus off-loading
backups of archived redo log files to the FAL server.

Additional Backup Situations

10-8 Oracle Data Guard Concepts and Administration

10.3.3 Standby Database File Names Are Different than Primary Database
If the database filenames are not the same on the primary and standby databases, the
RESTORE and RECOVER commands you use will be slightly different. To obtain the
actual datafile names on the standby database, query the V$DATAFILE view and
specify the SET NEWNAME option for all the datafiles in the database:

RUN
{
SET NEWNAME FOR DATAFILE 1 TO 'existing file location for file#1 from V$DATAFILE';
SET NEWNAME FOR DATAFILE 2 TO 'existing file location for file#2 from V$DATAFILE';
…
…
 SET NEWNAME FOR DATAFILE n TO 'existing file location for file#n from V$DATAFILE';
 RESTORE {DATAFILE <n,m,…> | TABLESPACE tbs_name_1, 2, …| DATABASE;
SWITCH DATAFILE ALL;
RECOVER DATABASE {NOREDO};
}

Similarly, the RMAN DUPLICATE command should also use the SET NEWNAME option
to specify new filenames during standby database creation.

10.3.4 Deletion Policy for Archived Redo Log Files In Flash Recovery Areas
By default, archived redo log files in a flash recovery area that were backed up to a
tertiary device or made obsolete (as defined by the RMAN retention policy) are
eligible for deletion. The archived redo log files that are backed up or obsolete can
eventually be deleted automatically to make space if the disk space in the flash
recovery area becomes full. However, you can change this default deletion policy using
the following RMAN command:

CONFIGURE ARCHIVELOG DELETION POLICY TO [CLEAR | NONE | APPLIED ON STANDBY];

This section describes the command qualifiers and provides examples for setting up a
deletion policy. See Oracle Database Backup and Recovery Advanced User's Guide for more
information about how Oracle software manages disk space in the flash recovery area.

Using the APPLIED ON STANDBY Clause
Use the APPLIED ON STANDBY clause so that archived redo log files that have been
applied on all mandatory standby destinations will be deleted. The actions taken when
you specify this clause are described in the following table:

See Appendix E for more information about cascaded destinations.

Using the CLEAR Clause
Use the CLEAR clause to disable the deletion policy that was previously set up with the
RMAN CONFIGURE ARCHIVELOG DELETION POLICY command. The Oracle

When the APPLIED ON STANDBY
clause is configured on. . . Then, these files are eligible for deletion. . .

The primary database Archived redo log files in the flash recovery area that
were applied on all mandatory standby databases.

A standby database that has one or
more mandatory cascading standby
databases

Archived redo log files in the flash recovery area that
were applied on all mandatory cascading standby databases.

A standby database that has no
cascading standby databases

Archived redo log files in the flash recovery area that
were applied on the standby database.

Additional Backup Situations

Using RMAN to Back Up and Restore Files 10-9

database will resume the default deletion policy behavior, which is to delete archived
redo log files that are backed up or obsolete to make space if disk space in the flash
recovery area becomes full.

Using the NONE Clause
Use the NONE clause so that archived redo logs in flash recovery area that were backed
up or obsolete as per the RMAN retention policy are eligible for deletion. This is the
default configuration. Archived redo log files that are backed up or obsolete are
deleted to make space if the disk space in the flash recovery area becomes full.

Examples of the CONFIGURE ARCHIVELOG DELETION POLICY Command
When backups of archived redo log files are taken on the standby database:

1. Issue the following command on the primary database:

CONFIGURE ARCHIVELOG DELETION POLICY TO APPLIED ON STANDBY;

2. Issue the following command on the standby database:

CONFIGURE ARCHIVELOG DELETION POLICY TO NONE;

When backups of archived redo log files are taken on the primary database:

1. Issue the following command on the standby database:

CONFIGURE ARCHIVELOG DELETION POLICY TO APPLIED ON STANDBY;

2. Issue the following command on the primary database:

CONFIGURE ARCHIVELOG DELETION POLICY TO NONE;

10.3.4.1 Reconfiguring the Deletion Policy After a Role Transition
After a switchover or failover, you may need to reissue the RMAN CONFIGURE
ARCHIVELOG DELETION POLICY command on each database. If the backup site for
archived redo log files remains the same, then do nothing. Otherwise, you must switch
the archivelog deletion policy by issuing the CONFIGURE ARCHIVELOG DELETION
POLICY TO APPLIED ON STANDBY statement on the database where backups are
not taken, and issuing the CONFIGURE ARCHIVELOG DELETION POLICY TO NONE
statement on the database where backups are taken.

10.3.4.2 Viewing the Current Deletion Policy
To see the current setting (APPLIED ON STANDBY, CLEAR, NONE) for a database, issue
the following query:

SELECT NAME, VALUE FROM V$RMAN_CONFIGURATION WHERE
NAME LIKE '%ARCHIVELOG DELETION POLICY%';

NAME VALUE
----------------------------- --------------
ARCHIVELOG DELETION POLICY TO APPLIED ON STANDBY

You can also find the existing configuration using the RMAN SHOW ARCHIVELOG
DELETION POLICY command:

RMAN> SHOW ARCHIVELOG DELETION POLICY
RMAN configuration parameters are:
CONFIGURE ARCHIVELOG DELETION POLICY TO APPLIED ON STANDBY;

Additional Backup Situations

10-10 Oracle Data Guard Concepts and Administration

Using SQL Apply to Upgrade the Oracle Database 11-1

11
Using SQL Apply to Upgrade the Oracle

Database

Starting with Oracle Database 10g release 1 (10.1.0.3), you can use a logical standby
database to perform a rolling upgrade of Oracle Database 10g software. During a rolling
upgrade, you can run different releases of an Oracle database on the primary and
logical standby databases while you upgrade them, one at a time, incurring minimal
downtime on the primary database.

The instructions in this chapter describe how to minimize downtime while upgrading
an Oracle database. This chapter provides the following topics:

■ Benefits of a Rolling Upgrade Using SQL Apply

■ Requirements to Perform a Rolling Upgrade Using SQL Apply

■ Figures and Conventions Used in the Upgrade Instructions

■ Prepare to Upgrade

■ Upgrade the Databases

11.1 Benefits of a Rolling Upgrade Using SQL Apply
Performing a rolling upgrade with SQL Apply provides several advantages:

■ Your database will incur very little downtime. The overall downtime can be as
little as the time it takes to perform a switchover.

■ You eliminate application downtime due to PL/SQL recompilation.

■ You can validate the upgraded database release without affecting the primary
database.

Note: This chapter describes how to upgrade with a logical standby
database in place in a rolling fashion to minimize downtime. A
second method, described in Section B.3, "Upgrading Oracle Database
with a Logical Standby Database In Place" is a traditional upgrade
procedure that results in downtime during the upgrade process. Use
the steps from only one method to perform the complete upgrade. Do
not attempt to use both methods or to combine the steps from the two
methods.

Requirements to Perform a Rolling Upgrade Using SQL Apply

11-2 Oracle Data Guard Concepts and Administration

11.2 Requirements to Perform a Rolling Upgrade Using SQL Apply
The rolling upgrade procedure requires the following:

■ A primary database that is running Oracle Database release x and a logical
standby database that is running Oracle Database release y.

■ The databases must not be part of a Data Guard Broker configuration. See Oracle
Data Guard Broker for information about removing databases from a broker
configuration.

■ The Data Guard protection mode must be set to either maximum availability or
maximum performance. Query the PROTECTION_LEVEL column in the
V$DATABASE view to find out the current protection mode setting.

■ The LOG_ARCHIVE_DEST_n initialization parameter for the logical standby
database destination must be set to OPTIONAL to ensure the primary database can
proceed while the logical standby database is being upgraded.

■ The COMPATIBLE initialization parameter must match the software release prior
to the upgrade. That is, a rolling upgrade from release x to release y requires that
the COMPATIBLE initialization parameter be set to release x on both the primary
and standby databases.

11.3 Figures and Conventions Used in the Upgrade Instructions
Figure 11–1 shows a Data Guard configuration before the upgrade begins, with the
primary and logical standby databases both running the same Oracle Database
software release.

Figure 11–1 Data Guard Configuration Before Upgrade

During the upgrade process, the Data Guard configuration operates with mixed
database releases at several points in this process. Data protection is not available
across releases. During these steps, consider having a second standby database in the
Data Guard configuration to provide data protection.

See Also: Oracle Data Guard Concepts and Administration for complete
information about using the MANDATORY and OPTIONAL attributes in
the LOG_ARCHIVE_DEST_n initialization parameter

Database
Clients

Database
Release x

Data Guard
SQL Apply

Database
Release x

A (Primary) B (Standby)

Prepare to Upgrade

Using SQL Apply to Upgrade the Oracle Database 11-3

The steps and figures describing the upgrade procedure refer to the databases as
"Database A" and "Database B" rather than as the "primary database" and "standby
database." This is because the databases switch roles during the upgrade procedure.
Initially, Database A is the primary database and Database B is the logical standby
database, as shown in Figure 11–1.

11.4 Prepare to Upgrade
Perform the following steps to prepare the primary and standby databases for
upgrading.

Step 1 Set the COMPATIBLE initialization parameter
Ensure the COMPATIBLE initialization parameter specifies the release number for the
Oracle Database software running on the primary database prior to the upgrade.

For example, if the primary database is running release 10.1, then set the COMPATIBLE
initialization parameter to 10.1 on both databases. Be sure to set the COMPATIBLE
initialization parameter on the standby database first before you set it on the primary
database.

Step 2 Obtain information about unsupported tables
On Database A, use DBMS_LOGSTDBY PL/SQL procedure to capture information
about transactions running on the primary database that will not be supported by a
logical standby database. Run the following procedures to capture and record the
information as events in the DBA_LOGSTDBY_EVENTS table:

EXEC DBMS_LOGSTDBY.APPLY_SET('MAX_EVENTS_RECORDED',DBMS_LOGSTDBY.MAX_EVENTS);
EXEC DBMS_LOGSTDBY.APPLY_SET('RECORD_UNSUPPORTED_OPERATIONS', 'TRUE');

Even though you run these PL/SQL procedures on Database A, they do not affect the
primary database. However, by running these procedures on the primary database
before creating the logical standby database (and the logical standby database control
file), the settings are automatically transferred when you create the logical standby
database in step 4.

If a logical standby database already exists (Database B) that can be used for the
upgrade procedure, issue the DBMS_LOGSTDBY PL/SQL commands on both
databases, and then skip to step 3.

Step 3 Identify unsupported data types and storage attributes
To identify unsupported database objects on the primary database and decide how to
handle them, follow these steps:

1. Identify unsupported data types and storage attributes for tables:

Note: In Oracle Database 10g release 1 (10.1), the DBMS_
LOGSTDBY.MAX_EVENTS constant was called DBMS_LOGSTDBY_
PUBLIC.MAX_EVENTS. The effect of the two constants is the same,
but in release 2 (10.2) the DBMS_LOGSTDBY_PUBLIC package has been
eliminated and the definition of the constant moved to the DBMS_
LOGSTDBY package.

See Also: Oracle Database PL/SQL Packages and Types Reference for
complete information about the DBMS_LOGSTDBY procedure

Prepare to Upgrade

11-4 Oracle Data Guard Concepts and Administration

■ Review the list of supported data types and storage attributes provided in
Appendix C, "Data Type and DDL Support on a Logical Standby Database".

■ Query the DBA_LOGSTDBY_UNSUPPORTED and DBA_LOGSTDBY_SKIP views
on the primary database. Changes that are made to the listed tables and
schemas on the primary database will not be applied on the logical standby
database. The following query shows an example of a list of unsupported
tables:

SQL> SELECT DISTINCT OWNER, TABLE_NAME FROM DBA_LOGSTDBY_UNSUPPORTED;
OWNER TABLE_NAME
---------- -----------------
OE CATEGORIES_TAB
OE CUSTOMERS
OE WAREHOUSES
PM ONLINE_MEDIA
PM PRINT_MEDIA
SCOTT MYCOMPRESS
SH MVIEW$_EXCEPTIONS
7 rows selected.

SQL>
SQL> SELECT OWNER FROM DBA_LOGSTDBY_SKIP
 2 WHERE STATEMENT_OPT = 'INTERNAL SCHEMA';

OWNER

CTXSYS
DBSNMP
DIP
ORDPLUGINS
ORDSYS
OUTLN
SI_INFORMTN_SCHEMA
SYS
SYSTEM
WMSYS
10 rows selected.

2. Decide how to handle unsupported tables.

If unsupported objects are being modified on your primary database, it might be
possible to perform the upgrade anyway using any of the following methods:

■ Temporarily suspend changes to the unsupported tables for the period of time
it takes to perform the upgrade procedure.

If you can prevent changes to unsupported changes, then using SQL Apply
might still be a viable way to perform the upgrade procedure. This method
requires that you prevent users from modifying any unsupported table from
the time you create the logical standby control file to the time you complete
the upgrade. You can monitor transaction activity in the DBA_LOGSTDBY_
EVENTS view and discontinue the upgrade (if necessary) up to the time you
perform the first switchover.

■ Perform the upgrade at a time when users will not be making changes to the
unsupported tables.

For logical standby databases that support multiple departments with
different requirements, using SQL Apply to perform an upgrade is still
possible if you know how users access tables in the database. For example,

Upgrade the Databases

Using SQL Apply to Upgrade the Oracle Database 11-5

assume that the Payroll department updates an object table, but that
department updates the database only Monday through Friday. However, the
Customer Service department requires database access 24 hours a day, 7 days
a week, but uses only supported data types and tables. In this scenario, you
could perform the upgrade over a weekend.

If you cannot prevent changes to unsupported tables during the upgrade, any
unsupported transactions that occur are recorded in the DBA_LOGSTDBY_EVENTS
table on the logical standby database. After the upgrade is completed, you might
be able to use Oracle Data Pump or the Export/Import utility to import the
changed tables to the upgraded databases.

The size of the changed tables will determine how long database operations will
be unavailable, so you must decide if a table is too large to export and import its
data into the standby database. For example, a 4-terabyte table is not a good
candidate for the export/import process.

Step 4 Create a logical standby database
To create a logical standby database, follow the instructions in Chapter 4.

Oracle recommends configuring a standby redo log on the logical standby database to
minimize downtime.

11.5 Upgrade the Databases
This section provides a step-by-step procedure for upgrading the logical standby
database and the primary database. Table 11–1 lists the steps.

Note: If you cannot use a logical standby database because the
data types in your application are unsupported, then perform the
upgrade as documented in Oracle Database Upgrade Guide.

Note: If a logical standby database already exists, go to Section 11.5,
"Upgrade the Databases" to begin the upgrade procedure.

Table 11–1 Step-by-Step Procedure to Upgrade Oracle Database Software

Step Description

1 Stop SQL Apply and upgrade the logical standby database

2 Restart SQL Apply

3 Monitor events on the upgraded standby database

4 Begin a switchover

5 Determine if unsupported objects were modified during the upgrade

6 Complete the switchover and activate user applications

7 Upgrade the former primary database

8 Start SQL Apply

9 Optionally, raise the compatibility level on both databases

10 Monitor events on the new logical standby database

11 Optionally, perform another switchover

Upgrade the Databases

11-6 Oracle Data Guard Concepts and Administration

Step 1 Stop SQL Apply and upgrade the logical standby database
To begin the upgrade, stop SQL Apply and upgrade Oracle database software on the
logical standby database (Database B) to release y. To stop SQL Apply, issue the
following statement on Database B:

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;

To upgrade Oracle database software, refer to the Oracle Database Upgrade Guide for the
applicable Oracle Database release.

Figure 11–2 shows Database A running release x, and Database B running release y.
During the upgrade, redo data accumulates on the primary system.

Figure 11–2 Upgrade the Logical Standby Database Release

Step 2 Restart SQL Apply
Restart SQL Apply and operate with release x on Database A and release y on
Database B. To start SQL Apply, issue the following statement on Database B:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

The redo data that was accumulating on the primary system is automatically
transmitted and applied on the newly upgraded logical standby database. The Data
Guard configuration can run the mixed releases shown in Figure 11–3 for an arbitrary
period while you verify that the upgraded Oracle Database software release is running
properly in the production environment.

Note: If your business does not require a logical standby database to
support the primary database, you can skip steps 7 through 11.

Database
Clients

Database
Release x

Database
Release y

A (Primary) B (Standby)

Upgrade the Databases

Using SQL Apply to Upgrade the Oracle Database 11-7

Figure 11–3 Running Mixed Releases

To monitor how quickly Database B is catching up to Database A, query the
V$LOGSTDBY_PROGRESS view on Database B. For example:

SQL> ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YY HH24:MI:SS';
Session altered.

SQL> SELECT SYSDATE, APPLIED_TIME FROM V$LOGSTDBY_PROGRESS;

SYSDATE APPLIED_TIME
------------------ ------------------
27-JUN-05 17:07:06 27-JUN-05 17:06:50

Step 3 Monitor events on the upgraded standby database
You should frequently query the DBA_LOGSTDBY_EVENTS view to learn if there are
any DDL and DML statements that have not been applied on Database B.
Example 11–1 demonstrates how monitoring events can alert you to potential
differences in the two databases.

Example 11–1 Monitoring Events with DBA_LOGSTDBY_EVENTS

SQL> SET LONG 1000
SQL> SET PAGESIZE 180
SQL> SET LINESIZE 79
SQL> SELECT EVENT_TIMESTAMP, EVENT, STATUS FROM DBA_LOGSTDBY_EVENTS
ORDER BY EVENT_TIMESTAMP;

EVENT_TIMESTAMP

EVENT
--
STATUS
--
…
24-MAY-05 05.18.29.318912 PM
CREATE TABLE SYSTEM.TST (one number)
ORA-16226: DDL skipped due to lack of support

24-MAY-05 05.18.29.379990 PM
"SYSTEM"."TST"
ORA-16129: unsupported dml encountered

Database
Clients

Data Guard
SQL Apply

Database
Release x

Database
Release y

A (Primary) B (Standby)

Upgrade the Databases

11-8 Oracle Data Guard Concepts and Administration

In the preceding example:

■ The ORA-16226 error shows a DDL statement that could not be supported. In this
case, it could not be supported because it belongs to an internal schema.

■ The ORA-16129 error shows that a DML statement was not applied.

These types of errors indicate that all of the changes that occurred on Database A have
not been applied to Database B. At this point, you must decide whether or not to
continue with the upgrade procedure. If you are certain that this difference between
the logical standby database and the primary database is acceptable, then continue
with the upgrade procedure. If not, discontinue and discard Database B and perform
the upgrade procedure at another time.

Step 4 Begin a switchover
When you are satisfied that the upgraded database software is operating properly,
perform a switchover to reverse the database roles by issuing the following statement
on Database A:

SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO LOGICAL STANDBY;

This may take only a few seconds depending on whether or not the statement must
wait for existing transactions to complete. Users still connected to Database A should
log off immediately and reconnect to Database B.

Step 5 Determine if unsupported objects were modified during the upgrade
Step 3 "Monitor events on the upgraded standby database" described how to list
unsupported tables that are being modified. If unsupported DML statements were
issued on the primary database (as described in Example 11–1), import the latest
version of those tables using an import utility such as Oracle Data Pump.

For example, the following import command truncates the scott.emp table and
populates it with data matching the former primary database (A):

IMPDP SYSTEM/MANAGER NETWORK_LINK=DATABASEA TABLES=SCOTT.EMP TABLE_EXIST_
ACTION=TRUNCATE

Step 6 Complete the switchover and activate user applications
When you are satisfied that the upgraded database software is operating properly,
complete the switchover to reverse the database roles:

1. On Database B, query the SWITCHOVER_STATUS column of the V$DATABASE
view, as follows:

SQL> SELECT SWITCHOVER_STATUS FROM V$DATABASE;

SWITCHOVER_STATUS

Note: If you suspended activity to unsupported tables or packages
on Database A when it was the primary database, you must continue
to suspend the same activities on Database B while it is the primary
database if you eventually plan to switch back to Database A.

Note: The tables you import must meet the data type requirements
stated in Section 11.4, "Prepare to Upgrade", step 3.

Upgrade the Databases

Using SQL Apply to Upgrade the Oracle Database 11-9

TO PRIMARY

2. When the SWITCHOVER_STATUS column displays TO PRIMARY, complete the
switchover by issuing the following statement on Database B:

SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO LOGICAL PRIMARY;

3. Activate the user applications and services on Database B, which is now running
in the primary database role.

After the switchover, you cannot send redo data from the new primary database (B)
that is running the new database software release to the new standby database (A) that
is running an older software release. This means the following:

■ Redo data is accumulating on the new primary database.

■ The new primary database is unprotected at this time.

Figure 11–4 shows Database B, the former standby database (running release y), is now
the primary database, and Database A, the former primary database (running release
x), is now the standby database. The users are connected to Database B.

If Database B can adequately serve as the primary database and your business does
not require a logical standby database to support the primary database, then you have
completed the rolling upgrade process. Allow users to log in to Database B and begin
working there, and discard Database A when it is convenient. Otherwise, continue
with step 7.

Figure 11–4 After a Switchover

Step 7 Upgrade the former primary database
Database A is still running release x and cannot apply redo data from Database B until
you upgrade it and start SQL Apply.

For more information about upgrading Oracle Database software, see the Oracle
Database Upgrade Guide for the applicable Oracle Database release.

Figure 11–5 shows the system after both databases have been upgraded.

Database
Clients

Database
Release x

Database
Release y

A (Standby) B (Primary)

Upgrade the Databases

11-10 Oracle Data Guard Concepts and Administration

Figure 11–5 Both Databases Upgraded

Step 8 Start SQL Apply
Issue the following statement to start SQL Apply on Database A and, if necessary,
create a database link to Database B:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE NEW PRIMARY db_link_to_b;

When you start SQL Apply on Database A, the redo data that is accumulating on the
primary database (B) is sent to the logical standby database (A). The primary database
is protected against data loss once all the redo data is available on the standby
database.

Step 9 Optionally, raise the compatibility level on both databases
Raise the compatibility level of both databases by setting the COMPATIBLE
initialization parameter. Set the COMPATIBLE parameter on the standby database
before you set it on the primary database. See Oracle Database Reference for more
information about the COMPATIBLE initialization parameter.

Step 10 Monitor events on the new logical standby database
To ensure that all changes performed on Database B are properly applied to the logical
standby database (A), you should frequently query the DBA_LOGSTDBY_EVENTS
view, as you did for Database A in step 3. (See Example 11–1.)

If changes were made that invalidate Database A as a copy of your existing primary
database, you can discard Database A and create a new logical standby database in its
place. See Chapter 4, "Creating a Logical Standby Database" for complete information.

Step 11 Optionally, perform another switchover
Optionally, perform another switchover of the databases so Database A is once again
running in the primary database role (as shown in Figure 11–1).

Note: Create a database link prior to issuing this statement only if a
database link has not already been set up.

See Also: Section 7.3.1, "Switchovers Involving a Logical Standby
Database"

Database
Clients

Data Guard
SQL Apply

Database
Release y

Database
Release y

A (Standby) B (Primary)

Data Guard Scenarios 12-1

12
Data Guard Scenarios

This chapter describes scenarios you might encounter while administering your Data
Guard configuration. Each scenario can be adapted to your specific environment.
Table 12–1 lists the scenarios presented in this chapter.

12.1 Setting Up and Verifying Archival Destinations
The following sections set up the LOG_ARCHIVE_DEST_n initialization parameter and
other related parameters to enable and disable role-specific archiving:

■ Configuring a Primary Database and a Physical Standby Database

■ Configuring a Primary Database and a Logical Standby Database

■ Configuring Both Physical and Logical Standby Databases

■ Verifying the Current VALID_FOR Attribute Settings for Each Destination

12.1.1 Configuring a Primary Database and a Physical Standby Database
Figure 12–1 shows the chicago primary database, the boston physical standby
database, and the initialization parameters for each system.

Table 12–1 Data Guard Scenarios

Reference Scenario

Section 12.1 Setting Up and Verifying Archival Destinations

Section 12.2 Choosing the Best Available Standby Database for a Role Transition

Section 12.3 Configuring a Logical Standby Database to Support a New Primary Database

Section 12.4 Using Flashback Database After a Failover

Section 12.5 Using Flashback Database After Issuing an Open Resetlogs Statement

Section 12.6 Using a Physical Standby Database for Read/Write Testing and Reporting

Section 12.7 Using RMAN Incremental Backups to Roll Forward a Physical Standby Database

Section 12.8 Using a Physical Standby Database with a Time Lag

Section 12.9 Recovering From a Network Failure

Section 12.10 Recovering After the NOLOGGING Clause Is Specified

Section 12.11 Resolving Archive Gaps Manually

Section 12.12 Creating a Standby Database That Uses OMF or ASM

Setting Up and Verifying Archival Destinations

12-2 Oracle Data Guard Concepts and Administration

Figure 12–1 Primary and Physical Standby Databases Before a Role Transition

Table 12–2 shows the initialization parameters for the configuration in Figure 12–1.

The following table describes the archival processing shown in Figure 12–1:

Figure 12–2 shows the same configuration after a switchover.

Table 12–2 Initialization Parameter Settings for Primary and Physical Standby Databases

Chicago Database (Primary Role) Boston Database (Physical Standby Database Role)

DB_UNIQUE_NAME=chicago
LOG_ARCHIVE_CONFIG=
 'DG_CONFIG=(chicago,boston)'
LOG_ARCHIVE_DEST_1=
 'LOCATION=/arch1/chicago/
 VALID_FOR=(ALL_LOGFILES,ALL_ROLES)
 DB_UNIQUE_NAME=boston'
LOG_ARCHIVE_DEST_2=
 'SERVICE=boston
 VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
 DB_UNIQUE_NAME=boston'
LOG_ARCHIVE_DEST_STATE_1=ENABLE
LOG_ARCHIVE_DEST_STATE_2=ENABLE
STANDBY_ARCHIVE_DEST=/arch1/chicago/
REMOTE_LOGIN_PASSWORDFILE=EXCLUSIVE

DB_UNIQUE_NAME=boston
LOG_ARCHIVE_CONFIG=
 'DG_CONFIG=(chicago,boston)'
LOG_ARCHIVE_DEST_1=
 'LOCATION=/arch1/boston/
 VALID_FOR=(ALL_LOGFILES,ALL_ROLES)
 DB_UNIQUE_NAME=boston'
LOG_ARCHIVE_DEST_2=
 'SERVICE=chicago
 VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
 DB_UNIQUE_NAME=chicago'
LOG_ARCHIVE_DEST_STATE_1=ENABLE
LOG_ARCHIVE_DEST_STATE_2=ENABLE
STANDBY_ARCHIVE_DEST=/arch1/boston/
REMOTE_LOGIN_PASSWORDFILE=EXCLUSIVE

Chicago Database (Primary Role) Boston Database (Physical Standby Role)

LOG_ARCHIVE_DEST_1 Directs archiving of redo data to the local
archived redo log files in
/arch1/chicago/.

Directs archiving of redo data to the local
archived redo log files in /arch1/boston/.

LOG_ARCHIVE_DEST_2 Directs transmission of the redo data to
the remote physical standby database
boston.

Is ignored; valid only when boston is
running in the primary role.

STANDBY_ARCHIVE_
DEST

Is ignored; valid only when chicago is
running in the standby role.

Directs archival of redo data to the archived
redo log files in the local directory
/arch1/boston/.

chicago

Log
Transport
Services Oracle

 Net

Log
Apply

Services

boston

Log
Apply

Services

Log
Transport
Services

Primary
Database

Physical
Standby

Database

Online
 Redo

 Log Files

Archived
Redo

Log Files

Online
 Redo

 Log Files

Archived
Redo

Log Files

Setting Up and Verifying Archival Destinations

Data Guard Scenarios 12-3

Figure 12–2 Primary and Physical Standby Databases After a Role Transition

The following table describes the archival processing shown in Figure 12–2:

12.1.2 Configuring a Primary Database and a Logical Standby Database
Figure 12–3 shows the chicago database running in the primary role, the denver
database running in the logical standby role, and the initialization parameters for each
system. Inactive components are grayed out.

 Chicago Database (Physical Standby Role) Boston Database (Primary Role)

LOG_ARCHIVE_DEST_1 Directs archiving of redo data to the local
/arch1/chicago/ directory.

Directs archiving of redo data to the local
archived redo log files in
/arch1/boston/.

LOG_ARCHIVE_DEST_2 Is ignored; valid only when chicago is
running in the primary role.

Directs transmission of redo data to the
remote physical standby destination
chicago.

STANDBY_ARCHIVE_
DEST

Directs archiving of redo data to the archived
redo log files in the local directory
/arch1/chicago/.

Is ignored; valid only when boston is
running in the standby role.

chicago

Oracle
 Net

Redo Log

boston

Log
Apply

Services

Log
Transport
Services

Primary
Database

Physical
Standby

Database

Log
Apply

Services

Log
Transport
Services

Online
 Redo

 Log Files

Archived
Redo

Log Files

Online
 Redo

 Log Files

Archived
Redo

Log Files

Setting Up and Verifying Archival Destinations

12-4 Oracle Data Guard Concepts and Administration

Figure 12–3 Configuring Destinations for a Primary Database and a Logical Standby Database

Table 12–3 shows the initialization parameters for the configuration in Figure 12–3.

The following table describes the archival processing shown in Figure 12–3:

Table 12–3 Initialization Parameter Settings for Primary and Logical Standby Databases

Chicago Database (Primary Role) Denver Database (Logical Standby Database Role)

DB_UNIQUE_NAME=chicago
LOG_ARCHIVE_CONFIG=
 'DG_CONFIG=(chicago,denver)'
LOG_ARCHIVE_DEST_1=
 'LOCATION=/arch1/chicago/
 VALID_FOR=(ALL_LOGFILES,ALL_ROLES)
 DB_UNIQUE_NAME=chicago'
LOG_ARCHIVE_DEST_2=
 'LOCATION=/arch2/chicago/
 VALID_FOR=(STANDBY_LOGFILES,STANDBY_ROLE)
 DB_UNIQUE_NAME=chicago'
LOG_ARCHIVE_DEST_3=
 'SERVICE=denver
 VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
 DB_UNIQUE_NAME=denver'
LOG_ARCHIVE_DEST_STATE_1=ENABLE
LOG_ARCHIVE_DEST_STATE_2=ENABLE
LOG_ARCHIVE_DEST_STATE_3=ENABLE
STANDBY_ARCHIVE_DEST=/arch2/chicago/
REMOTE_LOGIN_PASSWORDFILE=EXCLUSIVE

DB_UNIQUE_NAME=denver
LOG_ARCHIVE_CONFIG=
 'DG_CONFIG=(chicago,denver)'
LOG_ARCHIVE_DEST_1=
 'LOCATION=/arch1/denver/
 VALID_FOR=(ONLINE_LOGFILES,ALL_ROLES)
 DB_UNIQUE_NAME=denver'
LOG_ARCHIVE_DEST_2=
 'LOCATION=/arch2/denver/
 VALID_FOR=(STANDBY_LOGFILES,STANDBY_ROLE)
 DB_UNIQUE_NAME=denver'
LOG_ARCHIVE_DEST_3=
 'SERVICE=chicago
 VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
 DB_UNIQUE_NAME=chicago'
LOG_ARCHIVE_DEST_STATE_1=ENABLE
LOG_ARCHIVE_DEST_STATE_2=ENABLE
LOG_ARCHIVE_DEST_STATE_3=ENABLE
STANDBY_ARCHIVE_DEST=/arch2/denver/
REMOTE_LOGIN_PASSWORDFILE=EXCLUSIVE

Chicago Database (Primary Role)
Denver Database (Logical Standby
Role)

LOG_ARCHIVE_DEST_1 Directs archiving of redo data generated by the
primary database from the local online redo log
files to the local archived redo log files in
/arch1/chicago/.

Directs archiving of redo data
generated by the logical standby
database from the local online redo log
files to the local archived redo log files
in /arch1/denver/.

chicago

Log
Transport
Services Oracle

 Net

Log
Apply

Services

denver

Log
Apply

Services

Primary
Database

Logical
Standby

Database

Standby
Redo

Log Files

Online
 Redo

 Log Files

Archived
Redo

Log Files

Online
 Redo

 Log Files

Archived
Redo

Log Files

Archived
Redo

Log Files

Setting Up and Verifying Archival Destinations

Data Guard Scenarios 12-5

Unlike physical standby databases, logical standby databases are open databases that
generate redo data and have multiple log files (online redo log files, archived redo log
files, and standby redo log files). It is good practice to specify separate local
destinations for:

■ Archived redo log files that store redo data generated by the logical standby database.
In Figure 12–3, this is configured as the LOG_ARCHIVE_DEST_
1=LOCATION=/arch1/denver destination.

■ Archived redo log files that store redo data received from the primary database. In
Figure 12–3, this is configured as the LOG_ARCHIVE_DEST_
2=LOCATION=/arch2/denver destination.

In Figure 12–3, the STANDBY_ARCHIVE_DEST parameter is configured to the same
location for these purposes:

– If the standby redo log files fill up, redo data received from the primary
database is archived directly to the archived redo log files in this location
(described in Section 5.7.1).

– If there is an archive gap, archived redo log files retrieved from other
databases are copied to this location (described in Section 5.8).

Because the example configurations shown in Figure 12–3 (and Figure 12–4) do not
include a physical standby database, the configuration sets up the LOG_ARCHIVE_
DEST_3 destination for switchover with the logical standby database. Figure 12–4
shows the same configuration after a switchover.

LOG_ARCHIVE_DEST_2 Is ignored; valid only when chicago is
running in the standby role. (You must
configure a standby redo log on this site to
perform switchovers.)

Directs archiving of redo data from the
standby redo log files to the local
archived redo log files in
/arch2/denver/.

LOG_ARCHIVE_DEST_3 Directs transmission of redo data to the remote
logical standby destination denver.

Is ignored; valid only when denver is
running in the primary role.

STANDBY_ARCHIVE_
DEST

Is ignored; valid only when chicago is
running in the standby role.

Directs archiving of redo data received
from the primary database directly to
archived redo log files in
/arch2/denver/.

Chicago Database (Primary Role)
Denver Database (Logical Standby
Role)

Setting Up and Verifying Archival Destinations

12-6 Oracle Data Guard Concepts and Administration

Figure 12–4 Primary and Logical Standby Databases After a Role Transition

The following table describes the archival processing shown in Figure 12–4:

12.1.3 Configuring Both Physical and Logical Standby Databases
Figure 12–5 shows the chicago database running in the primary role, the boston
database running in the physical standby role, and the denver database running in
the logical standby database role. The initialization parameters are shown under each
system. Components that are grayed out are inactive for the database’s current role.
This example assumes that a switchover would occur only between chicago and
boston. In this configuration, the denver logical standby database is intended to be a
reporting database only; denver will never be the target of a switchover or run in the
primary database role.

Chicago Database (Logical Standby
Role) Denver Database (Primary Role)

LOG_ARCHIVE_DEST_1 Directs archiving of redo data generated by
the logical standby database from the local
online redo log files to the local archived
redo log files in /arch1/chicago/.

Directs archiving of redo data from the
local online redo log files to the local
archived redo log files in
/arch1/denver/.

LOG_ARCHIVE_DEST_2 Directs archiving of redo data from the
standby redo log files to the archived redo
log file in /arch2/chicago/.

Is ignored; valid only when denver is
running in the standby role.

LOG_ARCHIVE_DEST_3 Is ignored; valid only when chicago is
running in the primary role.

Directs transmission of redo data to the
remote logical standby destination
chicago.

STANDBY_ARCHIVE_
DEST

Directs archiving of the redo data received
from the primary database directly to the
archived redo log files in
/arch2/chicago/.

Is ignored; valid only when denver is
running in the standby role.

chicago

Oracle
 Net

denver

Primary
Database

Logical
Standby

Database

Online
 Redo

 Log Files

Online
 Redo

 Log Files

Standby
Redo

Log Files

Archived
Redo

Log Files

Log
Apply

Services

Standby
Redo

Log Files

Archived
Redo

Log Files

Archived
Redo

Log Files

Log
Apply

Services

Log
Transport
Services

Setting Up and Verifying Archival Destinations

Data Guard Scenarios 12-7

Figure 12–5 Configuring a Primary Database with Physical and Logical Standby Databases

Table 12–4 shows the initialization parameters for the databases in Figure 12–5.

The following table describes the archival processing shown in Figure 12–5:

Table 12–4 Initialization Parameters for Primary, Physical, and Logical Standby Databases

Boston Database (Standby Role) Chicago Database (Primary Role) Denver Database (Standby Role)

DB_UNIQUE_NAME=boston
LOG_ARCHIVE_CONFIG=
 'DG_CONFIG=(chicago,boston,denver)'
LOG_ARCHIVE_DEST_1=
 'LOCATION=/arch1/boston/
 VALID_FOR=(ONLINE_
LOGFILES,ALL_ROLES)
 DB_UNIQUE_NAME=boston'
LOG_ARCHIVE_DEST_2=
 'SERVICE=denver
 VALID_FOR=(ONLINE_LOGFILES,PRIMARY_
ROLE)
 DB_UNIQUE_NAME=denver'
LOG_ARCHIVE_DEST_3=
 'SERVICE=chicago
 VALID_FOR=
 (ONLINE_LOGFILES,PRIMARY_ROLE)
 DB_UNIQUE_NAME=chicago'
LOG_ARCHIVE_DEST_STATE_1=ENABLE
LOG_ARCHIVE_DEST_STATE_2=ENABLE
LOG_ARCHIVE_DEST_STATE_3=ENABLE
STANDBY_ARCHIVE_DEST=/arch1/boston/
REMOTE_LOGIN_PASSWORDFILE=EXCLUSIVE

DB_UNIQUE_NAME=chicago
LOG_ARCHIVE_CONFIG=
 'DG_CONFIG=(chicago,boston,denver)'
LOG_ARCHIVE_DEST_1=
 'LOCATION=/arch1/chicago/
 VALID_FOR=(ONLINE_
LOGFILES,ALL_ROLES)
 DB_UNIQUE_NAME=chicago'
LOG_ARCHIVE_DEST_2=
 'SERVICE=denver
 VALID_FOR=(ONLINE_
LOGFILES,PRIMARY_ROLE)
 DB_UNIQUE_NAME=denver'
LOG_ARCHIVE_DEST_3=
 'SERVICE=boston
 VALID_FOR=
 (ONLINE_LOGFILES,PRIMARY_ROLE)
 DB_UNIQUE_NAME=boston'
LOG_ARCHIVE_DEST_STATE_1=ENABLE
LOG_ARCHIVE_DEST_STATE_2=ENABLE
LOG_ARCHIVE_DEST_STATE_3=ENABLE
STANDBY_ARCHIVE_DEST=/arch1/chicago/
REMOTE_LOGIN_PASSWORDFILE=EXCLUSIVE

DB_UNIQUE_NAME=denver
LOG_ARCHIVE_CONFIG=
 'DG_
CONFIG=(chicago,boston,denver)'
LOG_ARCHIVE_DEST_1=
 'LOCATION=/arch1/denver/
 VALID_FOR=(ONLINE_
LOGFILES,ALL_ROLES)
 DB_UNIQUE_NAME=denver'
LOG_ARCHIVE_DEST_2=
 'LOCATION=/arch2/denver/
 VALID_FOR=(STANDBY_
LOGFILES,STANDBY_ROLE)
 DB_UNIQUE_NAME=denver'
LOG_ARCHIVE_DEST_STATE_1=ENABLE
LOG_ARCHIVE_DEST_STATE_2=ENABLE
STANDBY_ARCHIVE_DEST=/arch2/denver/
REMOTE_LOGIN_PASSWORDFILE=EXCLUSIVE

Chicago Database
(Primary Role)

Boston Database
(Standby Role)

Denver Database
(Standby Role)

LOG_ARCHIVE_DEST_1 Directs archiving of redo
data from the online redo
log files to the local
archived redo log files in
/arch1/chicago/.

Directs archiving of redo
data from the standby redo
log files to the local
archived redo log files in
/arch1/boston/.

Directs archiving of redo data
generated by the logical
standby database from the
local online redo log files to the
local archived redo log files in
/arch1/denver/.

LOG_ARCHIVE_DEST_2 Directs transmission of
redo data to the remote
logical standby destination
denver.

Is ignored; valid only when
boston is running in the
primary role.

Directs archiving of redo data
from the standby redo log files
to the local archived redo log
files in /arch2/denver/.

chicagoboston (Physical Standby)

Oracle
 Net

denver (Logical Standby)

Oracle
 Net

Log
Transport
Services

Log
Apply

Services

Primary
Database

Online
 Redo

 Log Files

Archived
Redo

Log Files

Log
Apply

Services

Logical
Standby

Database

Standby
Redo

Log Files

Online
 Redo

 Log Files

Archived
Redo

Log Files

Archived
Redo

Log Files

Log
Apply

Services

Physical
Standby

Database

Online
 Redo

 Log Files

Archived
Redo

Log Files

Standby
Redo

Log Files

Standby
Redo

Log Files

Setting Up and Verifying Archival Destinations

12-8 Oracle Data Guard Concepts and Administration

Figure 12–6 shows the same configuration after a switchover changes the chicago
database to the standby role and the boston database to the primary role.

Figure 12–6 Primary, Physical, and Logical Standby Databases After a Role Transition

The following table describes the archival processing shown in Figure 12–6:

LOG_ARCHIVE_DEST_3 Directs transmission of
redo data to the remote
physical standby
destination boston.

Is ignored; valid only when
boston is running in the
primary role.

Is not defined for this database.

STANDBY_ARCHIVE_
DEST

Is ignored; valid only for
standby role.

Directs archiving of redo
data received from the
primary database directly
to archived redo log files in
/arch1/boston/.

Directs archiving of redo data
received from the primary
database directly to archived
redo log files in
/arch2/denver/.

Chicago Database
(Standby Role)

Boston Database
(Primary Role)

Denver Database
(Standby Role)

LOG_ARCHIVE_DEST_1 Directs archival of redo data
from the standby redo log
files to the local archived
redo log files in
/arch1/chicago/.

Directs archival of redo
data from the online redo
log files to the local
archived redo log files in
/arch1/boston/.

Directs archival of redo data
generated by the logical
standby database from the
local online redo log files to
the local archived redo log
files in /arch1/denver/.

LOG_ARCHIVE_DEST_2 Is ignored; valid only when
chicago is running in the
primary role.

Directs transmission of
redo data to the remote
logical standby destination
denver.

Directs archival of redo data
from the standby redo log
files to the local archived
redo log files in
/arch2/denver/.

LOG_ARCHIVE_DEST_3 Is ignored; valid only when
chicago is running in the
primary role.

Directs transmission of
redo data to the remote
physical standby
destination chicago.

Is not defined for this
database.

STANDBY_ARCHIVE_
DEST

Directs archival of redo data
received from the primary
database directly to the
archived redo log files in
/arch1/chicago/.

Is ignored; valid only for
standby role.

Directs archival of redo data
received from the primary
database directly to
archived redo log files in
/arch2/denver/.

Chicago Database
(Primary Role)

Boston Database
(Standby Role)

Denver Database
(Standby Role)

chicago (Physical Standby) boston (Primary Database)

Oracle
 Net

denver (Logical Standby)

Oracle
 Net

Log
Transport
Services

Log
Apply

Services

Primary
Database

Online
 Redo

 Log Files

Archived
Redo

Log Files

Log
Apply

Services

Logical
Standby

Database

Standby
Redo

Log Files

Online
 Redo

 Log Files

Archived
Redo

Log Files

Archived
Redo

Log Files

Log
Apply

Services

Physical
Standby

Database

Online
 Redo

 Log Files

Archived
Redo

Log Files

Standby
Redo

Log Files

Standby
Redo

Log Files

Choosing the Best Available Standby Database for a Role Transition

Data Guard Scenarios 12-9

12.1.4 Verifying the Current VALID_FOR Attribute Settings for Each Destination
To see whether or not the current VALID_FOR attribute settings are valid right now for
each destination in the Data Guard configuration, query the V$ARCHIVE_DEST view,
as shown in Example 12–1.

Example 12–1 Finding VALID_FOR Information in the V$ARCHIVE_DEST View

SQL> SELECT DEST_ID,VALID_TYPE,VALID_ROLE,VALID_NOW FROM V$ARCHIVE_DEST;
DEST_ID VALID_TYPE VALID_ROLE VALID_NOW
------- --------------- ------------ ----------------
1 ALL_LOGFILES ALL_ROLES YES
2 STANDBY_LOGFILE STANDBY_ROLE WRONG VALID_TYPE
3 ONLINE_LOGFILE STANDBY_ROLE WRONG VALID_ROLE
4 ALL_LOGFILES ALL_ROLES UNKNOWN
5 ALL_LOGFILES ALL_ROLES UNKNOWN
6 ALL_LOGFILES ALL_ROLES UNKNOWN
7 ALL_LOGFILES ALL_ROLES UNKNOWN
8 ALL_LOGFILES ALL_ROLES UNKNOWN
9 ALL_LOGFILES ALL_ROLES UNKNOWN
10 ALL_LOGFILES ALL_ROLES UNKNOWN
 10 rows selected.

In Example 12–1, each line represents one of the ten destinations in the Data Guard
configuration. The first line indicates that the VALID_FOR attribute for LOG_
ARCHIVE_DEST_1 is set to (ALL_LOGFILES,ALL_ROLES), which is the only
keyword pair that is valid at all times.

More interesting are the second and third lines in the view, which are both currently
invalid, but for different reasons:

■ LOG_ARCHIVE_DEST_2 is set to (STANDBY_LOGFILES,STANDBY_ROLE), but
the WRONG VALID_TYPE is returned because this standby destination does not
have a standby redo log implemented.

■ LOG_ARCHIVE_DEST_3 is set to (ONLINE_LOGFILES,STANDBY_ROLE), but the
WRONG VALID_ROLE is returned because this destination is currently running in
the primary database role.

All of the other destinations are shown as UNKNOWN, which indicates the destinations
are either undefined or the database is started and mounted but archiving is not
currently taking place. See the V$ARCHIVE_DEST view in the Oracle Database Reference
for information about these and other columns.

12.2 Choosing the Best Available Standby Database for a Role Transition
The following sections provide scenarios that illustrate, in a step-by-step fashion, how
to choose the best available standby database for failover:

■ Example: Best Physical Standby Database for a Failover

■ Example: Best Logical Standby Database for a Failover

If a configuration contains both physical and logical standby databases, Oracle
recommends that you perform the role transition using the best available physical
standby database. This is recommended because:

See Also: Section 7.1.2 for general guidelines about selecting a target
standby database for switchover and failover

Choosing the Best Available Standby Database for a Role Transition

12-10 Oracle Data Guard Concepts and Administration

■ A logical standby database might contain only a subset of the data present in the
primary database.

■ A role transition involving a logical standby database requires that any existing
physical standby databases be re-created from a copy of the new primary database
(after the role transition is complete) to continue to participate in the Data Guard
configuration.

Because of these limitations, a logical standby database should be considered as the
target for a role transition only in the following special situations:

■ The configuration contains only logical standby databases.

■ It is critical to fail over a standby database to the primary role as quickly as
possible, and the most current logical standby database in the configuration is
significantly more current than the most current physical standby database in the
configuration.

Once you determine whether to use a physical or a logical standby database, the
specific standby database you select as the target for the role transition is determined
by how much of the recent primary database modifications are available on the
standby database. Because the primary database remains accessible during
switchovers, there will be no loss of data, and the choice of the standby database used
during a switchover will only affect the time required to complete the switchover. For
failovers, however, the choice of standby database might involve trade-off between
additional risk of data loss and the time required to transition a standby database to
the primary role.

12.2.1 Example: Best Physical Standby Database for a Failover
In a disaster, the most critical task for the DBA is to determine if it is quicker and safer
to repair the primary database or fail over to a standby database. When deciding that a
failover is necessary and multiple physical standby databases are configured, the DBA
must choose which physical standby database is the best target for the failover. While
there are many environmental factors that can affect which standby database
represents the best choice, this scenario assumes these things to be equal for
emphasizing data loss assessment.

This scenario begins with a Data Guard configuration consisting of the HQ primary
database and two physical standby databases, SAT and NYC. The HQ database is
operating in maximum availability protection mode, and the standby databases are
each configured with three standby redo log files. See Section 1.4 for more information
about the maximum availability protection mode for physical standby databases.

Table 12–5 provides information about the databases used in this scenario.

Table 12–5 Identifiers for the Physical Standby Database Example

Identifier HQ Database SAT Database NYC Database

Location San Francisco Seattle New York City

Database name HQ HQ HQ

Instance name HQ SAT NYC

Initialization parameter file hq_init.ora sat_init.ora nyc_init.ora

Control file hq_cf1.f sat_cf1.f nyc_cf1.f

Datafile hq_db1.f sat_db1.f nyc_db1.f

Redo log file 1 hq_log1.f sat_log1.f nyc_log1.f

Choosing the Best Available Standby Database for a Role Transition

Data Guard Scenarios 12-11

Assume that an event occurs in San Francisco where the primary site is located, and
the primary site is damaged in such a way that it cannot be repaired in a timely
manner. You must fail over to one of the standby databases. You cannot assume that
the DBA who set up the multiple standby database configuration is available to decide
to which standby database to fail over. Therefore, it is imperative to have a disaster
recovery plan at each standby site, as well as at the primary site. Each member of the
disaster recovery team needs to know about the disaster recovery plan and be aware of
the procedures to follow. This scenario identifies the information you need when
deciding which standby database should be the target of the failover.

One method of conveying information to the disaster recovery team is to include a
ReadMe file at each standby site. This ReadMe file is created and maintained by the
DBA and should describe how to:

■ Log on to the local Oracle database as a DBA

■ Log on to each system where the standby databases are located

■ Get instructions for going through firewalls, because there might be firewalls
between systems

■ Log on to other Oracle databases as a DBA

■ Identify the most up-to-date standby database

■ Perform the standby database failover

■ Configure network settings to ensure client applications access the new primary
database, instead of the original primary database

Redo log file 2 hq_log2.f sat_log2.f nyc_log2.f

Standby redo log file 1 hq_srl1.f sat_srl1.f nyc_srl1.f

Standby redo log file 2 hq_srl2.f sat_srl2.f nyc_srl2.f

Standby redo log file 3 hq_srl3.f sat_srl3.f nyc_srl3.f

Primary protection mode Maximum
availability

Not applicable Not applicable

Standby protection mode Not applicable Maximum
availability
(synchronous)

Maximum
performance
(asynchronous)

Network service name (client
defined)

hq_net sat_net nyc_net

Listener hq_listener sat_listener nyc_listener

Note: The New York city database is operating in maximum
performance mode because sending redo data synchronously from
HQ to NYC might impact the primary database performance
during peak workload periods. However, the New York City
standby database is still considered a viable candidate for failovers
because it uses a standby redo log.

Table 12–5 (Cont.) Identifiers for the Physical Standby Database Example

Identifier HQ Database SAT Database NYC Database

Choosing the Best Available Standby Database for a Role Transition

12-12 Oracle Data Guard Concepts and Administration

When choosing a standby database, there are two critical considerations: which
standby database received the most recent redo data and which standby database has
applied the most redo.

Follow these steps to determine which standby database is the best candidate for
failover when only physical standby databases are in the configuration. Always start
with the standby database providing the highest protection level. In this scenario, the
Seattle standby database provides the highest protection level because it is operating
in maximum availability protection mode.

Step 1 Connect to the SAT physical standby database.
Issue a SQL statement such as the following:

SQL> CONNECT SYS/CHANGE_ON_INSTALL AS SYSDBA;

Step 2 Determine how much current redo data is available in the archived redo
log file.
Query the columns in the V$MANAGED_STANDBY view, as shown:

SQL> SELECT THREAD#, SEQUENCE#, BLOCK#, BLOCKS
 2> FROM V$MANAGED_STANDBY WHERE STATUS='RECEIVING';

 THREAD# SEQUENCE# BLOCK# BLOCKS
---------- ---------- ---------- ----------
 1 14 234 16

This standby database received 249 blocks of redo data from the primary database. To
compute the number of blocks received, add the BLOCKS column value to the BLOCK#
column value, and subtract 1 (because block number 234 is included in the 16 blocks
received).

Step 3 Obtain a list of the archived redo log files that were applied or are
currently pending application to the SAT database.
Query the V$ARCHIVED_LOG view:

SQL> SELECT SUBSTR(NAME,1,25) FILE_NAME, SEQUENCE#, APPLIED
 2> FROM V$ARCVHIVED_LOG ORDER BY SEQUENCE#;
FILE_NAME SEQUENCE# APP
------------------------- ---------- ---
/oracle/dbs/hq_sat_2.log 2 YES
/oracle/dbs/hq_sat_3.log 3 YES
/oracle/dbs/hq_sat_4.log 4 YES
/oracle/dbs/hq_sat_5.log 5 YES
/oracle/dbs/hq_sat_6.log 6 YES
/oracle/dbs/hq_sat_7.log 7 YES
/oracle/dbs/hq_sat_8.log 8 YES
/oracle/dbs/hq_sat_9.log 9 YES
/oracle/dbs/hq_sat_10.log 10 YES
/oracle/dbs/hq_sat_11.log 11 YES
/oracle/dbs/hq_sat_13.log 13 NO

Note: Depending on how long the primary database has been
unavailable, the previous query might not return any selected rows
because the RFS process might detect the network disconnection
and terminate itself. If this occurs, it is always best to select a
standby database that is configured to receive the redo data in a
synchronous manner.

Choosing the Best Available Standby Database for a Role Transition

Data Guard Scenarios 12-13

This output indicates that archived redo log file 11 was completely applied to the
standby database. (The line for log file 11 in the example output is in bold typeface to
assist you in reading the output. The actual output will not display bolding.)

Also, notice the gap in the sequence numbers in the SEQUENCE# column. In the
example, the gap indicates the SAT standby database is missing archived redo log file
number 12.

Step 4 Connect to the NYC database to determine if it is more recent than the
SAT standby database.
Issue a SQL statement such as the following:

SQL> CONNECT SYS/CHANGE_ON_INSTALL AS SYSDBA;

Step 5 Determine how much current redo data is available in the archived redo
log file.
Query the columns in the V$MANAGED_STANDBY view as shown:

SQL> SELECT THREAD#, SEQUENCE#, BLOCK#, BLOCKS
 2> FROM V$MANAGED_STANDBY WHERE STATUS='RECEIVING';

 THREAD# SEQUENCE# BLOCK# BLOCKS
---------- ---------- ---------- ----------
 1 14 157 93

This standby database has also received 249 blocks of redo information from the
primary database. To compute the number of blocks received, add the BLOCKS column
value to the BLOCK# column value, and subtract 1 (because block number 157 is
included in the 93 blocks received).

Step 6 Obtain a list of the archived redo log files that were applied or are
currently pending application to the NYC database.
Query the V$ARCHIVED_LOG view:

SQL> SELECT SUBSTR(NAME,1,25) FILE_NAME, SEQUENCE#, APPLIED
 2> FROM V$ARCVHIVED_LOG ORDER BY SEQUENCE#;

FILE_NAME SEQUENCE# APP
------------------------- ---------- ---
/oracle/dbs/hq_nyc_2.log 2 YES
/oracle/dbs/hq_nyc_3.log 3 YES
/oracle/dbs/hq_nyc_4.log 4 YES
/oracle/dbs/hq_nyc_5.log 5 YES
/oracle/dbs/hq_nyc_6.log 6 YES
/oracle/dbs/hq_nyc_7.log 7 YES
/oracle/dbs/hq_nyc_8.log 8 NO
/oracle/dbs/hq_nyc_9.log 9 NO
/oracle/dbs/hq_nyc_10.log 10 NO
/oracle/dbs/hq_nyc_11.log 11 NO
/oracle/dbs/hq_nyc_12.log 12 NO
/oracle/dbs/hq_nyc_13.log 13 NO

This output indicates that archived redo log file 7 was completely applied to the
standby database. (The line for log file 7 in the example output is in bold typeface to
assist you in reading the output. The actual output will not display bolding.)

More redo data was received at this location, but less was applied to the standby
database.

Choosing the Best Available Standby Database for a Role Transition

12-14 Oracle Data Guard Concepts and Administration

Step 7 Choose the best target standby database.
In most cases, the physical standby database you choose as a failover target should
provide a balance between risk of data loss and time required to perform the role
transition. As you analyze this information to make a decision about the best failover
candidate in this scenario, consider the following:

■ For minimal risk of data loss during a failover, you should choose the NYC
database as the best target standby database because Steps 5 and 6 revealed that
the NYC site has the most recoverable redo.

■ For minimal primary database downtime during the failover operation, you
should choose the SAT database as the best target standby database. This database
is a more appropriate candidate because the queries in Steps 2 through 6 reveal
that the SAT database applied 5 archived redo log files more than the NYC
database. However, if it is not possible to obtain and apply a copy of the missing
archived redo log file (log 12 in the example), then you will not be able to make the
SAT database as current as you can the NYC database. Therefore, you will lose the
unapplied data (log files 12, 13, and part of log file 14 in the example).

Based on your business requirements, choose the best target standby database.

Step 8 Bring the selected standby database to its most current state.
■ If you chose the SAT database as the best target based on your business

requirements, perform the following steps:

1. Retrieve any missing archived redo log files using an operating system copy
utility. (This example uses the UNIX cp command). In this case, the SAT
database is missing archived redo log file 12. Because the NYC database
received this archived redo log file, you can copy it from the NYC database to
the SAT database, as follows:

% cp /net/nyc/oracle/dbs/hq_nyc_12.log /net/sat/oracle/dbs/hq_sat_12.log

2. Determine if a partial archived redo log file exists for the next sequence
number. In this example, the next sequence number should be 14. The
following UNIX command searches the directory on the SAT database for the
presence of an archived redo log file named hq_sat_14.log:

% ls -l /net/sat/oracle/dbs/hq_sat_14.log
/net/sat/oracle/dbs/hq_sat_14.log: No such file or directory

Because the SAT standby database is using standby redo log files, there should
not be any partial archived redo log files.

3. Register the retrieved archived redo log file. (There is no need to stop log
apply services).

SQL> ALTER DATABASE REGISTER PHYSICAL LOGFILE '/oracle/dbs/hq_sat_12.log';

4. Query the V$ARCHIVED_LOG view again to make sure the archived redo log
files were successfully applied:

SQL> SELECT SUBSTR(NAME,1,25) FILE_NAME, SEQUENCE#, APPLIED
 2> FROM V$ARCVHIVED_LOG ORDER BY SEQUENCE#;

FILE_NAME SEQUENCE# APP
------------------------- ---------- ---
/oracle/dbs/hq_sat_2.log 2 YES
/oracle/dbs/hq_sat_3.log 3 YES
/oracle/dbs/hq_sat_4.log 4 YES
/oracle/dbs/hq_sat_5.log 5 YES

Choosing the Best Available Standby Database for a Role Transition

Data Guard Scenarios 12-15

/oracle/dbs/hq_sat_6.log 6 YES
/oracle/dbs/hq_sat_7.log 7 YES
/oracle/dbs/hq_sat_8.log 8 YES
/oracle/dbs/hq_sat_9.log 9 YES
/oracle/dbs/hq_sat_10.log 10 YES
/oracle/dbs/hq_sat_11.log 11 YES
/oracle/dbs/hq_sat_12.log 12 YES
/oracle/dbs/hq_sat_13.log 13 YES

■ If you chose the NYC database as the best target based on your business
requirements, perform the following steps:

1. Determine if a partial archived redo log file exists for the next sequence
number. The following UNIX command searches the directory on the NYC
database for the presence of an archived redo log file named with the next
sequence (hq_nyc_14):

% ls -l /net/nyc/oracle/dbs/hq_nyc_14.log
/net/nyc/oracle/dbs/hq_nyc_14.log: No such file or directory

Because the NYC standby database is using standby redo log files, there
should not be any partial archived redo log files.

2. Start log apply services to apply the most current log file:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE
 2> DISCONNECT FROM SESSION;

3. Query the V$ARCHIVED_LOG view again to make sure the archived redo log
files were successfully applied:

SQL> SELECT SUBSTR(NAME,1,25) FILE_NAME, SEQUENCE#, APPLIED
 2> FROM V$ARCVHIVED_LOG ORDER BY SEQUENCE#;

FILE_NAME SEQUENCE# APP
------------------------- ---------- ---
/oracle/dbs/hq_nyc_2.log 2 YES
/oracle/dbs/hq_nyc_3.log 3 YES
/oracle/dbs/hq_nyc_4.log 4 YES
/oracle/dbs/hq_nyc_5.log 5 YES
/oracle/dbs/hq_nyc_6.log 6 YES
/oracle/dbs/hq_nyc_7.log 7 YES
/oracle/dbs/hq_nyc_8.log 8 YES
/oracle/dbs/hq_nyc_9.log 9 YES
/oracle/dbs/hq_nyc_10.log 10 YES
/oracle/dbs/hq_nyc_11.log 11 YES
/oracle/dbs/hq_nyc_12.log 12 NO
/oracle/dbs/hq_nyc_13.log 13 NO

Applying the archived redo log files might take some time to complete.
Therefore, you must wait until all archived redo log files are designated as
applied, as shown:

SQL> SELECT SUBSTR(NAME,1,25) FILE_NAME, SEQUENCE#, APPLIED
 2> FROM V$ARCVHIVED_LOG ORDER BY SEQUENCE#;

FILE_NAME SEQUENCE# APP
------------------------- ---------- ---
/oracle/dbs/hq_nyc_2.log 2 YES
/oracle/dbs/hq_nyc_3.log 3 YES
/oracle/dbs/hq_nyc_4.log 4 YES
/oracle/dbs/hq_nyc_5.log 5 YES

Choosing the Best Available Standby Database for a Role Transition

12-16 Oracle Data Guard Concepts and Administration

/oracle/dbs/hq_nyc_6.log 6 YES
/oracle/dbs/hq_nyc_7.log 7 YES
/oracle/dbs/hq_nyc_8.log 8 YES
/oracle/dbs/hq_nyc_9.log 9 YES
/oracle/dbs/hq_nyc_10.log 10 YES
/oracle/dbs/hq_nyc_11.log 11 YES
/oracle/dbs/hq_nyc_12.log 12 YES
/oracle/dbs/hq_nyc_13.log 13 YES

Step 9 Perform the failover.
You are now ready to stop log apply services and fail over the selected physical
standby database to the primary role.

See Section 7.2.2 for additional information about how to fail over to a physical
standby database.

12.2.2 Example: Best Logical Standby Database for a Failover
In a disaster when only logical standby databases are available, the critical task is to
determine which logical standby database is the best target for the failover. While
there are many environmental factors that can affect which is the best target standby
database, this scenario assumes these things to be equal for emphasizing data loss
assessment. See Section 1.4 for more information about the maximum availability
protection mode for logical standby databases.

This scenario starts out with a Data Guard configuration consisting of the HQ primary
database and two logical standby databases, SAT and NYC. Table 12–6 provides
information about each of these databases.

Follow these steps to determine which standby database is the best candidate for
failover when only logical standby databases are in the configuration:

Step 1 Connect to the SAT logical standby database.
Issue a SQL statement such as the following:

SQL> CONNECT SYS/CHANGE_ON_INSTALL AS SYSDBA;

Table 12–6 Identifiers for Logical Standby Database Example

Identifier HQ Database SAT Database NYC Database

Location San Francisco Seattle New York City

Database name HQ SAT NYC

Instance name HQ SAT NYC

Initialization parameter file hq_init.ora sat_init.ora nyc_init.ora

Control file hq_cf1.f sat_cf1.f nyc_cf1.f

Datafile hq_db1.f sat_db1.f nyc_db1.f

Redo log file 1 hq_log1.f sat_log1.f nyc_log1.f

Redo log file 2 hq_log2.f sat_log2.f nyc_log2.f

Database link (client-defined) hq_link sat_link nyc_link

Network service name (client-defined) hq_net sat_net nyc_net

Listener hq_listener sat_listener nyc_listener

Choosing the Best Available Standby Database for a Role Transition

Data Guard Scenarios 12-17

Step 2 Determine the highest applied SCN and highest (newest) applicable SCN
on the SAT database.
 Query the following columns in the V$LOGSTDBY_PROGRESS view:

SQL> SELECT APPLIED_SCN, LATEST_SCN FROM V$LOGSTDBY_PROGRESS;

APPLIED_SCN LATEST_SCN
----------- ----------
 144059 144059

Step 3 Obtain a list of the archived redo log files that were applied or are
currently pending application to the SAT database.
Query the DBA_LOGSTDBY_LOG view:

SQL> SELECT SUBSTR(FILE_NAME,1,25) FILE_NAME, SUBSTR(SEQUENCE#,1,4) "SEQ#",
 2> FIRST_CHANGE#, NEXT_CHANGE#, TO_CHAR(TIMESTAMP, 'HH:MI:SS') TIMESTAMP,
 3> DICT_BEGIN BEG, DICT_END END, SUBSTR(THREAD#,1,4) "THR#"
 4> FROM DBA_LOGSTDBY_LOG ORDER BY SEQUENCE#;

FILE_NAME SEQ# FIRST_CHANGE# NEXT_CHANGE# TIMESTAM BEG END THR#
------------------------- ---- ------------- ------------ -------- --- --- ----
/oracle/dbs/hq_sat_2.log 2 101579 101588 11:02:57 NO NO 1
/oracle/dbs/hq_sat_3.log 3 101588 142065 11:02:01 NO NO 1
/oracle/dbs/hq_sat_4.log 4 142065 142307 11:02:09 NO NO 1
/oracle/dbs/hq_sat_5.log 5 142307 142739 11:02:47 YES YES 1
/oracle/dbs/hq_sat_6.log 6 142739 143973 12:02:09 NO NO 1
/oracle/dbs/hq_sat_7.log 7 143973 144042 01:02:00 NO NO 1
/oracle/dbs/hq_sat_8.log 8 144042 144051 01:02:00 NO NO 1
/oracle/dbs/hq_sat_9.log 9 144051 144054 01:02:15 NO NO 1
/oracle/dbs/hq_sat_10.log 10 144054 144057 01:02:20 NO NO 1
/oracle/dbs/hq_sat_11.log 11 144057 144060 01:02:25 NO NO 1
/oracle/dbs/hq_sat_13.log 13 144089 144147 01:02:40 NO NO 1

Notice that for log file 11, the SCN of 144059 (recorded in Step 2) is between the
FIRST_CHANGE# column value of 144057 and the NEXT_CHANGE# column value of
144060. This indicates log file 11 is currently being applied. Also, notice the gap in the
sequence numbers in the SEQ# column; in the example, the gap indicates that SAT
database is missing archived redo log file 12.

Step 4 Connect to the NYC database.
Issue a SQL statement such as the following:

SQL> CONNECT SYS/CHANGE_ON_INSTALL AS SYSDBA;

Step 5 Determine the highest applied SCN and highest applicable SCN on the
NYC database.
Query the following columns in the V$LOGSTDBY_PROGRESS view:

SQL> SELECT APPLIED_SCN, LATEST_SCN FROM V$LOGSTDBY_PROGRESS;
APPLIED_SCN LATEST_SCN
----------- ----------
 143970 144146

Step 6 Obtain a list of the log files that were processed or are currently pending
processing on the NYC database.
Issue a SQL statement such as the following:

SQL> SELECT SUBSTR(FILE_NAME,1,25) FILE_NAME, SUBSTR(SEQUENCE#,1,4) "SEQ#",
 2> FIRST_CHANGE#, NEXT_CHANGE#, TO_CHAR(TIMESTAMP, 'HH:MI:SS') TIMESTAMP,

Choosing the Best Available Standby Database for a Role Transition

12-18 Oracle Data Guard Concepts and Administration

 3> DICT_BEGIN BEG, DICT_END END, SUBSTR(THREAD#,1,4) "THR#"
 4> FROM DBA_LOGSTDBY_LOG ORDER BY SEQUENCE#;

FILE_NAME SEQ# FIRST_CHANGE# NEXT_CHANGE# TIMESTAM BEG END THR#
------------------------- ---- ------------- ------------ -------- --- --- ----
/oracle/dbs/hq_nyc_2.log 2 101579 101588 11:02:58 NO NO 1
/oracle/dbs/hq_nyc_3.log 3 101588 142065 11:02:02 NO NO 1
/oracle/dbs/hq_nyc_4.log 4 142065 142307 11:02:10 NO NO 1
/oracle/dbs/hq_nyc_5.log 5 142307 142739 11:02:48 YES YES 1
/oracle/dbs/hq_nyc_6.log 6 142739 143973 12:02:10 NO NO 1
/oracle/dbs/hq_nyc_7.log 7 143973 144042 01:02:11 NO NO 1
/oracle/dbs/hq_nyc_8.log 8 144042 144051 01:02:01 NO NO 1
/oracle/dbs/hq_nyc_9.log 9 144051 144054 01:02:16 NO NO 1
/oracle/dbs/hq_nyc_10.log 10 144054 144057 01:02:21 NO NO 1
/oracle/dbs/hq_nyc_11.log 11 144057 144060 01:02:26 NO NO 1
/oracle/dbs/hq_nyc_12.log 12 144060 144089 01:02:30 NO NO 1
/oracle/dbs/hq_nyc_13.log 13 144089 144147 01:02:41 NO NO 1

Notice that for log file 6, the SCN of 143970 (recorded in Step 5) is between the FIRST_
CHANGE# column value of 142739 and the NEXT_CHANGE# column value of 143973.
This indicates that log file 6 is currently being applied. Also, notice that there are no
gaps in the sequence of log files that remain to be processed.

Step 7 Choose the best target standby database.
In most cases, the logical standby database you choose as a failover target should
provide a balance between risk of data loss and time required to perform the role
transition. As you analyze this information to make a decision about the best failover
candidate in this scenario, consider the following:

■ For minimal risk of data loss during a failover, you should choose the NYC
database as the best target standby database because Steps 5 and 6 revealed that
the NYC site has the most recoverable archived redo log files.

■ For minimal primary database downtime during the failover, you should choose
the SAT database as the best target standby database. This database is a more
appropriate candidate because the queries in Steps 2 through 6 reveal that the SAT
database applied 5 archived redo log files more than the NYC database (even
though there was only a 1-second delay (lag) in the receipt of archived redo log
files by the NYC database). However, if it is not possible to obtain and apply a
copy of the missing archived redo log file (log file 12 in the example), then you will
not be able to make the SAT database as current as you can the NYC database.
Therefore, you will lose the unrecovered data (log files 12, 13, and part of log file
14 in the example).

Based on your business requirements, choose the best target standby database.

Step 8 Bring the selected standby database to its most current state.
If you chose the SAT database as the best target based on your business
requirements, perform the following steps:

1. Manually retrieve any missing archived redo log files using an operating system
utility. (This example uses the UNIX cp command.) In this case, the SAT database
is missing archived redo log file 12. Because the NYC database received this
archived redo log file, you can copy it from the NYC database to the SAT database,
as follows:

%cp /net/nyc/oracle/dbs/hq_nyc_12.log
/net/sat/oracle/dbs/hq_sat_12.log

Choosing the Best Available Standby Database for a Role Transition

Data Guard Scenarios 12-19

2. Determine if a partial archived redo log file exists for the next sequence number. In
this example, the next sequence number should be 14. The following UNIX
command shows the directory on the SAT database, looking for the presence of an
archived redo log file named hq_sat_14.log:

%ls -l /net/sat/oracle/dbs/hq_sat_14.log
-rw-rw---- 1 oracle dbs 333280 Feb 12 1:03 hq_sat_14.log

3. Stop log apply services and register both the retrieved archived redo log file and
the partial archived redo log file:

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;
SQL> ALTER DATABASE REGISTER LOGICAL LOGFILE '/oracle/dbs/hq_sat_12.log';
SQL> ALTER DATABASE REGISTER LOGICAL LOGFILE '/oracle/dbs/hq_sat_14.log';

4. Start log apply services to apply the most current log file:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY;

5. Determine the highest applied SCN on the SAT database by querying the
V$LOGSTDBY_PROGRESS view to see if the value of the APPLIED_SCN column is
equal to the value of the LATEST_SCN column:

SQL> SELECT APPLIED_SCN, LATEST_SCN FROM V$LOGSTDBY_PROGRESS;

APPLIED_SCN LATEST_SCN
----------- ----------
 144205 144205

Because the SCN values match, you can be assured that there is no longer a delay
(lag) between the current log file on the primary database and the last log file
applied to the SAT database.

If you chose the NYC database as the best target based on your business
requirements, perform the following steps:

1. Determine if a partial archived redo log file exists for the next sequence number. In
this example, the next sequence number should be 14. The following UNIX
command shows the directory on the NYC database, looking for the presence of
an archived redo log file named hq_nyc_14:

%ls -l /net/nyc/oracle/dbs/hq_nyc_14.log
-rw-rw---- 1 oracle dbs 333330 Feb 12 1:03 hq_nyc_14.log

2. Register the partial archived redo log file on the NYC database:

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;
SQL> ALTER DATABASE REGISTER LOGICAL LOGFILE '/oracle/dbs/hq_nyc_14.log';

3. Start log apply services to apply the most current log file:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY;

4. Determine the highest applied SCN on the NYC database by querying the
V$LOGSTDBY_PROGRESS view to see if the value of the APPLIED_SCN column is
equal to the value of the LATEST_SCN column:

SQL> SELECT APPLIED_SCN, LATEST_SCN FROM V$LOGSTDBY_PROGRESS;

APPLIED_SCN LATEST_SCN
----------- ----------
 144205 144205

Configuring a Logical Standby Database to Support a New Primary Database

12-20 Oracle Data Guard Concepts and Administration

Because the SCN values match, you can be sure there is no longer a delay (lag)
between the current log file on the primary database and the last log file received
and applied by the NYC database.

Step 9 Perform the failover.
You are now ready to stop log apply services and fail over the selected logical standby
database to the primary role.

See Section 7.3.2 for additional information on how to perform the failover.

12.3 Configuring a Logical Standby Database to Support a New Primary
Database

This section presents the steps required on a logical standby database after the primary
database has failed over to another standby database. After a failover has occurred, a
logical standby database cannot act as a standby database for the new primary
database until it has applied the final redo from the original primary database. This is
similar to the way the new primary database applied the final redo during the failover.
The steps you must perform depend on whether the new primary database was a
physical standby or a logical standby database prior to the failover:

■ Section 12.3.1, "When the New Primary Database Was Formerly a Physical
Standby Database"

■ Section 12.3.2, "When the New Primary Database Was Formerly a Logical Standby
Database"

12.3.1 When the New Primary Database Was Formerly a Physical Standby Database
This scenario demonstrates how to configure the SAT logical standby database with
the failed over NYC database. This scenario is a continuation of the example described
in Section 12.2.2. However, in this example, the NYC database was formerly a physical
standby database.

Perform the following steps to configure the logical standby database with the new
primary database:

Step 1 Disable archiving from the primary database.
On the NYC database, issue the following statements (assuming LOG_ARCHIVE_
DEST_4 is configured to archive to the SAT database):

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_4=DEFER;
SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

Step 2 Verify the logical standby database is capable of serving as a standby
database to the new primary database.
On the SAT database, issue the following statement:

SQL> EXECUTE DBMS_LOGSTDBY.PREPARE_FOR_NEW_PRIMARY(-
 former_standby_type => 'PHYSICAL' -
 dblink => 'nyc_link');

Configuring a Logical Standby Database to Support a New Primary Database

Data Guard Scenarios 12-21

Step 3 Enable archiving on the primary database.
On the NYC database, issue the following statements (assume LOG_ARCHIVE_DEST_
4 is configured to archive to the SAT database):

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_4=ENABLE;
SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

Step 4 Query the new primary database to determine the SCN at which real-time
apply can be enabled on the logical standby database
On the NYC database, issue the following query to determine the SCN of interest:

SQL> SELECT MAX(NEXT_CHANGE#) -1 AS WAIT_FOR_SCN FROM V$ARCHIVED_LOG;

Step 5 Start SQL Apply.
On the SAT database, issue the following statement:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY;

Note that you must always issue this statement without the real-time apply option.
You need to wait for SQL Apply to apply past WAIT_FOR_SCN returned in Step 4,
before you can enable real-time apply. To determine when it is safe to resume real-time
apply on the logical standby database, monitor the V$LOGSTDBY_PROGRESS view:

SQL> SELECT APPLIED_SCN FROM V$LOGSTDBY_PROGRESS;

When the value returned is greater than or equal to the WAIT_FOR_SCN value
returned in Step 4, you can stop SQL Apply and restart it with real-time apply option:

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;
SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

12.3.2 When the New Primary Database Was Formerly a Logical Standby Database
This scenario demonstrates how to configure the SAT logical standby database with
the failed over NYC database. This scenario is a continuation of the example described
in Section 12.2.2. However, in this example, the NYC database was formerly a logical
standby database.

Perform the following steps to configure the logical standby database with the new
primary database:

Step 1 Ensure the new primary database is ready to support logical standby
databases.
On the NYC database, ensure the following query returns a value of READY.
Otherwise, the LSP1 background process has not completed its work and the
configuration of this logical must wait. For example:

Note: If the ORA-16109 message is returned and the 'LOGSTDBY:
prepare_for_new_primary failure -- applied too far, flashback
required.' warning is written in the alert.log, perform the following
steps:

1. Flash back the database to the SCN as stated in the warning and then

2. Repeat this step before continuing.

See Section 12.4.3 for an example of how to flash back a logical
standby database to an Apply SCN.

Configuring a Logical Standby Database to Support a New Primary Database

12-22 Oracle Data Guard Concepts and Administration

SQL> SELECT VALUE FROM DBA_LOGSTDBY_PARAMETERS WHERE
 2> NAME = 'REINSTATEMENT_STATUS';

VALUE

READY

Step 2 Disable archiving from the primary database.
On the NYC database, issue the following statements (assume LOG_ARCHIVE_DEST_
4 is configured to archive to the SAT database):

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_4=DEFER;
SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

Step 3 Verify the logical standby database is capable of being a standby to the
new primary.
On the SAT database, issue the following statement:

SQL> EXECUTE DBMS_LOGSTDBY.PREPARE_FOR_NEW_PRIMARY(-
 former_standby_type => 'LOGICAL' -
 dblink => 'nyc_link');

Step 4 Determine the log files that must be copied to the local system.
On the SAT database, look for the output from the DBMS_LOGSTDBY.PREPARE_FOR_
NEW_PRIMARY procedure that identifies the log files that must be copied to the local
system. If Step 3 identified the failover as a no-data-loss failover, then the displayed log
files must be copied from the new primary database and should not be obtained from
other logical standby databases or the former primary database. For example, on a
Linux system, you would enter the grep command:

%grep 'LOGSTDBY: Terminal log' alert_sat.log
LOGSTDBY: Terminal log: [/oracle/dbs/hq_nyc_13.log]

Note: If the VALUE column contains NOT POSSIBLE it means that
no logical standby database may be configured with the new primary
database, and you must reinstate the database.

Note: If the ORA-16109 message is returned and the 'LOGSTDBY:
prepare_for_new_primary failure -- applied too far, flashback
required.' warning is written in the alert.log file, perform the
following steps:

1. Flash back the database to the SCN as stated in the warning and then

2. Repeat this step before continuing.

See Section 12.4.3 for an example of how to flash back a logical
standby database to an Apply SCN.

Using Flashback Database After a Failover

Data Guard Scenarios 12-23

Step 5 Copy the log files to the local system.
On the SAT database, copy the terminal log files to the local system. The following
example shows how to do this using Linux commands:

%cp /net/nyc/oracle/dbs/hq_nyc_13.log
/net/sat/oracle/dbs/hq_sat_13.log

Step 6 Register the terminal log with logical standby database.
On the SAT database, issue the following statement:

SQL> ALTER DATABASE REGISTER OR REPLACE LOGICAL LOGFILE -
 '/net/sat/oracle/dbs/hq_sat_13.log';

Step 7 Start SQL Apply.
On the SAT database, issue the following statements:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY NEW PRIMARY nyc_link;

Note that you must always issue this statement without the real-time apply option. If
you want to enable real-time apply on the logical standby database, wait for the above
statement to complete successfully, and then issue the following statements:

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;
SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

Step 8 Enable archiving on the primary database to the logical standby
database.
On the NYC database, issue the following statements (assuming LOG_ARCHIVE_
DEST_4 is configured to archive to the SAT database):

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_4=ENABLE;
SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

12.4 Using Flashback Database After a Failover
After a failover occurs, the original primary database can no longer participate in the
Data Guard configuration until it is repaired and established as a standby database in
the new configuration. To do this, you can use the Flashback Database feature to
recover the failed primary database to a point in time before the failover occurred, and
then convert it into a physical or logical standby database in the new configuration.
The following sections describe:

■ Flashing Back a Failed Primary Database into a Physical Standby Database

■ Flashing Back a Failed Primary Database into a Logical Standby Database

Note: If the prior step was executed multiple times, the output from
the most recent attempt is the only relevant output. File paths are
relative to the new primary database and may not be resolvable on the
local file system.

Note: You must have already enabled Flashback Database on the
original primary database before the failover. See Oracle Database
Backup and Recovery Basics for more information.

Using Flashback Database After a Failover

12-24 Oracle Data Guard Concepts and Administration

■ Flashing Back a Logical Standby Database to a Specific Applied SCN

12.4.1 Flashing Back a Failed Primary Database into a Physical Standby Database
The following steps assume the user has already performed a failover involving a
physical standby database and Flashback Database has been enabled on the old
primary database. This procedure brings the old primary database back into the Data
Guard configuration as a new physical standby database.

Step 1 Determine the SCN at which the old standby database became the
primary database.
On the new primary database, issue the following query to determine the SCN at
which the old standby database became the new primary database:

SQL> SELECT TO_CHAR(STANDBY_BECAME_PRIMARY_SCN) FROM V$DATABASE;

Step 2 Flash back the failed primary database.
To create a new physical standby database, shut down the old primary database (if
necessary), mount it, and flash it back to the value for STANDBY_BECAME_PRIMARY_
SCN that was determined in Step 1:

SQL> SHUTDOWN IMMEDIATE;
SQL> STARTUP MOUNT;
SQL> FLASHBACK DATABASE TO SCN standby_became_primary_scn;

Step 3 Convert the database to a physical standby database.
Perform the following steps on the old primary database:

1. Issue the following statement on the old primary database:

SQL> ALTER DATABASE CONVERT TO PHYSICAL STANDBY;

This statement will dismount the database after successfully converting the control
file to a standby control file.

2. Shut down and restart the database:

SQL> SHUTDOWN IMMEDIATE;
SQL> STARTUP MOUNT;

Step 4 Restart transporting redo to the new physical standby database.
Before the new standby database was created, the new primary database probably
stopped transmitting redo to the remote destination. To restart redo transport services,
perform the following steps on the new primary database:

1. Issue the following query to see the current state of the archive destinations:

SQL> SELECT DEST_ID, DEST_NAME, STATUS, PROTECTION_MODE, DESTINATION, ERROR,SRL
 2> FROM V$ARCHIVE_DEST_STATUS;

2. If necessary, enable the destination:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_n=ENABLE;

See Also: Oracle Data Guard Broker for automatic reinstatement of
the failed primary database as a new standby database (as an
alternative to using Flashback Database)

Using Flashback Database After a Failover

Data Guard Scenarios 12-25

3. Perform a log switch to ensure the standby database begins receiving redo data
from the new primary database, and verify it was sent successfully. At the SQL
prompt, enter the following statements:

SQL> ALTER SYSTEM SWITCH LOGFILE;
SQL> SELECT DEST_ID, DEST_NAME, STATUS, PROTECTION_MODE, DESTINATION, ERROR,SRL
 2> FROM V$ARCHIVE_DEST_STATUS;

On the new standby database, you may also need to change the LOG_ARCHIVE_
DEST_n initialization parameters so that redo transport services do not transmit
redo data to other databases. This step can be skipped if both the primary and
standby database roles were set up with the VALID_FOR attribute in one server
parameter file (SPFILE). By doing this, the Data Guard configuration operates
properly after a role transition.

Step 5 Start Redo Apply.
Start Redo Apply or real-time apply on the new physical standby database:

■ To start Redo Apply:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE DISCONNECT;

■ To start real-time apply:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE
 2> USING CURRENT LOGFILE DISCONNECT;

Once the failed primary database is restored and is running in the standby role, you
can optionally perform a switchover to transition the databases to their original
(pre-failure) roles. See Section 7.2.1, "Switchovers Involving a Physical Standby
Database" for more information.

12.4.2 Flashing Back a Failed Primary Database into a Logical Standby Database
The following steps assume that the Data Guard configuration has already completed
a failover involving a logical standby database and Flashback Database has been
enabled on the old primary database. This procedure brings the old primary database
back into the Data Guard configuration as a new logical standby database, without
having to formally reinstantiate it from the new primary database.

Step 1 Determine the SCN to which to flash back the failed primary database.
On the new primary database, issue the following query to determine the SCN to
which you want to flash back the failed primary database:

SQL> SELECT APPLIED_SCN AS FLASHBACK_SCN FROM V$LOGSTDBY_PROGRESS;

Step 2 Determine the log files that must be copied to the failed primary database
for Flashback Database.
On the new primary database, issue the following query to determine the log files that
must be copied to the failed primary database for Flashback Database to reach a
consistent state

SQL> SELECT NAME FROM DBA_LOGSDTBY_LOG
2> WHERE NEXT_CHANGE# >
3> (SELECT VALUE FROM DBA_LOGSTDBY_PARAMETERS
4> WHERE NAME = 'STANDBY_BECAME_PRIMARY_SCN')
5> AND FIRST_CHANGE <= (FLASHBACK_SCN from step 1);

Using Flashback Database After a Failover

12-26 Oracle Data Guard Concepts and Administration

Step 3 Flash back the failed primary database.
To create a new logical standby database, shut down the database (if necessary),
mount the failed primary database, flash it back to the FLASHBACK_SCN determined
in step 1, and enable the database guard.

SQL> SHUTDOWN IMMEDIATE;
SQL> STARTUP MOUNT;
SQL> FLASHBACK DATABASE TO SCN became_primary_scn;
SQL> ALTER DATABASE GUARD ALL;

Step 4 Open the database with the RESETLOGS option.
SQL> ALTER DATABASE OPEN RESETLOGS;

Step 5 Create a database link to the new primary database and start SQL Apply.
SQL> CREATE PUBLIC DATABASE LINK mylink
 2> CONNECT TO system IDENTIFIED BY password
 3> USING 'service_name_of_new_primary_database';

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY NEW PRIMARY mylink;

The role reversal is now complete.

Once the failed primary database has been restored and is running in the standby role,
you can optionally perform a switchover to transition the databases to their original
(pre-failure) roles. See Section 7.3.1, "Switchovers Involving a Logical Standby
Database" for more information.

12.4.3 Flashing Back a Logical Standby Database to a Specific Applied SCN
One of the benefits of a standby database is that Flashback Database can be performed
on the standby database without affecting the primary database service. Flashing back
a database to a specific point in time is a straightforward task, however on a logical
standby database, you may want to flash back to a time just before a known
transaction was committed. Such a need can arise when configuring a logical standby
database with a new primary database after a failover.

The following steps describe how to use Flashback Database and SQL Apply to
recover to a known applied SCN.

Step 1 Identify the log files that contain the Apply SCN.
On the logical standby database, issue the following query to identify the log files that
contain the Apply_SCN:

SQL> SELECT FILE_NAME FROM DBA_LOGSTDBY_LOG
5> WHERE FIRST_CHANGE# <= APPLY_SCN
6> AND NEXT_CHANGE# > APPLY_SCN
7> ORDER BY FIRST_CHANGE# ASCENDING;

FILE_NAME
--
/net/sat/oracle/dbs/hq_sat_13.log

Step 2 Locate the timestamp associated with the SQL Apply initial reading of the
first log file.
Locate the timestamp in the alert.log file associated with the SQL Apply initial
reading of the first log file displayed in Step 1. For example:

%grep -B 1 '^LOGMINER: Begin mining logfile' alert_gap2.log | grep -B 1 hq_sat_

Using Flashback Database After Issuing an Open Resetlogs Statement

Data Guard Scenarios 12-27

13.log

Tue Jun 7 02:38:18 2005
LOGMINER: Begin mining logfile: /net/sat/oracle/dbs/hq_sat_13.log

Step 3 Flash back the database to the timestamp.
Flash back the database to the timestamp identified in Step 2.

SQL> SHUTDOWN;
SQL> STARTUP MOUNT EXCLUSIVE;
SQL> FLASHBACK DATABASE TO TIMESTAMP -
 TO_TIMESTAMP('07-Jun-05 02:38:18', 'DD-Mon-RR HH24:MI:SS');
SQL> ALTER DATABASE OPEN RESETLOGS;

Step 4 Confirm SQL Apply has applied less than or up to the APPLY_SCN
Issue the following query:

SQL> SELECT APPLIED_SCN FROM V$LOGSTDBY_PROGRESS;

12.5 Using Flashback Database After Issuing an Open Resetlogs
Statement

Suppose an error has occurred on the primary database in a Data Guard configuration
in which the standby database is using real-time apply. In this situation, the same error
will be applied on the standby database.

However, if Flashback Database is enabled, you can revert the primary and standby
databases back to their pre-error condition by issuing the FLASHBACK DATABASE and
OPEN RESETLOGS statements on the primary database, and then issuing a similar
FLASHBACK STANDBY DATABASE statement on the standby database before
restarting log apply services. (If Flashback Database is not enabled, you need to
re-create the standby database, as described in Chapter 3 and Chapter 4, after the
point-in-time recovery was performed on the primary database.)

12.5.1 Flashing Back a Physical Standby Database to a Specific Point-in-Time
The following steps describe how to avoid re-creating a physical standby database
after you issued the OPEN RESETLOGS statement on the primary database.

Step 1 Determine the SCN before the RESETLOGS operation occurred.
On the primary database, use the following query to obtain the value of the system
change number (SCN) that is 2 SCNs before the RESETLOGS operation occurred on the
primary database:

SQL> SELECT TO_CHAR(RESETLOGS_CHANGE# - 2) FROM V$DATABASE;

Step 2 Obtain the current SCN on the standby database.
On the standby database, obtain the current SCN with the following query:

SQL> SELECT TO_CHAR(CURRENT_SCN) FROM V$DATABASE;

Step 3 Determine if it is necessary to flash back the database.
If the value of CURRENT_SCN is larger than the value of resetlogs_change# - 2, issue
the following statement to flash back the standby database.

SQL> FLASHBACK STANDBY DATABASE TO SCN resetlogs_change# -2;

Using Flashback Database After Issuing an Open Resetlogs Statement

12-28 Oracle Data Guard Concepts and Administration

■ If the value of CURRENT_SCN is less than the value of the resetlogs_change# - 2,
skip to Step 4.

■ If the standby database’s SCN is far enough behind the primary database’s SCN,
log apply services will be able to continue through the OPEN RESETLOGS
statement without stopping. In this case, flashing back the database is unnecessary
because log apply services do not stop upon reaching the OPEN RESETLOGS
statement in the redo data.

Step 4 Restart Redo Apply.
To start Redo Apply on the physical standby database, issue the following statement:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE DISCONNECT;

The standby database is now ready to receive and apply redo from the primary
database.

12.5.2 Flash Back a Logical Standby Database After Flashing Back the Primary
The following steps describe how to avoid re-creating a logical standby database after
you have flashed back the primary database and opened it by issuing OPEN
RESETLOGS statement.

Step 1 Determine the SCN at the primary database.
On the primary database, use the following query to obtain the value of the system
change number (SCN) that is 2 SCNs before the RESETLOGS operation occurred on the
primary database:

SQL> SELECT TO_CHAR(RESETLOGS_CHANGE# - 2) AS FLASHBACK_SCN FROM V$DATABASE;

Step 2 Stop SQL Apply.
On the logical standby database, stop SQL Apply:

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;
SQL> SELECT APPLIED_SCN FROM V$LOGSTDBY_PROGRESS;

If the APPLIED_SCN is less than the value of the resetlogs_change#-2, you do not need
to flash back the standby database and can proceed to Step 6. This may happen if SQL
Apply is running with a delay. Otherwise, continue with Step 5.

Step 3 Determine which archived redo log file contains the FLASHBACK_SCN.
On the logical standby database, determine which archived redo log file contains the
FLASHBACK_SCN determined in Step 1

SQL> SELECT FILE_NAME FROM DBA_LOGSTDBY_LOG
 2> WHERE FIRST_CHANGE# <= FLASHBACK_SCN
 3> AND NEXT_CHANGE# > FLASHBACK_SCN
 4> ORDER BY FIRST_CHANGE# ASCENDING;

FILE_NAME
--
/net/sat/oracle/dbs/hq_sat_146.log

Step 4 Locate the timestamp in the alert.log file.
Locate the timestamp in the alert.log file associated with the SQL Apply initial
reading of the first log file displayed in Step 1. For example:

%grep -B 1 '^LOGMINER: Begin mining logfile' alert.log | grep -B 1 hq_sat_146.log

Using a Physical Standby Database for Read/Write Testing and Reporting

Data Guard Scenarios 12-29

Tue Mar 7 12:38:18 2005
LOGMINER: Begin mining logfile: /net/sat/oracle/dbs/hq_sat_146.log

Step 5 Flash back the logical standby database to the timestamp.
Issue the following SQL statements to flash back the logical standby database to the
time identified in step 4, and open the logical standby database with the RESETLOGS
option:

SQL> SHUTDOWN;
SQL> STARTUP MOUNT EXCLUSIVE;
SQL> FLASHBACK DATABASE TO TIMESTAMP('07-Mar-05 12:38:18', 'DD-Mon-RR
HH24:MI:SS');
SQL> ALTER DATABASE OPEN RESETLOGS;

Step 6 Confirm SQL Apply has applied less than or up to the Apply SCN.
On the logical standby database, issue the following query:

SQL> SELECT APPLIED_SCN FROM V$LOGSTDBY_PROGRESS;

Step 7 Start SQL Apply.
SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

12.6 Using a Physical Standby Database for Read/Write Testing and
Reporting

Using a combination of Data Guard, restore points, and Flashback Database, a physical
standby database can be opened temporarily in read/write mode for development,
reporting, or testing purposes, and then flashed back to a point in the past to be
reverted back to a physical standby database. When the database is flashed back, Data
Guard automatically synchronizes the standby database with the primary database,
without the need to re-create the physical standby database from a backup copy of the
primary database.

Figure 12–7 shows a physical standby database being activated as a read/write clone
database, resynchronized with the primary database, and eventually flashed back and
reverted to its physical standby database role. You can repeat this cycle of activate,
flashback and revert as many times as is necessary.

Using a Physical Standby Database for Read/Write Testing and Reporting

12-30 Oracle Data Guard Concepts and Administration

Figure 12–7 Using a Physical Standby Database As a Testing and Reporting Database

Perform the following steps to activate the physical standby database as a production
database and later resynchronize it with the primary database.

Step 1 Prepare the physical standby database to be activated.
1. Set up a flash recovery area.

On the physical standby database that will be activated for read/write access, you
should set the following initialization parameters to ensure a guaranteed restore
point can be created. This scenario sets up the flash recovery area in the
/arch/oradata location:

SQL> ALTER SYSTEM SET DB_RECOVERY_FILE_DEST_SIZE=20G;
SQL> ALTER SYSTEM SET DB_RECOVERY_FILE_DEST='/arch/oradata';

2. Cancel Redo Apply and create a guaranteed restore point.

On the physical standby database, stop Redo Apply and create a restore point:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;
SQL> CREATE RESTORE POINT before_application_patch GUARANTEE FLASHBACK
DATABASE;

When you create a guaranteed restore point, you associate an easy-to-remember
name with a timestamp or SCN so that you can later flash back the database to a
name instead of specifying an exact SCN or time.

Step 2 Prepare the primary database to have the physical standby be diverged.
1. Archive the current log file.

On the primary database, switch logs so the SCN of the restore point (created in
step 1) will be archived on the physical standby database:

Caution: While the database is activated, it is not receiving redo data
from the primary database and cannot provide disaster protection. It
is recommended that there be at least two physical standby databases
participating in the configuration so that the primary database
remains protected against data loss.

Physical
Standby
Database

Physical
Standby
Database

Time

Create Restore
Point

2Activate standby
for testing
Standby >> Clone

4

1

Resync with incremental backup
or archives from primary

3

Read / Write
Clone of
Primary

Flashback clone to restore point
Clone >> Standby

Using a Physical Standby Database for Read/Write Testing and Reporting

Data Guard Scenarios 12-31

SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

When using standby redo log files, this step is essential to ensure the database can
be properly flashed back to the restore point.

2. Defer log archive destinations pointing to the standby that will be activated.

On the primary database (on all instances if this is a Real Applications Cluster),
defer the archival of redo data to the destination associated with the physical
standby database that will be opened. For example:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=DEFER;

Step 3 Activate the physical standby database.
On the physical standby database, perform the following steps:

1. Activate the physical standby database:

SQL> ALTER DATABASE ACTIVATE STANDBY DATABASE;

2. If the physical standby database has been opened read-only since the instance was
started, perform this step. Otherwise, skip to step 3.

Enter the following statement to shut down and restart the physical standby
database:

SQL> STARTUP MOUNT FORCE;

3. Set the protection mode to maximum performance and open the database for
read/write access:

SQL> ALTER DATABASE SET STANDBY DATABASE TO MAXIMIZE PERFORMANCE;
SQL> ALTER DATABASE OPEN;

After the standby database is activated, its protection mode is downgraded to the
maximum performance mode, because there is no standby database configured to
protect the database against data loss while it is temporarily activated as a production
database. Note that this protection mode setting does not affect the protection mode of
the original primary database, it affects only the activated standby database.

When the activated standby database is converted back to a physical standby
database, its protection mode is automatically changed to match that of the original
primary database.

If the standby database that was opened read/write temporarily has remote archive
log destinations, you might need to disable them. In this way, the read/write testing or
reporting database will not propagate its temporary changes to other standby
databases in the original Data Guard environment.

Step 4 Use the activated database for reporting or testing.
Once the standby database has been activated, you can run reporting tools or perform
other testing and activities for days or even weeks, independent of the primary
database.

Caution: While the database is activated, it is not receiving redo data
from the primary database and cannot provide disaster protection. It
is recommended that there be at least two physical standby databases
participating in the configuration so that the primary database
remains protected against data loss.

Using a Physical Standby Database for Read/Write Testing and Reporting

12-32 Oracle Data Guard Concepts and Administration

Also, any results stored in the activated database will be lost when you later flash back
the database. Results that should be saved must be copied out of the activated
database before flashing it back.

Step 5 Revert the activated database back to a physical standby database.
After you finish testing, you need to resynchronize the activated database with the
primary database. Issue the following statements on the activated database to quickly
flash it back to the guaranteed restore point and resynchronize it with the primary
database:

SQL> STARTUP MOUNT FORCE;
SQL> FLASHBACK DATABASE TO RESTORE POINT before_application_patch;
SQL> ALTER DATABASE CONVERT TO PHYSICAL STANDBY;
SQL> STARTUP MOUNT FORCE;

Step 6 Catch up the standby database to the primary database.
The method you use will depend on how far the activated standby database lags
behind the primary database in its application of redo data:

■ Let archive gap resolution fetch all missing archived redo log files and allow Redo
Apply to apply the gap.

If the activated database has not fallen too far behind the original primary
database, issue the following statement on the standby database to resynchronize
it with the primary database and restart Redo Apply. For example:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE DISCONNECT;

Then, go to Step 7.

■ Create an incremental backup on the primary and apply it to the standby.

If the activated database has fallen too far behind the original primary database
(for example, if there are not sufficient log files available), you can take an
incremental backup from the primary database and apply it to the standby
database. See Section 12.7.1 for information about using RMAN incremental
backups to resynchronize the standby database with the primary database.

After you apply an incremental backup to the standby database, you typically
need to apply more redo to the standby database to activate the physical standby
database again for read/write testing or reporting purposes. More specifically, you
might need to apply the redo generated by the primary database while the
incremental backup was taken. Otherwise, issuing an ALTER DATABSE
ACTIVATE STANDBY DATABASE will return an error.

Step 7 Reenable archiving to the physical standby database destination.
On the primary database, issue the following statement to reenable archiving to the
physical standby database:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE;

Note: If the standby database lags very far behind the primary
database, it may be quicker to apply an incremental backup created
from the primary database using the steps in Section 12.7.1.

Using RMAN Incremental Backups to Roll Forward a Physical Standby Database

Data Guard Scenarios 12-33

12.7 Using RMAN Incremental Backups to Roll Forward a Physical
Standby Database

In some situations, RMAN incremental backups can be used to synchronize a physical
standby database with the primary database. Using the RMAN BACKUP
INCREMENTAL FROM SCN command, you can create a backup on the primary
database that starts at the standby database’s current SCN, which can then be used to
roll the standby database forward in time.

The following sections describe situations in which RMAN incremental backups may
be useful:

■ Physical Standby Database Lags Far Behind the Primary Database

■ Physical Standby Database Has Nologging Changes On a Subset of Datafiles

■ Physical Standby Database Has Widespread Nologging Changes

12.7.1 Physical Standby Database Lags Far Behind the Primary Database
Follow this step-by-step procedure to roll forward a physical standby database that
has fallen far behind the primary database.

1. On the standby database, query the V$DATABASE view and record the current
SCN of the standby database:

SQL> SELECT CURRENT_SCN FROM V$DATABASE;
CURRENT_SCN

 233995

2. Stop Redo Apply on the standby database:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

3. Connect to the primary database as the RMAN target and create an incremental
backup from the current SCN of the standby database that was recorded in step 1:

RMAN> BACKUP INCREMENTAL FROM SCN 233995 DATABASE FORMAT '/tmp/ForStandby_%U'
tag 'FOR STANDBY';

See Also: Oracle Database Backup and Recovery Advanced User's Guide
for more information about RMAN incremental backups

Note: The steps in this section can also be used to resolve problems if
a physical standby database has lost or corrupted archived redo data
or has an unresolveable archive gap.

Using RMAN Incremental Backups to Roll Forward a Physical Standby Database

12-34 Oracle Data Guard Concepts and Administration

4. Transfer all backup sets created on the primary system to the standby system (note
that there may be more than one backup file created):

SCP /tmp/ForStandby_* standby:/tmp

5. Connect to the standby database as the RMAN target, and catalog all incremental
backup pieces:

RMAN> CATALOG START WITH '/tmp/ForStandby_';

6. Connect to the standby database as the RMAN target and apply incremental
backups

RMAN> RECOVER DATABASE NOREDO;

7. Remove the incremental backups from the standby system:

RMAN> DELETE BACKUP TAG 'FOR STANDBY';

8. Manually remove the incremental backups from the primary system:

rm /tmp/ForStandby_*

9. Start Redo Apply on the physical standby database:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE USING CURRENT LOGFILE
DISCONNECT;

12.7.2 Physical Standby Database Has Nologging Changes On a Subset of Datafiles
Follow this step-by-step procedure to roll forward a physical standby database for
which nologging changes have been applied to a small subset of the database:

1. List the files that have had nologging changes applied by querying the
V$DATAFILE view on the standby database. For example:

SQL> SELECT FILE#, FIRST_NONLOGGED_SCN FROM V$DATAFILE
 2> WHERE FIRST_NONLOGGED_SCN > 0;

FILE# FIRST_NONLOGGED_SCN
---------- -------------------
 4 225979

Note: RMAN does not consider the incremental backup as part of a
backup strategy at the source database. Hence:

■ The backup is not suitable for use in a normal RECOVER
DATABASE operation at the source database

■ The backup is not cataloged at the source database

■ The backup sets produced by this command are written to the
/dbs location by default, even if the flash recovery area or some
other backup destination is defined as the default for disk
backups.

■ You must create this incremental backup on disk for it to be
useful. When you move the incremental backup to the standby
database, you must catalog it at the standby as described in Oracle
Database Backup and Recovery Advanced User's Guide. Backups on
tape cannot be cataloged.

Using RMAN Incremental Backups to Roll Forward a Physical Standby Database

Data Guard Scenarios 12-35

 5 230184

2. Stop Redo Apply on the standby database:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

3. On the standby database, offline the datafiles (recorded in step 1) that have had
nologging changes. Taking these datafiles offline ensures redo data is not skipped
for the corrupt blocks while the incremental backups are performed.

SQL> ALTER DATABASE DATAFILE 4 OFFLINE FOR DROP;
SQL> ALTER DATABASE DATAFILE 5 OFFLINE FOR DROP;

4. Start Redo Apply on the standby database:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE
 2> USING CURRENT LOGFILE DISCONNECT;

5. While connected to the primary database as the RMAN target, create an
incremental backup for each datafile listed in the FIRST_NONLOGGED_SCN
column (recorded in step 1). For example:

RMAN> BACKUP INCREMENTAL FROM SCN 225979 DATAFILE 4 FORMAT '/tmp/ForStandby_%U'
TAG 'FOR STANDBY';
RMAN> BACKUP INCREMENTAL FROM SCN 230184 DATAFILE 5 FORMAT '/tmp/ForStandby_%U'
TAG 'FOR STANDBY';

6. Transfer all backup sets created on the primary system to the standby system.
(Note that there may be more than one backup file created.)

SCP /tmp/ForStandby_* standby:/tmp

7. While connected to the physical standby database as the RMAN target, catalog all
incremental backup pieces. For example:

RMAN> CATALOG START WITH '/tmp/ForStandby_';

8. Stop Redo Apply on the standby database:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

9. Online the datafiles on the standby database

SQL> ALTER DATABASE DATAFILE 4 ONLINE;
SQL> ALTER DATABASE DATAFILE 5 ONLINE;

10. While connected to the physical standby database as the RMAN target, apply the
incremental backup sets:

RMAN> RECOVER DATAFILE 4, 5 NOREDO;

11. Query the V$DATAFILE view on the standby database to verify there are no
datafiles with nologged changes. The following query should return zero rows

SQL> SELECT FILE#, FIRST_NONLOGGED_SCN FROM V$DATAFILE
 2> WHERE FIRST_NONLOGGED_SCN > 0;

12. Remove the incremental backups from the standby system:

RMAN> DELETE BACKUP TAG 'FOR STANDBY';

13. Manually remove the incremental backups from the primary system. For example,
the following example uses the Linux rm command:

Using RMAN Incremental Backups to Roll Forward a Physical Standby Database

12-36 Oracle Data Guard Concepts and Administration

rm /tmp/ForStandby_*

14. Start Redo Apply on the standby database:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE USING CURRENT LOGFILE
DISCONNECT;

12.7.3 Physical Standby Database Has Widespread Nologging Changes
Follow this step-by-step procedure to roll forward a physical standby database for
which nologging changes have been applied to a large portion of the database:

1. Query the V$DATAFILE view on the standby database to record the lowest
FIRST_NONLOGGED_SCN:

SQL> SELECT MIN(FIRST_NONLOGGED_SCN) FROM V$DATAFILE
 2> WHERE FIRST_NONLOGGED_SCN>0;

MIN(FIRST_NONLOGGED_SCN)

 223948

2. Stop Redo Apply on the standby database:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

3. While connected to the primary database as the RMAN target, create an
incremental backup from the lowest FIRST_NONLOGGED_SCN (recorded in step 1)

RMAN> BACKUP INCREMENTAL FROM SCN 223948 DATABASE FORMAT '/tmp/ForStandby_%U'
tag 'FOR STANDBY';

4. Transfer all backup sets created on the primary system to the standby system.
(Note that more than one backup file may have been created.) The following
example uses the scp command to copy the files:

scp /tmp/ForStandby_* standby:/tmp

5. While connected to the standby database as the RMAN target, catalog all
incremental backup piece(s)

RMAN> CATALOG START WITH '/tmp/ForStandby_';

6. While connected to the standby database as the RMAN target, apply the
incremental backups:

RMAN> RECOVER DATABASE NOREDO;

7. Query the V$DATAFILE view to verify there are no datafiles with nologged
changes. The following query on the standby database should return zero rows:

SQL> SELECT FILE#, FIRST_NONLOGGED_SCN FROM V$DATAFILE
 2> WHERE FIRST_NONLOGGED_SCN > 0;

8. Remove the incremental backups from the standby system:

RMAN> DELETE BACKUP TAG 'FOR STANDBY';

9. Manually remove the incremental backups from the primary system. For example,
the following removes the backups using the Linux rm command:

rm /tmp/ForStandby_*

Using a Physical Standby Database with a Time Lag

Data Guard Scenarios 12-37

10. Start Redo Apply on the standby database:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE
 2> USING CURRENT LOGFILE DISCONNECT;

12.8 Using a Physical Standby Database with a Time Lag
By default, when log apply services are running on the standby database, the redo
data is either written to archived log files and applied, or when real-time apply is
enabled, the redo is written to the standby database as it arrives from the primary
database. But in some cases, you may want to create a time lag between the archiving
of an online redo log file at the primary site and the application of the archived redo
log file at the standby site. A time lag can protect against the transfer of corrupted or
erroneous data from the primary site to the standby site. When you set a time delay, it
does not delay the transport of the redo data to the standby database. Instead, the time
lag you specify begins when the redo data is completely archived at the standby
destination.

For example, suppose you run a batch job every night on the primary database.
Unfortunately, you accidently ran the batch job twice, and you did not realize the
mistake until the batch job completed for the second time. Ideally, you need to roll
back the database to the point in time before the batch job began. A primary database
that has a standby database with a time lag could help you to recover. You could fail
over the standby database with the time lag and use it as the new primary database.

To create a standby database with a time lag, use the DELAY attribute of the LOG_
ARCHIVE_DEST_n initialization parameter in the primary database initialization
parameter file.

Although the redo data is still automatically transmitted from the primary database to
the standby database and written to archived redo log files (and standby redo log files,
if implemented), the log files are not immediately applied to the standby database. The
log files are applied when the specified time interval expires.

This scenario uses a 4-hour time lag and covers the following topics:

■ Establishing a Time Lag on a Physical Standby Database

■ Failing Over to a Physical Standby Database with a Time Lag

■ Switching Over to a Physical Standby Database with a Time Lag

Readers of this scenario are assumed to be familiar with the procedures for creating a
typical standby database. The details were omitted from the steps outlined in this
scenario. See Chapter 3 for details about creating physical standby databases.

12.8.1 Establishing a Time Lag on a Physical Standby Database
To create a physical standby database with a time lag, modify the LOG_ARCHIVE_
DEST_n initialization parameter on the primary database to set a delay for the standby
database. The following is an example of how to add a 4-hour delay to the LOG_
ARCHIVE_DEST_n initialization parameter:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_2='SERVICE=stdby DELAY=240';

Note: If you define a delay for a destination that has real-time
apply enabled, the delay is ignored

Using a Physical Standby Database with a Time Lag

12-38 Oracle Data Guard Concepts and Administration

The DELAY attribute indicates that the archived redo log files at the standby site are
not available for recovery until the 4-hour time interval has expired. The time interval
(expressed in minutes) starts when the archived redo log files are successfully archived
at the standby site. The redo information is still sent to the standby database and
written to the disk as normal.

See Section 6.2.2 for a more information about establishing a time lag on physical and
logical standby databases.

12.8.2 Failing Over to a Physical Standby Database with a Time Lag
A standby database configured to delay application of archived redo log files can be
used to recover from user errors or data corruptions on the primary database. In most
cases, you can query the time-delayed standby database to retrieve the data needed to
repair the primary database (for example, to recover the contents of a mistakenly
dropped table). In cases where the damage to the primary database is unknown or
when the time required to repair the primary database is prohibitive, you can also
consider failing over to a time-delayed standby database.

Assume that a backup file was inadvertently applied twice to the primary database
and that the time required to repair the primary database is prohibitive. You choose to
fail over to a physical standby database for which the application of archived redo log
files is delayed. By doing so, you transition the standby database to the primary role at
a point before the problem occurred, but you will likely incur some data loss. The
following steps illustrate the process:

1. Initiate the failover by issuing the appropriate SQL statements on the time-delayed
physical standby database:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;
SQL> ALTER DATABASE ACTIVATE PHYSICAL STANDBY DATABASE;
SQL> SHUTDOWN IMMEDIATE;
SQL> STARTUP

The ACTIVATE statement immediately transitions the standby database to the
primary role and makes no attempt to apply any additional redo data that might
exist at the standby location. When using this statement, you must carefully
balance the cost of data loss at the standby location against the potentially
extended period of downtime required to fully repair the primary database.

2. Re-create all other standby databases in the configuration from a copy of this new
primary database.

12.8.3 Switching Over to a Physical Standby Database with a Time Lag
All of the redo data is transmitted to the standby site as it becomes available.
Therefore, even when a time delay is specified for a standby database, you can make
the standby database current by overriding the delay using the SQL ALTER
DATABASE RECOVER MANAGED STANDBY statement.

The following steps demonstrate how to perform a switchover to a time-delayed
physical standby database that bypasses a time lag. For the purposes of this example,
assume that the primary database is located in New York, and the standby database is
located in Boston.

Note: To recover from a logical error, you must perform a failover
instead of a switchover.

Recovering From a Network Failure

Data Guard Scenarios 12-39

Step 1 Apply all of the archived redo log files to the original (time-delayed)
standby database bypassing the lag.
Switchover will not begin until the standby database applies all of the archived redo
log files. By lifting the delay using the NODELAY keyword, you allow the standby
database to proceed without waiting for the specified time interval to pass before
applying the archived redo log files.

Issue the following SQL statement to lift the delay:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE NODELAY
 2> DISCONNECT FROM SESSION THROUGH LAST SWITCHOVER;

Step 2 Stop read or update activity on the primary and standby databases.
You must have exclusive database access before beginning a switchover. Ask users to
log off the primary and standby databases, or query the V$SESSION view to identify
users that are connected to the databases and close all open sessions except the
SQL*Plus session from which you are going to execute the switchover statement. See
Oracle Database Administrator's Guide for more information about managing users.

Step 3 Switch the primary database to the physical standby role.
On the primary database (in New York), execute the following statement:

SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO PHYSICAL STANDBY
 2> WITH SESSION SHUTDOWN;

This statement does the following:

■ Closes the primary database, terminating any active sessions

■ Transmits any unarchived redo log files and applies them to the standby database
(in Boston)

■ Adds an end-of-redo marker to the header of the last log file being archived

■ Creates a backup of the current control file

■ Converts the current control file into a standby control file

Step 4 Shut down and start up the former primary instance, and mount the
database.
Execute the following statement on the former primary database (in New York):

SQL> SHUTDOWN NORMAL;
SQL> STARTUP MOUNT;

Step 5 Switch the original standby database to the primary role.
Issue the following SQL statement:

SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY DATABASE;

Step 6 Shut down and restart the new primary database instance.
Issue the following SQL statements:

SQL> SHUTDOWN;

12.9 Recovering From a Network Failure
The following steps describe how to recover after a network failure.

Recovering After the NOLOGGING Clause Is Specified

12-40 Oracle Data Guard Concepts and Administration

Step 1 Identify the network failure.
The V$ARCHIVE_DEST view contains the network error and identifies which standby
database cannot be reached. On the primary database, execute the following SQL
statement for the destination that experienced the network failure. For example:

SQL> SELECT DEST_ID, STATUS, ERROR FROM V$ARCHIVE_DEST WHERE DEST_ID = 2;

DEST_ID STATUS ERROR
---------- --------- --
 2 ERROR ORA-12224: TNS:no listener

The query results show there are errors archiving to the standby database, and the
cause of the error is TNS:no listener. You should check whether or not the listener
on the standby site is started. If the listener is stopped, then start it.

Step 2 Prevent the primary database from stalling.
If you cannot solve the network problem quickly, and if the standby database is
specified as a mandatory destination, try to prevent the database from stalling by
doing one of the following:

■ Defer archiving to the mandatory destination:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2 = DEFER;

When the network problem is resolved, you can enable the archive destination
again:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2 = ENABLE;

■ Change the archive destination from mandatory to optional:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_2 = 'SERVICE=standby1
 2> OPTIONAL REOPEN=60';

When the network problem is resolved, you can change the archive destination
from optional back to mandatory:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_2 = 'SERVICE=standby1
 2> MANDATORY REOPEN=60';

Step 3 Archive the current online redo log file.
On the primary database, archive the current online redo log file:

SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

When the network is back up again, log apply services can detect and resolve the
archive gaps automatically when the physical standby database resumes Redo Apply.

12.10 Recovering After the NOLOGGING Clause Is Specified
In some SQL statements, the user has the option of specifying the NOLOGGING clause,
which indicates that the database operation is not logged in the online redo log file.
Even though the user specifies the clause, a redo record is still written to the online
redo log file. However, there is no data associated with this record. This can result in
log application or data access errors at the standby site and manual recovery might be
required to resume applying log files.

Recovering After the NOLOGGING Clause Is Specified

Data Guard Scenarios 12-41

12.10.1 Recovery Steps for Logical Standby Databases
For logical standby databases, when SQL Apply encounters a redo record for an
operation performed with the NOLOGGING clause, it skips over the record and
continues applying changes from later records. Later, if an attempt is made to access
one of the records that was updated with NOLOGGING in effect, the following error is
returned: ORA-01403 no data found

To recover after the NOLOGGING clause is specified, re-create one or more tables from
the primary database, as described in Section 9.4.6.

12.10.2 Recovery Steps for Physical Standby Databases
When the archived redo log file is copied to the standby site and applied to the
physical standby database, a portion of the datafile is unusable and is marked as being
unrecoverable. When you either fail over to the physical standby database, or open the
standby database for read-only access, and attempt to read the range of blocks that are
marked as UNRECOVERABLE, you will see error messages similar to the following:

ORA-01578: ORACLE data block corrupted (file # 1, block # 2521)
ORA-01110: data file 1: '/oracle/dbs/stdby/tbs_1.dbf'
ORA-26040: Data block was loaded using the NOLOGGING option

To recover after the NOLOGGING clause is specified, you need to copy the datafile that
contains the missing redo data from the primary site to the physical standby site.
Perform the following steps:

Step 1 Determine which datafiles should be copied.
Follow these steps:

1. Query the primary database:

SQL> SELECT NAME, UNRECOVERABLE_CHANGE# FROM V$DATAFILE;
NAME UNRECOVERABLE
--- -------------
/oracle/dbs/tbs_1.dbf 5216
/oracle/dbs/tbs_2.dbf 0
/oracle/dbs/tbs_3.dbf 0
/oracle/dbs/tbs_4.dbf 0
4 rows selected.

2. Query the standby database:

SQL> SELECT NAME, UNRECOVERABLE_CHANGE# FROM V$DATAFILE;
NAME UNRECOVERABLE

Note: To avoid these problems, Oracle recommends that you
always specify the FORCE LOGGING clause in the CREATE
DATABASE or ALTER DATABASE statements. See the Oracle
Database Administrator's Guide.

Note: In general, use of the NOLOGGING clause is not
recommended. Optionally, if you know in advance that operations
using the NOLOGGING clause will be performed on certain tables in
the primary database, you might want to prevent the application of
SQL statements associated with these tables to the logical standby
database by using the DBMS_LOGSTDBY.SKIP procedure.

Recovering After the NOLOGGING Clause Is Specified

12-42 Oracle Data Guard Concepts and Administration

--- -------------
/oracle/dbs/stdby/tbs_1.dbf 5186
/oracle/dbs/stdby/tbs_2.dbf 0
/oracle/dbs/stdby/tbs_3.dbf 0
/oracle/dbs/stdby/tbs_4.dbf 0
4 rows selected.

3. Compare the query results of the primary and standby databases.

Compare the value of the UNRECOVERABLE_CHANGE# column in both query
results. If the value of the UNRECOVERABLE_CHANGE# column in the primary
database is greater than the same column in the standby database, then the
datafile needs to be copied from the primary site to the standby site.

In this example, the value of the UNRECOVERABLE_CHANGE# in the primary
database for the tbs_1.dbf datafile is greater, so you need to copy the tbs_
1.dbf datafile to the standby site.

Step 2 On the primary site, back up the datafile you need to copy to the standby
site.
Issue the following SQL statements:

SQL> ALTER TABLESPACE system BEGIN BACKUP;
SQL> EXIT;
% cp tbs_1.dbf /backup
SQL> ALTER TABLESPACE system END BACKUP;

Step 3 Copy the datafile to the standby database.
Copy the datafile that contains the missing redo data from the primary site to location
on the physical standby site where files related to recovery are stored.

Step 4 On the standby database, restart Redo Apply.
Issue the following SQL statement:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE DISCONNECT FROM SESSION;

You might get the following error messages (possibly in the alert log) when you try to
restart Redo Apply:

ORA-00308: cannot open archived log 'standby1'
ORA-27037: unable to obtain file status
SVR4 Error: 2: No such file or directory
Additional information: 3
ORA-01547: warning: RECOVER succeeded but OPEN RESETLOGS would get error below
ORA-01152: file 1 was not restored from a sufficiently old backup
ORA-01110: data file 1: '/oracle/dbs/stdby/tbs_1.dbf'

If you get the ORA-00308 error and Redo Apply does not terminate automatically,
you can cancel recovery by issuing the following statement from another terminal
window:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

These error messages are returned when one or more log files in the archive gap have
not been successfully applied. If you receive these errors, manually resolve the gaps,
and repeat Step 4. See Section 5.8.4 for information about manually resolving an
archive gap.

Resolving Archive Gaps Manually

Data Guard Scenarios 12-43

12.10.3 Determining If a Backup Is Required After Unrecoverable Operations
If you performed unrecoverable operations on your primary database, determine if a
new backup operation is required by following these steps:

1. Query the V$DATAFILE view on the primary database to determine the system
change number (SCN) or the time at which the Oracle database generated the
most recent invalidated redo data.

2. Issue the following SQL statement on the primary database to determine if you
need to perform another backup:

SELECT UNRECOVERABLE_CHANGE#,
 TO_CHAR(UNRECOVERABLE_TIME, 'mm-dd-yyyy hh:mi:ss')
FROM V$DATAFILE;

3. If the query in the previous step reports an unrecoverable time for a datafile that is
more recent than the time when the datafile was last backed up, then make
another backup of the datafile in question.

See Oracle Database Reference for more information about the V$DATAFILE view.

12.11 Resolving Archive Gaps Manually
An archive gap is a range of archived redo log files created whenever you are unable
to apply the next archived redo log file generated by the primary database to the
standby database. This section contains the following topics:

■ What Causes Archive Gaps?

■ Determining If an Archive Gap Exists

■ Manually Transmitting Log Files in the Archive Gap to the Standby Site

■ Manually Applying Log Files in the Archive Gap to the Standby Database

12.11.1 What Causes Archive Gaps?
An archive gap can occur whenever the primary database archives the current online
redo log file locally, but the redo data is not archived at the standby site. Because the
standby database requires the sequential application of log files, media recovery stops
at the first missing log file encountered.

Archive gaps can occur in the following situations:

■ Creation of the Standby Database

■ Shutdown of the Standby Database When the Primary Database Is Open

■ Network Failure Prevents Transmission of Redo

12.11.1.1 Creation of the Standby Database
One example of an archive gap occurs when you create the standby database from an
old backup. For example, if the standby database is made from a backup that contains
changes through log file 100, and the primary database currently contains changes

Note: Typically, archive gaps are resolved automatically without
the need for manual intervention. See Section 5.8 for more
information about how log apply services automatically recover
from gaps in the archived redo log files.

Resolving Archive Gaps Manually

12-44 Oracle Data Guard Concepts and Administration

through log file 150, then the standby database requires that you apply log files 101 to
150. Another typical example of an archive gap occurs when you generate the standby
database from a hot backup of an open database.

For example, assume the scenario illustrated in Figure 12–8.

Figure 12–8 Manual Recovery of Archived Redo Log Files in an Archive Gap

The following steps occur:

1. You take a hot backup of primary database.

2. At time t, while you are busy configuring the network files, primary archives log
files, sequences 4 and 5.

3. At time t + 1, you start the standby instance.

4. primary archives redo log files with sequences 6, 7, and 8 on the primary site,
and transmits the redo to the standby site.

Archived redo log file sequences 4 and 5 are now part of an archive gap, and these log
files must be applied to the standby database.

12.11.1.2 Shutdown of the Standby Database When the Primary Database Is Open
You might be required to shut down the standby database to resolve maintenance
issues. For example, you must shut down the standby database when you change a
control file parameter, such as MAXDATAFILE, in the primary database.

To avoid creating archive gaps, follow these rules:

5

4

0001

0002

00038

7

6

0001

00025

4

Read/Write
Transactions

Local
Archiving

Archived
Redo Log Files

Time Primary Site Standby Site

Preparing standby database . . .

Archived redo log files
generated while
preparing standby
database
(archive gaps)

0001

00025

4
Read/Write

Transactions

Continue
local
archiving

Archived
Redo Log Files

Start remote
archiving

t

t+1 0001

0002

00038

7

6

Manual
media
recovery

Manually copy
archive gaps

Archive
Gaps

Archived
Redo LogFiles

Resolving Archive Gaps Manually

Data Guard Scenarios 12-45

■ Start the standby databases and listeners before starting the primary database.

■ Shut down the primary database before shutting down the standby database.

If you violate either of these two rules, then the standby database is down while the
primary database is open and archiving. Consequently, the Oracle database can create
an archive gap.

12.11.1.3 Network Failure Prevents Transmission of Redo
If you maintain a Data Guard environment, and the network goes down, the primary
database might continue to write to disk but be unable to send redo to the standby site.
In this situation, archived redo log files accumulate as usual on the primary site, but
the standby database is unaware of them.

See:

■ Section 5.7.2 for a detailed account of the significance of the OPTIONAL and
MANDATORY attributes for standby archival

■ Section 12.9 for a related scenario

12.11.2 Determining If an Archive Gap Exists
To determine if there is an archive gap, query the V$ARCHIVED_LOG and V$LOG
views. If an archive gap exists, the output of the query specifies the thread number and
log sequence number of all log files in the archive gap. If there is no archive gap for a
given thread, the query returns no rows.

Identify the log files in the archive gap
Query the V$ARCHIVED_LOG and V$LOG views on the standby database. For example,
the following query shows there is a difference in the RECD and SENT sequence
numbers for the destination specified by DEST_ID=2, indicating that there is a gap:

SQL> SELECT MAX(R.SEQUENCE#) LAST_SEQ_RECD, MAX(L.SEQUENCE#) LAST_SEQ_SENT FROM
 2> V$ARCHIVED_LOG R, V$LOG L WHERE
 3> R.DEST_ID=2 AND L.ARCHIVED='YES';

LAST_SEQ_RECD LAST_SEQ_SENT
------------- -------------
 7 10

Use the following query to determine the names of the archived redo log files on the
local system that must be copied to the standby system that has the gap:

SQL> SELECT NAME FROM V$ARCHIVED_LOG WHERE THREAD#=1 AND DEST_ID=1 AND
 2> SEQUENCE# BETWEEN 7 AND 10;

NAME
--
/primary/thread1_dest/arcr_1_7.arc
/primary/thread1_dest/arcr_1_8.arc
/primary/thread1_dest/arcr_1_9.arc

Note: If the standby site is specified as MANDATORY in one of the
LOG_ARCHIVE_DEST_n parameters of the primary initialization
parameter file, dynamically change it to OPTIONAL before shutting
down the standby database. Otherwise, the primary database
eventually stalls because it cannot archive its online redo log files.

Resolving Archive Gaps Manually

12-46 Oracle Data Guard Concepts and Administration

/primary/thread1_dest/arcr_1_10.arc

12.11.3 Manually Transmitting Log Files in the Archive Gap to the Standby Site
After you have obtained the sequence numbers of the log files in the archive gap, you
can obtain their filenames by querying the V$ARCHIVED_LOG view on the primary
site. The archived redo log path names on the standby site are generated by the
STANDBY_ARCHIVE_DEST and LOG_ARCHIVE_FORMAT parameters in the standby
initialization parameter file.

If the standby database is on the same site as the primary database, or the standby
database is on a remote site with a different directory structure than the primary
database, the path names for the log files on the standby site cannot be the same as the
path names of the log files archived by the primary database. Before transmitting the
redo data to the standby site, determine the correct path names for the archived redo
log files at the standby site.

To copy log files in an archive gap to the standby site
1. Review the list of archive gap log files that you obtained earlier. For example,

assume you have the following archive gap:

THREAD# LOW_SEQUENCE# HIGH_SEQUENCE#
---------- ------------- --------------
 1 460 463
 2 202 204
 3 100 100

If a thread appears in the view, then it contains an archive gap. You need to copy
log files from threads 1, 2, and 3.

2. Determine the path names of the log files in the archive gap that were transmitted
by the primary database. After connecting to the primary database, issue a SQL
query to obtain the name of a log file in each thread. For example, use the
following SQL statement to obtain filenames of log files for thread 1:

SQL> SELECT NAME FROM V$ARCHIVED_LOG WHERE THREAD#=1 AND DEST_ID=1
 2> AND SEQUENCE# > 459 AND SEQUENCE# < 464;

NAME

/primary/thread1_dest/arcr_1_460.arc
/primary/thread1_dest/arcr_1_461.arc
/primary/thread1_dest/arcr_1_462.arc
/primary/thread1_dest/arcr_1_463.arc
4 rows selected

Perform similar queries for threads 2 and 3.

3. On the standby site, review the settings for STANDBY_ARCHIVE_DEST and LOG_
ARCHIVE_FORMAT in the standby initialization parameter file. For example, you
discover the following:

STANDBY_ARCHIVE_DEST = /standby/arc_dest/
LOG_ARCHIVE_FORMAT = log_%t_%s_%r.arc

These parameter settings determine the filenames of the archived redo log files at
the standby site.

4. On the primary site, copy the log files in the archive gap from the primary site to
the standby site, renaming them according to values for STANDBY_ARCHIVE_

Resolving Archive Gaps Manually

Data Guard Scenarios 12-47

DEST and LOG_ARCHIVE_FORMAT. For example, enter the following copy
commands to copy the archive gap log files required by thread 1:

% cp /primary/thread1_dest/arcr_1_460.arc /standby/arc_dest/log_1_460.arc
% cp /primary/thread1_dest/arcr_1_461.arc /standby/arc_dest/log_1_461.arc
% cp /primary/thread1_dest/arcr_1_462.arc /standby/arc_dest/log_1_462.arc
% cp /primary/thread1_dest/arcr_1_463.arc /standby/arc_dest/log_1_463.arc

Perform similar commands to copy archive gap log files for threads 2 and 3.

5. On the standby site, if the LOG_ARCHIVE_DEST and STANDBY_ARCHIVE_DEST
parameter values are not the same, then copy the archive gap log files from the
STANDBY_ARCHIVE_DEST directory to the LOG_ARCHIVE_DEST directory. If
these parameter values are the same, then you do not need to perform this step.

For example, assume the following standby initialization parameter settings:

STANDBY_ARCHIVE_DEST = /standby/arc_dest/
LOG_ARCHIVE_DEST = /log_dest/

Because the parameter values are different, copy the archived redo log files to the
LOG_ARCHIVE_DEST location:

% cp /standby/arc_dest/* /log_dest/

When you initiate manual recovery, the Oracle database looks at the LOG_
ARCHIVE_DEST value to determine the location of the log files.

Now that all required log files are in the STANDBY_ARCHIVE_DEST directory, you can
proceed to Section 12.11.4 to apply the archive gap log files to the standby database.
See also Section 8.5.4.4 and the V$ARCHIVED_LOG view in Chapter 16.

12.11.4 Manually Applying Log Files in the Archive Gap to the Standby Database
After you have copied the log files in the archive gap to the standby site, you can
apply them using the RECOVER AUTOMATIC statement.

To apply the archived redo log files in the archive gap
1. Start up and mount the standby database (if it is not already mounted). For

example, enter:

SQL> STARTUP MOUNT PFILE=/oracle/admin/pfile/initSTBY.ora

2. Recover the database using the AUTOMATIC option:

SQL> ALTER DATABASE RECOVER AUTOMATIC STANDBY DATABASE;

The AUTOMATIC option automatically generates the name of the next archived
redo log file needed to continue the recovery operation.

After recovering the available log files, the Oracle database prompts for the name
of a log file that does not exist. For example, you might see:

ORA-00308: cannot open archived log '/oracle/standby/standby_logs/arcr_1_
540.arc'
ORA-27037: unable to obtain file status
SVR4 Error: 2: No such file or directory
Additional information: 3
Specify log: {<RET>=suggested | filename | AUTO | CANCEL}

3. Cancel recovery after the Oracle database applies the available log files by typing
CTRL/C:

Creating a Standby Database That Uses OMF or ASM

12-48 Oracle Data Guard Concepts and Administration

SQL> <CTRL/C>
Media recovery cancelled.

The following error messages are acceptable after recovery cancellation and do not
indicate a problem:

ORA-01547: warning: RECOVER succeeded but OPEN RESETLOGS would get error below
ORA-01194: file 1 needs more recovery to be consistent
ORA-01110: data file 1: 'some_filename'
ORA-01112: media recovery not started

4. After you finish manually applying the missing log file, you can restart log apply
services on the standby database, as follows:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE DISCONNECT FROM SESSION;

12.12 Creating a Standby Database That Uses OMF or ASM
Chapter 3 and Chapter 4 described how to create physical and logical standby
databases. This section augments the discussions in those chapters with additional
steps that must be performed if the primary database uses Oracle Managed Files
(OMF) or Automatic Storage Management (ASM).

Perform the following tasks to prepare for standby database creation:

1. Enable forced logging on the primary database.

2. Enable archiving on the primary database.

3. Set all necessary initialization parameters on the primary database.

4. Create an initialization parameter file for the standby database.

5. If the primary database is configured to use OMF, then Oracle recommends that
the standby database be configured to use OMF, too. To do this, set the DB_
CREATE_FILE_DEST and DB_CREATE_ONLINE_LOG_DEST_n initialization
parameters to appropriate values. Maintenance and future role transitions are
simplified if the same disk group names are used for both the primary and
standby databases.

6. Set the STANDBY_FILE_MANAGEMENT initialization parameter to AUTO.

7. Configure Oracle Net, as required, to allow connections to the standby database.

8. Create a remote login password file for the standby database. Use the same
password for the SYS account as on the primary database.

Note: The discussion in this section is presented at a level of detail
that assumes the reader already knows how to create a physical
standby database and is an experienced user of the RMAN, OMF,
and ASM features. For more information, see:

■ Chapter 3, Chapter 4, and Appendix F for information about
creating physical and logical standby databases

■ Oracle Database Administrator's Guide for information about
OMF and ASM

■ Oracle Database Backup and Recovery Advanced User's Guide and
Oracle Database Backup and Recovery Reference for information
about RMAN

Creating a Standby Database That Uses OMF or ASM

Data Guard Scenarios 12-49

9. Start the standby database instance without mounting the control file.

Perform the following tasks to create the standby database:

1. If the standby database is going to use ASM, create an ASM instance if one does
not already exist on the standby database system.

2. Use the RMAN BACKUP command to create a backup set that contains a copy of
the primary database’s datafiles, archived log files, and a standby control file.

3. Use the RMAN DUPLICATE … FOR STANDBY command to copy the datafiles,
archived redo log files and standby control file in the backup set to the standby
database’s storage area.

The DUPLICATE … FOR STANDBY command performs the actual data movement
at the standby instance. If the backup set is on tape, the media manager must be
configured so that the standby instance can read the backup set. If the backup set
is on disk, the backup pieces must be readable by the standby instance, either by
making their primary path names available through NFS, or by copying them to
the standby system and using RMAN CATALOG BACKUPPIECE command to
catalog the backup pieces before restoring them.

After you successfully complete these steps, continue with the steps in Section 3.2.7, to
verify the configuration of the physical standby database.

To create a logical standby database, continue with the standby database creation
process described in Chapter 4, but with the following modifications:

1. For a logical standby database, setting the DB_CREATE_FILE_DEST parameter
does not force the creation of OMF filenames. However, if this parameter was set
on the primary database, it must also be set on the standby database.

2. After creating a logical standby control file on the primary system, do not use an
operating system command to copy this file to the standby system. Instead, use
the RMAN RESTORE CONTROLFILE command to restore a copy of the logical
standby control file to the standby system.

3. If the primary database uses OMF files, use RMAN to update the standby
database control file to use the new OMF files created on the standby database. To
perform this operation, connect only to the standby database, as shown in the
following example:

> RMAN TARGET sys/oracle@lstdby
RMAN> CATALOG START WITH '+stby_diskgroup';
RMAN> SWITCH DATABASE TO COPY;

After you successfully complete these steps, continue with the steps in Section 4.2.5 to
start, recover, and verify the logical standby database.

Creating a Standby Database That Uses OMF or ASM

12-50 Oracle Data Guard Concepts and Administration

Part II
Reference

This part provides reference material to be used in conjunction with the Oracle Data
Guard standby database features. For more complete reference material, refer to the
Oracle Database 10g documentation set.

This part contains the following chapters:

■ Chapter 13, "Initialization Parameters"

■ Chapter 14, "LOG_ARCHIVE_DEST_n Parameter Attributes"

■ Chapter 15, "SQL Statements Relevant to Data Guard"

■ Chapter 16, "Views Relevant to Oracle Data Guard"

Initialization Parameters 13-1

13
Initialization Parameters

This chapter describes the initialization parameters that affect databases in a Data
Guard environment.

Table 13–1 lists the initialization parameters and indicates if the parameter applies to
the primary database role, the standby database role, or both. The table also includes
notes and recommendations specific to setting the parameters in a Data Guard
environment. Oracle Database Reference provides complete initialization parameter
information, including how to update initialization parameters by issuing the ALTER
SYSTEM SET or ALTER SESSION statements (for example, ALTER SYSTEM SET
LOG_ARCHIVE_TRACE) or by editing the initialization parameter files. See the Oracle
operating system-specific documentation for more information about setting
initialization parameters.

Table 13–1 Initialization Parameters for Instances in a Data Guard Configuration

Parameter
Primary
Role?

Standby
Role? Notes and Recommendations

ARCHIVE_LAG_TARGET = seconds Yes Physical
only

Optional. Forces a log switch after the specified
number of seconds elapses.

COMPATIBLE = release_number. Yes Logical
and
physical

Data Guard requires a minimum value of 9.2.0.1.0.
Set to a minimum of 10.2.0.0 to use Oracle Database
10g new features. Specify the same value on the
primary and standby databases if you expect to do a
switchover. If the values differ, redo transport
services may be unable to transmit redo data from
the primary database to the standby databases. See
Section 3.2.3 for an example.

For rolling upgrades using SQL Apply, set this
parameter according to the guidelines described in
Section 11.4, "Prepare to Upgrade".

CONTROL_FILE_RECORD_KEEP_
TIME = number_of_days

Yes Logical
and
physical

Optional. Use this parameter to avoid overwriting a
reusable record in the control file (that contains
needed information such as an archived redo log
file) for the specified number of days (from 0 to 365).
See Section 5.7.4.

CONTROL_FILES = 'control_file_
name' , control_file_name', '...')

Yes Logical
and
physical

Required. Specify the path name and filename for
one or more control files. The control files must
already exist on the database. Oracle recommends
using 2 control files. If another copy of the current
control file is available, then an instance can be easily
restarted after copying the good control file to the
location of the bad control file. See Section 3.2.3 for
an example.

13-2 Oracle Data Guard Concepts and Administration

DB_FILE_NAME_CONVERT =
(location_of_primary_database_
datafile' , 'location_of_standby_
database_datafile_name' , '...'

No Physical
only

Required if the standby database is on the same
system as the primary database or if the directory
where the datafiles are located on the standby
system is different from the primary system. This
parameter must specify paired strings. The first
string is a sequence of characters to be looked for in
a primary database filename. If that sequence of
characters is matched, it is replaced by the second
string to construct the standby database filename.
You can specify multiple pairs of filenames. See also
Example 3–3.

DB_UNIQUE_NAME = unique_
service_provider_name_for_this_
database

Yes Logical
and
physical

Recommended, but required if you specify the LOG_
ARCHIVE_CONFIG parameter. Specifies a unique
name for this database. This name does not change
even if the primary and standby databases reverse
roles. The DB_UNIQUE_NAME parameter defaults to
the value of the DB_NAME parameter. See also the
LOG_ARCHIVE_CONFIG parameter and Section 5.4.2.

FAL_CLIENT = Oracle_Net_
service_name

Yes Physical
only

Required if the FAL_SERVER parameter is specified.
Specifies the Oracle Net service name used by the
FAL server (typically the primary database) to refer
to the FAL client (standby database). See
Section 5.8.3.

FAL_SERVER = Oracle_Net_
service_name

No Physical
only

Required if the FAL_CLIENT parameter is specified.
Specifies one or more Oracle Net service names for
the databases from which this standby database can
fetch (request) missing archived redo log files. See
Section 5.8.3.

INSTANCE_NAME Yes Logical
and
physical

Optional. If this parameter is defined and the
primary and standby databases reside on the same
host, specify a different name for the standby
database than you specify for the primary database.
See Section 3.2.3 for an example.

LOG_ARCHIVE_CONFIG='DG_
CONFIG=(db_unique_name, db_
unique_name, ...)'

Yes Logical
and
physical

Recommended. Specify the DG_CONFIG attribute to
identify the DB_UNIQUE_NAME for the primary
database and each standby database in the Data
Guard configuration. The default value of this
parameter enables the primary database to send redo
data to remote destinations and enables standby
databases to receive redo data. The DG_CONFIG
attribute must be set to enable the dynamic addition
of a standby database to a Data Guard configuration
that has a Real Application Clusters primary
database running in either maximum protection or
maximum availability mode. See Section 5.4.2.

LOG_ARCHIVE_DEST_n =
{LOCATION=path_name|
SERVICE=service_name, attribute,
attribute, ... }

Yes Logical
and
physical

Required. Define up to ten (where n = 1, 2, 3, ... 10)
destinations, each of which must specify either the
LOCATION or SERVICE attribute. Specify a
corresponding LOG_ARCHIVE_DEST_STATE_n
parameter for every LOG_ARCHIVE_DEST_n
parameter. See Section 5.2.2 and Chapter 14 for more
information.

Table 13–1 (Cont.) Initialization Parameters for Instances in a Data Guard Configuration

Parameter
Primary
Role?

Standby
Role? Notes and Recommendations

Initialization Parameters 13-3

LOG_ARCHIVE_DEST_STATE_n =
{ENABLE|DEFER|ALTERNATE|RE
SET}

Yes Logical
and
physical

Required. Specify a LOG_ARCHIVE_DEST_STATE_n
parameter to enable or disable redo transport
services to transmit redo data to the specified (or to
an alternate) destination. Define a LOG_ARCHIVE_
DEST_STATE_n parameter for every LOG_
ARCHIVE_DEST_n parameter. See also Section 5.2.2
and Chapter 14.

LOG_ARCHIVE_FORMAT=log%d_
%t_%s_%r.arc

Yes Logical
and
physical

Required if you specify the STANDBY_ARCHIVE_
DEST parameter. These parameters are concatenated
together to generate fully qualified archived redo log
filenames on the standby database. See also
Section 5.7.1.

LOG_ARCHIVE_LOCAL_FIRST
=[TRUE|FALSE]

Yes No Optional. Specify to control when archiver processes
(ARCn) transmit; either after (TRUE) the online redo
log file was successfully archived to at least one local
destination, or at the same time (FALSE) the online
redo log file is being archived to local destinations.

See also Section 5.3.1.

LOG_ARCHIVE_MAX_PROCESSES
=integer

Yes Logical
and
physical

Optional. Specify the number (from 1 to 30) of
archiver (ARCn) processes you want Oracle software
to invoke initially. The default value is 4. See
Section 5.3.1.2 for more information about ARCn
processing.

LOG_ARCHIVE_MIN_SUCCEED_
DEST=integer

Yes No Optional. Define the minimum number (from 1 to
10) of destinations that must receive redo data
successfully before the log writer process on the
primary database can reuse the online redo log file.

LOG_ARCHIVE_TRACE=integer Yes Logical
and
physical

Optional. Set this parameter to trace the transmission
of redo data to the standby site. The valid integer
values (0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024,
2048, or 4096) are described in Appendix G.

LOG_FILE_NAME_CONVERT
='location_of_primary_database_
redo_logs', 'location_of_standby_
database_redo_logs'

No Logical
and
physical

Required when the standby database is on the same
system as the primary database or when the
directory structure where the log files are located on
the standby site is different from the primary site.
This parameter converts the path names of the
primary database online redo log file to path names
on the standby database. See Section 3.2.3 for an
example.

PARALLEL_MAX_SERVERS=integer Yes Logical
only

Required. Specify the maximum number of parallel
servers working on the logical standby database.
This parameter must not be set to a value less than 5
on a logical standby database. For best results, set
PARALLEL_MAX_SERVERS to a minimum of 9.

REMOTE_LOGIN_
PASSWORDFILE=
{EXCLUSIVE|SHARED]

Yes Logical
and
physical

Required. Specify on the primary and all standby
databases.

SHARED_POOL_SIZE = bytes Yes Logical
and
physical

Optional. Use to specify the system global area
(SGA) to stage the information read from the online
redo log files. The more SGA that is available, the
more information that can be staged.

SORT_AREA_SIZE = bytes Yes Logical
and
physical

Optional. Increase the SORT_AREA_SIZE size
(default size is 65536 bytes) to improve the efficiency
of large sorts. See also Section 8.2.

Table 13–1 (Cont.) Initialization Parameters for Instances in a Data Guard Configuration

Parameter
Primary
Role?

Standby
Role? Notes and Recommendations

13-4 Oracle Data Guard Concepts and Administration

STANDBY_ARCHIVE_DEST=
filespec

No Logical
and
physical

Optional. Specify the location of archived redo log
files received on the standby database from the
primary database. The STANDBY_ARCHIVE_DEST
initialization parameter overrides the directory
location specified with the LOG_ARCHIVE_DEST_n
parameter. STANDBY_ARCHIVE_DEST and LOG_
ARCHIVE_FORMAT are concatenated to generate
fully qualified log filenames. See Section 5.7.1.

STANDBY_FILE_MANAGEMENT =
{AUTO|MANUAL}

Yes Physical
only

Set the STANDBY_FILE_MANAGEMENT parameter to
AUTO so that when datafiles are added to or dropped
from the primary database, corresponding changes
are made in the standby database without manual
intervention. If the directory structures on the
primary and standby databases are different, you
must also set the DB_FILE_NAME_CONVERT
initialization parameter to convert the filenames of
one or more sets of datafiles on the primary database
to filenames on the (physical) standby database. See
Example 3–3 for more information and examples.

USER_DUMP_DEST = directory_
path_name_of_trace_file

Yes Logical
and
physical

Required if you specify the LOG_ARCHIVE_TRACE
parameter. The USER_DUMP_DEST specifies the path
name for a directory where the server will write
debugging trace files. See Appendix G.

Table 13–1 (Cont.) Initialization Parameters for Instances in a Data Guard Configuration

Parameter
Primary
Role?

Standby
Role? Notes and Recommendations

LOG_ARCHIVE_DEST_n Parameter Attributes 14-1

14
LOG_ARCHIVE_DEST_n Parameter

Attributes

This chapter provides reference information for the attributes of the LOG_ARCHIVE_
DEST_n initialization parameter. The following list shows the attributes:

AFFIRM and NOAFFIRM
ALTERNATE
ARCH and LGWR
DB_UNIQUE_NAME
DELAY
DEPENDENCY
LOCATION and SERVICE
MANDATORY and OPTIONAL
MAX_CONNECTIONS
MAX_FAILURE
NET_TIMEOUT
NOREGISTER
REOPEN
SYNC and ASYNC
TEMPLATE
VALID_FOR
VERIFY

Each LOG_ARCHIVE_DEST_n destination must contain either a LOCATION or
SERVICE attribute to specify a local disk directory or a remotely accessed database,
respectively. All other attributes are optional.

Note: Several attributes of the LOG_ARCHIVE_DEST_n initialization
parameter have been deprecated. These attributes are supported for
backward compatibility only and are documented in the Oracle
Database Reference.

See Also: Chapter 5 for more information about defining LOG_
ARCHIVE_DEST_n destinations and setting up redo transport
services.

AFFIRM and NOAFFIRM

14-2 Oracle Data Guard Concepts and Administration

AFFIRM and NOAFFIRM

Controls whether redo transport services use synchronous or asynchronous I/O to
write redo data to disk:

■ AFFIRM—specifies that all disk I/O to archived redo log files and standby redo
log files is performed synchronously and completes successfully before the log
writer process continues.

■ NOAFFIRM—specifies that all disk I/O to archived redo log files and standby redo
log files is performed asynchronously; the log writer process on the primary
database does not wait until the disk I/O completes before continuing.

Usage Notes
■ These attributes are optional. If neither the AFFIRM nor the NOAFFIRM attribute is

specified, the default is NOAFFIRM.

■ The AFFIRM attribute specifies that all disk I/O to archived redo log files and
standby redo log files is performed synchronously and must complete before the
log writer process continues. The AFFIRM attribute:

– Is one of the required attributes to ensure no data loss will occur if the primary
database fails.

– Can be specified with either the LOCATION or SERVICE attributes for archival
operations to local or remote destinations.

– Can potentially affect primary database performance, as follows:

* When you specify the LGWR and AFFIRM attributes, the log writer process
synchronously writes the redo data to disk, control is not returned to the
user until the disk I/O completes, and online redo log files on the primary
database might not be reusable until archiving is complete.

* When you specify the ARCH and AFFIRM attributes, ARCn processes
synchronously write the redo data to disk, the archival operation might
take longer, and online redo log files on the primary database might not be
reusable until archiving is complete.

* When you specify the ASYNC and AFFIRM attributes, performance is not
affected.

Category AFFIRM NOAFFIRM

Data type Keyword Keyword

Valid values Not applicable Not applicable

Default Value Not applicable Not applicable

Requires attributes ... Not applicable Not applicable

Conflicts with attributes ... NOAFFIRM AFFIRM

Corresponds to ... AFFIRM and ASYNC_BLOCKS
columns of the V$ARCHIVE_
DEST view

AFFIRM and ASYNC_BLOCKS
columns of the V$ARCHIVE_
DEST view

AFFIRM and NOAFFIRM

LOG_ARCHIVE_DEST_n Parameter Attributes 14-3

■ The NOAFFIRM attribute specifies that all disk I/O to archived redo log files and
standby redo log files is performed asynchronously; the log writer process on the
primary database does not wait until the disk I/O completes before continuing.

■ The AFFIRM and NOAFFIRM attributes apply only to archived redo log files and
standby redo log files on remote standby destinations and have no effect on disk
I/O for the primary database’s online redo log files.

■ These attributes can be specified with either the LOCATION attribute for local
destinations or with the SERVICE attribute for remote destinations.

Examples
The following example shows the AFFIRM attribute for a remote destination.

LOG_ARCHIVE_DEST_3='SERVICE=stby1 LGWR SYNC AFFIRM'
LOG_ARCHIVE_DEST_STATE_3=ENABLE

Note: When the primary database is in the maximum protection
or maximum availability mode, destinations defined with the LGWR
and SYNC attributes are automatically placed in AFFIRM mode.

See also: SYNC and ASYNC attributes on page 14-23

ALTERNATE

14-4 Oracle Data Guard Concepts and Administration

ALTERNATE

Specifies an alternate archiving destination to be used when the original destination
fails.

Usage Notes
■ The ALTERNATE attribute is optional. If an alternate destination is not specified,

then redo transport services do not automatically change to another destination if
the original destination fails.

■ You can specify only one alternate destination for each LOG_ARCHIVE_DEST_n
parameter, but several enabled destinations can share the same alternate
destination.

■ Ideally, an alternate destination should specify either:

– A different disk location on the same local standby database system (shown in
Example 14–1 on page 14-5)

– A different network route to the same standby database system (shown in
Example 14–2 on page 14-5)

– A remote standby database system that closely mirrors that of the enabled
destination

■ If no enabled destinations reference an alternate destination, the alternate
destination is implied to be deferred, because there is no automatic method of
enabling the alternate destination. However, you can enable (or defer) alternate
destinations at runtime using either ALTER SYSTEM.

■ Any destination can be designated as an alternate destination, given the following
restrictions:

■ At least one local mandatory destination is enabled.

■ The number of enabled destinations must meet the defined LOG_ARCHIVE_
MIN_SUCCEED_DEST parameter value.

■ A destination cannot be its own alternate.

Category ALTERNATE=LOG_ARCHIVE_DEST_n

Data Type String

Valid Value A LOG_ARCHIVE_DEST_n destination

Default Value None. If an alternate destination is not specified, then
redo transport services do not automatically change to
another destination.

Requires attributes ... Not applicable

Conflicts with attributes ... None 1

1 If the REOPEN attribute is specified with a nonzero value, the ALTERNATE attribute is ignored. If the MAX_
FAILURE attribute is also specified with a nonzero value, and the failure count exceeds the specified failure
threshold, the ALTERNATE destination is enabled. Therefore, the ALTERNATE attribute does not conflict
with a nonzero REOPEN attribute value.

Corresponds to ... ALTERNATE and STATUS columns of the V$ARCHIVE_
DEST view

ALTERNATE

LOG_ARCHIVE_DEST_n Parameter Attributes 14-5

■ Increasing the number of enabled destinations decreases the number of available
alternate archiving destinations.

■ When a destination fails, its alternate destination is enabled on the next archival
operation. There is no support for enabling the alternate destination in the middle
of the archival operation because that would require rereading already processed
blocks, and so forth. This is identical to the REOPEN attribute behavior.

■ If the REOPEN attribute is specified with a nonzero value, the ALTERNATE attribute
is ignored unless the MAX_FAILURE attribute has a nonzero value. If the MAX_
FAILURE and REOPEN attributes have nonzero values and the failure count
exceeds the specified failure threshold, the ALTERNATE destination is enabled.
Therefore, the ALTERNATE attribute does not conflict with a nonzero REOPEN
attribute value.

Examples
In the sample initialization parameter file in Example 14–1, LOG_ARCHIVE_DEST_1
automatically fails over to LOG_ARCHIVE_DEST_2 on the next archival operation if an
error occurs or the device becomes full.

Example 14–1 Automatically Failing Over to an Alternate Destination

LOG_ARCHIVE_DEST_1='LOCATION=/disk1 MANDATORY ALTERNATE=LOG_ARCHIVE_DEST_2'
LOG_ARCHIVE_DEST_STATE_1=ENABLE
LOG_ARCHIVE_DEST_2='LOCATION=/disk2 MANDATORY'
LOG_ARCHIVE_DEST_STATE_2=ALTERNATE

Notice in the example that a destination can also be in the ALTERNATE state, as
specified with the LOG_ARCHIVE_DEST_STATE_n initialization parameter. The
ALTERNATE state defers redo transport services from transmitting redo data to this
destination until such time as another destination failure automatically enables this
destination. Section 5.2.2 provides more information about the LOG_ARCHIVE_DEST_
STATE_n parameter.

Example 14–2 Defining an Alternate Oracle Net Service Name to the Same Standby
Database

This example shows how to define an alternate Oracle Net service name to the same
standby database.

LOG_ARCHIVE_DEST_1='LOCATION=/disk1 MANDATORY'
LOG_ARCHIVE_DEST_STATE_1=ENABLE
LOG_ARCHIVE_DEST_2='SERVICE=stby1_path1 OPTIONAL ALTERNATE=LOG_ARCHIVE_DEST_3'
LOG_ARCHIVE_DEST_STATE_2=ENABLE
LOG_ARCHIVE_DEST_3='SERVICE=stby1_path2 OPTIONAL'
LOG_ARCHIVE_DEST_STATE_3=ALTERNATE

ARCH and LGWR

14-6 Oracle Data Guard Concepts and Administration

ARCH and LGWR

Specifies whether redo transport services use archiver processes (ARCn) or the log
writer process (LGWR) to collect transaction redo data and transmit it to standby
destinations. If neither the ARCH or LGWR attributes are specified, the default is ARCH.

Usage Notes
■ These attributes are optional. If neither the ARCH or LGWR attribute is specified, the

default is ARCH.

■ Redo transport services use ARCn processes when the ARCH attribute is specified,
and the log writer process when the LGWR attribute is specified.

By default, archiving is performed by ARCn processes; you must explicitly specify
the LGWR attribute for redo transport services to use the LGWR process. Although
you cannot specify both LGWR and ARCn processes for the same destination, you
can choose to use the log writer process for some destinations, while archiver
processes transmit redo data for other destinations.

■ If you change a destination’s current archival process (for example, from the ARCn
process to the LGWR process), archival processing does not change until the next
log switch occurs.

Example
The following example shows the LGWR attribute with the LOG_ARCHIVE_DEST_n
parameter. See Section 5.3 for more examples.

LOG_ARCHIVE_DEST_3='SERVICE=denver LGWR'
LOG_ARCHIVE_DEST_STATE_3=ENABLE

Category ARCH LGWR

Data Type Keyword Keyword

Valid values Not applicable Not applicable

Default value Not applicable Not applicable

Requires attributes ... None None

Conflicts with attributes ... LGWR, ASYNC, NET_TIMEOUT ARCH

Corresponds to ... ARCHIVER, PROCESS, and
SCHEDULE columns of the
V$ARCHIVE_DEST view

ARCHIVER, PROCESS, and
SCHEDULE columsn of the
V$ARCHIVE_DEST view

DB_UNIQUE_NAME

LOG_ARCHIVE_DEST_n Parameter Attributes 14-7

DB_UNIQUE_NAME

Specifies a unique name for the database at this destination.

Usage Notes
■ This attribute is optional if:

– The LOG_ARCHIVE_CONFIG=DG_CONFIG initialization parameter is not
specified.

– This is a local destination (specified with the LOCATION attribute).

■ This attributes is required if the LOG_ARCHIVE_CONFIG=DG_CONFIG initialization
parameter is specified and if this is a remote destination (specified with the
SERVICE attribute).

■ Use the DB_UNIQUE_NAME attribute to clearly identify the relationship between a
primary and standby databases. This attribute is particularly helpful if there are
multiple standby databases in the Data Guard configuration.

■ The name specified by the DB_UNIQUE_NAME must match one of the DB_UNIQUE_
NAME values in the DG_CONFIG list. Redo transport services validate that the DB_
UNIQUE_NAME attribute of the database at the specified destination matches the
DB_UNIQUE_NAME attribute or the connection to that destination is refused.

■ The name specified by the DB_UNIQUE_NAME attribute must match the name
specified by the DB_UNIQUE_NAME initialization parameter of the database
identified by the destination.

Example
In the following example, the DB_UNIQUE_NAME parameter specifies boston (DB_
UNIQUE_NAME=boston), which is also specified with the DB_UNIQUE_NAME attribute
on the LOG_ARCHIVE_DEST_1 parameter. The DB_UNIQUE_NAME attribute on the
LOG_ARCHIVE_DEST_2 parameter specifies the chicago destination. Both boston
and chicago are listed in the LOG_ARCHIVE_CONFIG=DG_CONFIG parameter.

DB_UNIQUE_NAME=boston
LOG_ARCHIVE_CONFIG='DG_CONFIG=(chicago,boston,denver)'
LOG_ARCHIVE_DEST_1='LOCATION=/arch1/
 VALID_FOR=(ALL_LOGFILES,ALL_ROLES)
 DB_UNIQUE_NAME=boston'
LOG_ARCHIVE_DEST_2='SERVICE=Sales_DR
 VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
 DB_UNIQUE_NAME=chicago'

Category DB_UNIQUE_NAME=name

Data Type String

Valid values The name must match the value that was defined for this
database with the DB_UNIQUE_NAME parameter.

Default value None

Requires attributes ... None

Conflicts with attributes ... None

Corresponds to ... DB_UNIQUE_NAME column of the V$ARCHIVE_DEST
view

DELAY

14-8 Oracle Data Guard Concepts and Administration

DELAY

Specifies a time lag between when redo data is archived on a standby site and when
the archived redo log file is applied to the standby database.

Usage Notes
■ The DELAY attribute is optional. By default there is no delay.

■ The DELAY attribute indicates the archived redo log files at the standby destination
are not available for recovery until the specified time interval has expired. The
time interval is expressed in minutes, and it starts when the redo data is
successfully transmitted to, and archived at, the standby site.

■ The DELAY attribute may be used to protect a standby database from corrupted or
erroneous primary data. However, there is a tradeoff because during failover it
takes more time to apply all of the redo up to the point of corruption.

■ The DELAY attribute does not affect the transmittal of redo data to a standby
destination.

■ If you have real-time apply enabled, any delay that you set will be ignored.

■ Changes to the DELAY attribute take effect the next time redo data is archived
(after a log switch). In-progress archiving is not affected.

■ You can override the specified delay interval at the standby site, as follows:

– For a physical standby database:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE NODELAY;

– For a logical standby database:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY NODELAY;

Examples
You can use the DELAY attribute to set up a configuration where multiple standby
databases are maintained in varying degrees of synchronization with the primary
database. However, this protection incurs some overhead during failover, because it
takes Redo Apply more time to apply all the redo up to the corruption point.

For example, assume primary database A has standby databases B and C. Standby
database B is set up as the disaster recovery database and therefore has no time lag.

Category DELAY[=minutes]

Data Type Numeric

Valid values >=0 minutes

Default Value 30 minutes

Requires attributes ... SERVICE

Conflicts with attributes ... LOCATION

Corresponds to ... DELAY_MINS and DESTINATION columns of the
V$ARCHIVE_DEST view

See Also: Oracle Database SQL Reference for more information about
these ALTER DATABASE statements

DELAY

LOG_ARCHIVE_DEST_n Parameter Attributes 14-9

Standby database C is set up with a 2-hour delay, which is enough time to allow user
errors to be discovered before they are propagated to the standby database.

The following example shows how to specify the DELAY attribute for this
configuration:

LOG_ARCHIVE_DEST_1='LOCATION=/oracle/dbs/'
LOG_ARCHIVE_DEST_STATE_1=ENABLE
LOG_ARCHIVE_DEST_2='SERVICE=stbyB LGWR SYNC AFFIRM'
LOG_ARCHIVE_DEST_STATE_2=ENABLE
LOG_ARCHIVE_DEST_3='SERVICE=stbyC DELAY=120'
LOG_ARCHIVE_DEST_STATE_3=ENABLE

Note: Alternatively, you can use Flashback Database to revert the
database to a point-in-time or SCN in a different database incarnation
as long as there is sufficient flashback log data. Using Flashback
Database is described in Oracle Database Backup and Recovery Basics.

DEPENDENCY

14-10 Oracle Data Guard Concepts and Administration

DEPENDENCY

Specify this attribute for a standby destination that will receive redo data through
shared access to an archival location at another destination. A destination defined with
this attribute has a dependency on another destination, which is specified by the
DEPENDENCY attribute.

Usage Notes
■ The DEPENDENCY attribute is optional. If you do not specify the DEPENDENCY

attribute, redo transport services transmit redo data directly to the destination.

■ The DEPENDENCY attribute can be specified on a physical standby database or a
logical standby database.

■ The availability of redo data at a dependent destination relies on the success or
failure of redo transmission to the destination that is specified by the DEPENDENCY
attribute.

■ The DEPENDENCY attribute has the following restrictions:

– Only standby destinations can have a dependency.

– The destination specified by the DEPENDENCY attribute can use either the
LOCATION or SERVICE attribute.

– The DEPENDENCY attribute cannot be modified at the session level.

■ When one or more destinations are dependent on the same destination, all
attributes specified for the dependent destinations still apply. It appears as if the
archival operation was performed for each destination, when only one archival
operation actually occurred.

For example, consider that two standby databases are dependent upon the same
destination. You can specify different DELAY attributes for each destination, which
enables you to maintain a staggered time lag between the primary database and
each standby database.

Similarly, a dependent destination can specify an ALTERNATE destination, which
itself might or might not be dependent on the same parent destination.

■ A zero data-loss failover cannot be performed to a dependent destination.

Category DEPENDENCY=LOG_ARCHIVE_DEST_n

Data Type String value

Valid values Not applicable

Default Value None

Requires attributes ... SERVICE

Conflicts with attributes ... LOCATION, NOREGISTER

Corresponds to ... DEPENDENCY column of the V$ARCHIVE_DEST view

See Also: Section 5.7.5, "Sharing a Log File Destination Among
Multiple Standby Databases"

DEPENDENCY

LOG_ARCHIVE_DEST_n Parameter Attributes 14-11

Examples
One reason to use the DEPENDENCY attribute is if two standby databases reside on the
same system. The parent and child standby databases can be any mix of physical and
logical standby databases. For example:

Set up the mandatory local destination:
#
LOG_ARCHIVE_DEST_1='LOCATION=/oracle/dbs/ MANDATORY'
LOG_ARCHIVE_DEST_STATE_1=ENABLE
#
Set up the remote standby database that will receive the redo data:
#
LOG_ARCHIVE_DEST_2='SERVICE=dest2 OPTIONAL'
LOG_ARCHIVE_DEST_STATE_2=ENABLE
#
Set up the remote standby database that resides on the same system as, and is
dependent on, the first standby database:
#
LOG_ARCHIVE_DEST_3='SERVICE=dest3 DEPENDENCY=LOG_ARCHIVE_DEST_2 OPTIONAL'
LOG_ARCHIVE_DEST_STATE_3=ENABLE

LOCATION and SERVICE

14-12 Oracle Data Guard Concepts and Administration

LOCATION and SERVICE

Each destination must specify either the LOCATION or the SERVICE attribute to
identify either a local disk directory or a remote database destination where redo
transport services can transmit redo data.

Usage Notes
■ Either the LOCATION or the SERVICE attribute must be specified. There is no

default.

■ If you are specifying multiple attributes, specify the LOCATION or SERVICE
attribute first in the list of attributes.

■ You must specify at least one local disk directory with the LOCATION attribute.
This ensures the local archived redo log files are accessible should media recovery
of the primary database be necessary. You can specify up to nine additional local
or remote destinations. Specifying remote destinations with the SERVICE attribute
ensures Data Guard can maintain a transactionally consistent remote copy of the
primary database for disaster recovery.

■ For the LOCATION attribute, you can specify one of the following:

– LOCATION=local_disk_directory

This specifies a unique directory path name for a disk directory on the system
that hosts the database. This is the local destination for archived redo log files.

– LOCATION=USE_DB_RECOVERY_FILE_DEST

To configure a flash recovery area, you specify the directory or Oracle Storage
Manager disk group that will serve as the flash recovery area using the DB_
RECOVERY_FILE_DEST initialization parameter. If no local destinations are
defined and a flash recovery area has been configured, Data Guard implicitly
uses the LOG_ARCHIVE_DEST_10 destination for the flash recovery area. See
Section 5.2.3 for more information about flash recovery areas.

■ When you specify a SERVICE attribute:

– You identify remote destinations by specifying the SERVICE attribute with a
valid Oracle Net service name (SERVICE=net_service_name) that identifies the
remote Oracle database instance to which the redo data will be sent.

Category
LOCATION=local_disk_directory or
USE_DB_RECOVERY_FILE_DEST SERVICE=net_service_name

Data type String value String value

Valid values Not applicable Not applicable

Default Value None None

Requires
attributes ...

Not applicable Not applicable

Conflicts with
attributes ...

SERVICE, DELAY, DEPENDENCY,
NOREGISTER, ASYNC, TEMPLATE,
NET_TIMEOUT

LOCATION

Corresponds to ... DESTINATION and TARGET columns
of the V$ARCHIVE_DEST view

DESTINATION and TARGET
columns of the V$ARCHIVE_
DEST view

LOCATION and SERVICE

LOG_ARCHIVE_DEST_n Parameter Attributes 14-13

The Oracle Net service name that you specify with the SERVICE attribute is
translated into a connection descriptor that contains the information necessary
for connecting to the remote database.

– Transmitting redo data to a remote destination requires a network connection
and an Oracle database instance associated with the remote destination to
receive the incoming redo data.

■ To verify the current settings for LOCATION and SERVICE attributes, query the
V$ARCHIVE_DEST fixed view:

– The TARGET column identifies if the destination is local or remote to the
primary database.

– The DESTINATION column identifies the values that were specified for a
destination. For example, the destination parameter value specifies the Oracle
Net service name identifying the remote Oracle instance where the archived
redo log files are located.

Examples

Example 1 Specifying the LOCATION Attribute
LOG_ARCHIVE_DEST_2='LOCATION=/disk1/oracle/oradata/payroll/arch/'
LOG_ARCHIVE_DEST_STATE_2=ENABLE

Example 2 Specifying the SERVICE Attribute
LOG_ARCHIVE_DEST_3='SERVICE=stby1'
LOG_ARCHIVE_DEST_STATE_3=ENABLE

See Also: Oracle Database Net Services Administrator's Guide for
details about setting up Oracle Net service names

MANDATORY and OPTIONAL

14-14 Oracle Data Guard Concepts and Administration

MANDATORY and OPTIONAL

Specifies the policy for reusing online redo log files:

■ MANDATORY—specifies that filled online log files must be successfully archived to
the destination before they can be reused.

■ OPTIONAL—specifies that successful archival to the destination is not required
before the online redo log file can be made available for reuse.

Usage Notes
■ If neither the MANDATORY nor the OPTIONAL attribute is specified, the default is

OPTIONAL.

At least one destination must succeed even if all destinations are designated as
optional. If a destination is optional, archiving to that destination may fail, yet the
online redo log file is available for reuse and may be overwritten eventually. If the
archival operation of a mandatory destination fails, online redo log files cannot be
overwritten.

■ The LOG_ARCHIVE_MIN_SUCCEED_DEST=n parameter (where n is an integer
from 1 to 10) specifies the number of destinations that must archive successfully
before the log writer process can overwrite the online redo log files.

All MANDATORY destinations and non-standby OPTIONAL destinations contribute
to satisfying the LOG_ARCHIVE_MIN_SUCCEED_DEST=n count. If the value set for
the LOG_ARCHIVE_MIN_SUCCEED_DEST parameter (that defines the minimum
number of destinations that must receive redo data successfully before the log
writer process on the primary database can reuse the online redo log file) is met,
the online redo log file is available for reuse. For example, you can set the
parameter as follows:

Database must archive to at least two locations before
overwriting the online redo log files.
LOG_ARCHIVE_MIN_SUCCEED_DEST = 2

■ You must have at least one local destination, which you can declare OPTIONAL or
MANDATORY.

At least one local destination is operationally treated as mandatory, because the
minimum value for the LOG_ARCHIVE_MIN_SUCCEED_DEST parameter is 1.

■ The failure of any mandatory destination, including a mandatory standby
destination, makes the LOG_ARCHIVE_MIN_SUCCEED_DEST parameter irrelevant.

Category MANDATORY OPTIONAL

Data type Keyword Keyword

Valid values Not applicable Not applicable

Default value Not applicable Not applicable

Requires attributes ... Not applicable Not applicable

Conflicts with attributes ... Optional Mandatory

Corresponds to ... BINDING column of the
V$ARCHIVE_DEST view

BINDING column of the
V$ARCHIVE_DEST view

MANDATORY and OPTIONAL

LOG_ARCHIVE_DEST_n Parameter Attributes 14-15

■ The LOG_ARCHIVE_MIN_SUCCEED_DEST parameter value cannot be greater than
the number of mandatory destinations plus the number of optional local
destinations.

■ These attributes do not affect the data protection mode for the destination.

■ The BINDING column of the V$ARCHIVE_DEST fixed view specifies how failure
affects the archival operation

Examples
The following example shows the MANDATORY attribute:

LOG_ARCHIVE_DEST_1='LOCATION=/arch/dest MANDATORY'
LOG_ARCHIVE_DEST_STATE_1=ENABLE
LOG_ARCHIVE_DEST_3='SERVICE=denver MANDATORY'
LOG_ARCHIVE_DEST_STATE_3=ENABLE

MAX_CONNECTIONS

14-16 Oracle Data Guard Concepts and Administration

MAX_CONNECTIONS

Specifies the maximum number of network connections that will be used to perform
remote archival to the destination. If the MAX_CONNECTIONS attribute is set to a value
greater than 1, redo transport services use multiple network connections to perform
remote archivals. Each of these connections use a separate archiver (ARCn) process.

Usage Notes
■ The MAX_CONNECTIONS attribute is optional. By default redo transport services

use a single network connection to perform a remote archival.

If the MAX_CONNECTIONS attribute is set to a value greater than 1, redo transport
services use multiple network connections to perform a remote archival to the
destination.

■ The LOG_ARCHIVE_MAX_PROCESSES and PARALLEL_MAX_SERVERS
initialization parameters are related to the MAX_CONNECTIONS attribute and affect
the actual number of ARCn processes used by an instance.

For example, if the total of MAX_CONNECTIONS attributes on all destinations
exceeds the value of LOG_ARCHIVE_MAX_PROCESSES, then Data Guard will use
as many ARCn processes as possible but the number of connections may be less
than is specified by MAX_CONNECTIONS.

Examples
The following example shows the MAX_CONNECTIONS attribute:

LOG_ARCHIVE_DEST_1='LOCATION=/arch/dest'
LOG_ARCHIVE_DEST_STATE_1=ENABLE
LOG_ARCHIVE_DEST_3='SERVICE=denver MAX_CONNECTIONS=3'
LOG_ARCHIVE_DEST_STATE_3=ENABLE

Category Description

Data type Integer

Valid values 1 to 5

Default value 1

Requires attributes ... None

Conflicts with attributes ... None

Corresponds to ... ■ MAX_CONNECTIONS column of the V$ARCHIVE_
DEST view of the primary database

■ LOG_ARCHIVE_MAX_PROCESSES and PARALLEL_
MAX_SERVERS initialization parameters

MAX_FAILURE

LOG_ARCHIVE_DEST_n Parameter Attributes 14-17

MAX_FAILURE

Controls the consecutive number of times redo transport services attempt to
reestablish communication and transmit redo data to a failed destination before the
primary database gives up on the destination.

Usage Notes
■ The MAX_FAILURE attribute is optional. By default, there are an unlimited number

of archival attempts to the failed destination.

■ This attribute is useful for providing failure resolution for destinations to which
you want to retry transmitting redo data after a failure, but not retry indefinitely.

■ When you specify the MAX_FAILURE attribute, you must also set the REOPEN
attribute. Once the specified number of consecutive attempts is exceeded, the
destination is treated as if the REOPEN attribute was not specified.

■ You can view the failure count in the FAILURE_COUNT column of the
V$ARCHIVE_DEST fixed view. The related column REOPEN_SECS identifies the
REOPEN attribute value.

■ The failure count is reset to zero (0) whenever the destination is modified by an
ALTER SYSTEM SET statement. This avoids the problem of setting the MAX_
FAILURE attribute to a value less than the current failure count value.

■ Once the failure count is greater than or equal to the value set for the MAX_
FAILURE attribute, the REOPEN attribute value is implicitly set to zero, which
causes redo transport services to transport redo data to an alternate destination
(defined with the ALTERNATE attribute) on the next archival operation.

■ Redo transport services attempt to archive to the failed destination indefinitely if
you do not specify the MAX_FAILURE attribute (or if you specify MAX_
FAILURE=0), and you specify a nonzero value for the REOPEN attribute. If the
destination has the MANDATORY attribute, the online redo log file is not reusable
until it has been archived to this destination.

Category MAX_FAILURE=count

Data type Numeric

Valid value >=0

Default value None

Requires attributes ... REOPEN

Conflicts with attributes ... None

Corresponds to MAX_FAILURE, FAILURE_COUNT, and REOPEN_SECS
columns of the V$ARCHIVE_DEST view

Note: Once the failure count for the destination reaches the
specified MAX_FAILURE attribute value, the only way to reuse the
destination is to modify the MAX_FAILURE attribute value or any
attribute. This has the effect of resetting the failure count to zero (0).

MAX_FAILURE

14-18 Oracle Data Guard Concepts and Administration

Examples
The following example allows redo transport services up to three consecutive archival
attempts, tried every 5 seconds, to the arc_dest destination. If the archival operation
fails after the third attempt, the destination is treated as if the REOPEN attribute was
not specified.

LOG_ARCHIVE_DEST_1='LOCATION=/arc_dest REOPEN=5 MAX_FAILURE=3'
LOG_ARCHIVE_DEST_STATE_1=ENABLE

NET_TIMEOUT

LOG_ARCHIVE_DEST_n Parameter Attributes 14-19

NET_TIMEOUT

Specifies the number of seconds the log writer process on the primary system waits for
status from the network server (LNSn) process before terminating the network
connection.

Usage Notes
■ The NET_TIMEOUT attribute is optional. However, if you do not specify the NET_

TIMEOUT attribute it will be set to 180 seconds, but the primary database can
potentially stall. To avoid this situation, specify a small, nonzero value for the
NET_TIMEOUT attribute so the primary database can continue operation after the
user-specified timeout interval expires when waiting for status from the network
server.

■ The NET_TIMEOUT attribute is used only when the log writer process transmits
redo data using a network server (LNSn) process.

■ The log writer process waits for the specified amount of time to receive status
about the network I/O. If there is a possible network disconnection, even one that
was terminated due to a network timeout, the log writer process automatically
tries to reconnect to the standby database to resolve network brownouts and false
network terminations. Typically, except when the network is physically broken,
the log writer process can successfully reconnect to the network. The reconnection
attempts continue for a period of time that depends on the following factors:

■ The value of the NET_TIMEOUT attribute on the primary database.

■ The protection mode of the primary database, which determines the
maximum amount of time that the reconnection will take. Use the following
time estimates as a guideline for how long the log writer process will try to
reconnect to the standby database:

– In maximum protection mode, the log writer process tries to reconnect for
approximately 5 minutes.

– In maximum availability mode, the log writer process tries to reconnect
within the NET_TIMEOUT value.

For example, a primary database operating in the maximum availability protection
mode with a NET_TIMEOUT attribute value set to 60 seconds could actually take a

Category NET_TIMEOUT=seconds

Data type Numeric

Valid values 11 to 1200

1 Although a minimum value of 1 second is allowed, Oracle recommends 8 to 10 seconds as a minimum to
avoid false errors and disconnection from the standby database.

Default value 180 seconds

Requires attributes ... LGWR with SYNC

Conflicts with attributes ... ARCH, LOCATION, LGWR with ASYNC2

2 If you specify the LGWR and ASYNC attributes, redo transport services ignore them; no error is returned.

Corresponds to ... NET_TIMIEOUT column of the V$ARCHIVE_DEST
view of the primary database

NET_TIMEOUT

14-20 Oracle Data Guard Concepts and Administration

minimum of 1 minute to connect or up to 3 minutes to terminate the connection to
the standby database.

■ Without careful coordination of the timeout parameter values on the primary and
standby systems, it is possible that the primary system might detect a network
problem and disconnect, while the standby database might not recognize the
network disconnection if its default network timeout values are too high. If the
network timers are not set up properly, subsequent attempts by the log writer
process on the primary database to attach to the standby database will fail because
the standby database has not yet timed out and the broken network connection
still appears to be valid. See Oracle Database Net Services Administrator's Guide.

Examples
The following example shows how to specify a 40-second network timeout value on
the primary database with the NET_TIMEOUT attribute.

LOG_ARCHIVE_DEST_2='SERVICE=stby1 LGWR NET_TIMEOUT=40 SYNC'
LOG_ARCHIVE_DEST_STATE_2=ENABLE

Caution: Be careful to specify a reasonable value for the NET_
TIMEOUT attribute when running in maximum protection mode. A
false network failure detection might cause the primary instance to
shut down.

NOREGISTER

LOG_ARCHIVE_DEST_n Parameter Attributes 14-21

NOREGISTER

Indicates that the location of the archived redo log file should not be recorded at the
corresponding destination.

Usage Notes
■ The NOREGISTER attribute is optional if the standby database destination is a part

of a Data Guard configuration.

■ The NOREGISTER attribute is required if the destination is not part of a Data Guard
configuration.

■ This attribute pertains to remote destinations only. The location of each archived
redo log file is always recorded in the primary database control file.

Examples
The following example shows the NOREGISTER attribute:

LOG_ARCHIVE_DEST_5='NOREGISTER'

Category NOREGISTER

Data type Keyword

Valid values Not applicable

Default value Not applicable

Requires attributes ... SERVICE

Conflicts with attributes ... LOCATIONt

Corresponds to ... DESTINATION and TARGET columsn of the
V$ARCHIVE_DEST view

REOPEN

14-22 Oracle Data Guard Concepts and Administration

REOPEN

Specifies the minimum number of seconds before redo transport services should try to
reopen a failed destination.

Usage Notes]
■ The REOPEN attribute is optional.

■ Redo transport services attempt to reopen failed destinations at log switch time.

■ Redo transport services check if the time of the last error plus the REOPEN interval
is less than the current time. If it is, redo transport services attempt to reopen the
destination.

■ REOPEN applies to all errors, not just connection failures. These errors include, but
are not limited to, network failures, disk errors, and quota exceptions.

■ If you specify REOPEN for an OPTIONAL destination, it is possible for the Oracle
database to overwrite online redo log files if there is an error. If you specify
REOPEN for a MANDATORY destination, redo transport services will stall the
primary database when it is not possible to successfully transmit redo data. When
this situation occurs, consider the following options:

– Change the destination by deferring the destination, specifying the destination
as optional, or changing the SERVICE attribute value.

– Specify an alternate destination.

– Disable the destination.

Examples
The following example shows the REOPEN attribute.

LOG_ARCHIVE_DEST_3='SERVICE=stby1 MANDATORY REOPEN=60'
LOG_ARCHIVE_DEST_STATE_3=ENABLE

Category REOPEN [=seconds]

Data Type Numeric

Valid values >=0 seconds

Default Value 300 seconds

Requires attributes ... None

Conflicts with attributes ... Not applicable

Corresponds to ... REOPEN_SECS and MAX_FAILURE columns of
the V$ARCHIVE_DEST view

See Also: Section 5.5, "What to Do If Errors Occur" for more
information about using the REOPEN, MAX_FAILURES, and
ALTERNATE attributes to specify what actions are to be taken when
archival processing to a destination fails

SYNC and ASYNC

LOG_ARCHIVE_DEST_n Parameter Attributes 14-23

SYNC and ASYNC

Specifies that network I/O is to be done synchronously (SYNC) or asynchronously
(ASYNC) when archival is performed using the log writer process (LGWR).

Usage Notes
■ The SYNC and ASYNC attributes are optional:

– When you specify the LGWR attribute but you do not specify either the SYNC or
ASYNC attribute, the default is SYNC.

– When you specify the ARCH attribute, only the SYNC attribute is valid. An
error message is returned if you specify the ARCH and ASYNC attributes
together.

■ The SYNC attribute specifies that network I/O is to be performed synchronously
for the destination, which means that once the I/O is initiated, the log writer
process waits for the I/O to complete before continuing. The SYNC attribute is one
requirement for setting up a no-data-loss environment, because it ensures the redo
records are successfully transmitted to the standby destination before continuing.

■ The ASYNC attribute specifies that network I/O is to be performed asynchronously
for the destination.

Examples
The following example shows the SYNC attribute with the LOG_ARCHIVE_DEST_n
parameter.

LOG_ARCHIVE_DEST_3='SERVICE=stby1 LGWR SYNC'
LOG_ARCHIVE_DEST_STATE_3=ENABLE

Note: When the primary database is in maximum protection
mode or maximum availability mode, destinations archiving to
standby redo log files and using the log writer process are
automatically placed in SYNC mode.

Category SYNC ASYNC

Data type Keyword Numeric

Valid values Not applicable Not applicable

Default value Not applicable None

Requires attributes ... None LGWR

Conflicts with attributes ... ASYNC SYNC, LOCATION, ARCH

Corresponds to ... TRANSMIT_MODE column of
the V$ARCHIVE_DEST view

TRANSMIT_MODE and ASYNC_
BLOCKS columns of the
V$ARCHIVE_DEST view

TEMPLATE

14-24 Oracle Data Guard Concepts and Administration

TEMPLATE

Defines a directory specification and format template for names of archived redo log
files at the destination. The template is used to generate a filename that is different
from the default filename format defined by the STANDBY_ARCHIVE_DEST and LOG_
ARCHIVE_FORMAT initialization parameters at the standby destination.

Usage Notes
■ The TEMPLATE attribute is optional. If TEMPLATE is not specified, archived redo

logs are named using the value of the STANDBY_ARCHIVE_DEST and LOG_
ARCHIVE_FORMAT initialization parameters.

■ The TEMPLATE attribute overrides the STANDBY_ARCHIVE_DEST and LOG_
ARCHIVE_FORMAT initialization parameter settings at the remote archival
destination.

■ The TEMPLATE attribute is valid only with remote destinations (that is,
destinations specified with the SERVICE attribute).

■ If specified for a destination that also specifies the LGWR attribute, rearchiving by
the ARCn process does not use the TEMPLATE filename specification.

■ The value you specify for filename_template must contain the %s, %t, and %r
directives described in Table 14–1.

■ The filename_template value is transmitted to the standby destination, where it is
translated and validated before creating the filename.

Category TEMPLATE=filename_template_%t_%s_%r

Data Type String value

Valid values Not applicable

Default Value None

Requires attributes ... SERVICE

Conflicts with attributes ... LOCATION

Corresponds to ... REMOTE_TEMPLATE and REGISTER columns
of the V$ARCHIVE_DEST view

Table 14–1 Directives for the TEMPLATE Attribute

Directive Description

%t Substitute the instance thread number.

%T Substitute the instance thread number, zero filled.

%s Substitute the log file sequence number.

%S Substitute the log file sequence number, zero filled.

%r Substitute the resetlogs ID.

%R Substitute the resetlogs ID, zero filled.

TEMPLATE

LOG_ARCHIVE_DEST_n Parameter Attributes 14-25

Examples
In the following example, prmy1 transmits redo data to the remote destination,
stby1. The TEMPLATE attribute indicates that stby1 is located in the directory
/usr/oracle/prmy1 with the p1_thread#_sequence#_resetlogs.dbf
filename format.

LOG_ARCHIVE_DEST_1='SERVICE=boston MANDATORY REOPEN=5
 TEMPLATE=/usr/oracle/prmy1/p1_%t_%s_%r.dbf'
LOG_ARCHIVE_DEST_STATE_1=ENABLE

VALID_FOR

14-26 Oracle Data Guard Concepts and Administration

VALID_FOR

Specifies when redo transport services transmit redo data to a destination, based on
the following factors:

■ Whether the database is currently running in the primary or the standby role

■ Whether online redo log files, standby redo log files, or both are currently being
archived on the database at this destination

Usage Notes
■ The VALID_FOR attribute is optional. However, Oracle recommends that you

define a VALID_FOR attribute for each destination so that your Data Guard
configuration operates properly after a role transition.

■ To configure these factors for each LOG_ARCHIVE_DEST_n destination, you
specify this attribute with a pair of keywords: VALID_FOR=(redo_log_
type,database_role):

■ The redo_log_type keyword identifies the destination as valid for archiving one
of the following:

– ONLINE_LOGFILE—This destination is valid only when archiving online
redo log files.

– STANDBY_LOGFILE—This destination is valid only when archiving
standby redo log files.

– ALL_LOGFILES— This destination is valid when archiving either online
redo log files or standby redo log files.

■ The database_role keyword identifies the role in which this destination is valid
for archiving:

Category VALID_FOR=(redo_log_type, database_role)

Data Type String value

Valid values Not applicable

Default Value VALID_FOR=(ALL_LOGFILES, ALL_ROLES) 1

1 Do not use the default value, VALID_FOR=(ALL LOGFILES, ALL_ROLES), for logical standby
databases. See Section 5.4.1 and the scenario in Section 12.1.2 for more information.

Requires attributes ... None

Conflicts with attributes ... None

Corresponds to ... VALID_NOW, VALID_TYPE, and VALID_ROLE columns in
the V$ARCHIVE_DEST view

Note: Although the (ALL_LOGFILES,ALL_ROLES) keyword pair is
the default, it is not appropriate for every destination. For example, if
the destination is a logical standby database, which is an open
database that is creating its own redo data, the redo data being
transmitted by redo transport services could potentially overwrite the
logical standby database’s local online redo log files.

VALID_FOR

LOG_ARCHIVE_DEST_n Parameter Attributes 14-27

– PRIMARY_ROLE—This destination is valid only when the database is
running in the primary role.

– STANDBY_ROLE—This destination is valid only when the database is
running in the standby role.

– ALL_ROLES—This destination is valid when the database is running in
either the primary or the standby role.

■ The following table shows the VALID_FOR attribute values and the roles in which
each might be used.

■ If you do not specify the VALID_FOR attribute for a destination, by default,
archiving online redo log files and standby redo log files is enabled at the
destination, regardless of whether the database is running in the primary or the
standby role. This default behavior is equivalent to setting the (ALL_
LOGFILES,ALL_ROLES) keyword pair on the VALID_FOR attribute. For example:

LOG_ARCHIVE_DEST_1='LOCATION=/disk1/oracle/oradata/payroll/arch/
 VALID_FOR=(ALL_LOGFILES,ALL_ROLES)

■ The VALID_FOR attribute enables you to use the same initialization parameter file
for both the primary and standby roles.

Example
The following example shows the default VALID_FOR keyword pair:

LOG_ARCHIVE_DEST_1='LOCATION=/disk1/oracle/oradata VALID_FOR=(ALL LOGFILES, ALL_ROLES)'

When this database is running in either the primary or standby role, destination 1
archives all log files to the /disk1/oracle/oradata local directory location.

See the scenarios in Section 12.1 for detailed examples of various Data Guard
configurations using the VALID_FOR attribute.

Table 14–2 VALID_FOR Attribute Values

VALID_FOR Definition Primary Role Physical Standby Role Logical Standby Role

ONLINE_LOGFILE, PRIMARY_ROLE Active Inactive Invalid

ONLINE_LOGFILE, STANDBY_ROLE Inactive Invalid Active

ONLINE_LOGFILE, ALL_ROLES Active Invalid Active

STANDBY_LOGFILE, PRIMARY_ROLE Error Error Error

STANDBY_LOGFILE, STANDBY_ROLE Invalid Active Active

STANDBY_LOGFILE ALL_ROLES Invalid Active Active

ALL_LOGFILES, PRIMARY_ROLE Active Inactive Invalid

ALL_LOGFILES, STANDBY_ROLE Invalid Active Active

ALL_LOGFILES, ALL_ROLES Active Active Active

Note: The VALID_FOR=(STANDBY_LOGFILE, PRIMARY_ROLE)
keyword pair is not possible; although it is valid to configure
standby redo log files on a primary database, a database that is
running in the primary role cannot use standby redo log files.

VERIFY

14-28 Oracle Data Guard Concepts and Administration

VERIFY

Indicates whether or not an archiver (ARCn) process should scan and verify the
correctness of the contents of a completed archived redo log file, either local or remote,
after successfully completing the archival operation.

Usage Notes
■ If the VERIFY attribute is not specified, archived redo log files will not be verified.

■ The verification is significantly more thorough than the normal checksum
verification that is always performed; the redo verification may take a substantial
amount of time to complete.

■ The use of the VERIFY attribute may have an affect on primary database
performance.

Example
The following example shows the VERIFY attribute:

LOG_ARCHIVE_DEST_1='LOCATION=/disk1/oracle/oradata VERIFY'

LOG_ARCHIVE_DEST_2='LOCATION=/arch1/SRLs/ VALID_FOR=(STANDBY_LOGFILE, STANDBY_
ROLE) VERIFY'
LOG_ARCHIVE_DEST_3='SERVICE=denver VALID_FOR=(ONLINE_LOGFILE,PRIMARY_ROLE) VERIFY'

Category VERIFY

Data Type Keyword

Valid values Not applicable

Default Value Not applicable

Requires attributes ... None

Conflicts with attributes ... LGWR

Corresponds to ... VERIFY and ARCHIVER columns in the
V$ARCHIVE_DEST view

SQL Statements Relevant to Data Guard 15-1

15
SQL Statements Relevant to Data Guard

This chapter summarizes the SQL and SQL*Plus statements that are useful for
performing operations on standby databases in a Data Guard environment. This
chapter includes the following topics:

■ ALTER DATABASE Statements

■ ALTER SESSION Statements

This chapter contains only the syntax and a brief summary of particular SQL
statements. You must refer to the.Oracle Database SQL Reference for complete syntax
and descriptions about these and other SQL statements

See Chapter 13 for a list of initialization parameters that you can set and dynamically
update using the ALTER SYSTEM SET statement.

15.1 ALTER DATABASE Statements
Table 15–1 describes ALTER DATABASE statements that are relevant to Data Guard.

Table 15–1 ALTER DATABASE Statements Used in Data Guard Environments

ALTER DATABASE Statement Description

ADD [STANDBY] LOGFILE
[THREAD integer]
[GROUP integer] filespec

Adds one or more online redo log file groups or standby redo
log file groups to the specified thread, making the log files
available to the instance to which the thread is assigned.

See Section 8.3.5 for an example of this statement.

ADD [STANDBY] LOGFILE MEMBER 'filename'
[REUSE] TO logfile-descriptor

Adds new members to existing online redo log file groups or
standby redo log file groups.

See Section 5.7.3.2 for an example of this statement.

[ADD|DROP] SUPPLEMENTAL LOG DATA
{PRIMARY KEY|UNIQUE INDEX} COLUMNS

This statement is for logical standby databases only.

Use it to enable full supplemental logging before you create a
logical standby database. This is necessary because
supplemental logging is the source of change to a logical
standby database. To implement full supplemental logging,
you must specify either the PRIMARY KEY COLUMNS or the
UNIQUE INDEX COLUMNS keyword on this statement.

See Oracle Database SQL Reference for more information.

ALTER DATABASE Statements

15-2 Oracle Data Guard Concepts and Administration

COMMIT TO SWITCHOVER TO
[[PRIMARY] | [[PHYSICAL|LOGICAL]
[STANDBY]]
[WITH | WITHOUT] SESSION SHUTDOWN]
[WAIT | NOWAIT]

 Performs a switchover to:

■ Change the current primary database to the standby
database role

■ Change one standby database to the primary database
role.

Note: On logical standby databases, you issue the ALTER
DATABASE PREPARE TO SWITCHOVER statement to prepare
the database for the switchover before you issue the ALTER
DATABASE COMMIT TO SWITCHOVER statement.

See Section 7.2.1 and Section 7.3.1 for examples of this
statement.

CREATE [PHYSICAL|LOGICAL] STANDBY
CONTROLFILE AS 'filename' [REUSE]

Creates a control file to be used to maintain a physical or a
logical standby database. Issue this statement on the primary
database.

See Section 3.2.2 for an example of this statement.

DROP [STANDBY] LOGFILE logfile_descriptor Drops all members of an online redo log file group or standby
redo log file group.

See Section 8.3.5 for an example of this statement.

DROP [STANDBY] LOGFILE MEMBER 'filename' Drops one or more online redo log file members or standby
redo log file members.

[NO]FORCE LOGGING Controls whether or not the Oracle database logs all changes in
the database except for changes to temporary tablespaces and
temporary segments. The [NO]FORCE LOGGING clause is
required to prevent inconsistent standby databases.:

The primary database must be mounted but not open when
you issue this statement. See Section 3.1.1 for an example of
this statement.

MOUNT [STANDBY DATABASE] Mounts a standby database, allowing the standby instance to
receive redo data from the primary instance.

OPEN Opens a previously started and mounted database:

■ Physical standby databases are opened in read-only mode,
restricting users to read-only transactions and preventing
the generating of redo data.

■ Logical standby database are opened in read/write mode.

See Section x.x for an example of this statement.

PREPARE TO SWITCHOVER TO
[PRIMARY] | [[PHYSICAL|LOGICAL]
[STANDBY]]
[WITH | WITHOUT] SESSION SHUTDOWN]
[WAIT | NOWAIT]

This statement is for logical standby databases only.

It prepares the primary database and the logical standby
database for a switchover by building the LogMiner dictionary
before the switchover takes place. After the dictionary build has
completed, issue the ALTER DATABASE COMMIT TO
SWITCHOVER statement to switch the roles of the primary and
logical standby databases.

See Section 7.3.1 for examples of this statements.

Table 15–1 (Cont.) ALTER DATABASE Statements Used in Data Guard Environments

ALTER DATABASE Statement Description

ALTER DATABASE Statements

SQL Statements Relevant to Data Guard 15-3

RECOVER MANAGED STANDBY DATABASE [
[NODELAY]
[DISCONNECT [FROM SESSION]]
[NOPARALLEL|PARALLEL [integer]]
[UNTIL CHANGE scn]
[USING CURRENT LOGFILE]]

This statement starts and controls Redo Apply on physical
standby databases. You can use the RECOVER MANAGED
STANDBY DATABASE clause on a physical standby database
that is mounted, open, or closed. See Step 2 in Section 3.2.6 and
Section 6.3 for examples.

Note: Several clauses and keywords were deprecated and are
supported for backward compatibility only. See Oracle Database
SQL Reference for more information about these clauses.

RECOVER MANAGED STANDBY DATABASE CANCEL
[[NOWAIT]|[WAIT]
[IMMEDIATE]]

The CANCEL clause cancels Redo Apply on a physical standby
database after applying the current archived redo log file.

RECOVER MANAGED STANDBY DATABASE FINISH
[FORCE]
[NOWAIT|WAIT]]

The FINISH clause initiates failover on the target physical
standby database and recovers the current standby redo log
files. Use the FINISH clause only in the event of the failure of
the primary database. This clause overrides any delay intervals
specified.

Include FORCE to terminate the RFS processes and allow the
failover to occur immediately, without waiting for the RFS
process to exit. Specify NOWAIT to have control returned
immediately, rather than after the recovery process is complete.

See Step 4 in Section 7.2.2 for examples.

REGISTER [OR REPLACE]
[PHYSICAL|LOGICAL] LOGFILE filespec

Allows the registration of manually archived redo log files.

See Section 5.8.4 for an example of this statement.

RECOVER TO LOGICAL STANDBY new_database_
name

Instructs log apply services to continue applying changes to
the physical standby database until you issue the command to
convert the database to a logical standby database. See
Section 4.2.4.1 for more information.

RESET DATABASE TO INCARNATION integer Resets the target recovery incarnation for the database from the
current incarnation to a different incarnation.

SET STANDBY DATABASE TO MAXIMIZE
{PROTECTION|AVAILABILITY|PERFORMANCE}

Use this clause to specify the level of protection for the data in
your Data Guard configuration. You specify this clause from
the primary database, which must be mounted but not open.

Table 15–1 (Cont.) ALTER DATABASE Statements Used in Data Guard Environments

ALTER DATABASE Statement Description

ALTER SESSION Statements

15-4 Oracle Data Guard Concepts and Administration

15.2 ALTER SESSION Statements
Table 15–2 describes an ALTER SESSION statement that is relevant to Data Guard.

START LOGICAL STANDBY APPLY INITIAL
[scn-value]][NEW PRIMARY dblink]

This statement is for logical standby databases only.

It starts SQL Apply on a logical standby database. See
Section 6.4.1 for examples of this statement.

{STOP|ABORT} LOGICAL STANDBY APPLY This statement is for logical standby databases only.

Use the STOP clause to stop SQL Apply on a logical standby
database in an orderly fashion. Use the ABORT clause to stop
SQL Apply abruptly. See Section 7.3.2 for an example of this
statement.

ACTIVATE [PHYSICAL|LOGICAL] STANDBY
DATABASE FINISH APPLY]

Performs a failover. The standby database must be mounted
before it can be activated with this statement.

Note: Do not use the ALTER DATABASE ACTIVATE STANDBY
DATABASE statement to failover because it causes data loss.
Instead, use the following best practices:

■ For physical standby databases, use the ALTER
DATABASE RECOVER MANAGED STANDBY DATABASE
statement with the FINISH keyword to perform the role
transition as quickly as possible with little or no data loss
and without rendering other standby databases unusable.

Note: The failover operation adds an end-of-redo marker
to the header of the last log file being archived and sends
the redo to all enabled destinations that are valid for the
primary role (specified with the VALID_FOR=(PRIMARY_
ROLE, *_LOGFILES) or the VALID_FOR=(ALL_ROLES,
*_LOGFILES) attributes).

■ For logical standby databases, use the ALTER DATABASE
PREPARE TO SWITCHOVER and ALTER DATABASE
COMMIT TO SWITCHOVER statements.

Table 15–2 ALTER SESSION Statement Used in Data Guard Environments

ALTER SESSION Statement Description

ALTER SESSION [ENABLE|DISABLE] GUARD This statement is for logical standby databases only.

This statement allows privileged users to turn the database
guard on and off for the current session.

See Section 7.3.2 for an example of this statement.

Table 15–1 (Cont.) ALTER DATABASE Statements Used in Data Guard Environments

ALTER DATABASE Statement Description

Views Relevant to Oracle Data Guard 16-1

16
Views Relevant to Oracle Data Guard

This chapter describes the views that are significant in a Data Guard environment. The
view described in this chapter are a subset of the views that are available for Oracle
databases.

Table 16–1 describes the views and indicates if a view applies to physical standby
databases, logical standby databases, or primary databases.See Oracle Database
Reference for complete information about views.

Table 16–1 Views That Are Pertinent to Data Guard Configurations

View Database Description

DBA_LOGSTDBY_EVENTS Logical only Contains information about the activity of a logical standby
database. It can be used to determine the cause of failures
that occur when SQL Apply is applying redo to a logical
standby database.

DBA_LOGSTDBY_HISTORY Logical only Displays the history of switchovers and failovers for logical
standby databases in a Data Guard configuration. It does
this by showing the complete sequence of redo log streams
processed or created on the local system, across all role
transitions. (After a role transition, a new log stream is
started and the log stream sequence number is incremented
by the new primary database.)

DBA_LOGSTDBY_LOG Logical only Shows the log files registered for logical standby databases.

DBA_LOGSTDBY_NOT_UNIQUE Logical only Identifies tables that have no primary and no non-null
unique indexes.

DBA_LOGSTDBY_PARAMETERS Logical only Contains the list of parameters used by SQL Apply.

DBA_LOGSTDBY_SKIP Logical only Lists the tables that will be skipped by SQL Apply.

DBA_LOGSTDBY_SKIP_
TRANSACTION

Logical only Lists the skip settings chosen.

DBA_LOGSTDBY_UNSUPPORTED Logical only Identifies the schemas and tables (and columns in those
tables) that contain unsupported data types. Use this view
when you are preparing to create a logical standby database.

V$ARCHIVE_DEST Primary,
physical, and
logical

Describes all of the destinations in the Data Guard
configuration, including each destination’s current value,
mode, and status.

Note: The information in this view does not persist across an
instance shutdown.

V$ARCHIVE_DEST_STATUS Primary,
physical, and
logical

Displays runtime and configuration information for the
archived redo log destinations.

Note: The information in this view does not persist across an
instance shutdown.

16-2 Oracle Data Guard Concepts and Administration

V$ARCHIVE_GAP Physical and
logical

Displays information to help you identify a gap in the
archived redo log files.

V$ARCHIVED_LOG Primary,
physical, and
logical

Displays archive redo log information from the control file,
including names of the archived redo log files.

V$DATABASE Primary,
physical, and
logical

Provides database information from the control file. Includes
information about fast-start failover (available only with the
Data Guard broker).

V$DATABASE_INCARNATION Primary,
physical, and
logical

Displays information about all database incarnations. Oracle
Database creates a new incarnation whenever a database is
opened with the RESETLOGS option. Records about the
current and the previous incarnation are also contained in
the V$DATABASE view.

V$DATAFILE Primary,
physical, and
logical

Provides datafile information from the control file.

V$DATAGUARD_CONFIG Primary,
physical, and
logical

Lists the unique database names defined with the DB_
UNIQUE_NAME and LOG_ARCHIVE_CONFIG initialization
parameters.

V$DATAGUARD_STATS Primary,
physical, and
logical

Displays how much redo data generated by the primary
database is not yet available on the standby database,
showing how much redo data could be lost if the primary
database were to crash at the time you queried this view.
You can query this view on any instance of a standby
database in a Data Guard configuration. If you query this
view on a primary database, then the column values are
cleared.

V$DATAGUARD_STATUS Primary,
physical, and
logical

Displays and records events that would typically be
triggered by any message to the alert log or server process
trace files.

V$LOG Primary,
physical, and
logical

Contains log file information from the online redo log files.

V$LOGFILE Primary,
physical, and
logical

Contains information about the online redo log files and
standby redo log files.

V$LOG_HISTORY Primary,
physical, and
logical

Contains log history information from the control file.

V$LOGSTDBY_PROCESS Logical only Provides dynamic information about what is happening
with SQL Apply. This view is very helpful when you are
diagnosing performance problems during SQL Apply on the
logical standby database, and it can be helpful for other
problems.

V$LOGSTDBY_PROGRESS Logical only Displays the progress of SQL Apply on the logical standby
database.

V$LOGSTDBY_STATE Logical only Consolidates information from the V$LOGSTDBY_PROCESS
and V$LOGSTDBY_STATS views about the running state of
SQL Apply and the logical standby database.

V$LOGSTDBY_STATS Logical only Displays LogMiner statistics, current state, and status
information for a logical standby database during SQL
Apply. If SQL Apply is not running, the values for the
statistics are cleared.

Table 16–1 (Cont.) Views That Are Pertinent to Data Guard Configurations

View Database Description

Views Relevant to Oracle Data Guard 16-3

V$LOGSTDBY_TRANSACTION Logical only Displays information about all active transactions being
processed by SQL Apply on the logical standby database.

V$MANAGED_STANDBY Physical only Displays current status information for Oracle database
processes related to physical standby databases.

Note: The information in this view does not persist across an
instance shutdown.

V$STANDBY_LOG Physical and
logical

Contains log file information from the standby redo log files.

Table 16–1 (Cont.) Views That Are Pertinent to Data Guard Configurations

View Database Description

16-4 Oracle Data Guard Concepts and Administration

Part III
Appendixes

This part contains the following appendixes:

■ Appendix A, "Troubleshooting Data Guard"

■ Appendix B, "Upgrading Databases in a Data Guard Configuration"

■ Appendix C, "Data Type and DDL Support on a Logical Standby Database"

■ Appendix D, "Data Guard and Real Application Clusters"

■ Appendix E, "Cascaded Destinations"

■ Appendix F, "Creating a Standby Database with Recovery Manager"

■ Appendix G, "Setting Archive Tracing"

Troubleshooting Data Guard A-1

A
Troubleshooting Data Guard

This appendix provides help troubleshooting a standby database. This appendix
contains the following sections:

■ Common Problems

■ Log File Destination Failures

■ Handling Logical Standby Database Failures

■ Problems Switching Over to a Standby Database

■ What to Do If SQL Apply Stops

■ Network Tuning for Redo Data Transmission

■ Slow Disk Performance on Standby Databases

■ Log Files Must Match to Avoid Primary Database Shutdown

■ Troubleshooting a Logical Standby Database

A.1 Common Problems
If you encounter a problem when using a standby database, it is probably because of
one of the following reasons:

■ Standby Archive Destination Is Not Defined Properly

■ Renaming Datafiles with the ALTER DATABASE Statement

■ Standby Database Does Not Receive Redo Data from the Primary Database

■ You Cannot Mount the Physical Standby Database

A.1.1 Standby Archive Destination Is Not Defined Properly
If the STANDBY_ARCHIVE_DEST initialization parameter does not specify a valid
directory name on the standby database, the Oracle database will not be able to
determine the directory in which to store the archived redo log files. Check the
DESTINATION and ERROR columns in the V$ARCHIVE_DEST view by entering the
following query and ensure the destination is valid:

SQL> SELECT DESTINATION, ERROR FROM V$ARCHIVE_DEST;

A.1.2 Renaming Datafiles with the ALTER DATABASE Statement
You cannot rename the datafile on the standby site when the STANDBY_FILE_
MANAGEMENT initialization parameter is set to AUTO. When you set the STANDBY_

Common Problems

A-2 Oracle Data Guard Concepts and Administration

FILE_MANAGEMENT initialization parameter to AUTO, use of the following SQL
statements is not allowed:

■ ALTER DATABASE RENAME

■ ALTER DATABASE ADD/DROP LOGFILE

■ ALTER DATABASE ADD/DROP STANDBY LOGFILE MEMBER

■ ALTER DATABASE CREATE DATAFILE AS

If you attempt to use any of these statements on the standby database, an error is
returned. For example:

SQL> ALTER DATABASE RENAME FILE '/disk1/oracle/oradata/payroll/t_db2.log' to 'dummy';
alter database rename file '/disk1/oracle/oradata/payroll/t_db2.log' to 'dummy'
*
ERROR at line 1:
ORA-01511: error in renaming log/datafiles
ORA-01270: RENAME operation is not allowed if STANDBY_FILE_MANAGEMENT is auto

See Section 8.3.1 to learn how to add datafiles to a physical standby database.

A.1.3 Standby Database Does Not Receive Redo Data from the Primary Database
If the standby site is not receiving redo data, query the V$ARCHIVE_DEST view and
check for error messages. For example, enter the following query:

SQL> SELECT DEST_ID "ID",
 2> STATUS "DB_status",
 3> DESTINATION "Archive_dest",
 4> ERROR "Error"
 5> FROM V$ARCHIVE_DEST WHERE DEST_ID <=5;

ID DB_status Archive_dest Error
-- --------- ------------------------------ ------------------------------------
 1 VALID /vobs/oracle/work/arc_dest/arc
 2 ERROR standby1 ORA-16012: Archivelog standby database identifier mismatch
 3 INACTIVE
 4 INACTIVE
 5 INACTIVE
5 rows selected.

If the output of the query does not help you, check the following list of possible issues.
If any of the following conditions exist, redo transport services will fail to transmit
redo data to the standby database:

■ The service name for the standby instance is not configured correctly in the
tnsnames.ora file for the primary database.

■ The Oracle Net service name specified by the LOG_ARCHIVE_DEST_n parameter
for the primary database is incorrect.

■ The LOG_ARCHIVE_DEST_STATE_n parameter for the standby database is not set
to the value ENABLE.

■ The listener.ora file has not been configured correctly for the standby
database.

■ The listener is not started at the standby site.

■ The standby instance is not started.

■ You have added a standby archiving destination to the primary SPFILE or text
initialization parameter file, but have not yet enabled the change.

Log File Destination Failures

Troubleshooting Data Guard A-3

■ The databases in the Data Guard configuration are not all using a password file, or
the SYS password contained in the password file is not identical on all systems.

■ You used an invalid backup as the basis for the standby database (for example,
you used a backup from the wrong database, or did not create the standby control
file using the correct method).

A.1.4 You Cannot Mount the Physical Standby Database
You cannot mount the standby database if the standby control file was not created
with the ALTER DATABASE CREATE [LOGICAL] STANDBY CONTROLFILE ...
statement or RMAN command. You cannot use the following types of control file
backups:

■ An operating system-created backup

■ A backup created using an ALTER DATABASE statement without the PHYSICAL
STANDBY or LOGICAL STANDBY option

A.2 Log File Destination Failures
If you specify REOPEN for an OPTIONAL destination, it is possible for the Oracle
database to reuse online redo log files even if there is an error archiving to the
destination in question. If you specify REOPEN for a MANDATORY destination, redo
transport services stall the primary database when redo data cannot be successfully
transmitted.

The REOPEN attribute is required when you use the MAX_FAILURE attribute.
Example A–1 shows how to set a retry time of 5 seconds and limit retries to 3 times.

Example A–1 Setting a Retry Time and Limit

LOG_ARCHIVE_DEST_1='LOCATION=/arc_dest REOPEN=5 MAX_FAILURE=3'

Use the ALTERNATE attribute of the LOG_ARCHIVE_DEST_n parameter to specify
alternate archive destinations. An alternate archiving destination can be used when the
transmission of redo data to a standby database fails. If transmission fails and the
REOPEN attribute was not specified or the MAX_FAILURE attribute threshold was
exceeded, redo transport services attempts to transmit redo data to the alternate
destination on the next archival operation.

Use the NOALTERNATE attribute to prevent the original archive destination from
automatically changing to an alternate archive destination when the original archive
destination fails.

Example A–2 shows how to set the initialization parameters so that a single,
mandatory, local destination will automatically fail over to a different destination if
any error occurs.

Example A–2 Specifying an Alternate Destination

LOG_ARCHIVE_DEST_1='LOCATION=/disk1 MANDATORY ALTERNATE=LOG_ARCHIVE_DEST_2'
LOG_ARCHIVE_DEST_STATE_1=ENABLE
LOG_ARCHIVE_DEST_2='LOCATION=/disk2 MANDATORY'
LOG_ARCHIVE_DEST_STATE_2=ALTERNATE

If the LOG_ARCHIVE_DEST_1 destination fails, the archiving process will
automatically switch to the LOG_ARCHIVE_DEST_2 destination at the next log file
switch on the primary database.

Handling Logical Standby Database Failures

A-4 Oracle Data Guard Concepts and Administration

A.3 Handling Logical Standby Database Failures
An important tool for handling logical standby database failures is the DBMS_
LOGSTDBY.SKIP_ERROR procedure. Depending on how important a table is, you
might want to do one of the following:

■ Ignore failures for a table or specific DDL

■ Associate a stored procedure with a filter so at runtime a determination can be
made about skipping the statement, executing this statement, or executing a
replacement statement

Taking one of these actions prevents SQL Apply from stopping. Later, you can query
the DBA_LOGSTDBY_EVENTS view to find and correct any problems that exist. See
Oracle Database PL/SQL Packages and Types Reference for more information about using
the DBMS_LOGSTDBY package with PL/SQL callout procedures.

A.4 Problems Switching Over to a Standby Database
In most cases, following the steps described in Chapter 7 will result in a successful
switchover. However, if the switchover is unsuccessful, the following sections may
help you to resolve the problem:

■ Switchover Fails Because Redo Data Was Not Transmitted

■ Switchover Fails Because SQL Sessions Are Still Active

■ Switchover Fails Because User Sessions Are Still Active

■ Switchover Fails with the ORA-01102 Error

■ Redo Data Is Not Applied After Switchover

■ Roll Back After Unsuccessful Switchover and Start Over

A.4.1 Switchover Fails Because Redo Data Was Not Transmitted
If the switchover does not complete successfully, you can query the SEQUENCE#
column in the V$ARCHIVED_LOG view to see if the last redo data transmitted from the
original primary database was applied on the standby database. If the last redo data
was not transmitted to the standby database, you can manually copy the archived redo
log file containing the redo data from the original primary database to the old standby
database and register it with the SQL ALTER DATABASE REGISTER LOGFILE file_
specification statement. If you then start log apply services, the archived redo log file
will be applied automatically. Query the SWITCHOVER_STATUS column in the
V$DATABASE view. The TO PRIMARY value in the SWITCHOVER_STATUS column
verifies switchover to the primary role is now possible.

SQL> SELECT SWITCHOVER_STATUS FROM V$DATABASE;
SWITCHOVER_STATUS

TO PRIMARY
1 row selected

See Chapter 16 for information about other valid values for the SWITCHOVER_STATUS
column of the V$DATABASE view.

To continue with the switchover, follow the instructions in Section 7.2.1 for physical
standby databases or Section 7.3.1 for logical standby databases, and try again to
switch the target standby database to the primary role.

Problems Switching Over to a Standby Database

Troubleshooting Data Guard A-5

A.4.2 Switchover Fails Because SQL Sessions Are Still Active
If you do not include the WITH SESSION SHUTDOWN clause as a part of the ALTER
DATABASE COMMIT TO SWITCHOVER TO PHYSICAL STANDBY statement, active
SQL sessions might prevent a switchover from being processed. Active SQL sessions
can include other Oracle Database processes.

When sessions are active, an attempt to switch over fails with the following error
message:

SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO PHYSICAL STANDBY;
ALTER DATABASE COMMIT TO SWITCHOVER TO PHYSICAL STANDBY *
ORA-01093: ALTER DATABASE CLOSE only permitted with no sessions connected

Action: Query the V$SESSION view to determine which processes are causing the
error. For example:

SQL> SELECT SID, PROCESS, PROGRAM FROM V$SESSION
 2> WHERE TYPE = 'USER'
 3> AND SID <> (SELECT DISTINCT SID FROM V$MYSTAT);
SID PROCESS PROGRAM
--------- -------- --
 7 3537 oracle@nhclone2 (CJQ0)
 10
 14
 16
 19
 21
 6 rows selected.

In the previous example, the JOB_QUEUE_PROCESSES parameter corresponds to the
CJQ0 process entry. Because the job queue process is a user process, it is counted as a
SQL session that prevents switchover from taking place. The entries with no process or
program information are threads started by the job queue controller.

Verify the JOB_QUEUE_PROCESSES parameter is set using the following SQL
statement:

SQL> SHOW PARAMETER JOB_QUEUE_PROCESSES;
NAME TYPE VALUE
------------------------------ ------- --------------------
job_queue_processes integer 5

Then, set the parameter to 0. For example:

SQL> ALTER SYSTEM SET JOB_QUEUE_PROCESSES=0;
Statement processed.

Because JOB_QUEUE_PROCESSES is a dynamic parameter, you can change the value
and have the change take effect immediately without having to restart the instance.
You can now retry the switchover procedure.

Do not modify the parameter in your initialization parameter file. After you shut
down the instance and restart it after the switchover completes, the parameter will be
reset to the original value. This applies to both primary and physical standby
databases.

Table A–1 summarizes the common processes that prevent switchover and what
corrective action you need to take.

Problems Switching Over to a Standby Database

A-6 Oracle Data Guard Concepts and Administration

A.4.3 Switchover Fails Because User Sessions Are Still Active
If the switchover fails and returns the error ORA-01093 "Alter database close only
permitted with no sessions connected" it is usually because the ALTER DATABASE
COMMIT TO SWITCHOVER statement implicitly closed the database, and if there are
any other user sessions connected to the database, the close fails.

If you receive this error, disconnect any user sessions that are still connected to the
database. To do this, query the V$SESSION fixed view to see which sessions are still
active as shown in the following example:

SQL> SELECT SID, PROCESS, PROGRAM FROM V$SESSION;

 SID PROCESS PROGRAM
---------- --------- --
 1 26900 oracle@dbuser-sun (PMON)
 2 26902 oracle@dbuser-sun (DBW0)
 3 26904 oracle@dbuser-sun (LGWR)
 4 26906 oracle@dbuser-sun (CKPT)
 5 26908 oracle@dbuser-sun (SMON)
 6 26910 oracle@dbuser-sun (RECO)
 7 26912 oracle@dbuser-sun (ARC0)
 8 26897 sqlplus@dbuser-sun (TNS V1-V3)
 11 26917 sqlplus@dbuser-sun (TNS V1-V3)

9 rows selected.

In this example, the first seven sessions are all Oracle Database background processes.
Among the two SQL*Plus sessions, one is the current SQL*Plus session issuing the
query, and the other is an extra session that should be disconnected before you
re-attempt the switchover.

A.4.4 Switchover Fails with the ORA-01102 Error
Suppose the standby database and the primary database reside on the same site. After
both the ALTER DATABASE COMMIT TO SWITCHOVER TO PHYSICAL STANDBY
and the ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY statements are
successfully executed, shut down and restart the physical standby database and the
primary database.

Table A–1 Common Processes That Prevent Switchover

Type of
Process Process Description Corrective Action

CJQ0 Job Queue Scheduler Process Change the JOB_QUEUE_PROCESSES dynamic
parameter to the value 0. The change will take
effect immediately without having to restart the
instance.

QMN0 Advanced Queue Time
Manager

Change the AQ_TM_PROCESSES dynamic
parameter to the value 0. The change will take
effect immediately without having to restart the
instance.

DBSNMP Oracle Enterprise Manager
Management Agent

Issue the emctl stop agent command from
the operating system prompt.

Problems Switching Over to a Standby Database

Troubleshooting Data Guard A-7

However, the startup of the second database fails with ORA-01102 error "cannot
mount database in EXCLUSIVE mode."

This could happen during the switchover if you did not set the DB_UNIQUE_NAME
parameter in the initialization parameter file that is used by the standby database (that
is, the original primary database). If the DB_UNIQUE_NAME parameter of the standby
database is not set, the standby and the primary databases both use the same mount
lock and cause the ORA-01102 error during the startup of the second database.

Action: Add DB_UNIQUE_NAME=unique_database_name to the initialization
parameter file used by the standby database, and shut down and restart the standby
and primary databases.

A.4.5 Redo Data Is Not Applied After Switchover
The archived redo log files are not applied to the new standby database after the
switchover.

This might happen because some environment or initialization parameters were not
properly set after the switchover.

Action:

■ Check the tnsnames.ora file at the new primary site and the listener.ora
file at the new standby site. There should be entries for a listener at the standby
site and a corresponding service name at the primary site.

■ Start the listener at the standby site if it has not been started.

■ Check if the LOG_ARCHIVE_DEST_n initialization parameter was set to properly
transmit redo data from the primary site to the standby site. For example, query
the V$ARCHIVE_DEST fixed view at the primary site as follows:

SQL> SELECT DEST_ID, STATUS, DESTINATION FROM V$ARCHIVE_DEST;

If you do not see an entry corresponding to the standby site, you need to set LOG_
ARCHIVE_DEST_n and LOG_ARCHIVE_DEST_STATE_n initialization parameters.

■ Set the STANDBY_ARCHIVE_DEST and LOG_ARCHIVE_FORMAT initialization
parameters correctly at the standby site so that the archived redo log files are
applied to the desired location.

■ At the standby site, set the DB_FILE_NAME_CONVERT and LOG_FILE_NAME_
CONVERT initialization parameters. Set the STANDBY_FILE_MANAGEMENT
initialization parameter to AUTO if you want the standby site to automatically add
new datafiles that are created at the primary site.

A.4.6 Roll Back After Unsuccessful Switchover and Start Over
For physical standby databases in situations where an error occurred and it is not
possible to continue with the switchover, it might still be possible to revert the new
physical standby database back to the primary role by using the following steps:

1. Connect to the new standby database (old primary), and issue the following
statement to convert it back to the primary role:

Note: It is not necessary to shut down and restart the physical
standby database if it has not been opened read-only since the
instance was started.

What to Do If SQL Apply Stops

A-8 Oracle Data Guard Concepts and Administration

SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY;

If this statement is successful, then shut down (if necessary) and restart the
database. Once restarted, the database will be running in the primary database
role, and you do not need to perform any more steps.

If this statement is unsuccessful, then continue with Step 3.

2. When the switchover to change the role from primary to physical standby was
initiated, a trace file was written in the log directory. This trace file contains the
SQL statements required to re-create the original primary control file. Locate the
trace file and extract the SQL statements into a temporary file. Execute the
temporary file from SQL*Plus. This will revert the new standby database back to
the primary role.

3. Shut down the original physical standby database.

4. Create a new standby control file. This is necessary to resynchronize the primary
database and physical standby database. Copy the physical standby control file to
the original physical standby system. Section 3.2.2 describes how to create a
physical standby control file.

5. Restart the original physical standby instance.

If this procedure is successful and archive gap management is enabled, the FAL
processes will start and re-archive any missing archived redo log files to the
physical standby database. Force a log switch on the primary database and
examine the alert logs on both the primary database and physical standby
database to ensure the archived redo log file sequence numbers are correct.

See Section 5.8 for information about archive gap management and Appendix G
for information about locating the trace files.

6. Try the switchover again.

At this point, the Data Guard configuration has been rolled back to its initial state,
and you can try the switchover operation again (after correcting any problems that
might have led to the initial unsuccessful switchover).

A.5 What to Do If SQL Apply Stops
Log apply services cannot apply unsupported DML statements, DDL statements, and
Oracle supplied packages to a logical standby database running SQL Apply.

When an unsupported statement or package is encountered, SQL Apply stops. You
can take the actions described in Table A–2 to correct the situation and start SQL
Apply on the logical standby database again.

Network Tuning for Redo Data Transmission

Troubleshooting Data Guard A-9

See Chapter 16 for information about querying the DBA_LOGSTDBY_EVENTS view to
determine the cause of failures.

A.6 Network Tuning for Redo Data Transmission
For optimal performance, set the Oracle Net SDU parameter to 32 kilobytes in each
Oracle Net connect descriptor used by redo transport services.

The following example shows a database initialization parameter file segment that
defines a remote destination netserv:

LOG_ARCHIVE_DEST_3='SERVICE=netserv'

The following example shows the definition of that service name in the
tnsnames.ora file:

netserv=(DESCRIPTION=(SDU=32768)(ADDRESS=(PROTOCOL=tcp)(HOST=host) (PORT=1521))
(CONNECT_DATA=(SERVICE_NAME=srvc)))

The following example shows the definition in the listener.ora file:

LISTENER=(DESCRIPTION=(ADDRESS_LIST=(ADDRESS=(PROTOCOL=tcp)
(HOST=host)(PORT=1521))))

SID_LIST_LISTENER=(SID_LIST=(SID_DESC=(SDU=32768)(SID_NAME=sid)
(GLOBALDBNAME=srvc)(ORACLE_HOME=/oracle)))

If you archive to a remote site using a high-latency or high-bandwidth network link,
you can improve performance by using the SQLNET.SEND_BUF_SIZE and
SQLNET.RECV_BUF_SIZE Oracle Net profile parameters to increase the size of the
network send and receive I/O buffers.

See Oracle Database Net Services Administrator's Guide.

Table A–2 Fixing Typical SQL Apply Errors

If... Then...

You suspect an unsupported statement or
Oracle supplied package was encountered

Find the last statement in the DBA_LOGSTDBY_EVENTS view.
This will indicate the statement and error that caused SQL Apply
to fail. If an incorrect SQL statement caused SQL Apply to fail,
transaction information, as well as the statement and error
information, can be viewed. The transaction information can be
used with LogMiner tools to understand the cause of the
problem.

An error requiring database management
occurred, such as running out of space in a
particular tablespace

Fix the problem and resume SQL Apply using the ALTER
DATABASE START LOGICAL STANDBY APPLY statement.

An error occurred because a SQL statement was
entered incorrectly, such as an incorrect standby
database filename being entered in a tablespace
statement

Enter the correct SQL statement and use the DBMS_
LOGSTDBY.SKIP_TRANSACTION procedure to ensure the
incorrect statement is ignored the next time SQL Apply is run.
Then, restart SQL Apply using the ALTER DATABASE START
LOGICAL STANDBY APPLY statement.

An error occurred because skip parameters
were incorrectly set up, such as specifying that
all DML for a given table be skipped but
CREATE, ALTER, and DROP TABLE statements
were not specified to be skipped

Issue the DBMS_LOGSTDBY.SKIP('TABLE','schema_
name','table_name',null) procedure, then restart SQL
Apply.

Slow Disk Performance on Standby Databases

A-10 Oracle Data Guard Concepts and Administration

A.7 Slow Disk Performance on Standby Databases
If asynchronous I/O on the file system itself is showing performance problems, try
mounting the file system using the Direct I/O option or setting the FILESYSTEMIO_
OPTIONS=SETALL initialization parameter. The maximum I/O size setting is 1 MB.

A.8 Log Files Must Match to Avoid Primary Database Shutdown
If you have configured a standby redo log on one or more standby databases in the
configuration, ensure the size of the standby redo log files on each standby database
exactly matches the size of the online redo log files on the primary database.

At log switch time, if there are no available standby redo log files that match the size of
the new current online redo log file on the primary database:

■ The primary database will shut down if it is operating in maximum protection
mode,

or

■ The RFS process on the standby database will create an archived redo log file on
the standby database and write the following message in the alert log:

No standby log files of size <#> blocks available.

For example, if the primary database uses two online redo log groups whose log files
are 100K, then the standby database should have 3 standby redo log groups with log
file sizes of 100K.

Also, whenever you add a redo log group to the primary database, you must add a
corresponding standby redo log group to the standby database. This reduces the
probability that the primary database will be adversely affected because a standby
redo log file of the required size is not available at log switch time.

See Section 3.1.3, "Configure a Standby Redo Log" and Section 5.7, "Managing Log
Files" for more information.

A.9 Troubleshooting a Logical Standby Database
This section contains the following topics:

■ Recovering from Errors

■ Troubleshooting SQL*Loader Sessions

■ Troubleshooting Long-Running Transactions

■ Troubleshooting ORA-1403 Errors with Flashback Transactions

A.9.1 Recovering from Errors
Logical standby databases maintain user tables, sequences, and jobs. To maintain other
objects, you must reissue the DDL statements seen in the redo data stream.

If SQL Apply fails, an error is recorded in the DBA_LOGSTDBY_EVENTS table. The
following sections demonstrate how to recover from two such errors.

Troubleshooting a Logical Standby Database

Troubleshooting Data Guard A-11

A.9.1.1 DDL Transactions Containing File Specifications
DDL statements are executed the same way on the primary database and the logical
standby database. If the underlying file structure is the same on both databases, the
DDL will execute on the standby database as expected.

If an error was caused by a DDL transaction containing a file specification that did not
match in the logical standby database environment, perform the following steps to fix
the problem:

1. Use the ALTER SESSION DISABLE GUARD statement to bypass the database
guard so you can make modifications to the logical standby database:

SQL> ALTER SESSION DISABLE GUARD;

2. Execute the DDL statement, using the correct file specification, and then reenable
the database guard. For example:

SQL> ALTER TABLESPACE t_table ADD DATAFILE '/dbs/t_db.f' SIZE 100M REUSE;
SQL> ALTER SESSION ENABLE GUARD;

3. Start SQL Apply on the logical standby database and skip the failed transaction.

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE
 2> SKIP FAILED TRANSACTION;

In some situations, the problem that caused the transaction to fail can be corrected and
SQL Apply restarted without skipping the transaction. An example of this might be
when available space is exhausted. (Do not let the primary and logical standby
databases diverge when skipping DDL transactions. If possible, you should manually
execute a compensating transaction in place of the skipped transaction.)

The following example shows SQL Apply stopping, the error being corrected, and
then restarting SQL Apply:

SQL> SET LONG 1000
SQL> ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YY HH24:MI:SS';

Session altered.

SQL> SELECT EVENT_TIME, COMMIT_SCN, EVENT, STATUS FROM DBA_LOGSTDBY_EVENTS;

EVENT_TIME COMMIT_SCN
------------------ ---------------
EVENT

STATUS

22-OCT-03 15:47:58

ORA-16111: log mining and apply setting up

22-OCT-03 15:48:04 209627
insert into "SCOTT"."EMP"
values
 "EMPNO" = 7900,
 "ENAME" = 'ADAMS',
 "JOB" = 'CLERK',
 "MGR" IS NULL,
 "HIREDATE" = TO_DATE('22-OCT-03', 'DD-MON-RR'),
 "SAL" = 950,
 "COMM" IS NULL,

Troubleshooting a Logical Standby Database

A-12 Oracle Data Guard Concepts and Administration

 "DEPTNO" IS NULL
ORA-01653: unable to extend table SCOTT.EMP by %200 bytes in tablespace T_TABLE

In the example, the ORA-01653 message indicates that the tablespace was full and
unable to extend itself. To correct the problem, add a new datafile to the tablespace.
For example:

SQL> ALTER TABLESPACE t_table ADD DATAFILE '/dbs/t_db.f' SIZE 60M;
Tablespace altered.

Then, restart SQL Apply:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;
Database altered.

When SQL Apply restarts, the transaction that failed will be reexecuted and applied to
the logical standby database.

A.9.1.2 Recovering from DML Failures
Do not use the SKIP_TRANSACTION procedure to filter DML failures. Not only is the
DML that is seen in the events table skipped, but so is all the DML associated with the
transaction. This will cause multiple tables.

DML failures usually indicate a problem with a specific table. For example, assume the
failure is an out-of-storage error that you cannot resolve immediately. The following
steps demonstrate one way to respond to this problem.

1. Bypass the table, but not the transaction, by adding the table to the skip list:

SQL> EXECUTE DBMS_LOGSTDBY.SKIP('DML','SCOTT','EMP');
SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

From this point on, DML activity for the SCOTT.EMP table is not applied. After
you correct the storage problem, you can fix the table, provided you set up a
database link to the primary database that has administrator privileges to run
procedures in the DBMS_LOGSTDBY package.

2. Using the database link to the primary database, drop the local SCOTT.EMP table
and then re-create it, and pull the data over to the standby database.

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;
SQL> EXECUTE DBMS_LOGSTDBY.INSTANTIATE_TABLE('SCOTT','EMP','PRIMARYDB');
SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

3. To ensure a consistent view across the newly instantiated table and the rest of the
database, wait for SQL Apply to catch up with the primary database before
querying this table. Refer to Section 9.4.6, "Adding or Re-Creating Tables On a
Logical Standby Database" for a detailed example.

A.9.2 Troubleshooting SQL*Loader Sessions
Oracle SQL*Loader provides a method of loading data from different sources into the
Oracle Database. This section analyzes some of the features of the SQL*Loader utility
as it pertains to SQL Apply.

Regardless of the method of data load chosen, the SQL*Loader control files contain an
instruction on what to do to the current contents of the Oracle table into which the
new data is to be loaded, via the keywords of APPEND and REPLACE. The following
examples show how to use these keywords on a table named LOAD_STOK:

Troubleshooting a Logical Standby Database

Troubleshooting Data Guard A-13

■ When using the APPEND keyword, the new data to be loaded is appended to the
contents of the LOAD_STOK table:

LOAD DATA
INTO TABLE LOAD_STOK APPEND

■ When using the REPLACE keyword, the contents of the LOAD_STOK table are
deleted prior to loading new data. Oracle SQL*Loader uses the DELETE statement
to purge the contents of the table, in a single transaction:

LOAD DATA
INTO TABLE LOAD_STOK REPLACE

Rather than using the REPLACE keyword in the SQL*Loader script, Oracle
recommends that prior to loading the data, issue the SQL*Plus TRUNCATE TABLE
command against the table on the primary database. This will have the same effect of
purging both the primary and standby databases copy of the table in a manner that is
both fast and efficient because the TRUNCATE TABLE command is recorded in the
online redo log files and is issued by SQL Apply on the logical standby database.

The SQL*Loader script may continue to contain the REPLACE keyword, but it will now
attempt to DELETE zero rows from the object on the primary database. Because no
rows were deleted from the primary database, there will be no redo recorded in the
redo log files. Therefore, no DELETE statement will be issued against the logical
standby database.

Issuing the REPLACE keyword without the DDL command TRUNCATE TABLE
provides the following potential problems for SQL Apply when the transaction needs
to be applied to the logical standby database.

■ If the table currently contains a significant number of rows, then these rows need
to be deleted from the standby database. Because SQL Apply is not able to
determine the original syntax of the statement, SQL Apply must issue a DELETE
statement for each row purged from the primary database.

For example, if the table on the primary database originally had 10,000 rows, then
Oracle SQL*Loader will issue a single DELETE statement to purge the 10,000 rows.
On the standby database, SQL Apply does not know that all rows are to be
purged, and instead must issue 10,000 individual DELETE statements, with each
statement purging a single row.

■ If the table on the standby database does not contain an index that can be used by
SQL Apply, then the DELETE statement will issue a Full Table Scan to purge the
information.

Continuing with the previous example, because SQL Apply has issued 10,000
individual DELETE statements, this could result in 10,000 Full Table Scans being
issued against the standby database.

A.9.3 Troubleshooting Long-Running Transactions
One of the primary causes for long-running transactions in a SQL Apply environment
is because of Full Table Scans. Additionally, long-running transactions could be the
result of DDL operations being replicated to the standby database, such as when
creating or rebuilding an index.

Troubleshooting a Logical Standby Database

A-14 Oracle Data Guard Concepts and Administration

Identifying Long-Running Transactions
If SQL Apply is executing a single SQL statement for a long period of time, then a
warning message similar to the following is reported in the alert log of the SQL Apply
instance:

Mon Feb 17 14:40:15 2003
WARNING: the following transaction makes no progress
WARNING: in the last 30 seconds for the given message!
WARNING: xid =
0x0016.007.000017b6 cscn = 1550349, message# = 28, slavid = 1
knacrb: no offending session found (not ITL pressure)

Note the following about the warning message:

■ This warning is similar to the warning message returned for interested transaction
list (ITL) pressure, with the exception being the last line that begins with knacrb.
The final line indicates:

– A Full Table Scan may be occurring

– This issue has nothing to do with interested transaction list (ITL) pressure

■ This warning message is reported only if a single statement takes more than 30
seconds to execute.

It may not be possible to determine the SQL statement being executed by the
long-running statement, but the following SQL statement may help in identifying the
database objects on which SQL Apply is operating:

SQL> SELECT SAS.SERVER_ID
 2 , SS.OWNER
 3 , SS.OBJECT_NAME
 4 , SS.STATISTIC_NAME
 5 , SS.VALUE
 6 FROM V$SEGMENT_STATISTICS SS
 7 , V$LOCK L
 8 , V$STREAMS_APPLY_SERVER SAS
 9 WHERE SAS.SERVER_ID = &SLAVE_ID
 10 AND L.SID = SAS.SID
 11 AND L.TYPE = 'TM'
 12 AND SS.OBJ# = L.ID1;

Additionally, you can issue the following SQL statement to identify the SQL statement
that has resulted in a large number of disk reads being issued per execution:

SQL> SELECT SUBSTR(SQL_TEXT,1,40)
 2 , DISK_READS
 3 , EXECUTIONS
 4 , DISK_READS/EXECUTIONS
 5 , HASH_VALUE
 6 , ADDRESS
 7 FROM V$SQLAREA
 8 WHERE DISK_READS/GREATEST(EXECUTIONS,1) > 1
 9 AND ROWNUM < 10
 10 ORDER BY DISK_READS/GREATEST(EXECUTIONS,1) DESC

Oracle recommends that all tables have primary key constraints defined, which
automatically means that the column is defined as NOT NULL. For any table where a
primary-key constraint cannot be defined, an index should be defined on an
appropriate column that is defined as NOT NULL. If a suitable column does not exist
on the table, then the table should be reviewed and, if possible, skipped by SQL Apply.

Troubleshooting a Logical Standby Database

Troubleshooting Data Guard A-15

The following steps describe how to skip all DML statements issued against the FTS
table on the SCOTT schema:

1. Stop SQL Apply:

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;
Database altered

2. Configure the skip procedure for the SCOTT.FTS table for all DML transactions:

SQL> EXECUTE DBMS_LOGSTDBY.SKIP(stmt => 'DML' , -
 schema_name => 'SCOTT' , -
 object_name => 'FTS');
PL/SQL procedure successfully completed

3. Start SQL Apply:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;
Database altered

Troubleshooting ITL Pressure
Interested transaction list (ITL) pressure is reported in the alert log of the SQL Apply
instance. Example A–3 shows an example of the warning messages.

Example A–3 Warning Messages Reported for ITL Pressure

Tue Apr 22 15:50:42 2003
WARNING: the following transaction makes no progress
WARNING: in the last 30 seconds for the given message!
WARNING: xid =
0x0006.005.000029fa cscn = 2152982, message# = 2, slavid = 17

Real-Time Analysis
The messages shown in Example A–3 indicate that the SQL Apply process (slavid)
#17 has not made any progress in the last 30 seconds. To determine the SQL statement
being issued by the Apply process, issue the following query:

SQL> SELECT SA.SQL_TEXT
 2 FROM V$SQLAREA SA
 3 , V$SESSION S
 4 , V$STREAMS_APPLY_SERVER SAS
 5 WHERE SAS.SERVER_ID = &SLAVEID
 6 AND S.SID = SAS.SID
 7 AND SA.ADDRESS = S.SQL_ADDRESS
SQL_TEXT
--
insert into "APP"."LOAD_TAB_1" p("PK","TEXT")values(:1,:2)

An alternative method to identifying ITL pressure is to query the V$LOCK view, as
shown in the following example. Any session that has a request value of 4 on a TX
lock, is waiting for an ITL to become available.

SQL> SELECT SID,TYPE,ID1,ID2,LMODE,REQUEST
 2 FROM V$LOCK
 3 WHERE TYPE = 'TX'

SID TY ID1 ID2 LMODE REQUEST
---------- -- ---------- ---------- ---------- ----------
 8 TX 327688 48 6 0
 10 TX 327688 48 0 4

Troubleshooting a Logical Standby Database

A-16 Oracle Data Guard Concepts and Administration

In this example, SID 10 is waiting for the TX lock held by SID 8.

Post-Incident Review
Pressure for a segment’s ITL is unlikely to last for an extended period of time. In
addition, ITL pressure that lasts for less than 30 seconds will not be reported in the
standby databases alert log. Therefore, to determine which objects have been subjected
to ITL pressure, issue the following statement:

SQL> SELECT SEGMENT_OWNER, SEGMENT_NAME, SEGMENT_TYPE
 2 FROM V$SEGMENT_STATISTICS
 3 WHERE STATISTIC_NAME = 'ITL WAITS'
 4 AND VALUE > 0
 5 ORDER BY VALUE

This statement reports all database segments that have had ITL pressure at some time
since the instance was last started.

Resolving ITL Pressure
To increase the INITRANS integer for a particular database object, it is necessary to
first stop SQL Apply.

The following example shows the necessary steps to increase the INITRANS for table
load_tab_1 in the schema app.

1. Stop SQL Apply:

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;
Database altered.

2. Temporarily bypass the database guard:

SQL> ALTER SESSION DISABLE GUARD;
Session altered.

3. Increase the INITRANS on the standby database. For example:

SQL> ALTER TABLE APP.LOAD_TAB_1 INITRANS 30;
Table altered

4. Reenable the database guard:

SQL> ALTER SESSION ENABLE GUARD;
Session altered

5. Start SQL Apply:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;
Database altered.

Note: This SQL statement is not limited to a logical standby
databases in the Data Guard environment. It is applicable to any
Oracle database.

See Also: Oracle Database SQL Reference for more information about
specifying the INITRANS integer, which it the initial number of
concurrent transaction entries allocated within each data block
allocated to the database object

Troubleshooting a Logical Standby Database

Troubleshooting Data Guard A-17

Also, consider modifying the database object on the primary database, so in the event
of a switchover, the error should not occur on the new standby database.

A.9.4 Troubleshooting ORA-1403 Errors with Flashback Transactions
If SQL Apply returns the ORA-1403: No Data Found error, then it may be possible
to use Flashback Transaction to reconstruct the missing data. This is reliant upon the
UNDO_RETENTION initialization parameter specified on the standby database instance.

Under normal circumstances, the ORA-1403 error should not be seen in a logical
standby database environment. The error occurs when data in a table that is being
managed by SQL Apply is modified directly on the standby database and then the
same data is modified on the primary database.

When the modified data is updated on the primary database and is subsequently
received on the logical standby database, SQL Apply verifies the original version of
the data is present on the standby database before updating the record. When this
verification fails, the ORA-1403: No Data Found error is returned.

The Initial Error
When SQL Apply verification fails, the error message is reported in the alert log of the
logical standby database and a record is inserted in the DBA_LOGSTDBY_EVENTS
view.

The information in the alert log is truncated, while the error is reported in it’s entirety
in the database view. For example:

LOGSTDBY stmt: UPDATE "SCOTT"."MASTER"
 SET
 "NAME" = 'john'
 WHERE
 "PK" = 1 and
 "NAME" = 'andrew' and
 ROWID = 'AAAAAAAAEAAAAAPAAA'
LOGSTDBY status: ORA-01403: no data found
LOGSTDBY PID 1006, oracle@staco03 (P004)
LOGSTDBY XID 0x0006.00e.00000417, Thread 1, RBA 0x02dd.00002221.10

The Investigation
The first step is to analyze the historical data of the table that caused the error. This can
be achieved using the VERSIONS clause of the SELECT statement. For example, you
can issue the following query on the primary database:

SELECT VERSIONS_XID
 , VERSIONS_STARTSCN
 , VERSIONS_ENDSCN
 , VERSIONS_OPERATION
 , PK
 , NAME
 FROM SCOTT.MASTER
 VERSIONS BETWEEN SCN MINVALUE AND MAXVALUE
 WHERE PK = 1
 ORDER BY NVL(VERSIONS_STARTSCN,0);

VERSIONS_XID VERSIONS_STARTSCN VERSIONS_ENDSCN V PK NAME
---------------- ----------------- --------------- - --- -------
03001900EE070000 3492279 3492290 I 1 andrew
02000D00E4070000 3492290 D 1 andrew

Troubleshooting a Logical Standby Database

A-18 Oracle Data Guard Concepts and Administration

Depending upon the amount of undo retention that the database is configured to
retain (UNDO_RETENTION) and the activity on the table, the information returned
might be extensive and you may need to change the versions between syntax to
restrict the amount of information returned.

From the information returned, it can be seen that the record was first inserted at SCN
3492279 and then was deleted at SCN 3492290 as part of transaction ID
02000D00E4070000.

Using the transaction ID, the database should be queried to find the scope of the
transaction. This is achieved by querying the FLASHBACK_TRANSACTION_QUERY
view.

SELECT OPERATION
 , UNDO_SQL
 FROM FLASHBACK_TRANSACTION_QUERY
 WHERE XID = HEXTORAW('02000D00E4070000');

OPERATION UNDO_SQL
---------- --
DELETE insert into "SCOTT"."MASTER"("PK","NAME") values
 ('1','andrew');
BEGIN

Note that there is always one row returned representing the start of the transaction. In
this transaction, only one row was deleted in the master table. The UNDO_SQL column
when executed will restore the original data into the table.

SQL> INSERT INTO "SCOTT"."MASTER"("PK","NAME") VALUES ('1','ANDREW');
SQL> COMMIT;

When you restart SQL Apply, the transaction will be applied to the standby database:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

Upgrading Databases in a Data Guard Configuration B-1

B
Upgrading Databases in a Data Guard

Configuration

The procedures in this appendix describe how to upgrade to Oracle Database 10g
Release 2 (10.2) when a physical or logical standby database is present in the
configuration.

This appendix contains the following topics:

■ Before You Upgrade the Oracle Database Software

■ Upgrading Oracle Database with a Physical Standby Database In Place

■ Upgrading Oracle Database with a Logical Standby Database In Place

B.1 Before You Upgrade the Oracle Database Software
Consider the following points before beginning to upgrade your Oracle Database
software:

■ If you are using the Data Guard broker to manage your configuration, follow the
instructions in Oracle Data Guard Broker manual for information about removing or
disabling the broker configuration.

■ The procedures in this appendix are to be used in conjunction with the ones
contained in the Oracle Database Upgrade Guide for 10g release 2 (10.2).

■ The procedures in this appendix use the Database Upgrade Assistant (DBUA) to
perform the upgrade. For instructions on performing the upgrade manually, refer
to the Oracle Database Upgrade Guide. The manual upgrade steps described should
be performed whenever use of DBUA is mentioned.

■ Check for nologging operations. If nologging operations have been performed
then you must update the standby database. See Section 12.10, "Recovering After
the NOLOGGING Clause Is Specified" for details.

Note: This appendix describes the traditional method for upgrading
your Oracle Database software with a logical standby database in
place. A second method in Chapter 11, "Using SQL Apply to
Upgrade the Oracle Database" describes how to upgrade with a
logical standby database in place in a rolling fashion to minimize
downtime. Use the steps from only one method to perform the
complete upgrade. Do not attempt to use both methods or to combine
the steps from the two methods as you perform the upgrade process.

Upgrading Oracle Database with a Physical Standby Database In Place

B-2 Oracle Data Guard Concepts and Administration

■ Make note of any tablespaces or datafiles that need recovery due to OFFLINE
IMMEDIATE. Tablespaces or datafiles should be recovered and either online or
offline prior to upgrading.

B.2 Upgrading Oracle Database with a Physical Standby Database In
Place

Perform the following steps to upgrade to Oracle Database 10g Release 2 (10.2) when a
physical standby database is present in the configuration:

1. Review and perform the steps listed in "Chapter 2 Preparing to Upgrade" of the
the Oracle Database Upgrade Guide.

2. On the primary and standby systems, log in to each system as the owner of the
Oracle software directory, and set the environment to the existing (9.2 or 10.1)
installation.

3. On the primary database, stop all user activity on the primary database.

4. If you are using Real Application Clusters, issue a SHUTDOWN NORMAL or
SHUTDOWN IMMEDIATE statement on all but one primary database instance.

SQL> SHUTDOWN IMMEDIATE;

Then, on the remaining active database instance, archive the current log file. For
example:

SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

This ensures all available archived redo data from the Real Application Clusters
instances is transmitted to the standby database.

5. On the active primary database instance, identify and record the current log thread
and sequence number. Then, archive the current log:

SQL> SELECT THREAD#, SEQUENCE# FROM V$LOG WHERE STATUS='CURRENT';
SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

6. Shut down the active primary database instance with NORMAL or IMMEDIATE
priority. Stop all listeners, agents, and other processes running against the
ORACLE_HOME.

SQL> SHUTDOWN IMMEDIATE;
% agentctl stop
% lsnrctl stop

7. On the standby system, if you are using Real Application Clusters, shut down
(NORMAL or IMMEDIATE) all but one standby database instance. Place the
remaining standby database instance is currently in managed recovery.

8. On the active standby instance that is running Redo Apply, query the V$LOG_
HISTORY view to verify that each log file archived in Step 5 has been received and
applied to the standby database. For example:

SQL> SELECT MAX(SEQUENCE#) FROM V$LOG_HISTORY;

9. Once the last log has been applied stop Redo Apply, shut down the standby
database, and stop all listeners and agents running against the current (9.2 or 10.1)
database.

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

Upgrading Oracle Database with a Physical Standby Database In Place

Upgrading Databases in a Data Guard Configuration B-3

SQL> SHUTDOWN IMMEDIATE;
% agentctl stop
% lsnrctl stop

10. On the standby system, install Oracle Database 10g Release 2 (10.2) into its own
Oracle home using the Oracle Universal Installer, as described in the Oracle
Database Upgrade Guide. To ensure an error-free upgrade, it is recommended that
you also install the Companion CD. Do not perform any other upgrade steps.

11. Copy the server parameter file (SPFILE), password file, and any necessary
networking files from the old (9.2 or 10.1) ORACLE_HOME directory into the new
10.2 ORACLE_HOME directory. Note that for the standby database to receive redo
from the primary database, the standby database must have the REMOTE_LOGIN_
EXCLUSIVE initialization parameter set to SHARED or EXCLUSIVE, a password file
must exist, and the SYS password on the standby database must be the same as
the SYS password on the primary database.

12. On the primary system, install Oracle Database 10g Release 2 (10.2) into its own
Oracle home using the Oracle Universal Installer as described in the Oracle
Database Upgrade Guide. To ensure an error-free upgrade, it is recommended that
you also install the Companion CD.

13. Include the Oracle Net service name in the TNSNAMES.ORA file that resides in the
release 10.2 Oracle_Home.

14. After 10.2 has been installed, with your environment still set to the old (9.2 or 10.1)
installation, startup the primary database in UPGRADE mode:

SQL> STARTUP UPGRADE;

15. From the 10.2 Oracle_Home, start the Database Upgrade Assistant and upgrade
the primary database.

% cd /u01/app/oracle/product/10.2/bin
% ./dbua

16. After the upgrade process has begun on the primary database, start the standby
listener on the standby database running the new Oracle Database 10g Release 2
(10.2) software.

17. With the environment set to the new 10.2 software installation, issue the STARTUP
NOMOUNT statement on the standby database. Ensure that the STANDBY_FILE_
MANAGEMENT initialization parameter on the standby database is set to AUTO and
that FAL_SERVER and FAL_CLIENT are properly configured:

■ The FAL_SERVER should be set to an Oracle Net service name that exists in
the standby database’s TNSNAMES.ORA file.

Note: The old (9.2 or 10.1) database must be included in the oratab
file to be seen by the Database Upgrade Assistant. For complete
information on using DBUA, see the Oracle Database Upgrade Guide.

Note: You may receive errors in the alert log on the primary database
stating that the primary database is unable to contact the standby
database. You can ignore this error; This error is expected because the
standby database has not been restarted up to this point.

Upgrading Oracle Database with a Logical Standby Database In Place

B-4 Oracle Data Guard Concepts and Administration

■ The FAL_CLIENT should be set to an Oracle Net service name that exists in
the primary database’s TNSNAMES.ORA file that points to the standby
database listener.

The Oracle Net service names must be able to be resolved in the new 10.2
Oracle_Home. For example:

SQL> STARTUP NOMOUNT
SQL> ALTER SYSTEM SET STANDBY_FILE_MANAGEMENT=AUTO SCOPE=BOTH;
SQL> ALTER SYSTEM SET FAL_SERVER=MTS SCOPE=BOTH;
SQL> ALTER SYSTEM SET FAL_CLIENT=MTS_PHY SCOPE=BOTH;

18. Mount the standby database and start Redo Apply:

SQL> ALTER DATABASE MOUNT STANDBY DATABASE;
SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE DISCONNECT;

19. Once the Database Upgrade Assistant has completed, on the primary system,
configure your environment to the new 10.2 Oracle_Home and connect to the
primary database. Identify and record the current log thread and sequence
number. Then, archive the current log:

SQL> SELECT THREAD#, SEQUENCE# FROM V$LOG WHERE STATUS='CURRENT';
SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

20. On the standby instance, query the V$LOG_HISTORY view to verify that each log
file archived in Step 19 has been received and applied on the standby database:

SQL> SELECT MAX(SEQUENCE#) FROM V$LOG_HISTORY;

B.3 Upgrading Oracle Database with a Logical Standby Database In Place
Perform the following steps to upgrade Oracle Database 10g Release 2 (10.2) when a
logical standby database is present in the configuration:

1. Review and perform the steps listed in "Chapter 2 Preparing to Upgrade" of the
the Oracle Database Upgrade Guide.

2. On the primary and standby systems, log in to each system as the owner of the
Oracle software directory, and set the environment to the existing (9.2 or 10.1)
installation.

3. On the primary system, stop all user activity on the primary database.

4. If you are using Real Application Clusters, issue a SHUTDOWN NORMAL or
SHUTDOWN IMMEDIATE statement on all but one primary database instance.

SQL> SHUTDOWN IMMEDIATE;

Then, on the remaining active database instance, archive the current log file:

SQL> SHUTDOWN IMMEDIATE;
SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

This ensures all available archived redo data from the Real Application Clusters
instances is transmitted to the standby database.

5. On the active primary database instance, identify and record the current log thread
and sequence number. Then, archive the current log:

SQL> SELECT THREAD#, SEQUENCE# FROM V$LOG WHERE STATUS='CURRENT';
SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

Upgrading Oracle Database with a Logical Standby Database In Place

Upgrading Databases in a Data Guard Configuration B-5

6. If you are using Real Application Clusters on the standby system, issue the
SHUTDOWN NORMAL or SHUTDOWN IMMEDIATE statement on all but one standby
instance.

7. On the active standby instance, verify that each log file archived in Step 5 has been
received by the standby database by querying the DBA_LOGSTDBY_LOG view. For
example, to verify that the log file associated with thread number 1 and sequence
number 12 was received by the logical standby database, you could repeatedly run
the following query on the standby database until it returns the name of the
archived redo log file:

SQL> SELECT FILE_NAME FROM DBA_LOGSTDBY_LOG WHERE THREAD#=1 AND SEQUENCE#=12

8. Verify that all remaining redo log files have been applied by querying the DBA_
LOGSTDBY_PROGRESS view on the standby database. For example:

SQL> SELECT APPLIED_SCN, NEWEST_SCN FROM DBA_LOGSTDBY_PROGRESS;

When the numbers in the APPLIED_SCN and NEWEST_SCN columns are equal, all
available data in the redo log files received by the standby database has been
applied.

9. Stop SQL Apply on the standby database:

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;

10. Shut down all active standby database instances with either the NORMAL or the
IMMEDIATE priority. Stop all listeners, agents, and other processes running against
the Oracle home:

SQL> SHUTDOWN IMMEDIATE;
% agentctl stop
% lsnrctl stop

11. Shut down the primary database instance with either the NORMAL or the
IMMEDIATE priority. Stop all listeners, agents, and other processes running against
the Oracle home:

SQL> SHUTDOWN IMMEDIATE;
% agentctl stop
% lsnrctl stop

12. On the primary system, install Oracle Database 10g Release 2 (10.2) into its own
Oracle home using the Oracle Universal Installer, as described in the Oracle
Database Upgrade Guide. To ensure an error-free upgrade, it is recommended that
you also install the Companion CD. Do not perform any other upgrade steps.

13. After Oracle Database 10g Release 2 (10.2) has been installed, and with your
environment still set to the old (9.2 or 10.1) installation, startup the primary
database in UPGRADE mode:

SQL> STARTUP UPGRADE;
SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=DEFER SCOPE=BOTH;

14. From the release 10.2 ORACLE_HOME, start the Database Upgrade Assistant and
upgrade the primary database. For example:

% cd /u01/app/oracle/product/10.2/bin
% ./dbua

Upgrading Oracle Database with a Logical Standby Database In Place

B-6 Oracle Data Guard Concepts and Administration

15. Once the database has been upgraded, change your environment to point to the
new Oracle Database 10g Release 2 (10.2) installation, shut down the primary
database instance, and restart the agent and listener:

SQL> SHUTDOWN IMMEDIATE;
% agentctl start
% lsnrctl start

16. Startup the primary database instance and enable restricted session to reduce the
likelihood of users or applications performing any DML or DDL operations:

SQL> STARTUP MOUNT;
SQL> ALTER SYSTEM ENABLE RESTRICTED SESSION;

17. Open the primary database and build the LogMiner dictionary:

SQL> ALTER DATABASE OPEN;
SQL> EXECUTE DBMS_LOGSTDBY.BUILD;

18. Disable restricted session mode on the primary database and archive the current
log file:

SQL> ALTER SYSTEM DISABLE RESTRICTED SESSION;
SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

19. On the primary database instance, issue the following query to determine the
latest LogMiner dictionary build log file:

SQL> SELECT NAME FROM V$ARCHIVED_LOG
 2> WHERE (SEQUENCE#=(SELECT MAX(SEQUENCE#) FROM V$ARCHIVED_LOG
 3> WHERE DICTIONARY_BEGIN = ’YES’ AND STANDBY_DEST= ’NO’));

Record the name of the log file returned by the query for later reference.

20. On the standby system, install Oracle Database 10g Release 2 (10.2) in its own
Oracle home using the Oracle Universal Installer, as described in the Oracle
Database Upgrade Guide. To ensure an error-free upgrade, it is recommended that
you also install the Companion CD. Do not perform any other upgrade steps.

21. After Oracle Database 10g Release 2 (10.2) has been installed, with your
environment still set to the old (9.2 or 10.1) installation, startup the logical standby
database in UPGRADE mode, activate it, and defer remote archiving:

SQL> STARTUP UPGRADE;
SQL> ALTER DATABASE ACTIVATE LOGICAL STANDBY DATABASE;
SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=DEFER SCOPE=BOTH;

Note: The old (9.2 or 10.1) database must be included in the oratab
file to be seen by the Database Upgrade Assistant. For complete
information on using DBUA, see the Oracle Database Upgrade Guide.

Caution: Do not allow any DML or DDL operations to occur until
after restricted session mode is disabled in step 18.

Caution: Do not allow users to update the activated standby
database, because the changes will not be propagated to the primary
database.

Upgrading Oracle Database with a Logical Standby Database In Place

Upgrading Databases in a Data Guard Configuration B-7

22. From the 10.2 Oracle_Home directory, start the Database Upgrade Assistant
(DBUA) and upgrade the logical standby database.

% cd /u01/app/oracle/product/10.2/bin
% ./dbua

23. Once the logical standby database has been upgraded, shut down the instance and
restart the agent and listener:

SQL> SHUTDOWN IMMEDIATE;
% agentctl start
% lsnrctl start

24. Copy the latest LogMiner dictionary build log file (identified in step 19) from the
primary system to the standby system.

25. Startup the logical standby database instance and turn on the database guard to
prevent users from updating objects in the logical standby database:

SQL> STARTUP MOUNT;
SQL> ALTER DATABASE GUARD ALL;
SQL> ALTER DATABASE OPEN;

26. Register the copied log file on the logical standby database. For example:

SQL> ALTER DATABASE REGISTER LOGICAL LOGFILE
 2> '/database/LGSTBY/arch/arc1_48.arc';

27. Start SQL Apply on the logical standby database:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY INITIAL;

28. If you are using Real Application Clusters, startup the other standby database
instances.

29. On the primary system, enable archiving to the upgraded logical standby
database.

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE;

30. If you are using Real Application Clusters, startup the other primary database
instances.

Note: The above command will initially fail with the following error:

ORA-16101: a valid start SCN could not be found

To resolve the error, register the logical log file as described in step 26
and reissue the statement to start SQL Apply.

Upgrading Oracle Database with a Logical Standby Database In Place

B-8 Oracle Data Guard Concepts and Administration

Data Type and DDL Support on a Logical Standby Database C-1

C
Data Type and DDL Support on a Logical

Standby Database

When setting up a logical standby database, you must ensure the logical standby
database can maintain the data types and tables in your primary database. This
appendix lists the various database objects, storage types, and PL/SQL supplied
packages that are supported and unsupported by logical standby databases. It
contains the following topics:

■ Data Type Considerations

■ Storage Type Considerations

■ PL/SQL Supplied Packages Considerations

■ Unsupported Tables, Sequences, and Views

■ Skipped SQL Statements on a Logical Standby Database

■ DDL Statements Supported by a Logical Standby Database

C.1 Data Type Considerations
The following sections list the supported and unsupported database objects:

■ Supported Data Types in a Logical Standby Database

■ Unsupported Data Types in a Logical Standby Database

C.1.1 Supported Data Types in a Logical Standby Database
Logical standby databases support the following data types:

BINARY_DOUBLE
BINARY_FLOAT
BLOB
CHAR
CLOB and NCLOB
DATE
INTERVAL YEAR TO MONTH
INTERVAL DAY TO SECOND
LONG
LONG RAW
NCHAR
NUMBER
NVARCHAR2
RAW

Storage Type Considerations

C-2 Oracle Data Guard Concepts and Administration

TIMESTAMP
TIMESTAMP WITH LOCAL TIMEZONE
TIMESTAMP WITH TIMEZONE
VARCHAR2 and VARCHAR

C.1.2 Unsupported Data Types in a Logical Standby Database
Logical standby databases do not support the following data types:

BFILE
Collections (including VARRAYS and nested tables)
Encrypted columns
Multimedia data types (including Spatial, Image, and Context)
ROWID, UROWID
User-defined types
XMLType

C.2 Storage Type Considerations
The following sections list the supported and unsupported storage types:

■ Support Storage Types

■ Unsupported Storage Type

C.2.1 Support Storage Types
Logical standby databases support the following storage types:

Cluster tables (including index clusters and heap clusters)
Index-organized tables (partitioned and nonpartitioned, including overflow segments)
Heap-organized tables (partitioned and nonpartitioned

C.2.2 Unsupported Storage Type
Logical standby databases do not support the segment compression storage type.

C.3 PL/SQL Supplied Packages Considerations
The following sections list the supported and unsupported PL/SQL supplied
packages:

■ Supported PL/SQL Supplied Packages

■ Unsupported PL/SQL Supplied Packages

Note: SQL Apply support for the following data types has
compatibility requirements on the primary database:

■ Multibyte CLOB support (requires primary database to run at a
compatibility of 10.1 or higher).

■ IOT support without LOBs and Overflows (requires primary
database to run at a compatibility of 10.1 or higher);

■ IOT support with LOB and Overflow (requires primary database
to run at a compatibility of 10.2 or higher)

Unsupported Tables, Sequences, and Views

Data Type and DDL Support on a Logical Standby Database C-3

C.3.1 Supported PL/SQL Supplied Packages
Oracle PL/SQL supplied packages that do not modify system metadata or user data
leave no footprint in the archived redo log files, and hence are safe to use on the
primary database. Examples of such packages are DBMS_OUTPUT, DBMS_RANDOM,
DBMS_PIPE, DBMS_DESCRIBE, DBMS_OBFUSCATION_TOOLKIT, DBMS_TRACE, and
DBMS_METADATA.

Oracle PL/SQL supplied packages that do not modify system metadata but may
modify user data are supported by SQL Apply, as long as the modified data belongs to
the supported data types listed in Section C.1.1. Examples of such packages are DBMS_
LOB, DBMS_SQL, and DBMS_TRANSACTION.

C.3.2 Unsupported PL/SQL Supplied Packages
Oracle PL/SQL supplied packages that modify system metadata typically are not
supported by SQL Apply, and therefore their effects are not visible on the logical
standby database. Examples of such packages are DBMS_JAVA, DBMS_REGISTRY,
DBMS_ALERT, DBMS_SPACE_ADMIN, DBMS_REFRESH, DBMS_REDEFINITION, DBMS_
SCHEDULER, and DBMS_AQ.

Specific support for DBMS_JOB has been provided. Job execution is suspended on a
logical standby database and jobs cannot be scheduled directly on the standby
database. However, jobs submitted on the primary database are replicated in the
standby database. In the event of a switchover or failover, jobs scheduled on the
original primary database will automatically begin running on the new primary
database.

C.4 Unsupported Tables, Sequences, and Views
It is important to identify unsupported database objects on the primary database
before you create a logical standby database. This is because changes made to
unsupported data types, tables, sequences, or views on the primary database will be
automatically skipped by SQL Apply on the logical standby database. Moreover, no
error message will be returned.

Some schemas that ship with the Oracle database are skipped by SQL Apply. To
determine exactly which schemas will be skipped, query the DBA_LOGSTDBY_SKIP
view.

SELECT OWNER FROM DBA_LOGSTDBY_SKIP WHERE STATEMENT_OPT = 'INTERNAL SCHEMA';

To determine if the primary database contains unsupported objects, query the DBA_
LOGSTDBY_UNSUPPORTED view. See Chapter 16, "Views Relevant to Oracle Data
Guard" for more information about views.

For example, use the following query on the primary database to list the schema and
table names of primary database tables that are not supported by logical standby
databases:

SQL> SELECT DISTINCT OWNER,TABLE_NAME FROM DBA_LOGSTDBY_UNSUPPORTED
 2> ORDER BY OWNER,TABLE_NAME;

OWNER TABLE_NAME
----------- --------------------------
HR COUNTRIES

See Also: Oracle Database PL/SQL Packages and Types Reference for
more information about Oracle PL/SQL supplied packages

Skipped SQL Statements on a Logical Standby Database

C-4 Oracle Data Guard Concepts and Administration

OE ORDERS
OE CUSTOMERS
OE WAREHOUSES

To view the column names and data types for one of the tables listed in the previous
query, use a SELECT statement similar to the following:

SQL> SELECT COLUMN_NAME,DATA_TYPE FROM DBA_LOGSTDBY_UNSUPPORTED
 2> WHERE OWNER='OE' AND TABLE_NAME = 'CUSTOMERS';

COLUMN_NAME DATA_TYPE
------------------------------- -------------------
CUST_ADDRESS CUST_ADDRESS_TYP
PHONE_NUMBERS PHONE_LIST_TYP
CUST_GEO_LOCATION SDO_GEOMETRY

If the primary database contains unsupported tables, SQL Apply automatically
excludes these tables when applying redo data to the logical standby database.

C.5 Skipped SQL Statements on a Logical Standby Database
By default, the following SQL statements are automatically skipped by SQL Apply:

ALTER DATABASE
ALTER MATERIALIZED VIEW
ALTER MATERIALIZED VIEW LOG
ALTER SESSION
ALTER SYSTEM
CREATE CONTROL FILE
CREATE DATABASE
CREATE DATABASE LINK
CREATE PFILE FROM SPFILE
CREATE MATERIALIZED VIEW
CREATE MATERIALIZED VIEW LOG
CREATE SCHEMA AUTHORIZATION
CREATE SPFILE FROM PFILE
DROP DATABASE LINK
DROP MATERIALIZED VIEW
DROP MATERIALIZED VIEW LOG
EXPLAIN
LOCK TABLE
SET CONSTRAINTS
SET ROLE
SET TRANSACTION

All other SQL statements executed on the primary database are applied to the logical
standby database.

Note: If you determine that the critical tables in your primary
database will not be supported on a logical standby database, then
you might want to consider using a physical standby database.
Physical standby databases do not have any such data type
restrictions.

DDL Statements Supported by a Logical Standby Database

Data Type and DDL Support on a Logical Standby Database C-5

C.6 DDL Statements Supported by a Logical Standby Database
The following tables list the supported values for the stmt parameter of the DBMS_
LOGSTDBY.SKIP procedure and the statement options for skipping SQL DDL
statements:

■ Table C–1, " Values for stmt Parameter of the DBMS_LOGSTDBY.SKIP procedure"

■ Table C–2, " Statement Options for Skipping SQL DDL Statements"

Table C–1 lists the supported values for the stmt parameter of the DBMS_
LOGSTDBY.SKIP procedure. The left column of the table lists the keywords that may
be used to identify the set of SQL statements to the right of the keyword. Any of the
SQL statements in the right column, however, are also valid values. Note that
keywords are generally defined by database object.

See Also: Oracle Database PL/SQL Packages and Types Reference for
complete information about the DBMS_LOGSTDBY package and
Section 9.4.4, "Setting up a Skip Handler for a DDL Statement"

Table C–1 Values for stmt Parameter of the DBMS_LOGSTDBY.SKIP procedure

Keyword Associated SQL Statements

DML Includes DML statements on a table (for example: INSERT,
UPDATE, and DELETE)

CLUSTER CREATE CLUSTER
AUDIT CLUSTER
DROP CLUSTER
TRUNCATE CLUSTER

CONTEXT CREATE CONTEXT
DROP CONTEXT

DATABASE LINK CREATE DATABASE LINK
DROP DATABASE LINK

DIMENSION CREATE DIMENSION
ALTER DIMENSION
DROP DIMENSION

DIRECTORY CREATE DIRECTORY
DROP DIRECTORY

INDEX CREATE INDEX
ALTER INDEX
DROP INDEX

NON_SCHEMA_DDL All DDL that does not pertain to a particular schema

PROCEDURE1 CREATE FUNCTION
CREATE LIBRARY
CREATE PACKAGE
CREATE PACKAGE BODY
CREATE PROCEDURE
DROP FUNCTION
DROP LIBRARY
DROP PACKAGE
DROP PROCEDURE

PROFILE CREATE PROFILE
ALTER PROFILE
DROP PROFILE

DDL Statements Supported by a Logical Standby Database

C-6 Oracle Data Guard Concepts and Administration

Table C–2 lists the statement options for skipping SQL DDL statements.

PUBLIC DATABASE LINK CREATE PUBLIC DATABASE LINK
DROP PUBLIC DATABASE LINK

PUBLIC SYNONYM CREATE PUBLIC SYNONYM
DROP PUBLIC SYNONYM

ROLE CREATE ROLE
ALTER ROLE
DROP ROLE
SET ROLE

ROLLBACK STATEMENT CREATE ROLLBACK SEGMENT
ALTER ROLLBACK SEGMENT
DROP ROLLBACK SEGMENT

SCHEMA_DDL All DDL statements that create, modify, or drop schema objects (for
example: tables, indexes, and columns)

SEQUENCE CREATE SEQUENCE
DROP SEQUENCE

SESSION Log-ons

SYNONYM CREATE SYNONYM
DROP SYNONYM

SYSTEM AUDIT AUDIT SQL_statements
NOAUDIT SQL_statements

SYSTEM GRANT GRANT system_privileges_and_roles
REVOKE system_privileges_and_roles

TABLE CREATE TABLE
DROP TABLE
TRUNCATE TABLE

TABLESPACE CREATE TABLESPACE
DROP TABLESPACE
TRUNCATE TABLESPACE

TRIGGER CREATE TRIGGER
ALTER TRIGGER with ENABLE and DISABLE clauses
DROP TRIGGER
ALTER TABLE with ENABLE ALL TRIGGERS clause
ALTER TABLE with DISABLE ALL TRIGGERS clause

TYPE CREATE TYPE
CREATE TYPE BODY
ALTER TYPE
DROP TYPE
DROP TYPE BODY

USER CREATE USER
ALTER USER
DROP USER

VIEW CREATE VIEW
DROP VIEW

1 Java schema objects (sources, classes, and resources) are considered the same as procedure for purposes of
skipping (ignoring) SQL statements.

Table C–1 (Cont.) Values for stmt Parameter of the DBMS_LOGSTDBY.SKIP procedure

Keyword Associated SQL Statements

DDL Statements Supported by a Logical Standby Database

Data Type and DDL Support on a Logical Standby Database C-7

Table C–2 Statement Options for Skipping SQL DDL Statements

Statement Option SQL Statements and Operations

ALTER SEQUENCE ALTER SEQUENCE

ALTER TABLE ALTER TABLE

COMMENT TABLE COMMENT ON TABLE table, view, materialized view

COMMENT ON COLUMN table.column, view.column,
materialized_view.column

DELETE TABLE DELETE FROM table, view

EXECUTE PROCEDURE CALL

Execution of any procedure or function or access to any variable,
library, or cursor inside a package.

GRANT DIRECTORY GRANT privilege ON directory

REVOKE privilege ON directory

GRANT PROCEDURE GRANT privilege ON procedure, function, package

REVOKE privilege ON procedure, function, package

GRANT SEQUENCE GRANT privilege ON sequence

REVOKE privilege ON sequence

GRANT TABLE GRANT privilege ON table, view, materialized view

REVOKE privilege ON table, view, materialized view

GRANT TYPE GRANT privilege ON TYPE

REVOKE privilege ON TYPE

INSERT TABLE INSERT INTO table, view

LOCK TABLE LOCK TABLE table, view

SELECT SEQUENCE Any statement containing sequence.CURRVAL or

SELECT TABLE SELECT FROM table, view, materialized view

REVOKE privilege ON table, view, materialized view

UPDATE TABLE UPDATE table, view

See Also: The following sections that provide usage examples of the
SKIP and UNSKIP options:

■ Section 9.4.3, "Using DBMS_LOGSTDBY.SKIP to Prevent Changes
to Specific Schema Objects"

■ Section 9.4.4, "Setting up a Skip Handler for a DDL Statement"

■ Section 9.4.5, "Modifying a Logical Standby Database"

■ Section 9.4.6, "Adding or Re-Creating Tables On a Logical Standby
Database"

DDL Statements Supported by a Logical Standby Database

C-8 Oracle Data Guard Concepts and Administration

Data Guard and Real Application Clusters D-1

D
Data Guard and Real Application Clusters

An Oracle Data Guard configuration can consist of any combination of single-instance
and RAC multiple-instance databases. This chapter summarizes the configuration
requirements and considerations that apply when using Oracle Data Guard with
Oracle Real Application Clusters databases. It contains the following sections:

■ Configuring Standby Databases in a Real Application Clusters Environment

■ Configuration Considerations in a Real Application Clusters Environment

■ Troubleshooting

D.1 Configuring Standby Databases in a Real Application Clusters
Environment

You can configure a standby database to protect a primary database using Real
Application Clusters. The following table describes the possible combinations of
instances in the primary and standby databases:

In each scenario, each instance of the primary database transmits its redo data to an
instance of the standby database.

D.1.1 Setting Up a Multi-Instance Primary with a Single-Instance Standby
Figure D–1 illustrates a Real Application Clusters database with two primary database
instances (a multi-instance primary database) transmitting redo data to a
single-instance standby database.

Instance Combinations
Single-Instance
Standby Database

Multi-Instance
Standby Database

Single-instance primary database Yes Yes

Multi-instance primary database Yes Yes

Configuring Standby Databases in a Real Application Clusters Environment

D-2 Oracle Data Guard Concepts and Administration

Figure D–1 Transmitting Redo Data from a Multi-Instance Primary Database

In this case, Instance 1 of the primary database archives redo data to local archived
redo log files 1, 2, 3, 4, 5 and transmits the redo data to the standby database
destination, while Instance 2 archives redo data to local archived redo log files 32, 33,
34, 35, 36 and transmits the redo data to the same standby database destination. The
standby database automatically determines the correct order in which to apply the
archived redo log files.

To set up a primary database in a Real Application Clusters environment
Follow the instructions in Chapter 3 (for physical standby database creation) or
Chapter 4 (for logical standby database creation) to configure each primary instance.

To set up a single instance standby database
Follow the instructions in Chapter 3 (for physical standby database creation) or
Chapter 4 (for logical standby database creation) to define the STANDBY_ARCHIVE_
DEST and LOG_ARCHIVE_FORMAT parameters to specify the location of the archived
redo log files and standby redo log files.

D.1.2 Setting Up a Multi-Instance Primary with a Multi-Instance Standby
Figure D–2 shows a configuration where the primary and standby databases are in a
Real Application Clusters environment. This enables you to separate the redo
transport services processing from the log apply services processing on the standby
database, thereby improving overall primary and standby database performance.

Standby
Database

Redo Data

Recover
Standby
Database

Primary Database
Instance 1

Online Redo
Log Files

1, 3, 5 2, 4, 6

Archived Redo Log Files

T2_L1 T2_L3 T2_L5

T2_L2 T2_L4

Redo DataPrimary Database
Instance 2

32, 34, 36 33, 35, 37

Archived Redo Log Files

T1_L32 T1_L34 T1_L36

T1_L33 T1_L35

Archived Redo Log Files

T2_L1 T2_L3 T2_L5

T2_L2 T2_L4

Archived Redo Log Files

T1_L32 T1_L34 T1_L36

T1_L33 T1_L35
Online Redo

Log Files

Configuring Standby Databases in a Real Application Clusters Environment

Data Guard and Real Application Clusters D-3

Figure D–2 Standby Database in Real Application Clusters

In Figure D–2, the numbers within circles indicate local connections, and the numbers
within boxes indicate remote connections.

In a Real Application Clusters environment, any standby instance can receive redo
data from the primary database; this is a receiving instance. However, the archived
redo log files must ultimately reside on disk devices accessible by the recovery
instance. Transferring the standby database archived redo log files from the receiving
instance to the recovery instance is achieved using the cross-instance archival
operation.

The standby database cross-instance archival operation requires use of standby redo
log files as the temporary repository of primary database archived redo log files. Using
standby redo log files not only improves standby database performance and reliability,
but also allows the cross-instance archival operation to be performed on clusters that
do not have a cluster file system. However, because standby redo log files are required
for the cross-instance archival operation, the primary database can use either the log
writer process (LGWR) or archiver processes (ARCn) to perform the archival
operations on the primary database.

When both the primary and standby databases are in a Real Application Clusters
configuration, then a single instance of the standby database applies all sets of log files
transmitted by the primary instances. In this case, the standby instances that are not
applying redo data cannot be in read-only mode while Redo Apply is in progress.

To set up a standby database in a Real Application Clusters environment
Perform the following steps to set up redo transport services on the standby database:

1. Create the standby redo log files. In a Real Application Clusters environment, the
standby redo log files must reside on disk devices shared by all instances. See
Section 3.1.3 for more information.

Oracle Net

Standby
Redo

Log Files

LGWR

RFS

LGWR

Online
Redo

Log Files

RFS

Archived Redo
Log Files

Archived Redo
Log Files

Oracle Net
RFS

Archived Redo
Log Files

ARCn

RFS

ARCn

Primary Instance A Standby Receiving Instance C

Primary Instance B Standby Recovery Instance D

1

1 1

1

2

2

3

Configuration Considerations in a Real Application Clusters Environment

D-4 Oracle Data Guard Concepts and Administration

2. On the recovery instance, define the LOCATION attribute of the LOG_ARCHIVE_
DEST_1 initialization parameter to archive locally, because cross-instance
archiving is not necessary.

3. On the receiving instance, define the SERVICE attribute of the LOG_ARCHIVE_
DEST_1 initialization parameter to archive to the recovery instance.

4. Start log apply services on the recovery instance.

To set up a primary database in a Real Application Clusters environment
Perform the following steps to set up redo transport services on the primary database:

1. On all instances, define the LGWR attribute on the LOG_ARCHIVE_DEST_n
parameter to designate that the LGWR process will perform the archival
operation.

2. Configure each standby instance to send redo data to the receiving instance by
setting the LOG_ARCHIVE_DEST_n parameter to an appropriate value.

Ideally, each primary database instance should archive to a corresponding standby
database instance. However, this is not required.

D.2 Configuration Considerations in a Real Application Clusters
Environment

This section contains the Data Guard configuration information that is specific to Real
Application Clusters environments. It contains the following topics:

■ Format for Archived Redo Log Filenames

■ Archive Destination Quotas

■ Data Protection Modes

■ Role Transitions

D.2.1 Format for Archived Redo Log Filenames
The format for archived redo log filenames is in the form of log_%parameter, where
%parameter can include one or more of the parameters in Table D–1.

Table D–1 Directives for the LOG_ARCHIVE_FORMAT Initialization Parameter

Directives Description

%a Database activation ID.

%A Database activation ID, zero filled.

%d Database ID.

%D Database ID, zero filled.

%t Instance thread number.

%T Instance thread number, zero filled.

%s Log file sequence number.

%S Log file sequence number, zero filled.

%r Resetlogs ID.

%R Resetlogs ID, zero filled.

Configuration Considerations in a Real Application Clusters Environment

Data Guard and Real Application Clusters D-5

For example:

LOG_ARCHIVE_FORMAT = log%d_%t_%s_%r.arc

The thread parameters %t or %T are mandatory for Real Application Clusters to
uniquely identify the archived redo log files with the LOG_ARCHIVE_FORMAT
parameter. See Section 5.7.1 for more information about storage locations for archived
redo log files.

D.2.2 Archive Destination Quotas
You can specify the amount of physical storage on a disk device to be available for an
archiving destination using the QUOTA_SIZE attribute of the LOG_ARCHIVE_DEST_n
initialization parameter. An archive destination can be designated as being able to
occupy all or some portion of the physical disk represented by the destination. For
example, in a Real Application Clusters environment, a physical disk device can be
shared by two or more separate nodes. As there is no cross-instance initialization
parameter knowledge, none of the Real Application Clusters nodes is aware that the
physical disk device is shared with other instances. This leads to substantial problems
when the destination disk device becomes full; the error is not detected until every
instance tries to archive to the already full device. This affects database availability.

D.2.3 Data Protection Modes
In a Real Application Clusters configuration when running in either maximum
protection or maximum availability mode, any instance that loses connectivity with a
standby destination will cause all other instances to stop sending data to that
destination (this maintains the integrity of the data that has been transmitted to that
destination).

When the failed standby destination comes back up, Data Guard runs the site in
resynchronization mode until no gaps remain. Then, the standby destination can
participate in the Data Guard configuration again.

The following list describes the behavior of the protection modes in Real Application
Clusters environments:

■ Maximum protection configuration

If a lost destination is the last participating LGWR SYNC destination, the instance
loses connectivity and will be shut down. Other instances in a Real Application
Clusters configuration that still have connectivity to the standby destinations will
recover the lost instance and continue sending to their standby destinations. Only
when every instance in a Real Application Clusters configuration loses
connectivity to the last standby destination will the primary database be shut
down.

D.2.4 Role Transitions
This section contains the following topics:

■ Switchovers

■ Failovers

D.2.4.1 Switchovers
For a Real Application Clusters database, only one primary instance and one standby
instance can be active during a switchover. Therefore, before a switchover, shut down
all but one primary instance and one standby instance. After the switchover

Troubleshooting

D-6 Oracle Data Guard Concepts and Administration

completes, restart the primary and standby instances that were shut down during the
switchover.

D.2.4.2 Failovers
Before performing a failover to a Real Application Clusters standby database, first shut
down all but one standby instance. After the failover completes, restart the instances
that were shut down.

D.3 Troubleshooting
This section provides help troubleshooting problems with Real Application Clusters. It
contains the following sections:

■ Switchover Fails in a Real Application Clusters Configuration

■ Avoiding Downtime in Real Application Clusters During a Network Outage

D.3.1 Switchover Fails in a Real Application Clusters Configuration
When your database is using Real Application Clusters, active instances prevent a
switchover from being performed. When other instances are active, an attempt to
switch over fails with the following error message:

SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO STANDBY;
ALTER DATABASE COMMIT TO SWITCHOVER TO STANDBY *
ORA-01105: mount is incompatible with mounts by other instances

Action: Query the GV$INSTANCE view as follows to determine which instances are
causing the problem:

SQL> SELECT INSTANCE_NAME, HOST_NAME FROM GV$INSTANCE
 2> WHERE INST_ID <> (SELECT INSTANCE_NUMBER FROM V$INSTANCE);
INSTANCE_NAME HOST_NAME
------------- ---------
INST2 standby2

In the previous example, the identified instance must be manually shut down before
the switchover can proceed. You can connect to the identified instance from your
instance and issue the SHUTDOWN statement remotely, for example:

SQL> CONNECT SYS/CHANGE_ON_INSTALL@standby2 AS SYSDBA
SQL> SHUTDOWN;
SQL> EXIT

D.3.2 Avoiding Downtime in Real Application Clusters During a Network Outage
If you configured Data Guard to support a primary database in a Real Application
Clusters environment and the primary database is running in maximum protection
mode, a network outage between the primary database and all of its standby
databases will disable the primary database until the network connection is restored.

Note: The SQL ALTER DATABASE statement used to perform the
switchover automatically creates redo log files if they do not
already exist. Because this can significantly increase the time
required to complete the COMMIT operation, Oracle recommends
that you manually add redo log files when creating physical
standby databases.

Troubleshooting

Data Guard and Real Application Clusters D-7

The maximum protection mode dictates that if the last standby database becomes
unavailable, processing halts on the primary database.

If you expect the network to be down for an extended period of time, consider
changing the primary database to run in either the maximum availability or the
maximum performance mode until network connectivity is restored. If you change the
primary database to maximum availability mode, it is possible for there to be a lag
between the primary and standby databases, but you gain the ability to use the
primary database until the network problem is resolved.

If you choose to change the primary database to the maximum availability mode, it is
important to use the following procedures to prevent damage to your data.

The following steps describe what to do if the network goes down and you want to
change the protection mode for the Real Application Clusters configuration. The
example assumes you are using a server parameter file (SPFILE), not a PFILE.

1. At this point all Real Application Clusters primary instances are shut down. Issue
the STARTUP MOUNT command to start one instance:

STARTUP MOUNT;

2. Follow the instructions in Section 5.6.2 (or, if you are using the broker, see Oracle
Data Guard Broker) to change the mode from the maximum protection mode to
either maximum availability or maximum performance mode. For example, the
following statement sets the maximum availability protection mode:

ALTER DATABASE SET STANDBY DATABASE TO MAXIMIZE AVAILABILITY;

3. Open the Real Application Clusters primary database for general access.

Later, when the network comes back up, perform the following steps to revert to the
maximum protection mode:

1. Shut down all instances of the Real Application Clusters primary database.

2. Mount a single instance of the Real Application Clusters primary database,
without opening it for general access.

3. Change mode on the Real Application Clusters primary database from its current
(maximum availability or maximum performance) mode to the maximum
protection mode.

4. Open the Real Application Clusters primary database for general access.

Troubleshooting

D-8 Oracle Data Guard Concepts and Administration

Cascaded Destinations E-1

E
Cascaded Destinations

To reduce the load on your primary system, you can implement cascaded
destinations, whereby a standby database receives its redo data from another standby
database, instead of directly from the primary database. You can configure:

■ A physical standby database to retransmit the incoming redo data it receives from
the primary database to other remote destinations in the same manner as the
primary database

■ A logical standby database (because it is open in read/write mode) to send the
redo data it generates (after filtering and applying the redo data it receives from
the primary database) to its own set of standby (physical or logical) databases

Figure E–1 shows cascaded destinations to physical and logical standby databases.

Figure E–1 Cascaded Destination Configuration Example

A standby database can cascade redo data to up to nine destinations. However, from a
practical perspective, only standby databases primarily intended to off-load reporting
or backups typically would be configured to receive cascaded redo data. Standby
databases that could potentially be involved in role transitions typically are configured
to receive redo data directly from the primary database and have VALID_FOR attribute
on the LOG_ARCHIVE_DEST_n parameter defined so that when a switchover or
failover operation occurs, redo data continues to be received directly from the new
primary database.

This appendix contains the following sections:

■ Configuring Cascaded Destinations

■ Role Transitions with Cascaded Destinations

Redo Data

Generated

Retransmitted

Primary
Database

Physical Standby
Database

Redo Data
Oracle

Net

Logical Standby
Database

Physical Standby
Database

Physical Standby
Database

Configuring Cascaded Destinations

E-2 Oracle Data Guard Concepts and Administration

■ Examples of Cascaded Destinations

E.1 Configuring Cascaded Destinations
The following sections describe how to set up a Data Guard configuration to use
cascaded destinations:

■ Configuring Cascaded Destinations for Physical Standby Databases

■ Configuring Cascaded Destinations for Logical Standby Databases

E.1.1 Configuring Cascaded Destinations for Physical Standby Databases
To enable a physical standby database to send the incoming redo data to another set of
destinations, you must define the following items:

■ Define the LOG_ARCHIVE_DEST_n initialization parameter on the primary
database to set up a physical standby database that will be the starting point for a
cascade. Define the destination to use:

– The ARCH or the LGWR attributes to specify the transport method. With the
LGWR transport method, you can use either SYNC or ASYNC network protocols,
depending on your requirements.

– The VALID_FOR attribute to handle the cascaded destinations and the original
primary and standby destinations. Define destinations for the primary
database and other standby databases as well as the cascading standby
databases.

■ On the receiving physical standby database, define more than the usual number of
standby redo log files and ensure archiving is enabled.

At this point, you can begin defining the LOG_ARCHIVE_DEST_n initialization
parameter on the physical standby database that will define the end points of the
cascade.

Table E–1 shows the initialization parameters for the Boston primary database, which
sends redo to the Chicago physical standby database, which cascades its archived redo
log files to the Denver standby database. In the example, the Denver database is a
logical standby database, but note that a physical standby database can cascade redo
to either a physical or a logical standby database.

Configuring Cascaded Destinations

Cascaded Destinations E-3

Both the Boston primary database and the Chicago physical standby database define
the LOG_ARCHIVE_DEST_2 initialization parameter as 'SERVICE=denver VALID_
FOR=(STANDBY_LOGFILES, STANDBY_ROLE). Hence, even if the Boston and
Chicago databases switch roles, the redo data will continue to be cascaded to the
Denver database. Remember, as part of the original setup of the physical standby
database, you should define a local destination, VALID_FOR=(ONLINE_LOGFILE,
PRIMARY_ROLE), that will be used for local archiving when the physical standby
database transitions to the primary role.

E.1.2 Configuring Cascaded Destinations for Logical Standby Databases
A logical standby database that receives redo data directly from the primary database
can be configured to cascade the redo data it generates (after it has filtered and applied
the redo data it receives from the primary database) to other standby databases.
Because redo data cascaded from a logical standby database is not identical to the redo
data originally generated by the primary database, it cannot be applied to any standby
database created directly from the primary database. Instead, any standby databases
that receive cascaded redo data from a logical standby database must be created from
a copy of the logical standby database, and the following will be true:

■ Physical standby databases created from a logical standby database will be a
block-for-block copy of the logical standby database and a logical copy of the
original primary database.

■ Logical standby databases created from a logical standby database will be logical
copies of the parent logical standby database and might bear only a partial
resemblance to the original primary database. This is because the original primary
database’s data is there and so is anything else stored in the parent logical standby
database including any other changes such as different indexes or materialized
views.

For standby databases that receive cascaded redo data from a logical standby
database, you must perform the same setup tasks as for a physical or logical standby
database that receives redo data directly from the primary database.

Table E–1 Initialization Parameters for Primary, Physical, and Logical Standby Databases

Boston Database (Primary Role) Chicago Database (Standby Role) Denver Database (Standby Role)

DB_UNIQUE_NAME=boston
LOG_ARCHIVE_CONFIG=
 'DG_CONFIG=(chicago,boston,denver)'
LOG_ARCHIVE_DEST_1=
 'LOCATION=/arch1/boston/
 VALID_FOR=(ONLINE_
LOGFILES,PRIMARY_ROLE)
 DB_UNIQUE_NAME=boston'
LOG_ARCHIVE_DEST_2=
 'SERVICE=denver
 VALID_FOR=(STANDBY_
LOGFILES,STANDBY_ROLE)
 DB_UNIQUE_NAME=denver'
LOG_ARCHIVE_DEST_3=
 'SERVICE=chicago
 VALID_FOR=
 (ONLINE_LOGFILES,PRIMARY_ROLE)
 DB_UNIQUE_NAME=chicago'
STANDBY_ARCHIVE_DEST=/arch1/boston/
REMOTE_LOGIN_PASSWORDFILE=EXCLUSIVE

DB_UNIQUE_NAME=chicago
LOG_ARCHIVE_CONFIG=
 'DG_CONFIG=(chicago,boston,denver)'
LOG_ARCHIVE_DEST_1=
 'LOCATION=/arch1/chicago/
 VALID_FOR=(ONLINE_
LOGFILES,ALL_ROLES)
 DB_UNIQUE_NAME=chicago'
LOG_ARCHIVE_DEST_2=
 'SERVICE=denver
 VALID_FOR=(STANDBY_
LOGFILES,STANDBY_ROLE)
 DB_UNIQUE_NAME=denver'
LOG_ARCHIVE_DEST_3=
 'SERVICE=boston
 VALID_FOR=
 (ONLINE_LOGFILES,PRIMARY_ROLE)
 DB_UNIQUE_NAME=boston'
STANDBY_ARCHIVE_DEST=/arch1/chicago/
REMOTE_LOGIN_PASSWORDFILE=EXCLUSIVE

DB_UNIQUE_NAME=denver
LOG_ARCHIVE_CONFIG=
 'DG_CONFIG=(chicago,boston,denver)'
LOG_ARCHIVE_DEST_1=
 'LOCATION=/arch1/denver/
 VALID_FOR=(ONLINE_
LOGFILES,ALL_ROLES)
 DB_UNIQUE_NAME=denver'
LOG_ARCHIVE_DEST_2=
 'LOCATION=/arch2/denver/
 VALID_FOR=(STANDBY_
LOGFILES,STANDBY_ROLE)
 DB_UNIQUE_NAME=denver'
STANDBY_ARCHIVE_DEST=/arch2/denver/
REMOTE_LOGIN_PASSWORDFILE=EXCLUSIVE

Role Transitions with Cascaded Destinations

E-4 Oracle Data Guard Concepts and Administration

As with physical standby databases, you can use any transport mode (LGWR or ARCH)
and network protocol (SYNC or ASYNC). You must configure standby redo log files on
your standby databases.

E.2 Role Transitions with Cascaded Destinations
Most role transitions can be performed involving standby databases that receive redo
log files cascaded from another standby database. However, to minimize risk of data
loss and ensure the fastest possible role transition, Oracle recommends that any
standby databases that are primarily configured for disaster-recovery purposes receive
redo data directly from the primary database.

E.2.1 Standby Databases Receiving Redo Data from a Physical Standby Database
The process to perform a switchover or failover is exactly the same in a cascaded
configuration, because all physical standby databases that receive retransmitted
primary database redo data are identical and valid for role transitions. The only
difference is additional time may be required for the end-of-redo data to cascade to the
standby database. See Section 7.2 for information about performing role transitions
with a physical standby database.

E.2.2 Standby Databases Receiving Redo Data from a Logical Standby Database
Any standby database that receives redo data cascaded from a logical standby
database cannot participate in a switchover involving the primary database. (Only
logical standby databases that receive redo data directly from the primary database
can participate in switchovers.) If you fail over to a database that receives redo data
generated by a logical standby database, then only other logical standby databases
that receive redo data cascaded from the same logical standby database are able to
continue to participate in the Data Guard configuration after the failover. See
Section 7.3 for information about performing role transitions with a logical standby
database.

E.3 Examples of Cascaded Destinations
The following scenarios demonstrate configuration options and uses for cascaded
destinations.

E.3.1 Local Physical Standby and Cascaded Remote Physical Standby
You have a primary database in your corporate offices, and you want to create a
standby database in another building on your local area network (LAN). In addition,
you have a legal insurance requirement to keep the redo data and backup copies off
site at a geographically distant location outside of your LAN but on your wide area
network (WAN).

You could define two destinations on your primary database so that redo data could
be transmitted to both of these sites, but this would put an extra workload on your
primary database throughput due to the network latency of sending the redo data
over the WAN.

To solve this problem, you could define a tight connection between your primary and
physical standby databases in your LAN using the LGWR and SYNC network transports
and standby redo log files. This would protect against losing access to the primary
database, and it provides an alternate site for production when maintenance is
required on the primary database. The secondary location on the WAN could be

Examples of Cascaded Destinations

Cascaded Destinations E-5

serviced by the physical standby database, ensuring that the redo data is stored off
site. Nightly backups on the production database could then be moved to the WAN
remote standby database, which removes the requirement to ship tapes to the off-site
storage area.

Finally, in a worst case scenario, where you lose access to both the primary database
and the physical standby database on the LAN, you could fail over to the remote
standby database with minimal data loss. If you can gain access to the redo log file of
the last standby database from the original standby database, you could recover it on
the remote standby database, incurring no data loss.

The only time you would incur problems by sending the information over the WAN is
during a switchover or failover, when the physical standby database has transitioned
to the primary role. However, this configuration would still meet your insurance
requirements.

E.3.2 Local Physical Standby and Cascaded Remote Logical Standby
You have a primary database in a remote city, and you would like to have access to its
data locally for reporting purposes. The primary database already has a standby
database set up for failure protection in an off-site location on the LAN. Putting a
destination on the primary database to send the information to your site would
adversely affect the performance of the primary database.

Solving this problem is similar to the solution that is described in scenario 1, except
that you are sending the redo data to a logical standby database, because you already
have a physical standby database. First, ensure standby log files are being used.

If standby redo log files are not defined, you can define them dynamically on the
standby database. The standby database will begin using the standby redo log files
after the next log switch on the primary database.

Next, perform the normal setup tasks for a logical standby database. Any of the steps
required to prepare to use a logical standby database must be done at the primary
location as usual. After the logical standby database is up and running, define your
destination parameters on the physical standby database to send the redo data over
the WAN, where it will be applied to the logical standby database.

E.3.3 Local and Remote Physical Standby and Cascaded Local Logical Standby
A primary database located in a manufacturing site already is configured with two
physical standby databases. One standby database is located on the LAN in another
building, and the second standby database is more remotely located on a WAN in the
corporate offices. You cannot use cascaded destinations for the standby database on
the WAN, because there is a requirement to have two standby databases in
no-data-loss mode. Also, the marketing department requested access to the
manufacturing data for sales predictions. The marketing department needs access to
the data on a daily basis, and they want to combine sales data with manufacturing
data to better understand sales versus the actual manufacturing times.

One solution would be to allow marketing to access a physical standby database in the
corporate offices using read-only mode. However, putting the standby database in
read-only mode requires stopping Redo Apply. This means that the physical standby
database can only catch up with the primary database at night, while it is still
receiving data from the second and third shifts at the manufacturing plant. In addition,
the standby database would always be at least 12 hours behind in applying archived
redo log files. You could add another destination to the primary database to send the
redo data to a new logical standby database in the corporate offices. Because the

Examples of Cascaded Destinations

E-6 Oracle Data Guard Concepts and Administration

systems used in the corporate office are different for the physical standby database and
the proposed logical standby database, you cannot use the DEPENDENCY attribute
when defining the standby destinations. Because redo data needs to be transmitted
over a WAN, it would degrade performance on the primary database to send the redo
data twice, which has been deemed to be unacceptable.

Cascaded destinations can solve this problem. To set this up, you would create a
logical standby database following the instructions in Chapter 4, but you would also
set up the corporate physical standby database to transmit the redo data over the
corporate LAN to the new logical standby database. In this way, the primary database
is only sending the data once over the WAN to the physical standby database. The
logical standby database could then be modified with new materialized views so that
the marketing group can manage the data more efficiently. Because the logical standby
database is opened and in read/write mode, the marketing group can add new
schemas and load in sales data without affecting performance on the primary
database, or the viability and current state of the physical standby database.

E.3.4 Consolidated Reporting with Cascaded Logical Standby Destinations
You have five Sales offices around the world, each with its own primary database. You
would like to implement a failure protection strategy for all of them, as well as a way
to get timely access to all data with minimal effect on each primary database.

To solve this problem, you would first implement a no-data-loss environment for each
of the five offices by creating a physical standby database (with LGWR and SYNC
attributes) local to each office. The physical standby databases could be on a LAN.
Then, create a logical standby database from each of the five primary databases and
locate the logical standby databases in your corporate office. However, instead of
having redo transport services on each of the five primary databases send the redo
data, you would configure each of the five standby databases to send the redo data to
its logical standby database over the WAN. At one logical standby database (or all of
them), you would define database links to each of the other logical standby databases
and use them to access all of the sales data. If you decide that you do not need all of
the information from each of the five primary databases, but only certain tables, you
can use the SKIP routines to stop applying data that you do not need on each of the
logical standby databases.

E.3.5 Temporary Use of Cascaded Destinations During Network Upgrades
You have a primary database that is currently protected only by nightly backups. You
have been told that you must implement a major failure recovery strategy
immediately. You have another system of the same hardware type in-house, but it does
not have enough power to serve as a standby database for failover purposes, and it
does not have enough disks for the entire database. The only other system available to
you that is large enough to hold the entire database is too far away to be put on the
LAN, and the WAN that connects to it is extremely slow. The deadline for
implementing the strategy is well before any network upgrades can occur. Adding a
destination (on the primary database) to send the redo data to the remote location
would severely affect performance.

The interim solution to this problem would be to create a physical standby database on
the remote system and create a distribution repository on the smaller local system. A
distribution repository contains only the standby control file, standby redo log files,
and the standby database archived redo log files, not the datafiles. You would
configure the primary database to send the redo data to the repository locally using
the log writer process (LGWR) in synchronous mode (SYNC). Because the connection is
over the LAN, the effect on performance would be minimal. The repository would

Examples of Cascaded Destinations

Cascaded Destinations E-7

then be configured to send the data onward over the WAN to the real standby
database.

The risk with this configuration is that while the primary database has transmitted all
of its data to a standby database, it is possible that the repository has not completed
sending the data to the remote standby database at the time of a failure at the primary
database. In this environment, as long as both systems do not fail at the same time, the
remote standby database should receive all the data sent up to the last log switch. You
would have to send the current redo log file manually.

Once the WAN is upgraded to permit a direct connection to the remote standby
database, you can either redirect the destination to the repository to point to the
remote standby database directly or create a new destination to the remote standby
database and continue transmitting to the repository as an archive log repository.

Examples of Cascaded Destinations

E-8 Oracle Data Guard Concepts and Administration

Creating a Standby Database with Recovery Manager F-1

F
Creating a Standby Database with Recovery

Manager

This appendix describes how to use Oracle Recovery Manager to create a standby
database. This appendix contains the following topics:

■ Preparing to Use RMAN to Create a Standby Database

■ Creating a Standby Database with RMAN: Overview

■ Setting Up the Standby Database

■ Creating a Standby Database with the Same Directory Structure

■ Creating a Standby Database with a Different Directory Structure

■ Creating a Standby Database on the Local Host

■ Creating a Standby Database with Image Copies

■ Usage Scenario

F.1 Preparing to Use RMAN to Create a Standby Database
There are several advantages to using RMAN to create a standby database:

■ RMAN creates standby databases using backups of the primary database,
restoring datafiles to the standby site from backups. Thus, the primary database is
not affected during the creation of standby databases.

■ RMAN automates renaming of files including Oracle Managed Files (OMF), and
directory structures.

■ RMAN restores archived redo log files from backups and performs recovery to
catch up the standby database to the primary database.

The procedure for preparing a standby database with RMAN is basically the same as
for preparing a duplicate database. Nevertheless, you need to amend the duplication
procedures described in Oracle Database Backup and Recovery Advanced User's Guide to
account for the issues specific to a standby database.

Familiarize yourself with how to create a standby database in Chapter 3, "Creating a
Physical Standby Database" and Chapter 4, "Creating a Logical Standby Database"
before you attempt the RMAN creation procedures described in this chapter.

This section contains these topics:

■ About Standby Database Preparation Using RMAN

■ Creating the Standby Control File with RMAN

Preparing to Use RMAN to Create a Standby Database

F-2 Oracle Data Guard Concepts and Administration

■ Naming the Standby Database Datafiles When Using RMAN

■ Naming the Standby Database Log Files When Using RMAN

F.1.1 About Standby Database Preparation Using RMAN
You can use either manual methods or the Recovery Manager DUPLICATE command
to create a standby database from backups of your primary database. Before you
perform the creation procedure, you must prepare the standby instance. You can use
RMAN to do the preparation tasks described in Table F–1.

In addition to the RMAN tasks described in Table F–1, you must perform the
following tasks to set up your standby database:

■ Set all necessary initialization parameters on the primary database.

■ Create an initialization parameter file for the standby database and configure all
necessary parameters.

■ Set up and configure Oracle Net, as required, to connect to the standby instance.

■ Start the standby instance without mounting the control file.

See Chapter 3 for a complete discussion of physical standby database preparation,
including initialization parameter settings. You must perform all necessary
preparation tasks described in these chapters before RMAN can successfully create the
standby database files and mount the standby database.

F.1.2 Creating the Standby Control File with RMAN
You can create the standby control file using either the RMAN BACKUP or COPY
commands by performing the following steps:

Step 1 Connect to the primary database.
Connect to the primary database and, if desired, the recovery catalog database. For
example, enter:

% rman TARGET SYS/oracle@trgt CATALOG rman/cat@catdb

Step 2 Create the standby control file.
Use either of the following commands to create the standby control file. The only
difference between BACKUP and COPY commands is that the file format of the backup
file is different.

Table F–1 Standby Database Preparation Using RMAN

Task Procedure

Make a backup of the primary database to
use to create a standby database.

Use the normal backup procedure for your
primary database as documented in Oracle
Database Backup and Recovery Basics.

Create a backup of the primary control file
that is usable as a standby control file (if
you do not have one).

See Section F.1.2, "Creating the Standby Control
File with RMAN".

Choose file names for the standby datafiles. See Section F.1.3, "Naming the Standby
Database Datafiles When Using RMAN".

Choose file names for the standby database
archived redo log files and standby redo log
files.

See Section F.1.4, "Naming the Standby
Database Log Files When Using RMAN".

Preparing to Use RMAN to Create a Standby Database

Creating a Standby Database with Recovery Manager F-3

■ Using the BACKUP command

Mount the primary database and create the standby control file with the BACKUP
CURRENT CONTROLFILE FOR STANDBY command. The following example uses a
configured channel to create the standby control file. Then open the database,
archive all unarchived redo log files, and back up any log files that have not yet
been backed up at least once:

STARTUP MOUNT
BACKUP CURRENT CONTROLFILE FOR STANDBY;
SQL> ALTER DATABASE OPEN;
SQL 'ALTER SYSTEM ARCHIVE LOG CURRENT'; # so backup is consistent and
recoverable
BACKUP ARCHIVELOG ALL NOT BACKED UP 1 TIMES;

■ Using the COPY command

Copy the current primary control file. Specify the FOR STANDBY option of the
COPY CURRENT CONTROLFILE command to make a copy of the current control file
that is usable as a standby control file. For example:

COPY CURRENT CONTROLFILE FOR STANDBY TO '/tmp/sby_control01.ctl';

Step 1 List the backup sets or image copies.
If desired, issue a LIST command to see a listing of the backup sets and pieces, or
issue a LIST COPY command to see a listing of the image copies.

F.1.3 Naming the Standby Database Datafiles When Using RMAN
A standby database can reside either on the same host as the primary database or on a
different host. The following table illustrates the implications for renaming the
standby database datafiles depending on if the directory structures on the hosts are the
same or different.

When the directory structures are different for the primary and standby hosts, you have
these options for naming the standby datafiles:

■ Configuring the standby database initialization parameter DB_FILE_NAME_
CONVERT

Note: If you already created a standby control file with the SQL
ALTER DATABASE CREATE STANDBY CONTROLFILE AS
statement, you can use the RMAN CATALOG command to add
metadata about the standby control file to the recovery catalog:

CATALOG CONTROLFILECOPY '/tmp/sby_control01.ctl';

Standby Database Host Directory Structure Renaming

Same host as primary Different from primary host Necessary.

Same host as primary Same as primary host Illegal. The standby database
datafiles cannot exist in the
same directories as the
primary database datafiles on
the same host.

Different host from primary Same as primary host Not necessary.

Different host from primary Different from primary host Necessary.

Preparing to Use RMAN to Create a Standby Database

F-4 Oracle Data Guard Concepts and Administration

■ Use the DB_FILE_NAME_CONVERT option of the RMAN DUPLICATE command

■ By using the RMAN CONFIGURE AUXNAME or SET NEWNAME command when
creating the standby database

When the directory structures are the same for the primary and standby hosts, then
you have these naming options:

■ Leaving the standby file names the same as the primary file names (that is, not
setting DB_FILE_NAME_CONVERT or issuing a CONFIGURE AUXNAME or SET
NEWNAME command) and specifying the NOFILENAMECHECK option of the
DUPLICATE command

■ By using the DB_FILE_NAME_CONVERT parameter, or the CONFIGURE AUXNAME
or SET NEWNAME commands to rename the standby datafiles

Note that when you use DB_FILE_NAME_CONVERT, the format is as follows:

DB_FILE_NAME_CONVERT = 'oldstring1', 'newstring1', 'oldstring2', 'newstring2', ...

For example, you can specify the DB_FILE_NAME_CONVERT initialization parameter
as follows:

DB_FILE_NAME_CONVERT = '/dbs/t1/', '/dbs/t1/s_', '/dbs/t2/', '/dbs/t2/s_'

Because you can specify datafile file names in the standby control file in multiple
ways, a method for prioritizing settings is necessary. Table F–2 specifies the hierarchy
for the naming of datafiles in the standby database.

See Oracle Database Reference for more information about how to use DB_FILE_NAME_
CONVERT to name files on a standby database.

F.1.4 Naming the Standby Database Log Files When Using RMAN
Redo log files are not created on the standby database by RMAN. However, as
described in Chapter 3, log files can be created by other actions that you perform on
the standby database. After the log files are created, they are maintained and archived
according to the normal rules for log files.

The only option when naming the redo log files on the standby database is the file
names for the log files, as specified in the standby control file. If the log file names on
the standby must be different from the primary file names, then one option is to

Table F–2 Order of Precedence for Naming Datafiles in Standby Database

Method of Standby Datafile Naming Requirement

1 Issue SET NEWNAME command. You must issue this command in the RUN block
for the creation of the standby database.

2 Use the DB_FILE_NAME_CONVERT
option of the RMAN DUPLICATE
command.

None.

3 Issue CONFIGURE AUXNAME command. You must be connected to a recovery catalog,
and an AUXNAME that is not NULL must be
stored in the catalog for the datafile.

4 Datafile file name as currently specified
in the standby control file. The standby
file name is identical to the primary file
name or is named with the DB_FILE_
NAME_CONVERT parameter.

If the file name is different, then the DB_FILE_
NAME_CONVERT parameter must be set in the
standby initialization parameter file. If the file
name is the same, then you must specify the
NOFILENAMECHECK clause of the DUPLICATE
command.

Creating a Standby Database with RMAN: Overview

Creating a Standby Database with Recovery Manager F-5

specify file names for the redo logs by setting LOG_FILE_NAME_CONVERT in the
standby initialization parameter file.

Note these restrictions when specifying file names for the redo log files on the standby
database:

■ You must use the LOG_FILE_NAME_CONVERT parameter to name the redo log
files if the primary and standby databases use different naming conventions for
the log files.

■ You cannot use the SET NEWNAME or CONFIGURE AUXNAME commands to rename
the redo log files.

■ You cannot use the LOGFILE clause of the DUPLICATE command to specify file
names for the redo log files.

■ If you want the redo log file names on the standby database to be the same as the
primary redo log file names, then you must specify the NOFILENAMECHECK clause
of the DUPLICATE command. Otherwise, RMAN signals an error even if the
standby database is created in a different host.

F.2 Creating a Standby Database with RMAN: Overview
When you create a standby database, the procedure differs depending on whether the
standby database is on the same host as the primary database or on a different host.
The procedures in this chapter assume that you have already completed the standby
setup and preparation as outlined in Chapter 3. Do not use these procedures until you
have made all necessary initialization parameter settings and network configuration
changes.

After you have performed the steps necessary for preparing the standby instance,
issue the Recovery Manager DUPLICATE ... FOR STANDBY command to create the
standby database using backups of the primary database. Note that a standby
database, unlike a duplicate database created by DUPLICATE without the FOR
STANDBY OPTION, does not get a new DBID. Hence, you should not register the
standby database with your recovery catalog.

The steps for creating the standby database differ depending on the following;

■ Whether or not you specify that RMAN should recover the standby database after
creating it

■ Whether or not you use Oracle Managed Files (OMF)

See Oracle Database Backup and Recovery Advanced User's Guide to learn how to use the
DUPLICATE command to create a duplicate database that is not a standby database.

F.2.1 RMAN Standby Creation Without Recovery
By default, RMAN does not recover the standby database after creating it. If you do
not specify the DORECOVER option of the DUPLICATE command, then RMAN
automates these steps of the standby creation procedure during duplication:

1. RMAN establishes connections both to the primary and standby databases, and
the recovery catalog (if used).

2. RMAN queries the repository, which is either the primary control file or the
recovery catalog, to identify the backups of primary database datafiles and the
standby control file.

Creating a Standby Database with RMAN: Overview

F-6 Oracle Data Guard Concepts and Administration

3. If you use a media manager, then RMAN contacts the media manager on the
standby host to request the backup data.

4. RMAN restores the standby control file to the standby host, thereby creating the
standby control file.

5. RMAN restores the primary datafile backups and copies to the standby host,
thereby creating the standby database datafiles.

6. RMAN leaves the standby database mounted, but does not place the standby
database in manual or managed recovery mode. RMAN disconnects and does not
perform media recovery of the standby database. Note that you should not register
the standby database in the recovery catalog.

F.2.2 RMAN Standby Creation with Recovery
If you do specify the DORECOVER option of the DUPLICATE command, then RMAN
performs the same Steps 1-5 in Section F.2.1. Instead of Step 6, it performs these steps:

1. After all data is restored, RMAN begins media recovery. If recovery requires
archived redo log files, and if the log files are not already on disk, RMAN attempts
to restore it from backups.

2. RMAN recovers the standby database to the specified time, system change
number (SCN), or log file sequence number, or to the latest archived redo log file
generated if none of the preceding are specified.

3. RMAN leaves the standby database mounted after media recovery is complete,
but does not place the standby database in manual or managed recovery mode.
Note that you should not register the standby database in the recovery catalog.

If you want RMAN to recover the standby database after creating it, then the standby
control file must be usable for the desired recovery. Thus, these conditions must be
met:

■ The end recovery time of the standby database must be greater than or equal to
the checkpoint SCN of the standby control file.

■ An archived redo log file containing the checkpoint SCN of the standby control file
must be available at the standby site for recovery.

One way to ensure these conditions are met is to issue the ALTER SYSTEM ARCHIVE
LOG CURRENT statement after creating the standby control file. This statement archives
the online redo log files of the primary database. Then, either back up the most recent
archived redo log file with RMAN or move the archived redo log file to the standby
site.

Note: After RMAN creates the standby database, you must
resolve any gap sequence before placing it in manual or managed
recovery mode, or opening it in read-only mode. Section 5.8
discusses gap sequence resolution in detail.

Note: The procedures in this chapter assume that you are using
RMAN backups to create the standby database. If you are using
RMAN image copies, then refer to Section F.7.

Setting Up the Standby Database

Creating a Standby Database with Recovery Manager F-7

See Oracle Database Backup and Recovery Reference for the list of DUPLICATE restrictions
for creating a standby database with RMAN.

F.3 Setting Up the Standby Database
No matter which standby creation scenario you choose, you must first start the
standby database and then connect RMAN to this database. The details of this
procedure vary depending on whether or not the standby and primary systems have a
different directory structure, and whether or not Oracle Managed Files (OMF) is used:

■ Setting Up a Standby Database When Files Are Not Oracle Managed Files

■ Setting Up a Standby Database When All Files Are Oracle Managed Files

■ Setting Up a Standby Databases When a Subset of Files Are Oracle Managed Files

F.3.1 Setting Up a Standby Database When Files Are Not Oracle Managed Files
Perform the following steps to set up a standby database that does not use OMF:

1. Use an operating system utility to copy the SPFILE (or the initialization parameter
file) from the target host to the standby host. Set all required parameters in the
standby database’s initialization parameter file, as described in Section 3.2.3.

For example, if creating the standby database on a separate host with a different
directory structure, edit these initialization parameters:

■ Those that end with _DEST and _PATH and specify a path name

■ DB_FILE_NAME_CONVERT so that it captures all the target datafiles and
converts them appropriately, for example, from tbs_* to sbytbs_*

■ LOG_FILE_NAME_CONVERT so that it captures all the redo log files and
converts them appropriately, for example, log_* to sbylog_*

For example, the following are sample parameter settings in the standby database
initialization parameter file:

STANDBY_ARCHIVE_DEST = /fs3/arc_dest/
LOG_ARCHIVE_FORMAT = log%d_%t_%s_%r.arc
DB_FILE_NAME_CONVERT = '/oracle', '/fs3/oracle', '/dbf', '/fs3/oracle'
LOG_FILE_NAME_CONVERT = '/oracle', '/fs3/oracle'

2. Use SQL*Plus to start the standby instance without mounting it. For example,
enter the following to connect to sbdb1 as SYS (who has SYSDBA privileges) and
start the database:

SQL> CONNECT SYS/sys_pwd@sbdb1 AS SYSDBA
SQL> STARTUP NOMOUNT PFILE=initSBDB1.ora

3. Use SQL*Plus to mount or open the primary database if it is not already mounted
or open. For example, enter the following to connect to prod1 as SYS and open
the database:

SQL> CONNECT SYS/sys_pwd@prod1 AS SYSDBA
SQL> STARTUP PFILE=initPROD1.ora

Ensure the recovery catalog database is open. For example, enter the following to
connect to catdb as SYS and open the recovery catalog database:

SQL> CONNECT SYS/oracle@catdb AS SYSDBA
SQL> STARTUP PFILE=initCATDB.ora

Setting Up the Standby Database

F-8 Oracle Data Guard Concepts and Administration

4. The standby instance must be accessible through Oracle Net. Before proceeding,
use SQL*Plus to ensure you can establish a connection to the standby instance.
Note that you must connect to the standby instance with SYSDBA privileges, so a
password file must exist.

5. Connect to the target database, the standby instance, and (if you use one) the
recovery catalog database. Note that you specify the primary database with the
TARGET keyword and the standby instance with the AUXILIARY keyword.

In the following example, connection is established without a recovery catalog by
using operating system authentication:

% rman TARGET / AUXILIARY SYS/sys_pwd@sbdb1

F.3.2 Setting Up a Standby Database When All Files Are Oracle Managed Files
If the standby database uses OMF for all files, you must set the following parameters
on the standby database or auxiliary instance before you perform the RMAN
duplication. Oracle recommends using a server parameter file (SPFILE) when the
database control files are OMF files. Otherwise, at end of the following procedure, be
sure to update the CONTROL_FILE initialization parameter with the value of the
control file names column in V$CONTROLFILE view.

Required initialization parameter changes:
1. Set up a different DB_NAME parameter for duplicate databases and a different DB_

UNIQUE_NAME parameter for standby databases

2. Do not set the LOG_FILE_NAME_CONVERT and DB_FILE_NAME_CONVERT
parameters

3. Do not set the CONTROL_FILE parameter (if the database control files are to be
OMF files)

4. Set the DB_CREATE_FILE_DEST parameter (all datafiles, control file and online
redo log will be created in this destination)

5. Set the STANDBY_FILE_MANAGEMENT=AUTO parameter (for standby database
duplication only)

You can use the ALTER SYSTEM RESET statement to clear initialization parameters in
the SPFILE for steps 2 and 3. For example:

ALTER SYSTEM RESET CONTROL_FILE SCOPE=SPFILE SID='*'

Optional initialization parameter changes:
Set the DB_CREATE_FILE_DEST parameter to create one copy of the control file and
one member of the online redo log. To create more than one control file and online
redo log file, set the DB_CREATE_ONLINE_LOG_DEST_n (where n can be an integer
from 1 to 5) parameter, depending on the number of multiplexed copies you require.
The control file and online redo log files are not created in DB_CREATE_FILE_DEST
when one DB_CREATE_ONLINE_LOG_DEST_n parameter is set. For example, if you
set DB_CREATE_ONLINE_LOG_DEST_1 and DB_CREATE_ONLINE_LOG_DEST_2,
then you will get two copies of the control file and online redo log file on each
destination.

Creating a Standby Database with the Same Directory Structure

Creating a Standby Database with Recovery Manager F-9

F.3.3 Setting Up a Standby Databases When a Subset of Files Are Oracle Managed
Files

If only some of the primary database files are OMF files, or if there are datafiles spread
across more than one disk group, you may want to create a duplicate database with
exactly the same structure.

For example, fast datafiles may reside in +'FAST'disk group and slow datafiles may
reside in '+SLOW' disk group. After duplicating the database, you would like to have
its datafiles reside in '+FAST2' disk group and its slow datafiles reside in '+SLOW2'
disk group. To set up the standby database, configure the LOG_FILE_NAME_CONVERT
and DB_FILE_NAME_CONVERT parameters as ('+FAST', '+FAST2', '+SLOW',
'+SLOW2'). If you want the database to be in the same disk group but with a different
name, then change the middle part of the name. For example, use ('/boston/',
'/sfo/') where boston is the DB_UNIQUE_NAME of the primary database and sfo is
the DB_UNIQUE_NAME of the duplicate database.

Use the following steps to set initialization parameters on the standby database or
auxiliary instance before performing the RMAN duplication.

Required initialization parameter changes:
1. Set up a different DB_NAME parameter for duplicate database and a different DB_

UNIQUE_NAME for standby database

2. Set up the LOG_FILE_NAME_CONVERT and DB_FILE_NAME_CONVERT
parameters to convert file names

3. Modify the CONTROL_FILE parameter to specify new control files

F.4 Creating a Standby Database with the Same Directory Structure
The simplest case is to create the standby database on a different host and to use the
same directory structure. In this case, you do not need to set the DB_FILE_NAME_
CONVERT or LOG_FILE_NAME_CONVERT parameters in the standby initialization
parameter file or set new file names for the standby datafiles. The primary and
standby datafiles and log files have the same file names.

F.4.1 Creating the Standby Database Without Performing Recovery
To create the standby database without performing recovery, do not specify the
DORECOVER option on the DUPLICATE command. By default, RMAN leaves the
standby database mounted and does not recover it.

To create a standby database without performing recovery:

1. Follow the steps in Section F.3, "Setting Up the Standby Database". Make sure to
set all necessary parameters in the standby initialization parameter file.

2. Follow these steps during duplication to create but not recover the standby
datafiles:

a. If automatic channels are not configured, then allocate at least one auxiliary
channel. This channel performs the work of duplication.

b. Specify NOFILENAMECHECK in the DUPLICATE command. The
NOFILENAMECHECK option is required when the standby and primary
datafiles and log files have the same names. Otherwise, RMAN returns an
error.

For example, run the following command to create the standby database:

Creating a Standby Database with a Different Directory Structure

F-10 Oracle Data Guard Concepts and Administration

DUPLICATE TARGET DATABASE FOR STANDBY
 NOFILENAMECHECK;

F.4.2 Creating the Standby Database and Performing Recovery
To create the standby database and perform recovery, specify the DORECOVER option
on the DUPLICATE command.

To create a standby database and perform recovery:

1. Follow the steps in Section F.3. Make sure to set all necessary parameters in the
standby initialization parameter file.

2. Follow these steps to restore and recover the standby datafiles:

a. Ensure the end recovery time is greater than or equal to the checkpoint SCN of
the standby control file and that a log file containing the checkpoint SCN is
available for recovery.

b. If desired, issue a SET command to specify the end time, SCN, or log sequence
number for incomplete recovery.

c. If automatic channels are not configured, then manually allocate at least one
auxiliary channel.

d. Specify the NOFILENAMECHECK parameter in the DUPLICATE command, and
use the DORECOVER option.

For example, enter the following at the RMAN prompt to use a configured channel
to create the standby database:

If desired, issue a LIST command to determine the SCN of the standby control
file.
The SCN to which you recover must be greater than or equal to the standby
control
file SCN.
LIST BACKUP OF CONTROLFILE;
LIST COPY OF CONTROLFILE;

RUN
{
 # If desired, issue a SET command to terminate recovery at a specified point.
 # SET UNTIL SCN 143508;
 DUPLICATE TARGET DATABASE FOR STANDBY
 NOFILENAMECHECK
 DORECOVER;
}

RMAN uses all incremental backups, archived redo log file backups, and archived
redo log files to perform incomplete recovery. The standby database is left
mounted.

F.5 Creating a Standby Database with a Different Directory Structure
If you create the standby database on a host with a different directory structure, you
need to specify new file names for the standby database datafiles and redo log files.
You can do the following:

■ Set the LOG_FILE_NAME_CONVERT parameter in the standby initialization
parameter file to name the redo log files on the standby database. If you do not set
LOG_FILE_NAME_CONVERT, then you must use the NOFILENAMECHECK option of
the DUPLICATE command.

Creating a Standby Database with a Different Directory Structure

Creating a Standby Database with Recovery Manager F-11

■ Set the DB_FILE_NAME_CONVERT parameter in the standby initialization
parameter file to name the standby datafiles.

■ Issue the SET NEWNAME command or the CONFIGURE AUXNAME command when
using the RMAN DUPLICATE command to name the datafiles.

When creating the standby database on a host with a different directory structure,
follow one of the procedures in the following sections:

■ Naming Standby Database Files with DB_FILE_NAME_CONVERT

■ Naming Standby Database Files with SET NEWNAME

■ Naming Standby Database Files with CONFIGURE AUXNAME

See Oracle Database Backup and Recovery Advanced User's Guide to learn about the
difference between SET NEWNAME and CONFIGURE AUXNAME, and Chapter 3 for a
complete discussion of physical standby database preparation and creation.

F.5.1 Naming Standby Database Files with DB_FILE_NAME_CONVERT
In this procedure, you use the DB_FILE_NAME_CONVERT parameter to name the
standby datafiles and the LOG_FILE_NAME_CONVERT parameter to name the redo log
files on the standby database. See Section 3.1.4 for examples of how to use the DB_
FILE_NAME_CONVERT and LOG_FILE_NAME_CONVERT parameters to name standby
database files.

F.5.1.1 Creating the Standby Database Without Performing Recovery
To create the standby database without performing recovery, do not specify the
DORECOVER option on the DUPLICATE command. By default, RMAN leaves the
standby database mounted and does not recover it.

To use parameters to name standby files without performing recovery:

1. Follow the steps in Section F.3. Make sure to set all necessary parameters in the
standby initialization parameter file.

2. Run the DUPLICATE command. For example, run the following:

DUPLICATE TARGET DATABASE FOR STANDBY;

After restoring the backups, RMAN leaves the standby database mounted.

F.5.1.2 Creating the Standby Database and Performing Recovery
After using the DB_FILE_NAME_CONVERT parameter to name the standby datafiles
and the LOG_FILE_NAME_CONVERT parameter to name the log files on the standby
database, specify the DORECOVER option on the DUPLICATE command to create the
standby database and perform recovery. The steps in the procedure are the same as for
Section F.4.2.

F.5.2 Naming Standby Database Files with SET NEWNAME
In this procedure, you use SET NEWNAME commands to name the standby datafiles.

F.5.2.1 Creating the Standby Database Without Performing Recovery
To create the standby database without performing recovery, do not specify the
DORECOVER option on the DUPLICATE command. By default, RMAN leaves the
standby database mounted and does not recover it.

Creating a Standby Database with a Different Directory Structure

F-12 Oracle Data Guard Concepts and Administration

To name standby database files with the SET NEWNAME command without
performing recovery:

1. Follow the steps in Section F.3. Make sure to set all necessary parameters in the
standby initialization parameter file.

2. Run the DUPLICATE command. Perform the following steps:

a. If automatic channels are not configured, then manually allocate at least one
auxiliary channel.

b. Specify new file names for the standby database datafiles with SET NEWNAME
commands.

c. Issue the DUPLICATE command.

The following example uses a configured channel to create the standby database:

RUN
{
 # set new file names for the datafiles
 SET NEWNAME FOR DATAFILE 1 TO '?/dbs/standby_data_01.f';
 SET NEWNAME FOR DATAFILE 2 TO '?/dbs/standby_data_02.f';
 .
 .
 .
 # run the DUPLICATE command
 DUPLICATE TARGET DATABASE FOR STANDBY;
}

F.5.2.2 Creating the Standby Database and Performing Recovery
To create the standby database and perform recovery, specify the DORECOVER option
on the DUPLICATE command.

To use the SET NEWNAME command to name standby database files and perform
recovery:

1. Follow the steps in Section F.3. Make sure to set all necessary parameters in the
standby initialization parameter file.

2. Run the DUPLICATE command. Follow these steps:

a. Ensure the end recovery time is greater than or equal to the checkpoint SCN of
the standby control file and that a log file containing the checkpoint SCN is
available for recovery (as described in Section F.2.2).

b. If desired, issue a SET command to specify the end time, SCN, or log sequence
number for incomplete recovery.

c. If automatic channels are not configured, then manually allocate at least one
auxiliary channel.

d. Specify new file names for the standby database datafiles.

e. Issue the DUPLICATE command with the DORECOVER option.

For example, enter the following at the RMAN prompt to use a configured channel
to create the standby database:

If desired, issue a LIST command to determine the SCN of the standby control
file.
The SCN to which you recover must be greater than or equal to the control
file SCN.

LIST BACKUP OF CONTROLFILE;

Creating a Standby Database with a Different Directory Structure

Creating a Standby Database with Recovery Manager F-13

LIST COPY OF CONTROLFILE;
RUN
{
 # If desired, issue a SET command to terminate recovery at a specified point.
 # SET UNTIL TIME 'SYSDATE-7';

 # Set new file names for the datafiles
 SET NEWNAME FOR DATAFILE 1 TO '?/dbs/standby_data_01.f';
 SET NEWNAME FOR DATAFILE 2 TO '?/dbs/standby_data_02.f';
 .
 .
 .
 DUPLICATE TARGET DATABASE FOR STANDBY
 DORECOVER;
}

RMAN uses all incremental backups, archived redo log file backups, and archived
redo log files to perform incomplete recovery. The standby database is left
mounted.

F.5.3 Naming Standby Database Files with CONFIGURE AUXNAME
In this procedure, you use CONFIGURE AUXNAME commands to name the standby
datafiles.

F.5.3.1 Creating the Standby Database Without Performing Recovery
To create the standby database without performing recovery, do not specify the
DORECOVER option on the DUPLICATE command. By default, RMAN leaves the
standby database mounted and does not recover it.

To use CONFIGURE AUXNAME to name standby database files without
performing recovery:

1. Follow the steps in Section F.3. Make sure to set all necessary parameters in the
standby initialization parameter file.

2. Configure the auxiliary names for the datafiles. For example, enter:

set auxiliary names for the datafiles
CONFIGURE AUXNAME FOR DATAFILE 1 TO '/oracle/auxfiles/aux_1.f';
CONFIGURE AUXNAME FOR DATAFILE 2 TO '/oracle/auxfiles/aux_2.f';
.
.
.
CONFIGURE AUXNAME FOR DATAFILE n TO '/oracle/auxfiles/aux_n.f';

3. Run the DUPLICATE command. If automatic channels are not configured,
manually allocate at least one auxiliary channel before issuing the DUPLICATE
command, as in the following example:

RUN
{
 # allocate at least one auxiliary channel of type DISK or sbt
 ALLOCATE AUXILIARY CHANNEL standby1 DEVICE TYPE sbt;
 .
 .
 .
 # issue the DUPLICATE command
 DUPLICATE TARGET DATABASE FOR STANDBY;
}

Creating a Standby Database with a Different Directory Structure

F-14 Oracle Data Guard Concepts and Administration

4. Unspecify the auxiliary names for the datafiles so that they are not overwritten by
mistake. For example, enter the following at the RMAN prompt:

un-specify auxiliary names for the datafiles
CONFIGURE AUXNAME FOR DATAFILE 1 CLEAR;
CONFIGURE AUXNAME FOR DATAFILE 2 CLEAR;
.
.
.
CONFIGURE AUXNAME FOR DATAFILE n CLEAR;

F.5.3.2 Creating the Standby Database and Performing Recovery
To create the standby database and perform recovery, specify the DORECOVER option
on the DUPLICATE command.

To use CONFIGURE AUXNAME to name standby files and perform recovery:

1. Follow the steps in Section F.3. Make sure to set all necessary parameters in the
standby initialization parameter file.

2. Set the auxiliary names for the datafiles. For example, enter the following:

set auxiliary names for the datafiles
CONFIGURE AUXNAME FOR DATAFILE 1 TO '/oracle/auxfiles/aux_1.f';
CONFIGURE AUXNAME FOR DATAFILE 2 TO '/oracle/auxfiles/aux_2.f';
.
.
.
CONFIGURE AUXNAME FOR DATAFILE n TO '/oracle/auxfiles/aux_n.f';

3. Run the DUPLICATE command. Follow these steps:

■ Ensure the end recovery time is greater than or equal to the checkpoint SCN of
the standby control file and that a log file containing the checkpoint SCN is
available for recovery (as described in Section F.2.2).

■ If desired, issue a SET command to specify the end time, SCN, or log sequence
number for incomplete recovery.

■ If automatic channels are not configured, then manually allocate at least one
auxiliary channel.

■ Issue the DUPLICATE TARGET DATABASE for standby command.

For example, enter the following at the RMAN prompt to use a configured channel
to create the standby database:

If desired, issue a LIST command to determine the SCN of the standby control
file.
The SCN to which you recover must be greater than or equal to the control
file SCN.
LIST BACKUP OF CONTROLFILE;
LIST COPY OF CONTROLFILE;

DUPLICATE TARGET DATABASE FOR STANDBY
 DORECOVER;

RMAN uses all incremental backups, archived redo log file backups, and archived
redo log files to perform incomplete recovery. The standby database is left
mounted.

Creating a Standby Database with Image Copies

Creating a Standby Database with Recovery Manager F-15

4. Clear the auxiliary name settings for the datafiles so that they are not overwritten
by mistake. For example, enter the following at the RMAN prompt:

un-specify auxiliary names for the datafiles
CONFIGURE AUXNAME FOR DATAFILE 1 CLEAR;
CONFIGURE AUXNAME FOR DATAFILE 2 CLEAR;
.
.
.
CONFIGURE AUXNAME FOR DATAFILE n CLEAR;

F.6 Creating a Standby Database on the Local Host
When creating a standby database on the same host as the primary database, follow
the same procedure as for duplicating to a remote host with a different directory
structure as described in Section F.5.

Note the following restrictions when creating a standby database on the same host as
the primary database:

■ You can create the standby database in the same Oracle home as the target
database, but you must convert the file names with the same methods used for
conversion on a separate host. That is, you must treat a standby database in the
same Oracle home as if it were a database on a separate host with a different
directory structure. You must not use the same names for standby and primary
database files when the two databases are on the same machine.

■ You must set the DB_UNIQUE_NAME initialization parameter on both databases.

F.7 Creating a Standby Database with Image Copies
This section contains these topics:

■ Overview

■ When Copies and Datafiles Use the Same Names

■ When Copies and Datafiles Use Different Names

F.7.1 Overview
The main restriction when using RMAN image copies to create the standby datafiles is
that the image copy file names for datafiles and archived redo log files on the primary
and standby hosts must be the same. For example, assume that datafile 1 is named
/oracle/dbs/df1.f on the primary host. If you use the RMAN COPY command to
copy this datafile to /data/df1.f, then this image copy must exist on the standby
host with the same file name of /data/df1.f. Otherwise, RMAN cannot locate the
metadata for the standby image copy in its repository.

You have two main ways of populating the standby host with the image copies:

■ Transferring them manually with ftp or some other utility

CAUTION: Do not use the NOFILENAMECHECK option when
creating the standby database in the same Oracle home as the
primary database. If you do, then you may overwrite the target
database files or cause the DUPLICATE command to fail with an
error.

Creating a Standby Database with Image Copies

F-16 Oracle Data Guard Concepts and Administration

■ Mounting the standby directory structure on the primary host with a network file
system (NFS)

When you use the NFS method, you can create a directory on the primary host that
maps to a directory on the standby host. If you use this method, then the NFS mount
point on both machines must have the same directory name. For example, you can
map /data on the primary host to /data on the standby host, but you cannot map
/data on the primary host to /dir on the standby host (unless you use functionality
such as symbolic links in UNIX or logical drives on Windows).

The file name of the image copy on the standby host must be the same as the file name
of the image copy on the primary host. Nevertheless, you can specify a different path
name for the standby datafile by using SET NEWNAME commands or the DB_FILE_
NAME_CONVERT initialization parameter.

For example, although the image copy of datafile 1 is named /data/df1.f on the
standby host, you can specify the path name /oracle/sb/df1.f in the standby
control file by using initialization parameters or RMAN commands. Note that you do
not manually rename the physical image copy. When you run the DUPLICATE
command, RMAN restores the image copy /data/df1.f and creates the standby
datafile 1 as /oracle/sb/df1.f based on the information in the initialization
parameters or RMAN commands.

Table F–3 illustrates two scenarios for using NFS to create a standby database with one
datafile.

Table F–3 assumes that the standby directory structure is mounted on the primary
host, and that the mount point is /data on both hosts. Because the primary host
mounts the standby host directory structure, when you create the image copy
/data/df1.f on the primary host, you are actually creating the image copy
/data/df1.f on the standby host.

In the first scenario, you name the standby datafiles with the same file names as the
image copies. This case is the simplest because you do not need to use RMAN at all to
create the standby database. First, set the DB_FILE_NAME_CONVERT parameter in the
standby initialization parameter file to convert the primary datafile file name
/oracle/dbs/df1.f to the standby file name /data/df1.f. Then, copy the files to
the standby host, and mount the standby database.

In the second scenario, you use different file names for the standby datafiles and the
image copies. To create this standby database, run the DUPLICATE command. The
DUPLICATE command restores the image copy of datafile 1 and renames it according
to either the SET NEWNAME commands or the DB_FILE_NAME_CONVERT initialization
parameter.

Table F–3 Using Image Copies to Create a Standby Database: Scenario

NFS Mount
Point

Primary Datafile File
Name

Image Copy
File Name

Standby Datafile File
Name Procedure

/data

(same on
both hosts)

/oracle/dbs/df1.f /data/df1.f /data/df1.f

(same path name as
image copy)

See Section F.7.2, "When
Copies and Datafiles Use the
Same Names"

/data

(same on
both hosts)

/oracle/dbs/df1.f /data/df1.f /oracle/sb/df1.f

(different path name
from image copy)

See Section F.7.3, "When
Copies and Datafiles Use
Different Names"

Creating a Standby Database with Image Copies

Creating a Standby Database with Recovery Manager F-17

F.7.2 When Copies and Datafiles Use the Same Names
This procedure assumes that you are using the same file names for the standby
datafiles and the image copies of the primary datafiles.

To create a standby database when the copies and standby datafiles have the same
names:

1. After connecting to the primary database, and if desired, the recovery catalog
database, mount but do not open the primary database and ensure the database
was closed cleanly before mounting. For example, enter:

RMAN> STARTUP MOUNT PFILE=init.ora;

2. Make sure that you set DB_FILE_NAME_CONVERT in the standby initialization
parameter file so that standby datafile file names are translated from the primary
datafile file names. For example:

DB_FILE_NAME_CONVERT = '/oracle/dbs', '/dsk2/oracle'

3. Copy all of the datafiles and the standby control file. For example, enter:

COPY
 DATAFILE 1 TO '/dsk2/oracle/df_1.f',
 DATAFILE 2 TO '/dsk2/oracle/df_2.f',
 DATAFILE 3 TO '/dsk2/oracle/df_3.f',
 DATAFILE 4 to '/dsk2/oracle/df_4.f',
 DATAFILE 5 TO '/dsk2/oracle/df_5.f',
 DATAFILE 6 TO '/dsk2/oracle/df_6.f',
 DATAFILE 7 TO '/dsk2/oracle/df_7.f',
 DATAFILE 8 to '/dsk2/oracle/df_8.f',
 DATAFILE 9 TO '/dsk2/oracle/df_9.f',
 DATAFILE 10 TO '/dsk2/oracle/df_10.f',
 DATAFILE 11 TO '/dsk2/oracle/df_11.f',
 DATAFILE 12 to '/dsk2/oracle/df_12.f',
 CURRENT CONTROLFILE FOR STANDBY TO '/dsk2/oracle/cf.f';

4. Start the standby instance and mount the standby control file. For example, start
SQL*Plus and enter:

SQL> STARTUP NOMOUNT PFILE=/dsk2/oracle/dbs/initSTANDBY1.ora
SQL> ALTER DATABASE MOUNT;

F.7.3 When Copies and Datafiles Use Different Names
This procedure assumes that you use different file names for the standby datafiles and
the image copies of the primary datafiles.

F.7.3.1 Creating the Standby Database Without Performing Recovery
To create the standby database without performing recovery, you do not need to run
the DUPLICATE command. By default, RMAN leaves the standby database mounted
and does not recover it.

To create a standby database when the copies and standby datafiles have different
names without performing recovery:

1. Connect to the primary database, standby instance, and, if desired, the recovery
catalog database. For example, enter:

% rman TARGET sys/sys_pwd@prod1 AUXILIARY sys/sys_pwd@sbdb1 CATALOG
rman/cat@catdb

Creating a Standby Database with Image Copies

F-18 Oracle Data Guard Concepts and Administration

2. Mount but do not open the primary database and ensure the database was closed
cleanly before mounting. For example, enter:

STARTUP MOUNT PFILE=initPROD1.ora

3. Either set the DB_FILE_NAME_CONVERT initialization parameter on the standby
database so that standby datafile file names are translated from the primary
datafile file names, or issue SET NEWNAME commands. For example, set the DB_
FILE_NAME_CONVERT parameter as follows:

DB_FILE_NAME_CONVERT = '/oracle/dbs', '/dsk2/oracle'

4. Use the COPY command to copy all of the datafiles and the standby control file.
For example, issue the following commands:

COPY
 DATAFILE 1 TO '/dsk2/oracle/df_1.f',
 DATAFILE 2 TO '/dsk2/oracle/df_2.f',
 DATAFILE 3 TO '/dsk2/oracle/df_3.f',
 DATAFILE 4 to '/dsk2/oracle/df_4.f',
 DATAFILE 5 TO '/dsk2/oracle/df_5.f',
 DATAFILE 6 TO '/dsk2/oracle/df_6.f',
 DATAFILE 7 TO '/dsk2/oracle/df_7.f',
 DATAFILE 8 to '/dsk2/oracle/df_8.f',
 DATAFILE 9 TO '/dsk2/oracle/df_9.f',
 DATAFILE 10 TO '/dsk2/oracle/df_10.f',
 DATAFILE 11 TO '/dsk2/oracle/df_11.f',
 DATAFILE 12 to '/dsk2/oracle/df_12.f',
 CURRENT CONTROLFILE FOR STANDBY TO '/dsk2/oracle/cf.f';
To ensure the control file checkpoint is archived, archive the
current redo log file
SQL 'ALTER SYSTEM ARCHIVE LOG CURRENT';

5. Start the auxiliary instance and mount the standby control file. For example, start
SQL*Plus and enter:

SQL> STARTUP MOUNT PFILE=/dsk2/oracle/dbs/initSTANDBY1.ora

F.7.3.2 Creating the Standby Database and Performing Recovery
To create the standby database and perform recovery, specify the DORECOVER option
on the DUPLICATE command.

To create a standby database when the copies and standby datafiles have different
names and perform recovery:

1. Connect to the primary database, standby instance, and, if desired, the recovery
catalog database. For example, enter:

% rman TARGET sys/sys_pwd@prod1 AUXILIARY sys/sys_pwd@sbdb1 CATALOG
rman/cat@catdb

2. Mount but do not open the primary database and ensure the database was closed
cleanly before mounting. For example, enter:

STARTUP MOUNT PFILE=initPROD1.ora

3. Either set DB_FILE_NAME_CONVERT in the standby initialization parameter file so
that standby datafile file names are translated from the primary datafile file
names, or issue SET NEWNAME commands. For example, set the DB_FILE_NAME_
CONVERT parameter as follows:

DB_FILE_NAME_CONVERT = '/oracle/dbs', '/dsk2/oracle'

Usage Scenario

Creating a Standby Database with Recovery Manager F-19

4. Run the DUPLICATE command. Follow these steps:

a. Ensure the end recovery time is greater than or equal to the checkpoint SCN of
the standby control file and that a log file containing the checkpoint SCN is
available for recovery (as described in Section F.2.2).

b. If desired, issue a SET command to specify the end time, SCN, or log sequence
number for recovery.

c. If automatic channels are not configured, then manually allocate at least one
auxiliary channel for the duplication.

d. Copy every datafile and the standby control file.

e. Archive the current online redo log files.

f. Issue the DUPLICATE command with the DORECOVER option.

For example, enter the following:

COPY
 DATAFILE 1 TO '/dsk2/oracle/df_1.f',
 DATAFILE 2 TO '/dsk2/oracle/df_2.f',
 DATAFILE 3 TO '/dsk2/oracle/df_3.f',
 DATAFILE 4 to '/dsk2/oracle/df_4.f',
 DATAFILE 5 TO '/dsk2/oracle/df_5.f',
 DATAFILE 6 TO '/dsk2/oracle/df_6.f',
 DATAFILE 7 TO '/dsk2/oracle/df_7.f',
 DATAFILE 8 to '/dsk2/oracle/df_8.f',
 DATAFILE 9 TO '/dsk2/oracle/df_9.f',
 DATAFILE 10 TO '/dsk2/oracle/df_10.f',
 DATAFILE 11 TO '/dsk2/oracle/df_11.f',
 DATAFILE 12 to '/dsk2/oracle/df_12.f',
 CURRENT CONTROLFILE FOR STANDBY TO '/dsk2/oracle/cf.f';
 SQL 'ALTER SYSTEM ARCHIVE LOG CURRENT';
 DUPLICATE TARGET DATABASE FOR STANDBY
 DORECOVER;

RMAN uses all incremental backups, archived redo log file backups, and archived
redo log files to perform incomplete recovery. The standby database is left
mounted.

F.8 Usage Scenario
In this scenario, you are performing a duplication that uses both backups and image
copies of the primary datafiles. The scenario illustrates how RMAN is able to use both
datafile backups and datafile copies for the standby files, and also is able to use both
incremental backups and archived redo log files to recover the standby database.

Assume the following about the standby database environment:

■ The primary database is on host1 and the standby database is on host2.

■ Database prod1 has 30 datafiles: datafiles 1 through 25 are on a raw disk named
with the pattern /dev/rdsk### (where ### is a number starting with 001 and
ending with 025), and datafiles 26 through 30 are located in the
/primary/datafile directory.

You perform the following actions over the course of a week:

1. On Monday, you run the following incremental level 0 database backup:

Usage Scenario

F-20 Oracle Data Guard Concepts and Administration

BACKUP DEVICE TYPE sbt INCREMENTAL LEVEL 0 DATABASE PLUS ARCHIVELOG;

2. On Tuesday, copy datafiles 1 through 5 into the /standby/datafile directory
on host1, then run the BACKUP ARCHIVELOG ALL command.

3. On Wednesday, copy datafiles 6 through 9 into the /standby/datafile
directory on host1, then run the BACKUP ARCHIVELOG ALL command.

4. On Thursday, run the following incremental level 1 database backup:

BACKUP DEVICE TYPE sbt INCREMENTAL LEVEL 1 DATABASE PLUS ARCHIVELOG;

5. On Friday, copy datafiles 10 through 15 into the /standby/datafile directory
on host1, then run the BACKUP ARCHIVELOG ALL command.

6. On Saturday morning, run the following RMAN commands:

COPY CURRENT CONTROLFILE FOR STANDBY TO '/standby/datafile/cf.f';
SQL 'ALTER SYSTEM ARCHIVELOG CURRENT';
BACKUP DEVICE TYPE sbt ARCHIVELOG ALL;

7. On Saturday night, ftp all the image copies in /standby/datafile on host1 to
/standby/datafile on host2, and also ftp all the log files on host1 to host2;
also make the tape backups of prod1 accessible to host2.

On Sunday, you decide to create the standby database and recover it up to the point of
the Saturday backup. You want all the standby datafiles to be located in the
/standby/datafile directory on host2.

You must choose a method for naming the standby datafiles. You could use the DB_
FILE_NAME_CONVERT parameter to change each pattern of the raw disk datafiles,
which would require 25 pairs of values in the parameter (one pair for each raw disk
file name that is being renamed). Instead, you decide to use SET NEWNAME commands
for the 25 datafiles on raw disk, and use the DB_FILE_NAME_CONVERT parameter
only for converting the names for the five datafiles in /primary/datafile to
/standby/datafile.

The image copies are located in /standby/datafile on host2, but you only made
copies of datafiles 1 through 15. This is not a problem, however, because you have
incremental backups of all the datafiles. RMAN always chooses to restore image copies
over backups, but if no image copies are available, then RMAN restores backups. So,
you run the following script:

RUN
{
 # run SET NEWNAME commands for datafiles 1-25
 SET NEWNAME FOR DATAFILE 1 TO '/standy/datafile/df1.f';
 SET NEWNAME FOR DATAFILE 2 TO '/standby/datafile/df2.f';
 .
 .
 .
 SET NEWNAME FOR DATAFILE 25 TO '/standby/datafile/df25.f';
 DUPLICATE TARGET DATABASE FOR STANDBY DORECOVER;
}

RMAN does the following actions during the duplication:

■ Uses the image copies of datafiles 1 through 15.

■ Restores the backups of datafiles 16 through 30 (because no image copies are
available of these datafiles).

Usage Scenario

Creating a Standby Database with Recovery Manager F-21

■ Uses incremental backups to recover datafiles 1 through 9 and datafiles 16 through
30, but not to recover datafiles 10 through 15 because these copies were created on
Friday after the Thursday incremental level 1 backup.

■ Restores and applies archived redo log files as needed to datafiles 1 through 30 up
to the last archived redo log file that was backed up.

■ Applies archived redo log files on disk up to the last archived redo log file.

Usage Scenario

F-22 Oracle Data Guard Concepts and Administration

Setting Archive Tracing G-1

G
Setting Archive Tracing

The Oracle database writes an audit trail of the archived redo log files received from
the primary database into a trace file. The LOG_ARCHIVE_TRACE parameter controls
output generated by the ARCn, LGWR, and foreground processes on the primary
database, and the RFS and FAL server processes on the standby database.

G.1 LOG_ARCHIVE_TRACE Initialization Parameter
To see the archiving to the standby site, set the LOG_ARCHIVE_TRACE parameter in
the primary and standby initialization parameter files. When you set the LOG_
ARCHIVE_TRACE parameter, it causes the Oracle database to write an audit trail to a
trace file as follows:

■ On the primary database

This causes the Oracle database to write an audit trail of archiving process activity
(ARCn and foreground processes, LGWR, and FAL activities) on the primary
database in a trace file whose filename is specified in the USER_DUMP_DEST
initialization parameter.

■ On the standby database

This causes the Oracle database to write an audit trail of the RFS process and the
ARCn process activity relating to archived redo log files on the standby database
in a trace file whose filename is specified in the USER_DUMP_DEST initialization
parameter.

G.2 Determining the Location of the Trace Files
The trace files for a database are located in the directory specified by the USER_DUMP_
DEST parameter in the initialization parameter file. Connect to the primary and
standby instances using SQL*Plus, and issue a SHOW statement to determine the
location, for example:

SQL> SHOW PARAMETER USER_DUMP_DEST
NAME TYPE VALUE
------------------------------------ ------- ------------------------------
user_dump_dest string ?/rdbms/log

G.2.1 Setting the LOG_ARCHIVE_TRACE Initialization Parameter
The format for the archiving trace parameter is as follows, where trace_level is an
integer:

LOG_ARCHIVE_TRACE=trace_level

Determining the Location of the Trace Files

G-2 Oracle Data Guard Concepts and Administration

To enable, disable, or modify the LOG_ARCHIVE_TRACE parameter for a physical
standby database, issue a SQL statement similar to the following:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_TRACE=15;

In the previous example, setting the LOG_ARCHIVE_TRACE parameter to a value of 15
sets trace levels 1, 2, 4, and 8 as described in Section G.2.2.

Issue the ALTER SYSTEM statement from a different standby session so that it affects
trace output generated by the remote file service (RFS) and ARCn processes when the
next archived redo log file is received from the primary database. For example, enter:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_TRACE=32;

G.2.2 Choosing an Integer Value
The integer values for the LOG_ARCHIVE_TRACE parameter represent levels of tracing
data. In general, the higher the level, the more detailed the information. The following
integer levels are available:

You can combine tracing levels by setting the value of the LOG_ARCHIVE_TRACE
parameter to the sum of the individual levels. For example, setting the parameter to 6
generates level 2 and level 4 trace output.

The following are examples of the ARC0 trace data generated on the primary site by
the archiving of log file 387 to two different destinations: the service standby1 and
the local directory /oracle/dbs.

Level Corresponding entry content (sample)

Level Meaning

0 Disables archived redo log tracing (default setting)

1 Tracks archiving of log files

2 Tracks archive status by archive log file destination

4 Tracks archive operational phase

8 Tracks archive log destination activity

16 Tracks detailed archive log destination activity

32 Tracks archive log destination parameter modifications

64 Tracks ARCn process state activity

128 Tracks FAL server process activity

256 Track RFS Logical Client

512 Tracks LGWR redo shipping network activity

1024 Tracks RFS physical client

2048 Tracks RFS/ARCn ping heartbeat

4096 Tracks real-time apply activity

8192 Tracks Redo Apply activity (media recovery or physical standby)

Note: The level numbers do not appear in the actual trace output;
they are shown here for clarification only.

Determining the Location of the Trace Files

Setting Archive Tracing G-3

----- --------------------------------
(1) ARC0: Begin archiving log# 1 seq# 387 thrd# 1
(4) ARC0: VALIDATE
(4) ARC0: PREPARE
(4) ARC0: INITIALIZE
(4) ARC0: SPOOL
(8) ARC0: Creating archive destination 2 : 'standby1'
(16) ARC0: Issuing standby Create archive destination at 'standby1'
(8) ARC0: Creating archive destination 1 : '/oracle/dbs/d1arc1_387.log'
(16) ARC0: Archiving block 1 count 1 to : 'standby1'
(16) ARC0: Issuing standby Archive of block 1 count 1 to 'standby1'
(16) ARC0: Archiving block 1 count 1 to : '/oracle/dbs/d1arc1_387.log'
(8) ARC0: Closing archive destination 2 : standby1
(16) ARC0: Issuing standby Close archive destination at 'standby1'
(8) ARC0: Closing archive destination 1 : /oracle/dbs/d1arc1_387.log
(4) ARC0: FINISH
(2) ARC0: Archival success destination 2 : 'standby1'
(2) ARC0: Archival success destination 1 : '/oracle/dbs/d1arc1_387.log'
(4) ARC0: COMPLETE, all destinations archived
(16) ARC0: ArchivedLog entry added: /oracle/dbs/d1arc1_387.log
(16) ARC0: ArchivedLog entry added: standby1
(4) ARC0: ARCHIVED
(1) ARC0: Completed archiving log# 1 seq# 387 thrd# 1

(32) Propagating archive 0 destination version 0 to version 2
 Propagating archive 0 state version 0 to version 2
 Propagating archive 1 destination version 0 to version 2
 Propagating archive 1 state version 0 to version 2
 Propagating archive 2 destination version 0 to version 1
 Propagating archive 2 state version 0 to version 1
 Propagating archive 3 destination version 0 to version 1
 Propagating archive 3 state version 0 to version 1
 Propagating archive 4 destination version 0 to version 1
 Propagating archive 4 state version 0 to version 1

(64) ARCH: changing ARC0 KCRRNOARCH->KCRRSCHED
 ARCH: STARTING ARCH PROCESSES
 ARCH: changing ARC0 KCRRSCHED->KCRRSTART
 ARCH: invoking ARC0
 ARC0: changing ARC0 KCRRSTART->KCRRACTIVE
 ARCH: Initializing ARC0
 ARCH: ARC0 invoked
 ARCH: STARTING ARCH PROCESSES COMPLETE
 ARC0 started with pid=8
 ARC0: Archival started

The following is the trace data generated by the RFS process on the standby site as it
receives archived redo log file 387 in directory /stby and applies it to the standby
database:

level trace output (sample)
---- ------------------
(4) RFS: Startup received from ARCH pid 9272
(4) RFS: Notifier
(4) RFS: Attaching to standby instance
(1) RFS: Begin archive log# 2 seq# 387 thrd# 1
(32) Propagating archive 5 destination version 0 to version 2
(32) Propagating archive 5 state version 0 to version 1
(8) RFS: Creating archive destination file: /stby/parc1_387.log
(16) RFS: Archiving block 1 count 11

Determining the Location of the Trace Files

G-4 Oracle Data Guard Concepts and Administration

(1) RFS: Completed archive log# 2 seq# 387 thrd# 1
(8) RFS: Closing archive destination file: /stby/parc1_387.log
(16) RFS: ArchivedLog entry added: /stby/parc1_387.log
(1) RFS: Archivelog seq# 387 thrd# 1 available 04/02/99 09:40:53
(4) RFS: Detaching from standby instance
(4) RFS: Shutdown received from ARCH pid 9272

Index-1

Index

A
activating

a clone database, 12-31
a logical standby database, 7-17, 15-4, B-6
a physical standby database, 7-10, 10-6, 12-31,

12-32, 12-38, 15-4
a read/write physical standby database, 12-29

activating a clone database, 12-31
adding

datafiles, 8-6, A-11, A-12
indexes on logical standby databases, 1-10, 2-3,

9-16
new or existing standby databases, 1-6
online redo log files, 5-23, 8-12
standby redo log, 3-2
standby redo log group members, 5-23
tablespaces, 8-6

adjusting
initialization parameter file

for logical standby database, 4-5
AFFIRM attribute, 5-19, 14-2
ALTER DATABASE statement

ABORT LOGICAL STANDBY clause, 15-4
ACTIVATE STANDBY DATABASE clause, 7-10,

7-17, 10-6, 12-31, 12-38, 15-4
ACTIVATE STANDBY DATABASE

statement, 12-31
ADD STANDBY LOGFILE clause, 3-3, 8-12, 15-1,

A-2
ADD STANDBY LOGFILE GROUP clause, 3-3
ADD STANDBY LOGFILE MEMBER

clause, 5-23, 15-1, A-2
ADD SUPPLEMENTAL LOG DATA clause, 15-1
ALTER STANDBY LOGFILE clause, 3-3
ALTER STANDBY LOGFILE GROUP clause, 3-3
CLEAR UNARCHIVED LOGFILES clause, 8-14
COMMIT TO SWITCHOVER clause, 7-8, 7-11,

7-15, 7-16, 12-39, 15-2
in Real Application Clusters, D-6
troubleshooting, A-5, A-6

CREATE CONTROLFILE clause, 8-14
CREATE DATAFILE AS clause, A-2
CREATE STANDBY CONTROLFILE clause, 3-8,

A-3
REUSE clause, 15-2

DROP LOGFILE clause, A-2
DROP STANDBY LOGFILE MEMBER

clause, 15-2, A-2
FORCE LOGGING clause, 2-5, 3-2, 12-41, 15-2
MOUNT STANDBY DATABASE clause, 15-2
OPEN READ ONLY clause, 15-2
OPEN RESETLOGS clause, 3-8, 8-14
PREPARE TO SWITCHOVER clause, 7-14, 15-2
RECOVER MANAGED STANDBY DATABASE

clause, 3-11, 4-7, 6-4, 8-5, 12-15, 12-38, 15-3
background process, 6-4, 8-2
canceling, 6-5
canceling log apply services, 8-4
controlling Redo Apply, 6-4
failover, 15-4
foreground session, 6-4
initiating failover, 7-11
overriding the delay interval, 6-3
starting real time apply, 6-5
switchover scenario, 12-38

REGISTER LOGFILE clause, 15-3, A-4
REGISTER LOGICAL LOGFILE clause, 12-19
RENAME FILE clause, 8-10, A-2
SET STANDBY DATABASE clause

TO MAXIMIZE AVAILABILITY clause, 15-3
TO MAXIMIZE PERFORMANCE clause, 7-6
TO MAXIMIZE PROTECTION clause, 15-3

START LOGICAL STANDBY APPLY clause, 6-5,
7-18, 11-6, A-9

IMMEDIATE keyword, 6-5, 9-14
NEW PRIMARY keyword, 7-18
starting SQL Apply, 4-7

STOP LOGICAL STANDBY APPLY clause, 6-5,
7-17, 11-6, 12-19, 15-4

ALTER SESSION DATABASE DISABLE GUARD
statement, 9-16

ALTER SESSION DISABLE GUARD statement
overriding the database guard, 9-16

ALTER SESSION GUARD DISABLE
disabling the database guard to define a database

link, 7-18
ALTER SESSION statement

GUARD ENABLE clause, 15-4
ALTER SYSTEM statement

ARCHIVE LOG CURRENT clause, 12-20, 12-21,
12-22, 12-23, 12-30, 12-40, B-2, B-4, B-6, F-3,

Index-2

F-19
SWITCH LOGFILE clause, 3-12

ALTER TABLESPACE statement, 8-11, 12-42, A-12
FORCE LOGGING clause, 8-12

alternate archive destinations
setting up initialization parameters for, A-3

ALTERNATE attribute, 14-4
LOG_ARCHIVE_DEST_n initialization

parameter, A-3
LOG_ARCHIVE_DEST_STATE_n initialization

parameter, 5-3
ANALYZER process, 9-2
APPLIED_SCN column

of V$LOGSTDBY_PROGRESS view, 12-17
APPLIER process, 9-2
applying

redo data immediately, 6-2
redo data on standby database, 1-3, 1-4, 2-1, 6-1
SQL statements to logical standby databases, 6-5

applying state, 9-12
AQ_TM_PROCESSES dynamic parameter, A-6
ARCH attribute, 14-6

LOG_ARCHIVE_DEST_n initialization parameter
setting for data protection, 5-19

archive destinations
alternate, A-3

archive gap
registering missing log files, 5-28

archive gaps
causes of, 12-43
defined, 5-25
finding with DBA_LOGSTDBY_LOG view, 5-28
finding with V$ARCHIVE_GAP view, 5-27
identifying the logs, 12-45
manually applying redo logs to standby

database, 12-47
manually copying the logs in, 12-46
manually resolving on a physical standby

database, 5-27
preventing, 12-44
registering missing log files, 5-28

ARCHIVE LOG CURRENT clause
of ALTER SYSTEM, 12-20, 12-21, 12-22, 12-23,

12-30, 12-40, B-2, B-4, B-6, F-3, F-19
archive tracing

standby databases and, 5-30, G-1
archived redo log files

accessing information about, 8-18, 8-20
affected by COMPATIBLE initialization

parameter, 5-21
applying

Redo Apply technology, 1-4
SQL Apply technology, 1-4

delaying application, 12-37, 14-8
on the standby database, 6-3

deleting unneeded, 9-12
destinations

disabling, 5-3
displaying with DBA_LOGSTDBY_LOG

view, 12-17

displaying with V$ARCHIVE_DEST_STATUS
view, 16-1

enabling, 5-3
determining the most recently archived, 5-29
finding gaps on logical standby databases, 5-28
finding gaps on physical standby databases, 5-27
listing, 12-17
managing gaps, 1-10, 5-25

 See also gap management
manually transferring, 2-5
manually transmitting, 12-46
overview, 2-8
redo data transmitted, 1-4, 6-1
registering, 5-28, 12-19

during failover, 7-16
partial, 12-19

retrieving missing, 12-18
specifying

directory location on the standby
database, 5-21

standby databases and, 6-5, 6-6, 8-19
temporary storage of, 5-2
troubleshooting switchover problems, A-4
verifying the contents of, 14-28

archived redo log repository, 5-2
ARCHIVELOG mode

software requirements, 2-5
archiver process (ARCn)

defined, 5-8
verifying the contents of completed archived redo

log files, 14-28
archiving

real-time apply, 6-2
specifying

failure resolution policies for, 5-16, 14-22
network transmission modes for, 5-10
with the STANDBY_ARCHIVE_DEST

initialization parameter, 5-7
starting, 3-12
to failed destinations, 5-16, 14-22
See also archived redo log files
See also redo transport services

ARCn process
See archiver process (ARCn)

ASM
 See Automatic Storage Management (ASM)

ASYNC attribute, 14-23
LOG_ARCHIVE_DEST_n initialization parameter

setting for data protection, 5-19
Asynchronous AutoLog, 5-3
asynchronous redo transmission, 5-12, 14-6, 14-23
attributes

deprecated for the LOG_ARCHIVE_DEST_n
initialization parameter, 14-1

authentication
checks using SYS credentials, 5-13
to transfer redo data, 5-13

automatic detection of missing log files, 1-3, 1-10,
5-25

automatic failover, 1-5, 7-1

Index-3

Automatic Storage Management (ASM)
creating a standby database that uses, 12-48

automatic switchover, 1-5, 7-1
 See also switchovers

B
BACKUP INCREMENTAL FROM SCN command

scenarios using, 12-33
backup operations

after failovers, 7-12, 7-19
after unrecoverable operations, 12-43
configuring on a physical standby database, 1-2
datafiles, 12-42
DB_FILE_NAME_CONVERT option of the RMAN

DUPLICATE command, F-4
offloading on the standby database, 1-10
primary databases, 1-2
used by the broker, 1-6
using RMAN, 10-1

basic readable standby database See simulating a
standby database environment

batch processing
on a logical standby database, 9-4

benefits
Data Guard, 1-9
logical standby database, 2-3
of a rolling upgrade, 11-1
physical standby database, 2-2
standby redo logs versus archived redo logs, 2-9

BFILE data types
in logical standby databases, C-2

BINARY_DEGREE data types
in logical standby databases, C-1

BINARY_FLOAT data types
in logical standby databases, C-1

BLOB data types
in logical standby databases, C-1

broker
command-line interface, 1-10
defined, 1-5
graphical user interface, 1-10

BUILDER process, 9-2

C
CANCEL option

managed recovery and, 8-2
canceling

log apply services, 8-4
cascaded destinations

defined, E-1
for logical standby databases, E-3
for physical standby databases, E-1, E-2
materialized view on logical standby

databases, E-6
require standby redo log files, 2-9
role transitions, E-4

Redo Apply, E-4
SQL Apply, E-4

scenario, E-4 to E-7
CHAR data types

in logical standby databases, C-1
checklist

tasks for creating physical standby databases, 3-7
tasks for creating standby databases, 4-3

checkpoints
V$LOGSTDBY_PROGRESS view, 9-3

chunking
transactions, 9-2

CJQ0 process, A-6
CLEAR UNARCHIVED LOGFILES clause

of ALTER DATABASE, 8-5, 8-14
CLOB data types

in logical standby databases, C-1
clone database

ACTIVATE STANDBY DATABASE clause, 12-31
activating, 12-31
activating a physical standby database, 12-29
creating a restore point for, 12-30
creating restore point for, 12-30
DB_RECOVERY_FILE_DEST initialization

parameter, 12-30
DB_RECOVERY_FILE_DEST_SIZE initialization

parameter, 12-30
clone databases

converting a physical standby database to, 12-29
cloning

a physical standby database, 12-29
activating a read/write database, 12-31
CREATE RESTORE POINT command, 12-30
creating a restore point, 12-30

cluster tables
in logical standby databases, C-2

collections data types
in logical standby databases, C-2

command-line interface
broker, 1-10

commands, Recovery Manager
DUPLICATE, F-2

COMMIT TO SWITCHOVER clause
of ALTER DATABASE, 7-8, 7-11, 7-15, 7-16,

12-39, 15-2
in Real Application Clusters, D-6
troubleshooting, A-5, A-6

COMMIT TO SWITCHOVER TO PRIMARY clause
of ALTER DATABASE, 7-16

communication
between databases in a Data Guard

configuration, 1-1
COMPATIBLE initialization parameter

effect on directory location for archived redo log
files, 5-21

setting for a rolling upgrade, 11-2, 11-3, 11-10
complementary technologies, 1-8
configuration options

creating with Data Guard broker, 1-5
of redo logs, 2-9
overview, 1-1
physical standby databases

Index-4

location and directory structure, 2-6
requirements for password files, 5-13
standby databases

archived redo log repository, 5-2
delayed application of archived redo log files

on, 12-37
delayed standby, 6-3

typical, 1-3
configuring

backups on standby databases, 1-2
cascaded destinations, E-2
disaster recovery, 1-2
initialization parameters

for alternate archive destinations, A-3
for physical standby database, 3-8
to create a standby database with a time

lag, 12-37
to set up redo transport services, 5-4

listener for physical standby databases, 3-11
no data loss, 1-5
physical standby databases, 2-6
redo logs, 2-9
reporting operations on a logical standby

database, 1-2
standby databases at remote locations, 1-2
standby redo log files, 3-2
standby redo log groups, 3-2

constraints
handled on a logical standby database, 9-20

Context
unsupported data types, C-2

Context data types
in logical standby databases, C-2

control files
copying, 3-10
creating for standby databases, 3-8
modifying with ALTER DATABASE RENAME

FILE statement, 8-10
planning growth of, 5-23
switchover and, 7-8

CONTROL_FILE_RECORD_KEEP_TIME
initialization parameter, 5-24

converting
a logical standby database to a physical standby

database
aborting, 4-5

a physical standby database to a logical standby
database, 4-5

COORDINATOR process, 9-2
LSP background process, 9-2

copying
control files, 3-10

CREATE CONTROLFILE clause
of ALTER DATABASE, 8-14

CREATE DATABASE statement
FORCE LOGGING clause, 12-41

CREATE DATAFILE AS clause
of ALTER DATABASE, A-2

CREATE RESTORE POINT command, 12-30
CREATE RESTORE POINT statement

activating a clone database, 12-30
CREATE STANDBY CONTROLFILE clause

of ALTER DATABASE, 3-8, 15-2, A-3
CREATE TABLE AS SELECT (CTAS) statements

applied on a logical standby database, 9-4
creating

a new password file, 4-5
database link, 7-18
indexes on logical standby databases, 9-16
standby database

that use OMF, F-7, F-8
standby redo log files, 3-3
traditional initialization parameter file

for physical standby database, 3-8
cross-instance archival

in Real Application Clusters configurations, D-3
standby redo log files and, D-3
using the log writer process, D-3

D
data availability

balancing against system performance
requirements, 1-10

data corruption
safeguarding against, 1-9

Data Guard broker
defined, 1-5
distributed management framework, 7-1
failovers, 1-6

fast-start, 7-1
manual, 1-6, 7-1

fast-start failover, 1-6
switchovers, 7-1

Data Guard configurations
archiving to standby destinations using the archive

process, 5-4
archiving to standby destinations using the log

writer process, 5-11, 6-2
defined, 1-1
protection modes, 1-7
redo transport services and, 5-1
upgrading Oracle Database software, B-1

data loss
due to failover, 1-5
minimizing, 7-10
switchover and, 7-2

data protection
balancing against performance, 1-10
benefits, 1-9
ensuring no data loss, 2-2
flexibility, 1-10
provided by Data Guard, 1-1

data protection modes
affect on network timeouts, 14-19
enforced by redo transport services, 1-3
influence on network reconnection, 14-19
maximum availability mode, 5-19
maximum performance mode, 5-19
maximum protection mode, 5-19

Index-5

minimum set of requirements, 5-19
overview, 1-7
setting up synchronous and asynchronous

network I/O operations, 14-23
specifying, 5-19

Data Pump utility
using transportable tablespaces with physical

standby databases, 8-10
data types

BFILE, C-2
BINARY_DEGREE, C-1
BINARY_FLOAT, C-1
BLOB, C-1
CHAR, C-1
CLOB, C-1
collections in logical standby databases, C-2
DATE, C-1
encrypted columns, C-2
INTERVAL, C-1
LONG, C-1
LONG RAW, C-1
NCHAR, C-1
NCLOB, C-1
NUMBER, C-1
NVARCHAR2, C-1
RAW, C-1
ROWID, C-2
Spatial, Image, and Context, C-2
TIMESTAMP, C-2
UROWID, C-2
user-defined, C-2
VARCHAR, C-2
VARCHAR2, C-2
XMLType, C-2

database guard, 6-2, 9-16
overriding, 9-16

database incarnation
changes with OPEN RESETLOGS, 8-13

database link
creating, 7-18

database roles
primary, 1-2, 7-1
standby, 1-2, 7-1
transitions, 1-5

database schema
physical standby databases, 1-2

Database Upgrade Assistant (DBUA), B-1
databases

cascading standby databases See cascaded
destinations

cloning, 12-29
failover and, 7-6
primary See primary database
role transition and, 7-1
surviving disasters and data corruptions, 1-1
upgrading software versions, 11-1
using password files, 5-13

datafiles
adding to primary database, 8-6
deleting from the primary database, 8-9

monitoring, 8-14, 12-41
renaming on the primary database, 8-11

DATE data types
in logical standby databases, C-1

DB_FILE_NAME_CONVERT initialization parameter
location for transportable tablespaces, 8-10

DB_FILE_NAME_CONVERT option
RMAN DUPLICATE command, F-4

DB_NAME initialization parameter, 3-5
DB_RECOVERY_FILE_DEST initialization parameter

setting for clone database, 12-30
setting up recovery areas, 5-5

DB_RECOVERY_FILE_DEST_SIZE initialization
parameter

setting for clone database, 12-30
DB_ROLE_CHANGE system event, 7-5, 7-7
DB_UNIQUE_NAME attribute, 14-7
DB_UNIQUE_NAME initialization parameter, A-7

required for shared flash recovery areas, 5-7
required with LOG_ARCHIVE_CONFIG

parameter, 13-2
setting database initialization parameters, 3-4

DBA_DATA_FILES view, 8-14
DBA_LOGMNR_PURGED_LOG view

list archived redo log files that can be
deleted, 9-12

DBA_LOGSTDBY_EVENTS view, 9-5, 16-1, A-9
capturing logical standby, 11-3

DBA_LOGSTDBY_HISTORY view, 16-1
DBA_LOGSTDBY_LOG view, 9-5, 16-1

finding gaps on logical standby databases, 5-28
listing archived redo log files, 12-17

DBA_LOGSTDBY_NOT_UNIQUE view, 16-1
DBA_LOGSTDBY_PARAMETERS view, 16-1
DBA_LOGSTDBY_SKIP view, 16-1

determining SQL Apply support for
schemas, C-3

DBA_LOGSTDBY_SKIP_TRANSACTION
view, 16-1

DBA_LOGSTDBY_UNSUPPORTED view, 16-1, C-3
DBA_TABLESPACES view, 8-14
DBMS_ALERT, C-3
DBMS_AQ, C-3
DBMS_DESCRIBE, C-3
DBMS_JAVA, C-3
DBMS_JOB, C-3
DBMS_LOB, C-3
DBMS_LOGSTDBY package

INSTANTIATE_TABLE procedure, 9-18
SKIP procedure, A-9
SKIP_ERROR procedure, A-4
SKIP_TRANSACTION procedure, A-9

DBMS_LOGSTDBY procedure
capturing events in DBA_LOGSTDBY_EVENTS

table, 11-3
DBMS_LOGSTDBY.BUILD procedure

building a dictionary in the redo data, 4-4
DBMS_LOGSTDBY.BUILD subprogram

uses Flashback Query, 4-4
DBMS_METADATA, C-3

Index-6

DBMS_OBFUSCATION_TOOLKIT, C-3
DBMS_OUTPUT, C-3
DBMS_PIPE, C-3
DBMS_RANDOM, C-3
DBMS_REDEFINITION, C-3
DBMS_REFRESH, C-3
DBMS_REGISTRY, C-3
DBMS_SCHEDULER, C-3
DBMS_SPACE_ADMIN, C-3
DBMS_SQL, C-3
DBMS_TRACE, C-3
DBMS_TRANSACTION, C-3
DBSNMP process, A-6
DDL statements

supported by SQL Apply, C-1
DDL transactions

applied on a logical standby database, 9-4
applying to a logical standby database, 9-4

DEFER attribute
LOG_ARCHIVE_DEST_STATE_n initialization

parameter, 5-3, 12-40
DELAY attribute, 14-8

LOG_ARCHIVE_DEST_n initialization
parameter, 6-3, 12-37

DELAY option
of ALTER DATABASE RECOVER MANAGED

STANDBY DATABASE
cancelling, 6-3

delaying
application of archived redo log files, 12-37, 14-8
application of redo log files, 6-3

deleting
archived redo log files

indicated by the DBA_LOGMNR_PURGED_
LOG view, 9-12

not needed by SQL Apply, 9-12
datafiles, 8-9
online redo log files, 8-12

DEPENDENCY attribute, 14-10
LOG_ARCHIVE_DEST_n initialization

parameter, 5-24
deprecated attributes

on the LOG_ARCHIVE_DEST_n initialization
parameter, 14-1

destinations
archived redo log repository, 5-2
cross-instance archival, D-3
displaying with V$ARCHIVE_DEST view, 16-1
Oracle Change Data Capture archival, 5-3
Oracle Streams archival, 5-2
role-based definitions, 14-26
shared, 5-24, 14-10
specifying, 5-3
verifying settings for role transitions, 12-9

detecting
missing archived redo log files, 1-3, 1-10, 5-25
network disconnects between primary and

standby databases, 14-19
determining

the highest applicable (newest) SCN, 12-17

DG_CONFIG attribute, 14-7
on the LOG_ARCHIVE_CONFIG initialization

parameter, 5-20
DGMGRL command-line interface

invoking failovers, 1-6, 7-1
simplifying switchovers, 1-6, 7-1

dictionary
building a LogMiner, 4-4

direct path inserts
SQL Apply DML considerations, 9-4

directory locations
archived redo log files, 5-21
Optimal Flexible Architecture (OFA), 2-6
set up with ASM, 2-6
set up with OMF, 2-6
specifying with STANDBY_ARCHIVE_DEST

initialization parameter, 5-21
structure on standby databases, 2-6

disabling
a destination for archived redo log files, 5-3
database guard to define a database link, 7-18

disaster recovery
benefits, 1-9
configuring, 1-2
provided by Data Guard, 1-1
provided by standby databases, 1-2
ReadMe file at standby site, 12-11

DISCONNECT FROM SESSION, 8-2
disk I/O

controlling with the AFFIRM and NOAFFIRM
attributes, 14-2

DML
batch updates on a logical standby database, 9-4

DML transactions
applying to a logical standby database, 9-4

downstream capture database
Oracle Streams and Data Guard redo transport

services, 5-3
DROP STANDBY LOGFILE clause

of ALTER DATABASE, A-2
DROP STANDBY LOGFILE MEMBER clause

of ALTER DATABASE, 15-2, A-2
dropping

datafiles
examples, 8-9

online redo log files, 8-12
tablespaces from primary database, 8-9

dynamic parameters
AQ_TM_PROCESSES, A-6
JOB_QUEUE_PROCESSES, A-6

dynamic performance views, 8-15
See also views

E
ENABLE attribute

LOG_ARCHIVE_DEST_STATE_n initialization
parameter, 5-3, 12-40

enabling
database guard on logical standby

Index-7

databases, 15-4
destinations for archived redo log files, 5-3
real-time apply, 8-5

on logical standby databases, 6-5, 9-14
on physical standby databases, 6-5

encrypted columns
logical standby databases, C-2

extensible indexes
supported by logical standby databases, C-2

F
failovers, 1-5

and cascaded configurations, E-4
choosing a target standby database, 12-9, 12-16
Data Guard broker, 1-6, 7-1
defined, 1-5, 7-2
displaying history with DBA_LOGSTDBY_

HISTORY, 16-1
fast-start failover, 7-1
FINISH FORCE, 7-11
flashing back databases after, 7-20
logical standby databases and, 7-16, 12-16
manual versus automatic, 1-5, 7-1
minimal data loss and, 12-18
minimal performance impact, 12-18
performing backups after, 7-12, 7-19
physical standby databases and, 7-9, 15-4
preparing for, 7-6
re-creating after, 7-10
simplifying with Data Guard broker, 7-1
transferring redo data before, 7-6
viewing characteristics for logical standby

databases, 9-6
with maximum performance mode, 7-6
with maximum protection mode, 7-6

failure resolution policies
specifying for redo transport services, 5-16, 14-22

FAL_CLIENT initialization parameter, 5-27
FAL_SERVER initialization parameter, 5-27
false network failure detection, 14-19, 14-20
fast-start failover

automatic failover, 1-6, 7-1
enhancements in Oracle Enterprise Manager, xx
monitoring, 8-14

finding
missing log files, 5-27

fixed views
See views

flash recovery areas
default location, 5-5, 5-6, 14-12
setting up, 5-5
sharing among multiple databases, 5-7
STANDBY_ARCHIVE_DEST=LOCATION

parameter, 5-7
Flashback Database

after a role transition, 7-20
after OPEN RESETLOGS, 12-27
after role transitions, 7-20
characteristics complementary to Data Guard, 1-9

clone database, 12-29
enabling for guaranteed restore point, 12-30
logical standby database, 12-25
physical standby database, 12-24

Flashback Query
used by DBMS_LOGSTDBY.BUILD

subprogram, 4-4
FORCE keyword

on RECOVER MANAGED STANDBY DATABASE
FINISH, 7-11

FORCE LOGGING clause
of ALTER DATABASE, 2-5, 3-2, 12-41, 15-2
of ALTER TABLESPACE, 8-12
of CREATE DATABASE, 12-41

G
gap management, 5-25

automatic detection and resolution, 1-3, 1-10
defined, 5-25
detecting missing log files, 1-10
registering archived redo log files, 5-28

during failover, 7-16
 See also archived redo log files

gap sequences
determining, 5-27, 5-28

global dynamic performance views, 8-15
See also views

guaranteed restore point
creating, 12-30
enable the flashback recovery area for Flashback

Database, 12-30
setting DB_RECOVERY_FILE_DEST initialization

parameter, 12-30
setting DB_RECOVERY_FILE_DEST_SIZE

initialization parameter, 12-30
GUARD DISABLE clause

of ALTER SESSION, 7-18
GUARD ENABLE clause

of ALTER SESSION, 15-4
GV$ fixed views, 8-15

See also views
GV$INSTANCE view, D-6

H
hardware

requirements for Data Guard configurations, 2-4
heap-organized tables

in logical standby databases, C-2
high availability

benefits, 1-9
provided by Data Guard, 1-1
provided by RAC and Data Guard, 1-8

I
idle state, 9-12
Image data types

in logical standby databases, C-2
incarnation of a database

Index-8

changed, 8-13
index-organized tables

in logical standby databases, C-2
initialiation parameters

DB_UNIQUE_NAME, 3-4
initialization parameter file

creating from server parameter file
for physical standby database, 3-8

modifying
for physical standby database, 3-8

initialization parameters
CONTROL_FILE_RECORD_KEEP_TIME, 5-24
DB_FILE_NAME_CONVERT, F-4
DB_UNIQUE_NAME, A-7
FAL_CLIENT, 5-27
FAL_SERVER, 5-27
LOG_ARCHIVE_DEST, 12-47
LOG_ARCHIVE_DEST_STATE_n, 5-3
LOG_ARCHIVE_FORMAT, 5-22
LOG_ARCHIVE_MIN_SUCCEED_DEST, 14-14
LOG_ARCHIVE_TRACE, 5-30, G-1, G-2
LOG_FILE_NAME_CONVERT, F-5
modifying for physical standby databases, 3-8
setting for both the primary and standby

roles, 14-26
STANDBY_ARCHIVE_DEST, 5-21
USER_DUMP_DEST, G-1

INITIALIZING state, 9-11
INSTANTIATE_TABLE procedure

of DBMS_LOGSTDBY, 9-18
INTERVAL data types

in logical standby databases, C-1

J
JOB_QUEUE_PROCESSES dynamic parameter, A-6

L
latency

on logical standby databases, 9-4
LGWR attribute, 14-6

asynchronous redo transmission, 5-12, 14-6, 14-23
LOG_ARCHIVE_DEST_n initialization parameter

setting for data protection, 5-19
LGWR process

 See log writer process (LGWR)
listener.ora file

configuring, 3-11
redo transport services tuning and, A-9
troubleshooting, 12-40, A-2, A-9

listing
archived redo log files, 12-17

loading dictionary state, 9-11
LOCATION attribute, 14-12

setting
flash recovery area with USE_DB_RECOVERY_

FILE_DEST, 5-6
LOG_ARCHIVE_DEST_n initialization

parameter, A-3

log apply services
defined, 1-4, 6-1
delaying application of redo data, 6-3, 12-37, 14-8
real-time apply

and standby redo log files, 2-8
defined, 6-1, 6-2
monitoring with LOG_ARCHIVE_

TRACE, G-2
monitoring with V$ARCHIVE_DEST_STATUS

view, 8-20
Redo Apply

defined, 6-1, 6-4
monitoring, 6-5, 8-15, 8-19
starting, 6-4, 8-1
stopping, 6-5, 8-2
tuning the log apply rate, 8-22

SQL Apply
defined, 1-4, 6-1, 6-2
monitoring, 6-6
starting, 6-5
stopping, 6-5

tuning for Redo Apply, 8-22
log writer process (LGWR)

ASYNC network transmission, 5-10, 14-23
defined, 5-10
local archiving, 5-4
NET_TIMEOUT attribute, 14-19
reconnecting after a network timeout, 14-19
SYNC network transmission, 14-23

LOG_ARCHIVE_CONFIG initialization
parameter, 3-4, 3-5, 3-8, 5-15, 13-2

example, 14-7
listing unique database names defined with, 16-2
relationship to DB_UNIQUE_NAME

parameter, 13-2
relationship to DG_CONFIG attribute, 14-7
with the DG_CONFIG attribute, 5-20

LOG_ARCHIVE_DEST_10 initialization parameter
default flash recovery area, 5-5, 5-6, 14-12

LOG_ARCHIVE_DEST_n initialization
parameter, 5-10

AFFIRM attribute, 5-19, 14-2
ALTERNATE attribute, 14-4, A-3
ARCH attribute, 5-19, 14-6
ASYNC attribute, 14-23

setting for data protection, 5-19
DB_UNIQUE_NAME attribute, 14-7
DELAY attribute, 6-3, 12-37, 14-8
DEPENDENCY attribute, 5-24, 14-10
deprecated attributes, 14-1
LGWR attribute, 14-6

setting for data protection, 5-19
LOCATION attribute, 14-12, A-3
MANDATORY attribute, 14-14
MAX_CONNECTIONS attribute, 14-16
MAX_FAILURE attribute, 14-17
NET_TIMEOUT attribute, 14-19
NOAFFIRM attribute, 14-2
NOALTERNATE attribute, A-3
NODELAY attribute, 6-3

Index-9

NOREGISTER attribute, 14-21
NOREOPEN attribute, 5-16
OPTIONAL attribute, 14-14
overview, 5-3
QUOTA_SIZE attribute, D-5
REOPEN attribute, 5-16, 14-22
SERVICE attribute, 14-12
setting up recovery areas, 5-5
SYNC attribute, 14-23

setting for data protection, 5-19
TEMPLATE attribute, 14-24
VALID_FOR attribute, 5-14, 14-26
VERIFY attribute, 14-28

LOG_ARCHIVE_DEST_STATE_n initialization
parameter, 5-3

ALTERNATE attribute, 5-3
DEFER attribute, 5-3, 12-40
ENABLE attribute, 5-3, 12-40
RESET attribute, 5-3

LOG_ARCHIVE_FORMAT initialization
parameter, 5-22

LOG_ARCHIVE_MIN_SUCCEED_DEST initialization
parameter, 14-14

LOG_ARCHIVE_TRACE initialization
parameter, 5-30, G-1, G-2

logical change records (LCR)
converted by PREPARER process, 9-2
exhausted cache memory, 9-3
staged, 9-2

logical corruptions
resolving, 1-10

logical standby databases, 1-2
adding

datafiles, A-11
indexes, 1-10, 2-3, 9-16
tables, 9-18

archive gaps
finding with DBA_LOGSTDBY_LOG

view, 5-28
manually resolving, 5-28

background processes, 9-2
benefits, 1-10, 2-3
cascading, E-1, E-3
creating, 4-1

converting from a physical standby
database, 4-5

with Data Guard broker, 1-5
data types

supported, C-1
unsupported, C-2

database guard
overriding, 9-16

executing SQL statements on, 1-2
failovers, 7-16

displaying history of, 16-1
flashing back after, 12-25
handling failures, A-4
target of, 12-16
viewing characteristics with V$LOGSTDBY_

STATS, 9-6

logical standby process (LSP) and, 9-2
materialized views

creating on, 1-10, 2-3, E-3, E-6
support for, C-4

monitoring, 6-6, 16-1
password file, 4-5
read-only operations, 1-10
setting VALID_FOR attribute, 12-3
SQL Apply, 1-4

resynchronizing with primary database branch
of redo, 9-20

skipping DDL statements, C-4
skipping SQL statements, C-4
starting real-time apply, 6-5, 9-14
stopping, 6-5
technology, 6-1
transaction size considerations, 9-2

starting
real-time apply, 6-5

states
applying, 9-12
idle, 9-12
initializing, 9-11
loading dictionary, 9-11
waiting on gaps, 9-12

switchovers, 7-13
throughput and latency, 9-4
UNDO_RETENTION initialization

parameter, 4-4
upgrading, B-4

rolling upgrades, 2-5
logical standby process (LSP)

ARCn archival processing, 5-9
COORDINATOR process, 9-2
LGWR SYNC archival processing, 5-11

LogMiner dictionary
using DBMS_LOGSTDBY.BUILD procedure to

build, 4-4
when creating a logical standby database, 4-5

LONG data types
in logical standby databases, C-1

LONG RAW data types
in logical standby databases, C-1

M
managed recovery operations

See Redo Apply
managed recovery process (MRP)

ARCn archival processing, 5-9
launching parallel recovery processes, 5-9
LGWR SYNC archival processing, 5-11
See also Redo Apply

MANDATORY attribute, 14-14
LOG_ARCHIVE_DEST_n initialization

parameter, 5-22
materialized views

creating on logical standby databases, 1-10, 2-3,
E-6

on cascaded destinations, E-3

Index-10

MAX_CONNECTIONS attribute, 14-16
MAX_FAILURE attribute, 14-17
maximum availability mode

defined, 5-18
influence on network reconnection, 14-19
introduction, 1-7
requires standby redo log files, 2-9
setting, 5-19

maximum performance mode, 7-6
introduction, 1-8, 5-19
setting, 5-19

maximum protection mode
for Real Application Clusters, D-5
influence on network reconnection, 14-19
introduction, 1-7, 5-18
requires standby redo log files, 2-9
setting, 5-19
standby databases and, 7-6

media recovery
parallel, 8-22

memory
exhausted LCR cache, 9-3

missing log sequence
 See also gap management
detecting, 1-10

modifying
a logical standby database, 9-16
initialization parameters for physical standby

databases, 3-8
standby control file, 8-10

monitoring
log apply services, 8-20
primary database events, 8-14
redo transport services, 5-29
standby databases, 8-5
tablespace status, 8-14

MOUNT STANDBY DATABASE clause
of ALTER DATABASE, 15-2

MRP
See managed recovery process

multimedia data types
in logical standby databases, C-2
unsupported by logical standby databases, C-2

N
NCHAR data types

in logical standby databases, C-1
NCLOB data types

in logical standby databases, C-1
NET_TIMEOUT attribute, 14-19

ignored for LGWR ASYNC destinations, 5-13
network I/O operations

coordinating timeout parameter values, 14-20
detecting a disconnect, 14-19
false failures, 14-19, 14-20
influence of data protection modes, 14-19
network timers

NET_TIMEOUT attribute, 14-19
setting up synchronous or asynchronous, 14-23

tuning
redo transport services, A-9

network timeouts
acknowledging, 14-19
for LGWR ASYNC destinations, 5-13

NEWEST_SCN column
of V$LOGSTDBY_PROGRESS view, 12-17

no data loss
benefits, 1-9
data protection modes overview, 1-7
ensuring, 1-5, 2-2
environments, 5-10
guaranteeing, 1-5
provided by maximum availability mode, 1-7,

5-18
provided by maximum protection mode, 1-7,

5-18
NOAFFIRM attribute, 14-2
NOALTERNATE attribute

LOG_ARCHIVE_DEST_n initialization
parameter, A-3

NODELAY attribute
LOG_ARCHIVE_DEST_n initialization

parameter, 6-3
NODELAY option

of Redo Apply operations, 12-39
NOREGISTER attribute, 14-21
NOREOPEN attribute

LOG_ARCHIVE_DEST_n initialization
parameter, 5-16

NUMBER data types
in logical standby databases, C-1

NVARCHAR2 data types
in logical standby databases, C-1

O
off-site archiving of redo data, 5-2
OMF

 See Oracle Managed Files (OMF)
on-disk database structures

physical standby databases, 1-2
online redo log files

adding, 8-12
archive gap management, 5-25
deleting, 8-12
dropping, 8-12

OPEN READ ONLY clause
of ALTER DATABASE, 15-2

OPEN RESETLOGS
flashing back after, 12-27

OPEN RESETLOGS clause
database incarnation change, 8-13
of ALTER DATABASE, 3-8, 8-14
recovery, 8-13

operating systems
requirements for Data Guard configurations, 2-4

operational requirements, 2-4, 2-5
standby databases

operating system requirements, 2-4

Index-11

Optimal Flexible Architecture (OFA)
directory structure, 2-6

OPTIONAL attribute, 14-14
LOG_ARCHIVE_DEST_n initialization

parameter, 5-22
ORA-01102 message

causing switchover failures, A-6
Oracle Advanced Security

providing secure redo transmission, 5-13, 5-14
Oracle Automatic Storage Management (ASM), 2-6
Oracle Change Data Capture archival, 5-3
Oracle Database

requirements for upgrading with SQL
Apply, 11-2

upgrading, B-1
upgrading with SQL Apply, 11-1

Oracle Database Enterprise Edition
software requirements, 2-5

Oracle databases
upgrading, 2-5

Oracle Enterprise Manager
enhancements, xx
invoking failovers, 1-6, 7-1
invoking switchovers, 1-6, 7-1

Oracle Managed Files (OMF), 2-6
creating a standby database that uses, 12-48
creating standby databases that use, F-7, F-8

Oracle Net
communication between databases in a Data

Guard configuration, 1-1
Oracle Recovery Manager utility (RMAN)

backing up files on a physical standby
database, 10-1

Oracle Standard Edition
simulating a standby database environment, 2-5

Oracle Streams
archival, 5-2
downstream capture database, 5-3

P
pageout considerations, 9-3
pageouts

SQL Apply, 9-3
Parallel DDL (PDDL) transactions

SQL Apply, 9-4
parallel DML (PDML) transactions

SQL Apply, 9-4
parallel execution processes

logical standby databases, 5-9
physical standby databases, 5-9

tuning the log apply rate, 8-22
specifying

PARALLEL_MAX_SERVERS initialization
parameter, 8-22, 13-3

PARALLEL option
tuning the log apply rate for Redo Apply, 8-22

parallel recovery processes
initiated for Redo Apply, 5-9

PARALLEL_MAX_SERVERS initialization parameter

specifying
creating a logical standby database, 8-22, 13-3

partial archived redo log files
registering, 12-19

password files
creating new, 4-5
requirements, 5-13
setting REMOTE_LOGIN_PASSWORDFILE

initialization parameter, 5-14
patch set releases

upgrading, 2-5
performance

balancing against data availability, 1-10
balancing against data protection, 1-10
monitoring redo transport services, 5-30

physical standby databases
activating as a clone database, 12-31
altering

online redo log files, 8-12
applying redo data, 6-1, 6-4

cascading, E-1
Redo Apply technology, 6-4

applying redo log files
starting, 6-4

benefits, 2-2
choosing a target for failover, 12-10
cloning

creating a restore point, 12-30
for testing, development, and reporting, 12-29

configuration options, 2-6
converting to a logical standby database, 4-5
converting to a read/write database, 12-29
creating

checklist of tasks, 3-7
configuring a listener, 3-11
directory structure, 2-7
initialization parameters for, 3-8
traditional initialization parameter file, 3-8
with Data Guard broker, 1-5

defined, 1-2
failover

checking for updates, 7-7
finding gaps with V$ARCHIVE_GAP view, 5-27
flashing back after failover, 12-24
manually resolving archive gaps, 5-27
monitoring, 6-5, 8-5, 8-19, 16-1
online backups and, 2-2
opening for read-only or read/write access, 8-2
read-only, 2-2, 8-2
read/write testing and reporting, 12-29
recovering through OPEN RESETLOGS, 8-13
Redo Apply, 1-4, 2-1
resynchronizing with primary database branch of

redo, 8-13
role transition and, 7-7
rolling forward

when lagging far behind the primary
database, 12-33

when nologging changes applied to a small
subset of datafiles, 12-34

Index-12

when nologging changes are
widespread, 12-36

rolling forward with BACKUP INCREMENTAL
FROM SCN command, 12-33

setting VALID_FOR attribute, 12-1
shutting down, 8-2
starting

log apply services, 6-4
real-time apply, 6-5

support for DDL, 2-2
support for DML, 2-2
synchronizing with the primary database, 12-33
tuning the log apply rate, 8-22
upgrading, B-2
using transportable tablespaces, 8-10

PL/SQL supplied packages
supported, C-3
unsupported, C-3

PREPARE TO SWITCHOVER clause
of ALTER DATABASE, 7-14, 15-2

PREPARER process, 9-2
staging LCRs in SGA, 9-2

primary database
backups and, 7-12, 7-19
configuring

for cross-instance archival, D-3
on Real Application Clusters, 1-2
single-instance, 1-2

datafiles
adding, 8-6
renaming, 8-9

defined, 1-2
failover and, 7-2
gap resolution, 1-10
gathering redo log archival information, 5-29
initialization parameters

and physical standby database, 3-8
monitoring events on, 8-14
network connections

avoiding network hangs, 14-19
detecting disconnections, 14-19
handling network timeouts, 14-19

preparing for
physical standby database creation, 3-1

prerequisite conditions for
logical standby database creation, 4-1

Real Application Clusters and
setting up, D-2, D-4

redo transport services on, 1-3
reducing workload on, 1-10
setting archive tracing, 5-30
sharing a flash recovery area, 5-7
switchover, 7-4
switchovers

initiating, 7-8
tablespaces

adding, 8-6
dropping, 8-9

primary databases
ARCHIVELOG mode, 2-5

software requirements, 2-5
using V$ARCHIVED_LOG view to find missing

log files, 5-27
primary key columns

logged with supplemental logging, 4-4, 9-4
primary role, 1-2
processes

archiver (ARCn), 5-8
CJQ0, A-6
DBSNMP, A-6
log writer (LGWR), 5-10
preventing switchover, A-6
QMN0, A-6
See also managed recovery process (MRP)
SQL Apply architecture, 9-1, 9-10

production database
 See primary database

protection modes
maximum availability mode, 1-7, 5-18
maximum performance mode, 1-8, 5-19
maximum protection mode, 1-7, 5-18
monitoring, 8-14
See data protection modes

Q
QMN0 process, A-6
queries

improved performance, 1-10
offloading on the standby database, 1-10

QUOTA_SIZE attribute
LOG_ARCHIVE_DEST_n initialization

parameter, D-5

R
RAW data types

in logical standby databases, C-1
raw devices

standby redo log files residing on, 2-9
READER process, 9-2
read-only operations, 1-4

definition, 2-2
logical standby databases, 1-10
physical standby databases and, 8-2

read/write databases, 12-29
Real Application Clusters, D-2

characteristics complementary to Data Guard, 1-8
cross-instance archival, D-3
performing switchover and, D-5, D-6
primary databases and, 1-2, D-2, D-4
setting

maximum data protection, D-5
standby databases and, 1-2, D-1, D-3
using standby redo log files, 3-3, D-3
using standby redo logs, 2-9

real-time apply
and SQL Apply, 9-14
defined, 6-1, 6-2
monitoring progress in V$ARCHIVE_DEST_

Index-13

STATUS, 8-20
overview of log apply services, 1-3
require standby redo log files, 2-9
RFS process with, 6-1
starting, 6-5

on logical standby, 6-5
starting on logical standby databases, 6-5, 9-14
starting on physical standby databases, 6-5
stopping

on logical standby, 6-5
on physical standby databases, 8-2

tracing data with LOG_ARCHIVE_TRACE
initialization parameter, G-2

using standby redo log files, 2-8
recommendations for secure redo transmission, 5-13
reconnecting

after a network timeout, 14-19
network connection

when in maximum availability mode, 14-19
when in maximum protection mode, 14-19

RECOVER MANAGED STANDBY DATABASE
CANCEL clause

aborting, 4-5
RECOVER MANAGED STANDBY DATABASE

clause
canceling the DELAY control option, 6-3
FORCE keyword, 7-11
of ALTER DATABASE, 3-11, 4-7, 6-4, 8-4, 8-5,

12-15, 12-38, 15-3, 15-4
background process, 6-4, 8-2
controlling Redo Apply, 6-4
foreground session, 6-4
initiating failover, 7-11
overriding the delay interval, 6-3
starting real time apply, 6-5
switchover scenario, 12-38

RECOVER TO LOGICAL STANDBY clause
converting a physical standby database to a logical

standby database, 4-5
recovering

after a NOLOGGING clause is specified, 12-41
from errors, A-10
logical standby databases, 9-20
physical standby databases

after an OPEN RESETLOGS, 8-13
through resetlogs, 8-13, 9-20

Recovery Manager
characteristics complementary to Data Guard, 1-9
commands

DUPLICATE, F-2
DB_FILE_NAME_CONVERT option of the

DUPLICATE command, F-4
standby database

creating, F-2, F-5
creating standby control files, F-2
creating using image copies, F-15
DB_FILE_NAME_CONVERT initialization

parameter, F-4
LOG_FILE_NAME_CONVERT initialization

parameter, F-5

naming standby datafiles, F-3
preparing using RMAN, F-1
setting up with OMF, F-7, F-8
starting RMAN and standby instance, F-7

re-creating
a table on a logical standby database, 9-18

Redo Apply
defined, 1-4, 2-1, 6-1
flashing back after failover, 12-24, 12-25
monitoring, 8-20
options

NODELAY, 12-39
parallel recovery processes and MRP, 5-9
read/write testing and reporting, 12-29
resolving archive gaps, 5-27
role transitions and cascaded configurations, E-4
starting, 3-11, 6-5
stopping, 8-2
technology, 1-4
tuning the log apply rate, 8-22

redo data
applying

through Redo Apply technology, 1-4
through SQL Apply technology, 1-4
to standby database, 6-1
to standby databases, 1-2

applying during conversion of a physical standby
database to a logical standby database, 4-5

archiving on the standby system, 1-4, 6-1
building a dictionary in, 4-4
manually transferring, 2-5
transmitting, 1-2, 1-3, 5-1 to 5-18
validated, 1-10

redo log files
delaying application, 6-3

redo logs
automatic application on physical standby

databases, 6-4
configuration considerations, 2-9
in Data Guard configurations, 2-8
secure redo transmission, 5-13
update standby database tables, 1-10

redo transport services, 5-1 to 5-30
archive destinations

alternate, A-3
archived redo log repository, 5-2
Oracle Change Data Capture, 5-3
Oracle Streams, 5-2
quotas, D-5
re-archiving to failed destinations, 5-16, 14-22
role-specific, 5-14
shared, 5-24, 14-10
specifying with the LOG_ARCHIVE_DEST_n

initialization parameter, 5-4
archived redo log files

generating filenames, 5-22
listing with V$ARCHIVED_LOG view, 5-22
specifying directory locations for, 5-21

defined, 1-3, 5-1
handling archive failures, 5-16, 14-22

Index-14

monitoring, 5-29, 5-30
network

ASYNC network transmission, 5-10
SYNC network transmission, 5-10
tuning, A-9

protection modes
choosing, 5-18
maximum availability mode, 1-7, 5-18
maximum performance mode, 1-8, 5-19
maximum protection mode, 1-7, 5-18
providing no data loss, 5-10
setting, 5-19

secure redo transmission, 5-13
standby redo log files

configuring, 3-2
synchronous and asynchronous disk I/O, 14-2
using the log writer process, 5-12, 14-6, 14-23

REGISTER LOGFILE clause, 5-28
of ALTER DATABASE, 15-3, A-4

registering missing log files, 5-28
REGISTER LOGICAL LOGFILE clause, 12-19

of ALTER DATABASE, 5-28, 7-16, 12-19
registering

archived redo log files, 5-28, 12-19
during failover, 7-16

missing log files, 5-28
partial archived redo log files, 12-19

RELY constraint
creating, 4-2

remote file server process (RFS)
defined, 2-8, 5-11, 6-1
log writer process and, 6-2
standby redo log files reused by, 5-23

REMOTE_LOGIN_PASSWORDFILE initialization
parameter

secure redo transmission, 5-14
RENAME FILE clause

of ALTER DATABASE, A-2
renaming

datafiles
on the primary database, 8-11
setting the STANDBY_FILE_MANAGEMENT

parameter, 8-10
REOPEN attribute, 14-22

LOG_ARCHIVE_DEST_n initialization
parameter, 5-16

reporting operations
configuring, 1-2
offloading on the standby database, 1-10
performing on a logical standby database, 1-2

repository
for temporary storage of archived redo log

files, 5-2
requirements

data protection modes, 5-19
of a rolling upgrade, 11-2

RESET attribute
LOG_ARCHIVE_DEST_STATE_n initialization

parameter, 5-3
RESETLOGS_ID columns

viewing in V$DATABASE_INCARNATION
view, 8-17

resolving
logical corruptions, 1-10

restart considerations
SQL Apply, 9-3

restore points
creating, 12-30
creating guaranteed, 12-30
using the CREATE RESTORE POINT

command, 12-30
resynchronizing

logical standby databases with a new branch of
redo, 9-20

physical standby databases with a new branch of
redo, 8-13

retrieving
missing archived redo log files, 1-3, 1-10, 5-25,

12-18
reusing records in the control files, 5-23
RFS

 See remote file server process (RFS)
RMAN

incremental backup
rolling forward databases that lag far behind

the primary, 12-33
rolling forward databases when nologging

changes applied to a small subset of data
files, 12-34

rolling forward databases when nologging
changes are widespread, 12-36

incremental backups, 12-33
rolling forward physical standby

databases, 12-33
RMAN BACKUP INCREMENTAL FROM SCN

command, 12-33
role management services

defined, 7-1
role transitions, 1-5, 7-1

and cascaded configurations, E-4
choosing a type of, 7-2
choosing the best available standby

database, 12-9
defined, 1-5
flashing back the databases after, 7-20
logical standby database and, 7-13
monitoring, 8-14
physical standby databases and, 7-7
reversals, 1-5, 7-2
writing triggers to manage tasks after, 7-5, 7-7

role-based destinations
setting, 14-26

rollback
after switchover failures, A-7

rolling upgrade
software requirements, 2-5

rolling upgrades
benefits, 11-1
patch set releases, 2-5
requirements, 11-2

Index-15

setting the COMPATIBLE initialization
parameter, 11-2, 11-3, 11-10

unsupported data types and storage
attributes, 11-3

ROWID data types
in logical standby databases, C-2

S
scenarios

cascaded destinations, E-4 to E-7
choosing best standby database for role

transition, 12-9
recovering

a logical standby database, 12-41
after NOLOGGING is specified, 12-40
from a network failure, 12-39

time lag in redo logs, 12-37
schemas

data manipulation on logical standby
databases, 1-10

DBA_LOGSTDBY_SKIP list of skipped, C-3
identical to primary database, 1-2
skipped by SQL Apply, C-3

SCN
determine the highest applicable (newest), 12-17
using for incremental backups, 12-33

secure redo transmission, 5-13
segment compression storage type

in logical standby databases, C-2
sequences

unsupported on logical standby databases, C-3
SERVICE attribute, 14-12
SET STANDBY DATABASE clause

of ALTER DATA, 15-3
of ALTER DATABASE, 7-6, 15-3

setting
data protection mode, 5-19
VALID_FOR attributes

for a logical standby database, 12-3
for a physical standby database, 12-1

sharing
destinations, 5-24, 14-10
flash recovery area, 5-7

shutting down
physical standby database, 8-2

simulating
standby database environment, 2-5

SKIP procedure
of DBMS_LOGSTDBY, A-9

SKIP_ERROR procedure
of the DBMS_LOGSTDBY package, A-4

SKIP_TRANSACTION procedure
of DBMS_LOGSTDBY, A-9

snapshot
obtained by Flashback Query, 4-4

software requirements, 2-5
Oracle Database Enterprise Edition, 2-5
rolling upgrades, 2-5

Spatial data types

in logical standby databases, C-2
SQL Apply, 6-5, 9-3

after an OPEN RESETLOGS, 9-20
ANALYZER process, 9-2
APPLIER process, 9-2
applying CREATE TABLE AS SELECT (CTAS)

statements, 9-4
applying DDL transactions, 9-4
applying DML transactions, 9-4
architecture, 9-1, 9-10
BUILDER process, 9-2
COORDINATOR process, 9-2
defined, 1-4, 6-2
deleting archived redo log files, 9-12
parallel DDL transactions, 9-4
parallel DML (PDML) transactions, 9-4
performing a rolling upgrade, 11-1
PREPARER process, 9-2
READER process, 9-2
requirements for rolling upgrades, 11-2
restart considerations, 9-3
role transitions and cascaded configurations, E-4
rolling upgrades, 2-5
schemas skipped, C-3
starting

real-time apply, 6-5
stopping

real-time apply, 6-5
support for DDL statements, C-1
support for PL/SQL supplied packages, C-3
support for storage types, C-2
supported data types, C-1
transaction size considerations, 9-2
unsupported data types, C-2
unsupported PL/SQL supplied packages, C-3
unsupported storage types, C-2
viewing current activity, 9-2

of processes, 9-2
what to do if it stops, A-8
with real-time apply, 9-14

SQL Apply resolving archive gaps, 5-27
SQL sessions

causing switchover failures, A-5
SQL statements

executing on logical standby databases, 1-2, 1-4
skipping on logical standby databases, C-4
switchover and, 7-8

standby database
creating logical, 4-1

standby databases
about creating using RMAN, F-2
applying redo data on, 6-1
applying redo log files on, 1-4, 1-10
cascading, E-1
choosing a target for role transitions, 12-9
configuring, 1-1

archived redo log repository, 5-2
cross-instance archival, D-3
delayed application of archived redo log files

on, 12-37

Index-16

mandatory destinations, 5-22
maximum number of, 2-1
on Real Application Clusters, 1-2, D-1, D-3
on remote locations, 1-2
optional destinations, 5-22
single-instance, 1-2

creating, 1-2, 3-1, F-15
checklist of tasks, 4-3
directory structure considerations, 2-6
if primary uses ASM or OMF, 12-48
on local host, F-15
on remote host with different directory

structure, F-10
on remote host with same directory

structure, F-9
using RMAN, F-5
with a time lag, 6-3, 12-37

creating control files
using RMAN, F-2

DB_FILE_NAME_CONVERT initialization
parameter, F-4

defined, 2-1
failover

preparing for, 7-6
failover to, 7-6

re-creating after, 7-10
hardware requirements, 2-4
log apply services on, 6-1
LOG_FILE_NAME_CONVERT initialization

parameter, F-5
modifying the control file, 8-10
naming datafiles using RMAN, F-3
operational requirements, 2-4, 2-5
preparing to use RMAN, F-1
recovering through OPEN RESETLOGS, 8-13
resynchronizing with the primary database, 1-10
reverting back to primary database, A-7
rolling forward with RMAN incremental

backups, 12-33
SET AUXNAME command, F-5
SET NEWNAME command, F-4, F-5
setting the NETWORK_TIMEOUT attribute, 5-13
setting up to use OMF files, F-7, F-8
sharing

a flash recovery area, 5-7
software requirements, 2-5
starting log apply services on physical, 6-4
starting RMAN and standby instance, F-7
viewing database incarnation information, 8-17
viewing RESETLOGS_ID, 8-17
wait events configured for, 5-30
See also logical standby databases
See also physical standby databases

standby redo log files
advantages, 2-9
and real-time apply, 2-8, 6-2
applying

to standby databases, 1-3
creating, 3-2, 3-3

log groups and members, 3-2

cross-instance archival and, D-3
network transmission modes for, 5-10
on raw devices, 2-9
overview, 2-9
Real Application Clusters and, 3-3, D-3
requirements for

cascaded destinations, 2-9
maximum availability mode, 2-9
maximum protection mode, 2-9
protection modes, 1-8
real-time apply, 2-9

standby redo log groups
adding members, 5-23
determining if you have enough, 5-23
recommended number, 3-2

standby role, 1-2
STANDBY_ARCHIVE_DEST initialization

parameter, 5-21
archiving to the recovery area, 5-7
implicit default value, 5-21

STANDBY_FILE_MANAGEMENT initialization
parameter

setting for transportable tablespaces, 8-10
when renaming datafiles, 8-10

START LOGICAL STANDBY APPLY clause
IMMEDIATE keyword, 6-5, 9-14
of ALTER DATABASE, 4-7, 6-5, 7-18, 11-6, A-9

starting
logical standby databases, 4-7
physical standby databases, 3-11
real-time apply, 6-5

on logical standby databases, 6-5, 9-14
on physical standby databases, 6-5

Redo Apply, 3-11, 6-5, 8-1
SQL Apply, 4-7, 6-5

STOP LOGICAL STANDBY APPLY clause
of ALTER DATABASE, 6-5, 7-17, 11-6, 12-19, 15-4

stopping
real-time apply

on logical standby databases, 6-5
real-time apply on physical standby

databases, 6-5
Redo Apply, 6-5
SQL Apply, 6-5

storage attributes
unsupported during a rolling upgrade, 11-3

storage types
cluster tables, C-2
heap-organized tables, C-2
in logical standby databases, C-2
index-organized tables, C-2
segment compression, C-2
supported, C-2
unsupported, C-2

supplemental logging
setting up to log primary key and unique-index

columns, 4-4, 9-4
supported data types

for logical standby databases, C-1, C-5
supported PL/SQL supplied packages, C-3

Index-17

supported storage types, C-2
SWITCH LOGFILE clause

of ALTER SYSTEM, 3-12
SWITCHOVER_STATUS column

of V$DATABASE view, 7-7, 7-8, A-4
switchovers, 1-5

and cascaded configurations, E-4
Redo Apply, E-4
SQL Apply, E-4

choosing a target standby database, 7-3
control files and, 7-8
defined, 1-5, 7-2
displaying history with DBA_LOGSTDBY_

HISTORY, 16-1
fails with ORA-01102, A-6
flashing back databases after, 7-20
initiating on the primary database, 7-8
logical standby databases and, 7-13
manual versus automatic, 1-5, 7-1
monitoring, 8-14
no data loss and, 7-2
physical standby databases and, 7-5, 7-8
preparing for, 7-5
prevented by

active SQL sessions, A-5
active user sessions, A-6
CJQ0 process, A-6
DBSNMP process, A-6
processes, A-6
QMN0 process, A-6

seeing if the last archived redo log file was
transmitted, A-4

simplifying with Data Guard broker, 1-6, 7-1
SQL statements and, 7-8
standby databases not involved in, 7-9
starting over, A-7
typical use for, 7-4
using DB_ROLE_CHANGE system event

after, 7-5, 7-7
using Real Application Clusters and, D-5, D-6
V$DATABASE view and, 7-7, 7-8
verifying, 7-8

SYNC attribute, 14-23
LOG_ARCHIVE_DEST_n initialization

parameter, 5-10
setting for data protection, 5-19

SYS user account
password file requirements, 5-13
REMOTE_LOGIN_PASSWORDFILE initialization

parameter, 5-14
system events

writing triggers for DB_ROLE_CHANGE, 7-5,
7-7

system global area (SGA)
logical change records staged in, 9-2

system resources
efficient utilization of, 1-10

T
tables

logical standby databases
adding on, 9-18
re-creating tables on, 9-18
unsupported on, C-3

unsupported in a logical standby database, 11-3
tablespaces

adding
a new datafile, A-12
to primary database, 8-6

dropping from primary database, 8-9
monitoring status changes, 8-14
moving between databases, 8-10

target standby database
for switchover, 7-3

target standby databases
choosing a logical standby database for

failover, 12-16
choosing physical standby databases for

failover, 12-10
TEMPLATE attribute, 14-24
terminating

network connection, 14-19
text indexes

supported by logical standby databases, C-2
throughput

on logical standby databases, 9-4
time lag

delaying application of archived redo log
files, 6-3, 12-37, 14-8

in standby database, 6-3, 12-37, 14-8
TIMESTAMP data types

in logical standby databases, C-2
tnsnames.ora file

redo transport services tuning and, A-9
troubleshooting, 12-40, A-2, A-7, A-9

trace files
levels of tracing data, G-2
location of, G-1
setting, G-1
tracking real-time apply, G-2

transaction size considerations
SQL Apply, 9-2

transportable tablespaces
defining location with DB_FILE_NAME_

CONVERT parameter, 8-10
setting the STANDBY_FILE_MANAGEMENT

parameter, 8-10
using with a physical standby database, 8-10

triggers
handled on a logical standby database, 9-20

troubleshooting
if SQL Apply stops, A-8
last redo data was not transmitted, A-4
listener.ora file, 12-40, A-2, A-9
logical standby database failures, A-4
processes that prevent switchover, A-6
SQL Apply, A-8
switchovers, A-4

Index-18

active SQL sessions, A-5
active use sessions, A-6
ORA-01102 message, A-6
roll back and start over, A-7

tnsnames.ora file, 12-40, A-2, A-7, A-9
tuning

determining if you have enough standby redo log
groups, 5-23

log apply rate for Redo Apply, 8-22

U
UNDO_RETENTION initialization parameter

recommendations, 4-4
unique-index columns

logged with supplemental logging, 4-4, 9-4
unrecoverable operations, 12-41

backing up after, 12-43
unsupported data types

during a rolling upgrade, 11-3
unsupported PL/SQL supplied packages, C-3
unsupported storage types, C-2
unsupported tables

for logical standby database during a rolling
upgrade, 11-3

upgrading
Oracle Database, B-1
Oracle Database software, 11-1
Oracle database software, 2-5
Oracle database software version, 11-1
requirements, 11-2

UROWID data types
in logical standby databases, C-2

user errors
safeguarding against, 1-9

user sessions
causing switchover failures, A-6

USER_DUMP_DEST initialization parameter, G-1
user-defined data types

in logical standby databases, C-2
USING CURRENT LOGFILE clause, 8-5

starting real time apply, 6-5
using RMAN

using image copies, F-15

V
V$ARCHIVE_DEST view, 5-29, 12-40, 16-1, A-2

displaying implicit default value of STANDBY_
ARCHIVE_DEST parameter, 5-21

displaying information for all destinations, 16-1
V$ARCHIVE_DEST_STATUS view, 5-29, 8-20, 16-1

log apply services and MANAGED REAL TIME
column, 8-20

V$ARCHIVE_GAP view, 16-2
finding gaps on physical standby databases, 5-27

V$ARCHIVED_LOG view, 5-22, 5-29, 8-20, 12-45,
16-2, A-4

determining the most recently archived redo log
file, 5-29

locating missing log files, 5-27
V$DATABASE view, 16-2

monitoring fast-start failover, 8-14
switchover and, 7-7, 7-8
SWITCHOVER_STATUS column and, 7-7, 7-8,

A-4
V$DATABASE_INCARNATION view, 16-2

obtaining database incarnation information, 8-17
V$DATAFILE view, 12-41, 12-43, 16-2
V$DATAGUARD_CONFIG view, 16-2

listing database names defined with LOG_
ARCHIVE_CONFIG, 16-2

V$DATAGUARD_STATS view, 16-2
V$DATAGUARD_STATUS view, 8-21, 16-2
V$LOG view, 5-29, 16-2
V$LOG_HISTORY view, 8-18, 8-20, 16-2
V$LOGFILE view, 16-2
V$LOGSTDBY view, 1-xxiii
V$LOGSTDBY_PROCESS view, 9-2, 9-6, 9-7, 9-11,

9-23, 9-24, 16-2
V$LOGSTDBY_PROGRESS view, 9-8, 16-2

querying SCN information and, 12-17
RESTART_SCN column, 9-3

V$LOGSTDBY_STATE view, 7-3, 9-9, 9-11, 16-2
V$LOGSTDBY_STATS view, 9-2, 9-9, 16-2

failover characteristics, 9-6
V$LOGSTDBY_TRANSACTION view, 16-3
V$MANAGED_STANDBY view, 8-19, 16-3
V$RECOVER_FILE view, 8-14
V$SESSION view, A-5, A-6
V$STANDBY_LOG view, 7-19, 16-3
V$THREAD view, 8-14
VALID_FOR attribute, 14-26

examples, 5-15
overview, 5-14
values and role-based conditions, 14-27
verifying, 12-9

validating
redo data, 1-10

VARCHAR data types
in logical standby databases, C-2

VARCHAR2 data types
in logical standby databases, C-2

VERIFY attribute, 14-28
verifying

contents of archived redo log files, 14-28
logical standby databases, 4-7
physical standby databases, 3-12
role-based destination settings, 12-9
standby redo log groups, 3-4

versions
upgrading Oracle database software, 11-1

View, 9-8, 9-9
views, 8-15, 16-1

DBA_LOGSTDBY_EVENTS, 9-5, 16-1, A-9
DBA_LOGSTDBY_HISTORY, 16-1
DBA_LOGSTDBY_LOG, 9-5, 12-17, 16-1
DBA_LOGSTDBY_NOT_UNIQUE, 16-1
DBA_LOGSTDBY_PARAMETERS, 16-1
DBA_LOGSTDBY_SKIP, 16-1

Index-19

DBA_LOGSTDBY_SKIP_TRANSACTION, 16-1
DBA_LOGSTDBY_UNSUPPORTED, 16-1, C-3
DBA_TABLESPACES, 8-14
displaying history of switchovers and

failovers, 16-1
GV$INSTANCE, D-6
V$ARCHIVE_DEST, 5-29, 12-40, 16-1, A-2
V$ARCHIVE_DEST_STATUS, 5-29, 8-20, 16-1
V$ARCHIVE_GAP, 16-2
V$ARCHIVED_LOG, 5-22, 5-29, 8-20, 12-45, 16-2
V$DATABASE, 16-2
V$DATABASE_INCARNATION, 16-2
V$DATAFILE, 12-41, 12-43, 16-2
V$DATAGUARD_CONFIG, 16-2
V$DATAGUARD_STATS, 16-2
V$DATAGUARD_STATUS, 8-21, 16-2
V$LOG, 5-29, 16-2
V$LOG_HISTORY, 8-18, 8-20, 16-2
V$LOGFILE, 16-2
V$LOGSTDBY, 1-xxiii
V$LOGSTDBY_PROCESS, 9-2, 9-6, 16-2
V$LOGSTDBY_PROGRESS, 9-8, 16-2
V$LOGSTDBY_STATE, 9-9, 16-2
V$LOGSTDBY_STATS, 9-2, 9-9, 16-2
V$LOGSTDBY_TRANSACTION, 16-3
V$MANAGED_STANDBY, 8-19, 16-3
V$RECOVER_FILE, 8-14
V$SESSION, A-5, A-6
V$STANDBY_LOG, 3-4, 7-19, 16-3
V$THREAD, 8-14

W
wait events, 5-30

for standby destinations, 5-30
monitoring the performance of the redo transport

modes, 5-30
WAITING FOR DICTIONARY LOGS state, 9-11
waiting on gap state, 9-12

X
XMLType data types

in logical standby databases, C-2

Z
zero data loss

 See no data loss
zero downtime instantiation

logical standby databases, 4-3

Index-20

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What’s New in Oracle Data Guard?
	Part I Concepts and Administration
	1 Introduction to Oracle Data Guard
	1.1 Data Guard Configurations
	1.1.1 Primary Database
	1.1.2 Standby Databases
	1.1.3 Configuration Example

	1.2 Data Guard Services
	1.2.1 Redo Transport Services
	1.2.2 Log Apply Services
	1.2.3 Role Transitions

	1.3 Data Guard Broker
	1.3.1 Using Oracle Enterprise Manager
	1.3.2 Using the Data Guard Command-Line Interface

	1.4 Data Guard Protection Modes
	1.5 Data Guard and Complementary Technologies
	1.6 Summary of Data Guard Benefits

	2 Getting Started with Data Guard
	2.1 Standby Database Types
	2.1.1 Physical Standby Databases
	2.1.2 Logical Standby Databases

	2.2 User Interfaces for Administering Data Guard Configurations
	2.3 Data Guard Operational Prerequisites
	2.3.1 Hardware and Operating System Requirements
	2.3.2 Oracle Software Requirements

	2.4 Standby Database Directory Structure Considerations
	2.5 Online Redo Logs, Archived Redo Logs, and Standby Redo Logs
	2.5.1 Online Redo Logs and Archived Redo Logs
	2.5.2 Standby Redo Logs

	3 Creating a Physical Standby Database
	3.1 Preparing the Primary Database for Standby Database Creation
	3.1.1 Enable Forced Logging
	3.1.2 Create a Password File
	3.1.3 Configure a Standby Redo Log
	3.1.4 Set Primary Database Initialization Parameters
	3.1.5 Enable Archiving

	3.2 Step-by-Step Instructions for Creating a Physical Standby Database
	3.2.1 Create a Backup Copy of the Primary Database Datafiles
	3.2.2 Create a Control File for the Standby Database
	3.2.3 Prepare an Initialization Parameter File for the Standby Database
	3.2.4 Copy Files from the Primary System to the Standby System
	3.2.5 Set Up the Environment to Support the Standby Database
	3.2.6 Start the Physical Standby Database
	3.2.7 Verify the Physical Standby Database Is Performing Properly

	3.3 Post-Creation Steps

	4 Creating a Logical Standby Database
	4.1 Prerequisite Conditions for Creating a Logical Standby Database
	4.1.1 Determine Support for Data Types and Storage Attributes for Tables
	4.1.2 Ensure Table Rows in the Primary Database Can Be Uniquely Identified

	4.2 Step-by-Step Instructions for Creating a Logical Standby Database
	4.2.1 Create a Physical Standby Database
	4.2.2 Stop Redo Apply on the Physical Standby Database
	4.2.3 Prepare the Primary Database to Support a Logical Standby Database
	4.2.3.1 Prepare the Primary Database for Role Transitions
	4.2.3.2 Build a Dictionary in the Redo Data

	4.2.4 Transition to a Logical Standby Database
	4.2.4.1 Convert to a Logical Standby Database
	4.2.4.2 Create a New Password File
	4.2.4.3 Adjust Initialization Parameters for the Logical Standby Database

	4.2.5 Open the Logical Standby Database
	4.2.6 Verify the Logical Standby Database Is Performing Properly

	4.3 Post-Creation Steps

	5 Redo Transport Services
	5.1 Introduction to Redo Transport Services
	5.2 Where to Send Redo Data
	5.2.1 Destination Types
	5.2.2 Configuring Destinations with the LOG_ARCHIVE_DEST_n Parameter
	5.2.2.1 Changing Destination Attributes
	5.2.2.2 Viewing Attribute with V$ARCHIVE_DEST

	5.2.3 Setting Up Flash Recovery Areas
	5.2.3.1 Using the LOG_ARCHIVE_DEST_10 Destination
	5.2.3.2 Using Other LOG_ARCHIVE_DEST_n Destinations
	5.2.3.3 Using the STANDBY_ARCHIVE_DEST Destination
	5.2.3.4 Sharing a Flash Recovery Area Between Primary and Standby Databases

	5.3 How to Send Redo Data
	5.3.1 Using Archiver Processes (ARCn) to Archive Redo Data
	5.3.1.1 Initialization Parameters That Control ARCn Archival Behavior
	5.3.1.2 ARCn Archival Processing

	5.3.2 Using the Log Writer Process (LGWR) to Archive Redo Data
	5.3.2.1 LOG_ARCHIVE_DEST_n Attributes for LGWR Archival Processing
	5.3.2.2 LGWR SYNC Archival Processing
	5.3.2.3 LGWR ASYNC Archival Processing

	5.3.3 Providing for Secure Redo Data Transmission

	5.4 When Redo Data Should Be Sent
	5.4.1 Specifying Role-Based Destinations with the VALID_FOR Attribute
	5.4.2 Specify Unique Names for Primary and Standby Databases

	5.5 What to Do If Errors Occur
	5.5.1 Retrying the Archival Operation
	5.5.2 Using an Alternate Destination
	5.5.3 Controlling the Number of Retry Attempts

	5.6 Setting Up a Data Protection Mode
	5.6.1 Choosing a Data Protection Mode
	5.6.1.1 Maximum Protection Mode
	5.6.1.2 Maximum Availability Mode
	5.6.1.3 Maximum Performance Mode

	5.6.2 Setting the Data Protection Mode of a Data Guard Configuration

	5.7 Managing Log Files
	5.7.1 Specifying Alternate Directory Locations for Archived Redo Log Files
	5.7.2 Reusing Online Redo Log Files
	5.7.3 Managing Standby Redo Log Files
	5.7.3.1 Determining If a Standby Redo Log File Group Configuration Is Adequate
	5.7.3.2 Adding Standby Redo Log Members to an Existing Group

	5.7.4 Planning for Growth and Reuse of the Control Files
	5.7.4.1 Sizing the Disk Volumes that Contain the Control Files
	5.7.4.2 Specifying the Reuse of Records in the Control File

	5.7.5 Sharing a Log File Destination Among Multiple Standby Databases

	5.8 Managing Archive Gaps
	5.8.1 When Is an Archive Gap Discovered?
	5.8.2 How Is a Gap Resolved?
	5.8.3 Using the Fetch Archive Log (FAL) to Resolve Archive Gaps
	5.8.4 Manually Determining and Resolving Archive Gaps

	5.9 Verification
	5.9.1 Monitoring Log File Archival Information
	5.9.2 Monitoring the Performance of Redo Transport Services
	5.9.2.1 ARCn Process Wait Events
	5.9.2.2 LGWR SYNC Wait Events
	5.9.2.3 LGWR ASYNC Wait Events

	6 Log Apply Services
	6.1 Introduction to Log Apply Services
	6.2 Log Apply Services Configuration Options
	6.2.1 Using Real-Time Apply to Apply Redo Data Immediately
	6.2.2 Specifying a Time Delay for the Application of Archived Redo Log Files
	6.2.2.1 Using Flashback Database as an Alternative to Setting a Time Delay

	6.3 Applying Redo Data to Physical Standby Databases
	6.3.1 Starting Redo Apply
	6.3.2 Stopping Redo Apply
	6.3.3 Monitoring Redo Apply on Physical Standby Databases

	6.4 Applying Redo Data to Logical Standby Databases
	6.4.1 Starting SQL Apply
	6.4.2 Stopping SQL Apply on a Logical Standby Database
	6.4.3 Monitoring SQL Apply on Logical Standby Databases

	7 Role Transitions
	7.1 Introduction to Role Transitions
	7.1.1 Preparing for a Role Transition (Failover or Switchover)
	7.1.2 Choosing a Target Standby Database for a Role Transition
	7.1.3 Switchovers
	7.1.4 Failovers

	7.2 Role Transitions Involving Physical Standby Databases
	7.2.1 Switchovers Involving a Physical Standby Database
	7.2.2 Failovers Involving a Physical Standby Database

	7.3 Role Transitions Involving Logical Standby Databases
	7.3.1 Switchovers Involving a Logical Standby Database
	7.3.2 Failovers Involving a Logical Standby Database

	7.4 Using Flashback Database After a Role Transition
	7.4.1 Using Flashback Database After a Switchover
	7.4.2 Using Flashback Database After a Failover

	8 Managing a Physical Standby Database
	8.1 Starting Up and Shutting Down a Physical Standby Database
	8.1.1 Starting Up a Physical Standby Database
	8.1.2 Shutting Down a Physical Standby Database

	8.2 Opening a Standby Database for Read-Only or Read/Write Access
	8.2.1 Assessing Whether or Not to Open a Standby Database
	8.2.2 Opening a Physical Standby Database for Read-Only Access

	8.3 Managing Primary Database Events That Affect the Standby Database
	8.3.1 Adding a Datafile or Creating a Tablespace
	8.3.1.1 When STANDBY_FILE_MANAGEMENT Is Set to AUTO
	8.3.1.2 When STANDBY_FILE_MANAGEMENT Is Set to MANUAL
	8.3.1.2.1 Using the STANDBY_FILE_MANAGEMENT Parameter with Raw Devices
	8.3.1.2.2 Recovering From Errors

	8.3.2 Dropping Tablespaces and Deleting Datafiles
	8.3.2.1 When STANDBY_FILE_MANAGEMENT Is Set to AUTO or MANUAL
	8.3.2.2 Using DROP TABLESPACE INCLUDING CONTENTS AND DATAFILES

	8.3.3 Using Transportable Tablespaces with a Physical Standby Database
	8.3.4 Renaming a Datafile in the Primary Database
	8.3.5 Adding or Dropping Online Redo Log Files
	8.3.6 NOLOGGING or Unrecoverable Operations

	8.4 Recovering Through the OPEN RESETLOGS Statement
	8.5 Monitoring the Primary and Standby Databases
	8.5.1 Alert Log
	8.5.2 Dynamic Performance Views (Fixed Views)
	8.5.3 Monitoring Recovery Progress
	8.5.3.1 Monitoring the Process Activities
	8.5.3.2 Determining the Progress of Redo Apply
	8.5.3.3 Determining the Location and Creator of the Archived Redo Log Files
	8.5.3.4 Viewing Database Incarnations Before and After OPEN RESETLOGS
	8.5.3.5 Viewing the Archived Redo Log History
	8.5.3.6 Determining Which Log Files Were Applied to the Standby Database
	8.5.3.7 Determining Which Log Files Were Not Received by the Standby Site

	8.5.4 Monitoring Log Apply Services on Physical Standby Databases
	8.5.4.1 Accessing the V$DATABASE View
	8.5.4.2 Accessing the V$MANAGED_STANDBY Fixed View
	8.5.4.3 Accessing the V$ARCHIVE_DEST_STATUS Fixed View
	8.5.4.4 Accessing the V$ARCHIVED_LOG Fixed View
	8.5.4.5 Accessing the V$LOG_HISTORY Fixed View
	8.5.4.6 Accessing the V$DATAGUARD_STATUS Fixed View

	8.6 Tuning the Log Apply Rate for a Physical Standby Database

	9 Managing a Logical Standby Database
	9.1 Overview of the SQL Apply Architecture
	9.1.1 Various Considerations for SQL Apply
	9.1.1.1 Transaction Size Considerations
	9.1.1.2 Pageout Considerations
	9.1.1.3 Restart Considerations
	9.1.1.4 DML Apply Considerations
	9.1.1.5 DDL Apply Considerations

	9.2 Views Related to Managing and Monitoring a Logical Standby Database
	9.2.1 DBA_LOGSTDBY_EVENTS View
	9.2.2 DBA_LOGSTDBY_LOG View
	9.2.3 V$LOGSTDBY_STATS View
	9.2.4 V$LOGSTDBY_PROCESS View
	9.2.5 V$LOGSTDBY_PROGRESS View
	9.2.6 V$LOGSTDBY_STATE View
	9.2.7 V$LOGSTDBY_STATS View

	9.3 Monitoring a Logical Standby Database
	9.3.1 Monitoring SQL Apply Progress
	9.3.2 Automatic Deletion of Log Files

	9.4 Customizing a Logical Standby Database
	9.4.1 Using Real-Time Apply On the Logical Standby Database
	9.4.2 Customizing Logging of Events in the DBA_LOGSTDBY_EVENTS View
	9.4.3 Using DBMS_LOGSTDBY.SKIP to Prevent Changes to Specific Schema Objects
	9.4.4 Setting up a Skip Handler for a DDL Statement
	9.4.5 Modifying a Logical Standby Database
	9.4.5.1 Performing DDL on a Logical Standby Database
	9.4.5.2 Modifying Tables That Are Not Maintained by SQL Apply

	9.4.6 Adding or Re-Creating Tables On a Logical Standby Database

	9.5 Managing Specific Workloads In the Context of a Logical Standby Database
	9.5.1 Importing a Transportable Tablespace to the Primary Database
	9.5.2 Using Materialized Views
	9.5.3 How Triggers and Constraints Are Handled on a Logical Standby Database
	9.5.4 Recovering Through the OPEN RESETLOGS Statement

	9.6 Tuning a Logical Standby Database
	9.6.1 Create a Primary Key RELY Constraint
	9.6.2 Gather Statistics for the Cost-Based Optimizer
	9.6.3 Adjust the Number of Processes
	9.6.3.1 Adjusting the Number of APPLIER Processes
	9.6.3.2 Adjusting the Number of PREPARER Processes

	9.6.4 Adjust the Memory Used for LCR Cache
	9.6.5 Adjust How Transactions are Applied On the Logical Standby Database

	10 Using RMAN to Back Up and Restore Files
	10.1 Backup Procedure
	10.1.1 Using Disk as Cache for Tape Backup
	10.1.2 Performing Backups Directly to Tape

	10.2 Effect of Switchovers, Failovers, and Control File Creation on Backups
	10.2.1 Recovery from Loss of Datafiles on the Primary Database
	10.2.2 Recovery from Loss of Datafiles on the Standby Database
	10.2.3 Recovery from the Loss of a Standby Control File
	10.2.4 Recovery from the Loss of the Primary Control File
	10.2.5 Recovery from the Loss of an Online Redo Log File
	10.2.6 Incomplete Recovery of the Database

	10.3 Additional Backup Situations
	10.3.1 Standby Databases Too Geographically Distant to Share Backups
	10.3.2 Standby Database Does Not Contain Datafiles, Used as a FAL Server
	10.3.3 Standby Database File Names Are Different than Primary Database
	10.3.4 Deletion Policy for Archived Redo Log Files In Flash Recovery Areas
	10.3.4.1 Reconfiguring the Deletion Policy After a Role Transition
	10.3.4.2 Viewing the Current Deletion Policy

	11 Using SQL Apply to Upgrade the Oracle Database
	11.1 Benefits of a Rolling Upgrade Using SQL Apply
	11.2 Requirements to Perform a Rolling Upgrade Using SQL Apply
	11.3 Figures and Conventions Used in the Upgrade Instructions
	11.4 Prepare to Upgrade
	11.5 Upgrade the Databases

	12 Data Guard Scenarios
	12.1 Setting Up and Verifying Archival Destinations
	12.1.1 Configuring a Primary Database and a Physical Standby Database
	12.1.2 Configuring a Primary Database and a Logical Standby Database
	12.1.3 Configuring Both Physical and Logical Standby Databases
	12.1.4 Verifying the Current VALID_FOR Attribute Settings for Each Destination

	12.2 Choosing the Best Available Standby Database for a Role Transition
	12.2.1 Example: Best Physical Standby Database for a Failover
	12.2.2 Example: Best Logical Standby Database for a Failover

	12.3 Configuring a Logical Standby Database to Support a New Primary Database
	12.3.1 When the New Primary Database Was Formerly a Physical Standby Database
	12.3.2 When the New Primary Database Was Formerly a Logical Standby Database

	12.4 Using Flashback Database After a Failover
	12.4.1 Flashing Back a Failed Primary Database into a Physical Standby Database
	12.4.2 Flashing Back a Failed Primary Database into a Logical Standby Database
	12.4.3 Flashing Back a Logical Standby Database to a Specific Applied SCN

	12.5 Using Flashback Database After Issuing an Open Resetlogs Statement
	12.5.1 Flashing Back a Physical Standby Database to a Specific Point-in-Time
	12.5.2 Flash Back a Logical Standby Database After Flashing Back the Primary

	12.6 Using a Physical Standby Database for Read/Write Testing and Reporting
	12.7 Using RMAN Incremental Backups to Roll Forward a Physical Standby Database
	12.7.1 Physical Standby Database Lags Far Behind the Primary Database
	12.7.2 Physical Standby Database Has Nologging Changes On a Subset of Datafiles
	12.7.3 Physical Standby Database Has Widespread Nologging Changes

	12.8 Using a Physical Standby Database with a Time Lag
	12.8.1 Establishing a Time Lag on a Physical Standby Database
	12.8.2 Failing Over to a Physical Standby Database with a Time Lag
	12.8.3 Switching Over to a Physical Standby Database with a Time Lag

	12.9 Recovering From a Network Failure
	12.10 Recovering After the NOLOGGING Clause Is Specified
	12.10.1 Recovery Steps for Logical Standby Databases
	12.10.2 Recovery Steps for Physical Standby Databases
	12.10.3 Determining If a Backup Is Required After Unrecoverable Operations

	12.11 Resolving Archive Gaps Manually
	12.11.1 What Causes Archive Gaps?
	12.11.1.1 Creation of the Standby Database
	12.11.1.2 Shutdown of the Standby Database When the Primary Database Is Open
	12.11.1.3 Network Failure Prevents Transmission of Redo

	12.11.2 Determining If an Archive Gap Exists
	12.11.3 Manually Transmitting Log Files in the Archive Gap to the Standby Site
	12.11.4 Manually Applying Log Files in the Archive Gap to the Standby Database

	12.12 Creating a Standby Database That Uses OMF or ASM

	Part II Reference
	13 Initialization Parameters
	14 LOG_ARCHIVE_DEST_n Parameter Attributes
	AFFIRM and NOAFFIRM
	ALTERNATE
	ARCH and LGWR
	DB_UNIQUE_NAME
	DELAY
	DEPENDENCY
	LOCATION and SERVICE
	MANDATORY and OPTIONAL
	MAX_CONNECTIONS
	MAX_FAILURE
	NET_TIMEOUT
	NOREGISTER
	REOPEN
	SYNC and ASYNC
	TEMPLATE
	VALID_FOR
	VERIFY

	15 SQL Statements Relevant to Data Guard
	15.1 ALTER DATABASE Statements
	15.2 ALTER SESSION Statements

	16 Views Relevant to Oracle Data Guard

	Part III Appendixes
	A Troubleshooting Data Guard
	A.1 Common Problems
	A.1.1 Standby Archive Destination Is Not Defined Properly
	A.1.2 Renaming Datafiles with the ALTER DATABASE Statement
	A.1.3 Standby Database Does Not Receive Redo Data from the Primary Database
	A.1.4 You Cannot Mount the Physical Standby Database

	A.2 Log File Destination Failures
	A.3 Handling Logical Standby Database Failures
	A.4 Problems Switching Over to a Standby Database
	A.4.1 Switchover Fails Because Redo Data Was Not Transmitted
	A.4.2 Switchover Fails Because SQL Sessions Are Still Active
	A.4.3 Switchover Fails Because User Sessions Are Still Active
	A.4.4 Switchover Fails with the ORA-01102 Error
	A.4.5 Redo Data Is Not Applied After Switchover
	A.4.6 Roll Back After Unsuccessful Switchover and Start Over

	A.5 What to Do If SQL Apply Stops
	A.6 Network Tuning for Redo Data Transmission
	A.7 Slow Disk Performance on Standby Databases
	A.8 Log Files Must Match to Avoid Primary Database Shutdown
	A.9 Troubleshooting a Logical Standby Database
	A.9.1 Recovering from Errors
	A.9.1.1 DDL Transactions Containing File Specifications
	A.9.1.2 Recovering from DML Failures

	A.9.2 Troubleshooting SQL*Loader Sessions
	A.9.3 Troubleshooting Long-Running Transactions
	A.9.4 Troubleshooting ORA-1403 Errors with Flashback Transactions

	B Upgrading Databases in a Data Guard Configuration
	B.1 Before You Upgrade the Oracle Database Software
	B.2 Upgrading Oracle Database with a Physical Standby Database In Place
	B.3 Upgrading Oracle Database with a Logical Standby Database In Place

	C Data Type and DDL Support on a Logical Standby Database
	C.1 Data Type Considerations
	C.1.1 Supported Data Types in a Logical Standby Database
	C.1.2 Unsupported Data Types in a Logical Standby Database

	C.2 Storage Type Considerations
	C.2.1 Support Storage Types
	C.2.2 Unsupported Storage Type

	C.3 PL/SQL Supplied Packages Considerations
	C.3.1 Supported PL/SQL Supplied Packages
	C.3.2 Unsupported PL/SQL Supplied Packages

	C.4 Unsupported Tables, Sequences, and Views
	C.5 Skipped SQL Statements on a Logical Standby Database
	C.6 DDL Statements Supported by a Logical Standby Database

	D Data Guard and Real Application Clusters
	D.1 Configuring Standby Databases in a Real Application Clusters Environment
	D.1.1 Setting Up a Multi-Instance Primary with a Single-Instance Standby
	D.1.2 Setting Up a Multi-Instance Primary with a Multi-Instance Standby

	D.2 Configuration Considerations in a Real Application Clusters Environment
	D.2.1 Format for Archived Redo Log Filenames
	D.2.2 Archive Destination Quotas
	D.2.3 Data Protection Modes
	D.2.4 Role Transitions
	D.2.4.1 Switchovers
	D.2.4.2 Failovers

	D.3 Troubleshooting
	D.3.1 Switchover Fails in a Real Application Clusters Configuration
	D.3.2 Avoiding Downtime in Real Application Clusters During a Network Outage

	E Cascaded Destinations
	E.1 Configuring Cascaded Destinations
	E.1.1 Configuring Cascaded Destinations for Physical Standby Databases
	E.1.2 Configuring Cascaded Destinations for Logical Standby Databases

	E.2 Role Transitions with Cascaded Destinations
	E.2.1 Standby Databases Receiving Redo Data from a Physical Standby Database
	E.2.2 Standby Databases Receiving Redo Data from a Logical Standby Database

	E.3 Examples of Cascaded Destinations
	E.3.1 Local Physical Standby and Cascaded Remote Physical Standby
	E.3.2 Local Physical Standby and Cascaded Remote Logical Standby
	E.3.3 Local and Remote Physical Standby and Cascaded Local Logical Standby
	E.3.4 Consolidated Reporting with Cascaded Logical Standby Destinations
	E.3.5 Temporary Use of Cascaded Destinations During Network Upgrades

	F Creating a Standby Database with Recovery Manager
	F.1 Preparing to Use RMAN to Create a Standby Database
	F.1.1 About Standby Database Preparation Using RMAN
	F.1.2 Creating the Standby Control File with RMAN
	F.1.3 Naming the Standby Database Datafiles When Using RMAN
	F.1.4 Naming the Standby Database Log Files When Using RMAN

	F.2 Creating a Standby Database with RMAN: Overview
	F.2.1 RMAN Standby Creation Without Recovery
	F.2.2 RMAN Standby Creation with Recovery

	F.3 Setting Up the Standby Database
	F.3.1 Setting Up a Standby Database When Files Are Not Oracle Managed Files
	F.3.2 Setting Up a Standby Database When All Files Are Oracle Managed Files
	F.3.3 Setting Up a Standby Databases When a Subset of Files Are Oracle Managed Files

	F.4 Creating a Standby Database with the Same Directory Structure
	F.4.1 Creating the Standby Database Without Performing Recovery
	F.4.2 Creating the Standby Database and Performing Recovery

	F.5 Creating a Standby Database with a Different Directory Structure
	F.5.1 Naming Standby Database Files with DB_FILE_NAME_CONVERT
	F.5.1.1 Creating the Standby Database Without Performing Recovery
	F.5.1.2 Creating the Standby Database and Performing Recovery

	F.5.2 Naming Standby Database Files with SET NEWNAME
	F.5.2.1 Creating the Standby Database Without Performing Recovery
	F.5.2.2 Creating the Standby Database and Performing Recovery

	F.5.3 Naming Standby Database Files with CONFIGURE AUXNAME
	F.5.3.1 Creating the Standby Database Without Performing Recovery
	F.5.3.2 Creating the Standby Database and Performing Recovery

	F.6 Creating a Standby Database on the Local Host
	F.7 Creating a Standby Database with Image Copies
	F.7.1 Overview
	F.7.2 When Copies and Datafiles Use the Same Names
	F.7.3 When Copies and Datafiles Use Different Names
	F.7.3.1 Creating the Standby Database Without Performing Recovery
	F.7.3.2 Creating the Standby Database and Performing Recovery

	F.8 Usage Scenario

	G Setting Archive Tracing
	G.1 LOG_ARCHIVE_TRACE Initialization Parameter
	G.2 Determining the Location of the Trace Files
	G.2.1 Setting the LOG_ARCHIVE_TRACE Initialization Parameter
	G.2.2 Choosing an Integer Value

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

