Oraclell Dynamic Services

User’s and Administrator’'s Guide

Release 9.0.1

June 2001
Part No. A88783-01

Oracle Dynamic Services is a Java-based programmatic framework for
incorporating, managing, and deploying Internet services. Oracle Dynamic
Services makes it easy for application developers to rapidly incorporate existing
services residing in Web sites, local databases, or proprietary systems into their
own applications.

ORACLE

Oracle Dynamic Services User’s and Administrator’s Guide, Release 9.0.1
Part No. A88783-01
Copyright © 2000, 2001, Oracle Corporation. All rights reserved.

Primary Authors: Alok Srivastava, Marco Carrer, Paul Lin, Wei Qian, Sam Lee, Kan Deng, Cheng Han,
Alan Wu, Rod Ward

Contributing Authors: Timothy Chien, Michael Sekurski, Christine Chan, Joseph Meeks, Bill
Beauregard, Katherine Oakey, Larry Guros, Yoko Mizuno, Susan Shepard

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle and SQL*Plus are registered trademarks, and Oracle9i is a trademark of Oracle Corporation.
Other names may be trademarks of their respective owners.

Contents

Send US YOUTr COMMEBNES ...ttt xiii

P ETACE ... XV
F N U o |17 o (o OO PO U RT USRS XV
(@] (o T= T 1= 1 1 1o] TSR XV
REIALEA DOCUIMENTS. ...ttt sttt b e b e b st b st b bbbt e b et nnebe e ebe e ebeneas XVi
(670] 01 7=] 011 o] o LS J ST SO PRSPPI XVii
Documentation ACCESSIDIIITYc.oviieiic e XVii
Introduction
1.1 AN o] o] [Tor=1d To] g IS Tod=T o F- 1 o 1RSI 1-2
1.1.1 Business Problems or Technical Challenges ... 1-2
1.1.2 Oracle Dynamic Services SOIULIONSooi i 1-3
1.1.2.1 Wireless Service DEVEIOPELS ... ene s 1-4
1.1.2.2 Portal SErvice DEVEIOPELSccoi ittt 1-5
1.1.2.3 e-Business Service Application DeVelOpers.........ccuirireneneneneieseee e 1-5
1.2 OVEIVIEW OF CONCEPLS ...vivicvieeceeti ettt ettt b et sn e e e e e ereeneene s 1-5
1.2.1 SEIVICE PrOVIAEL ...t bbbttt 1-9
1.2.2 SEIVICE REGISIIY ...ttt b e bbb e s 1-10
1.2.3 Application Profile REGISTIYcccviiiiiice e 1-10
1.2.4 SErvice AdMINISTIALOr.........ciiiiiiie e et b e 1-10
1.25 Service Consumer APPHICALION ..o 1-10
1.2.6 DYNamic SErvices ENQINE.........cviviiiiiieiiseieseies st ste e ss e neenesressesnens 1-11

1.2.7 Services as Application COMPONENTEScoiiiieiiirerieieeee e 1-11

1.2.8 Communication Between the Service Consumer Application and the Dynamic

SEIVICES ENQINE it iiee e et e e e e e s s e e e e e e e e e e e e s s nnr e aeeeeaeaeeeeaeannes 1-12
1.2.9 Communication Between the Service Administrator and the Dynamic Services

=1 0o 1 o1 U PP P 1-12
1.3 Dynamic Services Implementation OVEIVIEW............ccccoviriiiiiiicienessese e 1-12
1.3.1 JaVva DEPIOYMENT VIBWociiiiiieiie et see e nn e 1-14
1.3.2 PL/ZSQL DePloyMENT VIBW.......ooiiiiiiiiieiiiie sttt s 1-16
1.3.3 Java (HTTP/Java Messaging Services (JMS)) Deployment Viewcc.ccocvvuenee. 1-17
1.4 Using Multiple Dynamic SErvices ENQINES........cccvvvvreriirieieesiesesesesese s sseeeseeneens 1-19
15 How to Get Started with Oracle Dynamic SEFVICES........ccoiriiierinine e 1-20
Installation
21 SYSTEM REQUITEIMENTS. ..ottt ettt et e b 2-1
2.2 Dynamic Services DistriBULION ..o 2-2
2.3 Installing the DSSYS SCREM@cv i e 2-3
2.4 Dynamic Services CoNfiQUIatioN...........ccooiiiiiiiiiiieeee e 2-5
Configuration
3.1 Configuring and Running the DSAAmMIN Utilityccoooiiiiiiiiiiec 3-1
3.1.1 Configuring Dynamic Services ProxXy SEttings........ccocvvvereiviinninsinne e e 3-2
3.1.2 Configuring the DSAAMIN ULIHILY ..o 3-2
3.1.3 Running the DSAAMIN ULHITY ..o s 3-4
3.2 REQISTENING @ NEW SEIVICE.ci it ettt sttt sre e sresrene e 3-5
3.2.1 Creating a New Service Package Categoryccovvereeerireeiniesesesie e seeeeseeseene e 3-7
3.2.2 Registering a Service PaCKageccoiiiiiriiiie e 3-9
3.3 Browsing ReQISTEred SEIVICEScccviieieeceei sttt eeneens 3-9
3.4 Executing a ReQISIEred SEIVICEcviv et 3-11

Advanced Installation Options

4.1 ENabling PL/ZSQL INTEITACESeiieiirieiirieeese ettt 4-1
4.2 Enabling Persistent Auditing or Event Monitor SErvices..........ccocoviiinieninenenciiceene 4-3
421 Configuring Oracle Advanced QUEUING........cccevirererierieierise e se e seens 4-3
422 INStalling MONITOE SEIVICESocvviiiiiicciee e e 4-3

4.2.3 Using the Event Monitor ULHTY ... 4-4

4.2.4 Enabling Persistent AUAITINGcccocvviiiiiin e 4-5
4.2.5 Starting and Stopping the Event MONITOr ... 4-5
4.2.6 Using the Logger Monitor Service (Case StUdY)c.ccocevereieniiniene e 4-6
4.3 Enabling HTTP COMMUNICALIONScociiiiicieece s e 4-8
431 Configuring the Apache/Jserv Serviet ENgine ... 4-8
4.3.2 Configuring the DSAdmin Utility to Use the HTTP Driver......ccccocovvivivienennns 4-11
4.4 Enabling Java Messaging Services (JMS) Communications.........c.ccccovevvereiveneseensnnnns 4-11
441 Configuring and Running the JMS DaemonNccoeviiiinieininince e 4-12
4.4.2 Configuring the DSAdmin Utility to Enable JIMS Communications.................... 4-13
4.5 Using Lightweight Directory Access Protocol (LDAP) as a Central Master Registry

.. 4-14
451 Setting Up LDAP with Oracle Internet DireCtOryccccooviiininienenene e 4-14
45.1.1 Oracle INtErNet DIrECLOTYocv i 4-14
45.1.2 Dynamic Services LDAP SChemMacccccvviiiieieieeee e 4-15
45.2 Configuring Dynamic Services Registry to Use LDAPccccoeiiiineniieincanns 4-16
4.6 Manual Fine-Tuning of Dynamic Services Propertiescccocvvvereneiienseeriniesiesnnnns 4-17

Service Consumer Interfaces

5.1 Java Interface for SErvice CONSUMEIS......cciiiiiiieice sttt 5-1
5.1.1 Setting the ClassPath ... e 5-2
5.1.2 Registering a Service Consumer Application in the Application Profile Registry 5-2
5.1.3 Opening a Connection to the Dynamic Services ENgine........ccocoevvvvvevniecinsnnnens 5-4
5.1.3.1 Available ConNECtioN DIIVEIS. ... 5-4
5.14 Example: Executing the YahooPortfolio SErvice ... 5-5
5.1.5 Displaying SErvice RESPONSE......ccciviiiirieierierieie st ereseee e e ste e sre e sressesseseeseaneesenses 5-6
5.1.6 Service Consumer AppPlication SESSIONS.........cccvvivvivieiine s 5-7
5.2 PL/SQL Interface for Service CONSUIMELSccccciieiiiiiieieiie e eere e ste e s e e sre e 5-7

Service Development Guide

6.1 (O U] To] 1] = USSP 6-2
6.1.1 Creating @ SErvice PACKagecovovviiveiii e 6-3
6.1.2 Service Provider -- Organization and Contacts XML FileS........cc.ccccoviviivninicinennn, 6-4
6.1.3 Service Classification XIML File.......ccooiiii i 6-5
6.1.4 Service Interface Specification -- Request Definitioncccccceeeveicivciiie s, 6-6

vi

6.1.5
6.1.6
6.1.6.1
6.1.6.2
6.1.7
6.2

6.3
6.3.1
6.3.1.1
6.3.1.2
6.3.1.3
6.3.1.4
6.3.1.5
6.3.2
6.3.2.1
6.3.2.2
6.3.2.3
6.3.2.4
6.4
6.4.1
6.4.1.1
6.4.2
6.4.2.1
6.4.2.2
6.4.2.3
6.4.2.4
6.4.3
6.4.3.1
6.4.3.2
6.4.3.3
6.4.4
6.4.4.1
6.5
6.5.1

Service Interface Specification -- Response Definition...........ccccocveiiiiiiiiiccienn, 6-7

Editing the Service DESCIIPLON.......cvciv it e raens 6-9
SEIVICE HEAUEK ...t et 6-9

SEIVICE BOOY .. .cuiiiiiiiieie bbbt 6-11

Testing the EXecution Of YOUT SEIVICE.......ccccvviviiiiieie et 6-15
Creating Advanced Services -- Service Packageccocooeeeiiiiineni i 6-15
Creating Advanced Services -- SErvice DeSCriPLOr.......cccovverviiiiieie s 6-16
Service Header SECLION ..o 6-16
Naming SPeCIfiCatioNcccouoiiiii s 6-17
Package SPeCIfiCatioN.........ccccveiiicsecce s s 6-17

Service Provider Specification -- Organization and Contacts..............c..co..... 6-18
Deployment Specification -- Classification and Cachingccccocoeiennne 6-18

Service Interface Specification -- Request and Response Definitions............ 6-19

=] RVA el =T0To |V T=Tod A (o] o OSSR 6-20
Input Handling and Adaptor Specifications..........c.ccoovoeiiniiiieienceecee, 6-22
Protocol Adaptor Specificationccccveiviiv e 6-25
Execution Adaptor SPeCifiCationc.ccccvivviiereiine e 6-26

Output Handling and Adaptor Specification ..o, 6-26
Creating Advanced Services -- Description of Supplied Adaptors..........cccccoeevevenne, 6-27
] 0T8N F- 1 0 (o] cO PSRRI 6-28
oracle.ds.engine.ioa. DSXSLTINPULAAPLONcccoiiirieiereeeee e 6-28

(] oTolo] A0 F=1 o | (0] -SSR 6-29
oracle.ds.engine.pa.http.DSHTTPProtocolAdaptor...........ccocvveeveveverneieinnannns 6-29
oracle.ds.engine.pa.http.DSHTTPSProtocolAdaptor..........c.ccooeieieiiieicneanns 6-31
oracle.ds.engine.pa.jdbc.DSJDBCProtocol Adaptor.......c.cccvevvvvvivnesenesienen, 6-31
oracle.ds.engine.pa.smtp.DSSMTPProtocol Adaptor.........cccceeevevevevieiiinnannns 6-33
EXECULION AQAPTOIS. .. .ciiieieiiie ettt sttt sre e sae s 6-34
oracle.ds.engine.ea.DSFailOverExecutionAdaptor........cccocvvvvevvivecvnnsiennenns 6-35
oracle.ds.engine.ea.compound.DSCompoundServiceExecutionAdaptor.... 6-35
oracle.ds.engine.ea.DSConditionalExecutionAdaptorcccoceeveircnnne, 6-42

(@811 010 AN F=T o] {0 SR 6-43
oracle.ds.engine.ioa. DSXSLTOUtPULAAPLON........cccovevivvie e 6-43
Creating Advanced Services -- Building Your Own Adaptors..........ccccceovverivencnnnnes 6-44
(STl T [aTo AN T8 [N o F-1 o) (o] S 6-44

Service Administration

7.1 Managing Consumer APPLICALIONS.........cccceieieierc et 7-1
7.2 MENAGING SEIVICESveeiiieieeeieeie ettt b et b e eb e be e b e b e b be e b et e esesbesbenas 7-2
7.3 Service RESPONSE CACHINGcuiiiiiiiiiee et e eeneas 7-3
7.4 (0= ol T @ [TV o 10 o LSRR 7-4
7.5 Connecting Multiple Dynamic Services ENgine INStancCes...........c.ccoovvenereiienecinienennens 7-4
7.6 Additional Operations of the DSAAMIN Utility........c.ccoooiiiiiiiiniie e 7-5
7.6.1 Using Script Files with the DSAAMIN Utility ..o 7-5

Known Issues and Problems

8.1 (O00]0 010 U QT Tor=1 1] o F-3 8-1
8.2 SEIVICE EXBCUTION.....eiiiitiiiicetie ettt ee et e e et e st e e s st e e e s st e s e e sbt e e et b e e e sabesssabeessabbassantaessabeeas 8-1
8.3 Service Definitions and Creationcceeiie it 8-1
8.4 (@) (g TeT g ad o] o] (=T 0 g Fo3= LaTo J 1S U T 8-1
Links

Frequently Asked Questions

Descriptive Matrix

Cc.l1 Syntax of the Service DesCriptor SCheMA.........cccvciviiiieiirie e C-1
Cc.2 Syntax of the Parameters Section for the Packaged Adaptors..........ccccooeveiinciniennnnne C-9
c.2l1 oracle.ds.engine.ioa. DSXSLTINPULAAPIONcccviirieviiieeeecee e C-10
c.2.2 oracle.ds.engine.ioa. DSXSLTOULtPULAAPLON ..o civvrieir e C-10
Cc.2.3 oracle.ds.engine.pa.DSHTTPProtoCOIAdapLorcccoiiiieiieiee e C-11
c.24 oracle.ds.engine.pa.DSIDBCProtocOlAdaptor........ccoevvvevviveice e C-12
C.25 oracle.ds.engine.pa.DSSMTPProtocoOlAdaptor........cccooeevevveisvciere e C-13
C.2.6 oracle.ds.engine.ea.compound.DSCompoundServiceExecutionAdaptor C-14
Cc.2.7 oracle.ds.engine.ea.DSConditionalExecutionAdaptorc.ccccvveveveeveeiecvennennn, C-17
Cc.2.8 oracle.ds.engine.ea.DSFailOverExecutionAdaptor........cccvvvveercieeiesinsinne e C-18

Vii

D Sample Service Packages

E Error Messages

E.l
E.2
E.3
E.4
E.5
E.6

Glossary

Index

viii

EXECULION ENQINE EFTOSiiiiiiie ettt sttt st e ene e ste st st naeneennas E-1
COMMUNICALION EFTOIS ..ottt s ste et e et e s teeneesaeesresteeseeas E-2
DS REGISTIY EFTOIS ...ttt sttt sttt ettt sttt e b b sbe b e be e e sbeneene s E-5
(BRI = g L Lo = g (o] SRS E-10
(DR B = gl g o] S SUTSPRTSRSN E-18
DS Compound Execution Adaptor Module Errors.........cccoeveveevinivsnnnsesesese e E-18

List of Examples

3-1 Configure the DSAAMIN ULIHLY ..o 3-3
3-2 RUN the DSAAMIN ULHITYocvoieecc e 3-5
3-3 Create a Set of Categories Required by the Yahoo Service Package............ccoccovevvirennne 3-8
34 REQISTEr @ SEIVICE PACKAQE ..cvivveveiieceestisie ettt e e e ere e ene s 3-9
3-5 Search a List of Registered Services by Categoryccocvvreieniiveinniesiesese e 3-10
3-6 Returning a List of Services Using the Wildcard "*" Search............c.ccccovvvvvnivncrinnnnns 3-10
3-7 Search a List of Registered Services by Interface..........ccoeveieiiiciii s 3-11
3-8 Execute a REQISIEred SEIVICEcoviv it 3-12
4-1 Set the aq_tm_process iNit.ora Parameter........coiocieieicieine s enes 4-3
4-2 Configure the MonitorInstall.dss File..........cccovviiiiieiciseccs e 4-4
4-3 Usage Syntax for Running the Event Monitor Utility.........ccccccovviiviiiinivincccscee 4-5
4-4 Connect to the DSSYS Schema as DSSYS USENcccvivieiieninienineieene e 4-5
4-5 Start the EVENT IMONITOToooiiiiiieeee e e 4-6
4-6 StOP the EVENT IMONITON........ooiiici et eeneereaneene s 4-6
4-7 Define the Raw Log ODbJeCt Table........ccoviiiiiieieseeceeeee e 4-6
4-8 Definition of the Raw Event Object Table..........ccccoivveiiiiiicccc e 4-6
4-9 Make a SQL Query of the Logging EVENLS ... 4-7
4-10 Run the Idapmodify Command to Create Default Entries for Dynamic Services..... 4-16
4-11 Configure the Dynamic Services Registry to Use the Master LDAP Server............... 4-17
5-1 Include These Dynamic Services Libraries in Your Classpathcccoceevvivvvieiciennns 5-2
5-2 Create a New Database User Using These SQL Statementsccccovevverveivniesnninniennens 5-2
5-3 Register the Application as a New Dynamic Services CONSUMErcccccevvvrveveieinanens 5-3
5-4 Connect to the Oracle Dynamic Services Engine as User serviceconsumerl............... 5-3
5-5 Specify a Driver and Open a Connection for a Service Consumer Application........... 5-4
5-6 Request a Service and the Service Execution Callcccooovvviviiiiniie v 5-5
5-7 Request the YahooPOrtfolio SEIVICE........ccciv i 5-6
5-8 DisSplay @ SErVICE RESPONSE.ccueieieeieiieee st ie sttt et ae st te e resreste st et et e seeneeseenes 5-6
5-9 Use These Grant Statements to Access the PL/SQL DynamicServices Package......... 5-7
5-10 PL/SQL Interface for DYNamMIC SEIVICES......ccciiiiieiereeieieeeeiesteee et eens 5-8
5-11 Sample Code to Use the Dynamic Services PL/SQL Interface Package............ccc.cv..... 5-9
6-1 Create a Default SErvice PACKAQEcoccviieiiiriie et ene s 6-3
6-2 Update the MANIFEST File ..o 6-4
6-3 Edit the YahooOrg.XmMI FIle ..o 6-4
6—4 Edit the YahooContact. XMl File..........ccoiiiiiiiic e 6-5
6-5 Edit the yPfICIasS. XM FIlE ...c..cuvcicr e 6-5
6—6 Examine a Typical HTIML FOrM ..o s 6-6
6—7 Generate an XML Schema File for the Service REQUESE.........cccvvvieieveieie e 6-6
6-8 Examine the Code and Note the Stock Symbol ORCLc.cccocvviiiviiinciic e 6-7
6-9 Create an XML Schema File for the Service RESPONSE........ccccvcevereierieiicie s se s 6-8

Examine the Beginning of the Service DeSCriPLorcccoiiiiiiiie i 6-9

Modify the SErVICe HEAAERN ..ot 6-9
Look for the Beginning of the Service Body ... 6-11
Modify the Input Section of the Service Body ... 6-11
Modify the Protocol Section of the Service Body.........ccccoiiiiiiiiiniine e 6-12
Modify the Output Section of the Service Body..........cccoeoiiiiiiiciininieiiie e 6-13
Close the Service Body and Service Descriptor Elements..........ccocooieiiiiiicicncnn, 6-15
Sample Naming SPeCIfiCatioNcccvviiriiie e 6-17
Sample Package SPeCIfiCatioNccccciiicicicise e 6-17
Sample Service Provider SPeCIfiCationccocvvvieiienineesse s 6-18
Sample Deployment SPeCifiCation ... 6-19
Sample Service Interface SPECITICAtIONcccv v vire i 6-20
Sample Namespaces SPECIfiCAtiONc.ccvvviviirierie i 6-23
Sample Aliases SPECITICAtION........ccciiviiii e e 6-23
Sample HTTPS Protocol Adaptor Specification..........ccccoovveceviiieve s 6-25
Sample XSL Stylesheet INfOrmation..........cccccoviieiiicicci e 6-28
Sample Aliases Defined as XSL Variables ... 6-28
Sample HTTP Protocol Adaptor Specification...........ccoccvceveieicieiecccccce e 6-29
Sample Login and Password Aliases in the Authorization Specification.................... 6-30
Sample JDBC Protocol Adaptor SpecifiCation............ccocveivveiiniiie i 6-31
Sample SMTP Protocol Adaptor Specification...........ccccvcoveiiniiie s 6-33
Sample Failover Adaptor SPecCifiCation.........ccccccvvieiineie i 6-35
Sample Compound Service SPeCIfiCatioNccoviviiiiieiere s 6-35
Sample Service Execution Module with the executeSingleRequest Property 6-36
Sample Service Execution Module with the executeAlIRequests Property................ 6-37
Sample MessageTransformer ModUIe. ... 6-37
Sample Message Section of the MessageSplitter Module...........c.ccccoviviiviiiincccenn, 6-38
Sample MessageSplitter Module Using the SingleTransformation Option................ 6-38
Sample MessageSplitter Module Using the Multiple Transformation Option 6-39
Sample Messages Section of the MessageMerger Module.........cccccccvvveveveiciicciennn, 6-40
Sample MessageMerger MOAUIE...........c.ccoov i iiierie e 6-40
Sample DEPENAENCY MALFIX......c.civiiiieieiie et s se e e anens 6-41
Sample DSConditionalExecutionAdaptor Execution Adaptorccccceeveveivrenienen, 6-42

Run the DSAdmin Utility Using the -i OptioN.........ccccceviiiiii e 7-6

List of Figures

1-1 Application Developers Aggregate Services for CUStOMErS........ccocevevveveieivrereienniennns 1-4
1-2 Oracle Dynamic Services ArChitECtUIE.........ccoviveiiiercees et 1-8
1-3 Roles in the Oracle Dynamic Services FrameWOorK..........occovveiierenieieneieeie s se e 1-9
1-4 Java Deployment View of the Oracle Dynamic Services Frameworkccccovenine 1-15
1-5 PL/SQL Deployment View of the Oracle Dynamic Services Framework.................. 1-16
1-6 Java (HTTP/JMS) Deployment View of the Oracle Dynamic Services Framework. 1-18
1-7 Asynchronous Deployment Communication (JIMS)cccccvveiivninninnieninne e 1-19
1-8 Using Multiple-Instance Deployment of Oracle Dynamic Services Engines............. 1-20
3-1 Contents of a Simple Service Packageccovvviiiineie i ene s 3-6
6-1 Sample Service Execution Showing the Role of the Input, Protocol, and Output
Specifications as Specified AdaPLOrscooiiiiiiiiieiie e 6-21
6-2 Sample EXECULION AAPTOTccviiie ettt n e ene s 6-22
6-3 Parallel EXECULION OF SEIVICESccuoiiiiiiiciice e e 6-41

Xi

List of Tables

Xii

1-1

-hoocl;omla
PNPRP RPN

\l?"-b
P RPN

UUUUUUUUUUO(POOOOOOOOOO
BOXNOOAWNREBERBO®NOOSWN R

I
o

Summary of People or Organizations and Their Tasks or Roles in the Oracle Dynamic

SErVICES FramMeEWOIK ...t e e e e e e e 1-2
Dynamic Services Components and Their FUNCLIONScccooiiiiiiiiiiinceccenee 1-6
Oracle Dynamic Services ds Directory CONtENTScccoiirieiiiieninene e 2-2
DSAdmin Utility Configuration EIEMENTS..........c.coiiiiiiiiniicine e 3-3
DSAdmin Utility Command-Ling OPtioNs.........cccccveviieieniece e 3-5
Idapmodify Command-Line Options for Installing Dynamic Services LDAP Schema.......
.. 4-15
DYNamic SErvices PrOPEITIESccccveivieeeie ettt 4-17
Adaptors Supplied by Oracle DyNamic SErVICES.......cccvvrerereeieeeese e e 6-27
Possible Service Response Cases When Using a SESSION_PRIVATE Parameter Setting ..
.. 7-3
Descriptive Matrix of the Service Descriptor SChema.........c.ccoovvvvvrevvnereieeseee e C-1
Descriptive Matrix of the Classification SChemaccccevveiviiviiincni s C-8
Descriptive Matrix of the Contact SChemacccceve e C-9
Descriptive Matrix of the Organization SCheMa............ccccvviiiiie s C-9
Descriptive Matrix of the Input Adaptor Parameters...........ccccoceevevireiniesnsnsinse e C-10
Descriptive Matrix of the Output Adaptor Parameters........cccccceoevevevnivcinnsinsesenns C-11
Descriptive Matrix of the HTTP Protocol Adaptor Parameterscccceevvvvienvnnnnn, C-11
Descriptive Matrix of the JDBC Protocol Adaptor Parametersccocveevvvvevrenienn, C-13
Descriptive Matrix of the SMTP Protocol Adaptor Parametersccocoeevveverveinenns C-13
Descriptive Matrix of the Compound Execution Adaptor Parameters...................... C-15
Descriptive Matrix of the Conditional Execution Adaptor Parameters.................... Cc-17
Descriptive Matrix of the Failover Execution Adaptor Parameters............cccccevevnen. C-18
CnnPortfolio Sample Service Package..........ccoovveiiviiiicie e D-2
Currency Sample SErvice Packagecccecveieiiriisiesscse et D-3
DBService Sample SErvice PaCKAgecccvciviiiiiie st D-4
FailOverPortfolio Sample Service Package........ccccccevvviieiiisi s D-5
Ipfl SAMpPle SErVICe PACKAGEcvevvie ettt e ene s D-6
SampleService Sample SErvice PACKagEec.ccvviiieiiririeie e D-7
Ual Sample SErvice PACKAgEccoveieiiiiece st D-8
Yahoo Sample SErvice PACKagecccoveviieiiiii et D-9
YahooPortfolioCustomAdaptor Sample Service Package..........ccccovvviviiieieneciennne D-10
YahooPortfolioCustomProperty Sample Service Packages........cc.ccocvvvveieieennsnnennnn, D-11

Send Us Your Comments

Oracle Dynamic Services User’s and Administrator’'s Guide, Release 9.0.1
Part No. A88783-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

Electronic mail: nedc-doc_us@oracle.com

FAX: 603.897.3825 Attn: Oracle Dynamic Services Documentation
Postal service:

Oracle Corporation

Oracle Dynamic Services Documentation

One Oracle Drive

Nashua, NH 03062-2804

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

Xiii

Xiv

Audience

Preface

Oracle Dynamic Services is a Java-based programmatic framework for
incorporating, managing, and deploying Internet services. Oracle Dynamic Services
makes it easy for application developers to rapidly incorporate existing services
residing in Web sites, local databases, or proprietary systems into their own
applications.

This guide is for developers who want to easily and more quickly develop
customized, dynamic, Internet service offerings as business opportunities for their
customers. An understanding of Oracle9i, Java, and XML is required.

Organization

Chapter 1
Chapter 2
Chapter 3

Chapter 4
Chapter 5

Chapter 6

This guide contains the following chapters and appendixes:

Introduces Oracle Dynamic Services; explains concepts.
Describes the Oracle Dynamic Services installation.

Describes Oracle Dynamic Services configuration and how to use Oracle Dynamic
Services.

Describes advanced installation options.

Describes the Java and PL/SQL Web application development interfaces for
accessing the Dynamic Services engine.

Describes how to build a service.

XV

Chapter 7
Chapter 8

Appendix A
Appendix B
Appendix C

Appendix D
Appendix E

Glossary

Describes service administration tasks.

Describes known issues and problems with the current release of Oracle Dynamic
Services.

Describes some helpful links to W3C specifications.
Describes some frequently asked questions (FAQ).

Describes the descriptive matrix of the schemas and adaptors supplied by Oracle
Dynamic Services.

Describes the sample service packages.
Describes Oracle Dynamic Services error messages.

Describes the Oracle Dynamic Services terms.

Related Documents

XVi

Note: For information added after the release of this guide, see the
online README.txt file in your ORACLE_HOME directory.
Depending on your operating system, this file may be in:

On UNIX systems:

ORACLE HOVHE ds/ doc/ README. t xt
On Windows NT systems:

ORACLE HOVE\ ds\ doc\ README. t xt

See your operating-system specific installation guide for more
information.

For the latest documentation, see the Oracle Technology Network
Web site:

http://otn.oracl e. cont

For more information, see the following manuals:
« Oracle9i XML Reference
« PL/SQL User’s Guide and Reference

« Oracle Internet Directory Administrator’s Guide

« Oracle9i Java Developer’s Guide

« Oracle9i Java Stored Procedures Developer’s Guide

« Oracle9i Enterprise JavaBeans Developer’s Guide and Reference
= Oracle9i JDBC Developer’s Guide and Reference

« Oracle9i SQLJ Developer’s Guide and Reference

Conventions

In this guide, Oracle Dynamic Services is sometimes referred to as Dynamic
Services.

The following conventions are used in this guide:

Convention Meaning

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

Horizontal ellipsis points in statements or commands mean that
parts of the statement or command not directly related to the
example have been omitted

boldface text Boldface in text indicates a term defined in the text, the glossary, or in
both locations.

<> Angle brackets enclose user-supplied names.

[1 Brackets enclose optional clauses from which you can choose one or
none.

Documentation Accessibility

Oracle’s goal is to make our products, services, and supporting documentation
accessible to the disabled community with good usability. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For additional information, visit the Oracle
Accessibility Program Web site at

XVii

htt p: //waw or acl e. comd accessi bi | ity/

JAWS, a Windows screen reader, may not always correctly read the code examples
in this document. The conventions for writing code require that closing braces
should appear on an otherwise empty line; however, JAWS may not always read a
line of text that consists solely of a bracket or brace.

Xviii

1

Introduction

As a feature of Oracle9i, Oracle Dynamic Services is a Java-based programmatic
framework for incorporating, managing, and deploying Internet and Intranet
services. Using the Internet as the information source, Oracle Dynamic Services
makes it easy for application developers to rapidly incorporate valuable services
from Web sites, local databases, and proprietary systems into their applications.

For example, an online financial portfolio can use Oracle Dynamic Services to
integrate Internet financial services, such as stock quotes and exchange rates, from
different resource providers to calculate the current value of a portfolio in foreign
currency. Oracle Dynamic Services is designed to handle dynamic business models
with no degradation in the quality of service. Business opportunities can be
maximized because this framework permits customized service delivery for flexible
application development.

Using the simple, yet flexible framework of Oracle Dynamic Services, application
developers can significantly shorten the development cycle for developing
applications and increase quality of service by selecting the very best sources. With
the Internet becoming the source of choice to compose, deploy, access, and manage
business information through service offerings, Oracle Dynamic Services provides
the best framework to dynamically manage and customize these Internet services.

Table 1-1 summarizes the tasks or roles of people or organizations in the Dynamic
Services framework; the roles of these people and organizations are described later
in this section.

Introduction 1-1

Application Scenarios

Table 1-1 Summary of People or Organizations and Their Tasks or Roles in the
Oracle Dynamic Services Framework

People or Organizations

Tasks or Roles

Service provider (business
partner and application
developer)

Owns business information content or services to offer
Provides the specification for accessing services
Provides the content for a service

Designs the service package

Registers the service package

Service consumer application

Incorporates services into applications in order to deploy
them as useful, customized services

Designs the flow of the services

Service administrator

Grants service access to service consumer applications
Registers the service package

Manages the Oracle Dynamic Services registry
Manages service consumer applications

Performs tuning of the Oracle Dynamic Services engine

1.1 Application Scenarios

Businesses and application developers face a host of business problems and
technical challenges in providing information and integrating it into dynamic
applications for the Internet or for corporate Intranets.

1.1.1 Business Problems or Technical Challenges

To integrate Internet services or Intranet services into dynamic applications,

businesses must be able to:

= Access sources using protocols or APIs

= Manage sources that have different types of sessions with different protocols,
have multiple content formats, and do not have guaranteed access

« Deliver specially formatted content to both Web and wireless devices

To access a variety of information sources, businesses must do the following:

« Develop custom code to manage data transformations among different

protocols

1-2 Oracle Dynamic Services User’s and Administrator’s Guide

Application Scenarios

] Develop custom servers to use these resources

« Implement security, scalability, and performance with every server and then
manage them all

In addition, due to the extensive code customization required, businesses rarely can
reuse these custom servers.

To manage these information resources, businesses must manage sessions
differently for different protocols such as cookies for HTTP. They must be able to
handle various content structures, such as DB result sets, XML, Java objects, and so
forth; and, they must develop custom solutions for failover service aggregation,
caching, and so forth.

To deliver content, businesses must render application results into multiple formats,
such as HTML, XML, and so forth. Due to the difficulty involved, they often must
utilize consultants to integrate their applications. They must continually change
code to adapt to any changes because nothing is configurable; and they face great
challenges in being able to scale their applications as their customer base expands.

In summary, it is currently very expensive and an extremely complex operation to
develop applications for customers because of the extraordinary number and
variety of technical issues involved.

1.1.2 Oracle Dynamic Services Solutions

Application developers who develop e-business, wireless, or portal applications
must be able to easily and rapidly aggregate service offerings from business
partners and application developers (often referred to as service providers) and
provide a single service visible to customers (see Figure 1-1). Application
developers, who build their service offerings upon a sound architecture, can quickly
develop a collection of services that are easily maintained and managed, and
rapidly deployed to meet changing business needs.

Application developers can use Oracle Dynamic Services to create customized
delivery of services with the following benefits:

= Separating of application logic from service access for improved application
development and easier maintenance

« Modifying available services to solve business problems, thereby reducing the
cost and time needed to develop a new application

« Making development of value-added services or applications easier and faster
by using services from multiple resource providers

Introduction 1-3

Application Scenarios

« Enabling improvement of the incorporated services without affecting existing
applications

Service consumers, such as an application developer for an e-business, wireless, or
portal service provider, provides one aggregate set of services to customers as
shown in Figure 1-1, based on specifications provided by the service providers.

Figure 1-1 Application Developers Aggregate Services for Customers

Service Providers Service Customers
* Business Partners Consumers
* Application + Application
Developers Developers
— /9(+interacts
+provides

+read
+aggregates _'/9(=ans

+ provides AR % Histens

+aggregates
L, % +wratches
+ provides An application developer +h
. . L uys

for an e-business, wireless,
Each serrice provider or portal serrice provider
provides a service. apgregates services from its Customers are presented the

SErTice providers. group of serrices as one service,

Oracle Dynamic Services can be used in a number of scenarios including wireless,
portal, and e-business applications, where services are integrated with little
incremental development cost.

1.1.2.1 Wireless Service Developers

Wireless service developers can use Oracle Dynamic Services to incorporate various
useful services. Applications can be built for wireless (handheld) devices to prompt
messages, advertisements, or special services based on the geographical location of
the user with the handheld device. For example, as a user enters a particular
geographic area, an application can prompt specific information to the user’s
device, highlighting specific local business offerings, such as store sales promotions,

1-4 Oracle Dynamic Services User’s and Administrator’s Guide

Overview of Concepts

a significant weather event, local entertainment, and so forth. Using Oracle
Dynamic Services, application developers can aggregate multiple services into a
single service, and provide a great breadth of information to customers.

1.1.2.2 Portal Service Developers

Portal service developers, who can deliver a richer, broader, and more dynamic
array of information and services to users for specific geographical areas, become
more powerful in attracting users to their service offerings. Using Oracle Dynamic
Services, portal developers can build applications that contain services to perform
specific tasks for the user. These applications can, for example, send confirmation
notices when each task is completed. Using a portal search engine, local restaurants
of interest can be listed, a reservation made, and a confirmation notice returned
along with directions to the restaurant from a specific point of interest. As the
success of these kinds of services grows, so does the use of the portal by its
customers.

1.1.2.3 e-Business Service Application Developers

As e-businesses grow, application developers can use Oracle Dynamic Services to
integrate different services to help its customers through a series of related
transactions, such as buying a house. Using an online real estate service, a
prospective buyer can locate houses of interest, visit each house through a virtual
tour, ask questions, and decide upon a small set of those houses to visit in person.
This same buyer can also locate several mortgage lenders, fill out an online
mortgage loan application, schedule home inspections, loan closures, movers, and
so forth. Every possible real estate service can be used as needed to make the
house-buying experience as enjoyable and easy as possible for the home buyer.

Using the service triggering capability of Oracle Dynamic Services, as one task is
completed, the next set of related tasks is scheduled, so in turn, each task leads
directly to additional related tasks. Application developers for the online real estate
broker can write an entire e-business application using Oracle Dynamic Services.
The real estate broker needs only to cultivate and manage the relationships among
the various service providers.

1.2 Overview of Concepts

Table 1-2 describes the primary components that comprise Oracle Dynamic
Services.

Introduction 1-5

Overview of Concepts

Table 1-2 Dynamic Services Components and Their Functions

Components

Functions

Service consumer
application

Acts as a client of the Dynamic Service engine, writes
applications using this framework.

Dynamic Services client
library

Handles communication between the service consumer
application and the Dynamic Services engine.

Connects an application with the Dynamic Services engine by
opening a connection to it, in a fashion similar to opening a
JDBC connection. There are multiple connection drivers
available with Dynamic Services that allow different
connection paths from applications to the Dynamic Services
engine. Applications must register the desired driver and then
operate with the returned connection. (See Section 5.1.3 for
more information.)

Service package

Contains the information necessary to model a resource as a
service component deployable in the Oracle Dynamic Services
framework.

Contains, in its simplest form, a bundle of files modeled as a
local directory.

Contains, in its compound form, an additional file, a jar file,
containing all Java classes and stylesheets needed by the
compound service.

Service registry

Maintains the service package information of registered
services that enables Dynamic Services engines to set up and
execute a service, and access distributed sources from service
providers.

Application profile
registry

Maintains service consumer application information about the
identity of service consumer applications and their properties.
A service consumer application must be registered in the
application profile registry.

1-6 Oracle Dynamic Services User’s and Administrator’s Guide

Overview of Concepts

Table 1-2 Dynamic Services Components and Their Functions (Cont.)

Components Functions

Dynamic Services engine |Accepts service requests from client applications and does the
following tasks:

« Performs post-processing of service requests to produce
the input required by the service (input adaptor)

= Determines how the service needs to be executed and sets
up the service execution environment (execution adaptor)

« Issues service execution requests to the service providers
by transforming the standard service request to the input
needed by the service following the underlying protocol
(protocol adaptor)

Receives the service response from the service providers and
does the following task:

« Transforms the service response for the client and returns
it to the caller (output adaptor)

Can execute services in synchronous as well as asynchronous
mode, depending upon the client application setup.

Service administrator Uses an extended version of the Dynamic Services client
library for communicating with the Dynamic Services engine.

Includes an administration shell (DSAdmin utility) and a
Web-based administration utility that are both part of the
Dynamic Services engine to manage that engine and all its
components.

Figure 1-2 shows the Oracle Dynamic Services architecture. Service providers
(business partners and application developers) provide services that service
administrators register in the service registry using the DSAdmin utility.
Application developers create applications using application profiles that service
administrators register in the application profile registry. The registry is an Oracle
Internet Directory (OID) Lightweight Directory Access Protocol (LDAP) server
whose contents are also mirrored in the Oracle9i database for performance
optimization. The Dynamic Services Java engine, depending upon the
configuration, can reside either inside or outside Oracle9i. Dynamic Services does
the following:

« Exposes PL/SQL interfaces to run the Oracle Dynamic Services engine within
Oracle9i JVM (see Figure 1-5)

« Exposes Java interfaces when it runs on a local machine hosting the application
(thick client library) (see Figure 1-4)

Introduction 1-7

Overview of Concepts

= Acts as a middle-tier Java engine behind a Java servlet with the application
using a Dynamic Services thin client library (see Figure 1-6)

Figure 1-2 Oracle Dynamic Services Architecture

Service /”—————_*\
Consumer Oraclefi
Application ___—____/’/
Dynamic Services Cracle Dynamic Services Engine Service Providers
Client Library

Hel [nput! [Execution [+ Protocal |Business Partnerl

Cutput p Adaptors B Adaptors

F 3

. Adaptors _ -
Bervice Registry Business Partner2
Administrator Cache
DSadmin Utility ———
05 Creation
Assistant Oracle Internet
Directory (OID)
Server

—| Service Reglstry |

Application Profile
Regiatry

Figure 1-3 shows the major components of Oracle Dynamic Services and the roles
of people and organizations in the Dynamic Services framework. These major
components and roles begin with the definition of a service package. Both service
providers and service consumer applications can define the service package
depending on their business relationship. The service administrator takes the
service package and registers it in the Dynamic Services engine. Registered services
and applications are managed by the Dynamic Services engine. Next, application
logic within an application invokes a registered service. Upon the service invocation
request, the Dynamic Services engine then contacts the service provider for the
specific request.

1-8 Oracle Dynamic Services User’s and Administrator’s Guide

Overview of Concepts

Figure 1-3 Roles in the Oracle Dynamic Services Framework

3. Application logie, Repiztered zervices and
reprepented az a zervice ZETVL0E COTLSIINET

COTEWET ap}:!l'u:amn,) applicatinn information
inwoles a repistered service. are managed by the

Dymanie Bervices engine.

Bervice Consumer
Papphc ation Profile

ie
Application catlfl///"? Reg1 stry Management
Dynamic|Services @

Extended Communication dervice Registry Management

Service for Service Administrators
Administrator

+recelres

2, Bervice Adminiztrater 4. Upon zervice invoration
tales a service Serrice [ion| Teameat, the Dymarmic Bervices
package and registers ergine contacts the servime
it i the gervice engine. provider for a specfic request.

+defines

Serrice Pack Definiti
FvIcE ackags Lelmiion Serrice Provider

1. Bervice provider defines
a gervice in the form of a
zervioe package.

1.2.1 Service Provider

Service providers provide the content and transformations for a service. Service
developers and service administrators define the service and load it into the service
registry so that the service becomes available to service consumer applications.
Service consumer applications can combine many of these services to create
value-added services or applications. Service developers need to know the
requirements of the service providers for access and authentication in order to
create a service in the Dynamic Services framework. Service developers can also
specify caching policy, failover, and so forth, to further improve scalability and

Introduction 1-9

Overview of Concepts

reliability. The Dynamic Services engine contacts the service providers during
service execution according to the specification provided in the registered service
package.

1.2.2 Service Registry

The service registry is the storage place for the service package. A service package
enables Dynamic Services engines to set up and execute a service, and access
distributed information sources from service providers. Service consumer
applications can use the client library to perform lookup operations on the service
registry. Service administrators can perform updates on the registry without
affecting client applications. This feature simplifies the client applications.

1.2.3 Application Profile Registry

The application profile registry is the storage place for the service consumer
application attributes. It holds information about the identity of service consumer
applications and their properties. A service consumer application must be
registered to the Oracle Dynamic Services engine. Before a service consumer
application is registered, it must be associated with a database user who has been
granted the connect privilege and been granted the DSUSER_ROLE privilege. Then,
the named service consumer application must be granted service execution
privileges for a service before it can access the named service.

1.2.4 Service Administrator

The service administrator is responsible for managing the Dynamic Services engine
and all of its components. The service administrator monitors service failover,
manages caching policy, schedules services, and also registers and unregisters
services and service consumer applications. The service administrator can listen to
the events raised within the Dynamic Services engine to monitor, trace, profile, view
service execution, and view service session data. The service administrator also
specifies deployment options for services and controls service access to the service
consumer applications. The service administrator performs engine performance
monitoring, service log reviewing, and so forth.

1.2.5 Service Consumer Application

A service consumer application acts as a client of the Dynamic Service engine.
Through the Dynamic Services client API, service consumer applications acquire
handles on the services it wants to execute, submits service execution requests, and

1-10 Oracle Dynamic Services User’s and Administrator's Guide

Overview of Concepts

collects the responses. Service consumer applications need not be aware of the
communication protocol used by the Dynamic Services client library and the
Dynamic Services engine. The communication protocol is abstracted by the
Dynamic Services framework. Service administrators are also unaware of the
service providers and other management infrastructure supporting the service
execution. This abstraction has been built into the Dynamic Services framework to
keep the client applications simple and less vulnerable to the changing business
conditions and the changing technical environment that supports their applications.

1.2.6 Dynamic Services Engine

The core of the Dynamic Services framework is the Dynamic Services engine. The
Dynamic Services engine is a multithreaded Java engine, which accepts requests
from the client applications. The Dynamic Services engine can execute services in
synchronous as well as asynchronous modes, depending upon the client application
setup. Once a request is received by the engine, the engine determines how the
service needs to be executed, sets up the execution environment, and issues
execution requests to the service providers. Upon receiving the response from the
service providers, the engine transforms the response for the client and returns it to
the caller.

1.2.7 Services as Application Components

One of the premier advantages of using Oracle Dynamic Services is the ability to
use services as application components. Service administrators can easily change a
service provider, because as a service, their access to service consumer applications
is easily managed. Application components can be easily aggregated to offer a
service composed of many services. For example, an application can offer failover
service aggregation among a group of related services should a specific service
become unavailable. An application can offer a specific set of services based on
certain business conditions, and so forth. Furthermore, specific application
components can be easily tailored to deliver content in a format suitable for the
device an end user is using. Because these options are available as application
components, applications can be rapidly developed and deployed as well as
modified to fit changing business needs. The ability to easily build, maintain, and
manage a collection of application components for rapid deployment is what Oracle
Dynamic Services offers to application developers.

Introduction 1-11

Dynamic Services Implementation Overview

1.2.8 Communication Between the Service Consumer Application and the Dynamic
Services Engine

The client library is responsible for handling the communication between the
service consumer application and the Dynamic Services engine. The communication
is performed as synchronous or asynchronous messages between the client library
and the Dynamic Services engine. Service consumer applications can communicate
with any available Dynamic Services engine provided they are authorized to use
that particular instance. Once connected, service consumer applications have the
access and privileges that service administrators assign to them. These features
allow distributed client access to a large number of Dynamic Services engines, and
can be used to implement client failovers or load balancing.

1.2.9 Communication Between the Service Administrator and the Dynamic Services

Engine
The service administrator interfaces with the Dynamic Services engine through the
administrator tools. The administrator tools use an extended version of the client
library to communicate with the Dynamic Services engine. The Oracle Dynamic
Services administrative shell, shipped with the Dynamic Services engine, is an
example of these tools. This is an interactive, scriptable, easy-to-use command-line
shell that includes online help. Some of the features of the shell are also available
from a Web-based administration utility, which is shipped with the Dynamic
Services engine.

1.3 Dynamic Services Implementation Overview
Oracle Dynamic Services has three possible deployment modes:
« Java deployment view (see Section 1.3.1)
« PL/SQL deployment view (see Section 1.3.2)

« Java (HTTP/Java Messaging Services (JMS)) Deployment view (see
Section 1.3.3)

The following is a brief description of the underlying technologies of the high-level
components for each implementation.

Dynamic Services Engine

The Dynamic Services engine can be deployed as any of the following three engine
types:

1-12 Oracle Dynamic Services User’s and Administrator's Guide

Dynamic Services Implementation Overview

« Alavaengine running on the machine hosting the application (thick client
library) (see Figure 1-4)

« A middle-tier Java engine behind a Java servlet (see Figure 1-6)
= Alavaengine running within Oracle9i JVM (see Figure 1-5)

Different options can be selected by service consumer applications based upon their
application needs. A unique feature of the Dynamic Services framework is that
service consumer applications can switch from one environment to another without
recompiling or even restarting their applications. This gives the service consumer
application added flexibility to try out various options, to see which best fit their
applications.

Dynamic Services Service and Application Profile Registries

The service registry and application profile registry are deployed as directories in
the Oracle Internet Directory (OID) server. The access control list of OID is used for
access control, allowing service administrators to choose the services visible to a
particular service consumer application. Managing services and service consumer
applications in OID allows multiple instances of Dynamic Services engines to work
in a synchronized fashion, giving an open, scalable option to service consumer
applications. For performance reasons, the registry data is cached in an Oracle9i
instance accessed by the Oracle Dynamic Services engine at service execution time.
This cache can be synchronized automatically at the start of the Dynamic Services
engine, or service administrators can synchronize it through their console, as
required.

Communication Between Service Consumer Applications and the
Dynamic Services Engine

The communication between the Dynamic Services engine and the service
consumer applications is abstracted by the Dynamic Services client library. By
registering a Dynamic Services driver, a service consumer application can
dynamically change the underlying communication protocol used by the client
library to communicate with the Dynamic Services engine. Supported
communication protocols include HTTP (see Figure 1-6), AQ/JMS (see Figure 1-6),
and direct Java access (see Figure 1-4). Service consumer applications have
complete control over the drivers they choose within their programming
framework, and they can switch to any driver. Service consumer applications can
use multiple drivers to talk to multiple Dynamic Services engines, at the same time,
if required.

Introduction 1-13

Dynamic Services Implementation Overview

Service consumer applications can access services through different paths
depending upon their Dynamic Services engine deployment. The Dynamic Services
engine allows access to the services in PL/SQL and Java for programming
purposes.

1.3.1 Java Deployment View

Figure 1-4 shows a basic Java deployment view of the Oracle Dynamic Services
framework. The Oracle9i database serves as a registry cache, communicating with
the OID Lightweight Directory Access Protocol (LDAP) server hosting the
registries. The service consumer application contains application logic that uses the
services through direct Java calls.

In this case, the service consumer application uses the Dynamic Services thick Java
client library, which contains the Dynamic Services execution engine. Service
providers run in their own servers.

1-14 Oracle Dynamic Services User’s and Administrator's Guide

Dynamic Services Implementation Overview

Figure 1-4 Java Deployment View of the Oracle Dynamic Services Framework

Service Providera j
5.

Application bgic, whichuass LI i 1 heir Swn e re
1he zervices 1hraagh Dinsct

fervice Provider
Business Fartner

Bervice Conaumer
Zpplication [Java Clier IMeraces)

Dy namic Semices
Execuiion Engine

Thick Client Librany

Bervice Provider
Business Fartner

Introduction 1-15

Dynamic Services Implementation Overview

1.3.2 PL/SQL Deployment View

Figure 1-5 shows a PL/SQL deployment view of the Oracle Dynamic Services
framework. The Dynamic Services engine runs in the Oracle9i JVM, with its
functions exposed as a set of Java stored procedures. The Oracle9i database serves
as a registry cache, communicating with the Oracle Internet Directory LDAP server
hosting the registries. The service consumer application contains application logic,
which makes use of the services through PL/SQL calls. Service providers run in
their own servers.

Figure 1-5 PL/SQL Deployment View of the Oracle Dynamic Services Framework

Dyma mic Sanicee engine rune in the - -
Omd e WM hs unsionalityis exposed ﬁﬁﬁ& rmmﬂﬁﬂsr:ws
Applicaion logie, which ae aeeiol Java giored procedires.)

makees use ol 1he eanices
1hrough PLZSL calle.

OraclkeS
JvmM
Bervice Conmumer Dynamic Sarices
#pplication Execution Engine

[PLASGL hteraces)

1-16 Oracle Dynamic Services User’s and Administrator’'s Guide

Dynamic Services Implementation Overview

1.3.3 Java (HTTP/Java Messaging Services (JMS)) Deployment View

Figure 1-6 shows a Java (HTTP/JMS) deployment view of the Oracle Dynamic
Services framework. The Dynamic Services engine runs in a Dynamic Services
gateway (middle tier) that supports HTTP, HTTPS, and JMS as communication
protocols. The Oracle9i database serves as a registry cache, communicating with the
Oracle Internet Directory LDAP server hosting the registries. The service consumer
application contains application logic, which makes use of the services through the
Dynamic Services thin Java client library, and can execute services remotely in other
systems.

In this case, service execution requests are forwarded to the Dynamic Services
gateway, which executes the service and returns the response. The communication
between the service consumer application and the gateway is handled by the
Dynamic Services thin Java client library.

Introduction 1-17

Dynamic Services Implementation Overview

Figure 1-6 Java (HTTP/JMS) Deployment View of the Oracle Dynamic Services

Framework
Applicaion loge which Dymamic Bervicea engnaruns ﬁiﬁl—;ﬁ:‘c‘mﬂg&;ﬂams
makee uEa of 1ha sory oos ina Dynamic Serucos gaoway
through he client library, thal suppore HTTR:S and JMS.
canmn mmoldyinolher
machines.

Dynamic Samnvices Gateway Rervice

HTTP/ & and JME Frovider]
Eugness
Hervice Conmumer Dynamic Serices Fartner

dpplication

- i Execution Engine
[l=sva Cliert Librarg

Dymamie Bervices
Thin Client Library

The client lbary
=es HTTR/S ar JMS
to communicate with
the Chynam o Senices
Eatenray.

rac ke Imednet Direciry Senar

Sarnvice
FagEty

Figure 1-7 shows the asynchronous deployment communication (JMS) that occurs
when the DSIMSDriver allows for asynchronous access to services using a Dynamic
Services gateway in the form of a JMS daemon. The mode of operations with this

1-18 Oracle Dynamic Services User’s and Administrator's Guide

Using Multiple Dynamic Services Engines

driver lets it submit requests asynchronously to an AQ/JMS queue in a remote
database. The driver assumes the existence of this IMS daemon that listens
asynchronously to the same queue where requests are being submitted. The
daemon takes on the role of the Dynamic Services engine and processes the request,
generates a response, and submits that response into another queue that the
DSJMSDriver listens to asynchronously. On the service consumer application side,
therefore, listeners can be registered to be informed when the response is returned.

Figure 1-7 Asynchronous Deployment Communication (JMS)

1]
COracle Ad d 1
&) DEJMEDnver asynchronouzly liztens racle Advanced Queuing
to regponzes from the regponze quene. Reasponsze
T LIS
By DEJhEHandler zends a rezponze q
to the rezponze quene. T
) DEJMEDiriver zendz a T
request to the request quemns.
|| Request
T DEJMEHandler
I:syru:l'umru:uus]y listens to e
requests from the request
| quene,
]
DE o dalivered 1o the | 4 DSJIl.Il_SHandlgrh
EEROLLEE 12 wered to COMMIrIcates wit i i i
zervice conzutner application. 'l’ the requezt handler Dynamic Services Engine
¥ to execute the

{——_—_—_} DEIMEDriver | | ||DEJMEHandler| =erwice. —» Request | Execution

17 SBervioe consumer Handler Manager
I e svecaon, Thin Dynamic
Service Consumer © Asynchronous Services
Application Dirver Crateway

Represents Application
Logic, not human end-user

1.4 Using Multiple Dynamic Services Engines

To increase scalability, you can install multiple Dynamic Services engines that
communicate with a central master Lightweight Directory Access Protocol (LDAP)

Introduction 1-19

How to Get Started with Oracle Dynamic Services

registry (see Figure 1-8). See Section 4.5 for installation and configuration
information for setting up LDAP with OID and configuring the Dynamic Services
registry to use LDAP.

The basic steps for using LDAP as a central master registry are as follows:

1. The service administrator registers a service through one Dynamic Services
engine.

2. This Dynamic Services engine updates the central registry, then broadcasts a
synchronize message to all other instances of the Dynamic Services engines.

3. All other instances of Dynamic Services engines synchronize their registry
cache with the central registry.

Figure 1-8 Using Multiple-Instance Deployment of Oracle Dynamic Services Engines

1. Bervice

ad;ninistratnr . Oracledi
registers a service

through a Dymamic Dynamie Dynamic Dynamie
Services engine Services Services Services

: 2 U "
B —— 1, Registry Registry Registry
Cache , Cache Cache .
g

Y

2. Dymamic Serrices

engine updates the central
registry, then broadeasts
a synchronize message

to all other Dimamic
Bervices engines.

Oracle Internet Directory

LDAFP Server

- -

AppProfile
Registry

Hervice

Registry

Central Registry

J. Other Dynamic
Serrices engines
sytchronize with the
central registry.

1.5 How to Get Started with Oracle Dynamic Services

The remaining chapters in this guide begin by guiding you through a basic
installation and configuration of Oracle Dynamic Services (Chapter 2), then

1-20 Oracle Dynamic Services User’s and Administrator’'s Guide

How to Get Started with Oracle Dynamic Services

showing you how to get started by configuring and running the DSAdmin utility
and registering a new service, browsing registered services, and executing a
registered service (Chapter 3).

Advanced topics are discussed in the remaining chapters, guiding you through
advanced installation and configuration options (Chapter 4), describing how to use
the Java and PL/SQL Web application development interfaces (Chapter 5), showing
you the process of service development (Chapter 6), and finally describing service
administration tasks (Chapter 7).

Introduction 1-21

How to Get Started with Oracle Dynamic Services

1-22 Oracle Dynamic Services User’s and Administrator’'s Guide

2

Installation

This chapter describes the basic installation and configuration of Oracle Dynamic
Services, which is the Java deployment view described in Section 1.3.1.

The installation requires that the person installing this software have sysadmin
privileges, is a database administrator, and has application development skills.

After you have completed the installation steps described in this chapter, you will
have an understanding of the system requirements needed to install Dynamic
Services and will have installed the DSSYS schema. You must continue to Chapter 3
to configure the DSAdmin utility, and use this utility to register and execute a
service to ensure that Dynamic Services is properly installed and running.

To configure and use other deployment views of Dynamic Services, such as
HTTP/HTTPS, PL/SQL, or HTTP/Java Messaging Services (JMS), or to set up
LDAP as a central master registry, see the appropriate sections described in
Chapter 4. Chapter 4 also describes other advanced features such as enabling
persistent auditing, manually fine-tuning Dynamic Services properties, and
installing the management console.

Note: The version requirements for Oracle9i Standard Edition or
Enterprise Edition refer to Release 1 (9.0.1).

2.1 System Requirements
The following are the system requirements:

« Oracle release: Oracle9i Standard Edition or Enterprise Edition Release 1 (9.0.1)
is required to install and use Oracle Dynamic Services.

Installation 2-1

Dynamic Services Distribution

Note:

<ORACLE_HOME> is referred to as the installation

directory of the Oracle9i Release 1 (9.0.1) distribution.

« Oracle Dynamic Services supports Oracle9i Standard Edition and Enterprise
Edition running JDK 1.2.2.

« Javaversion: JDK 1.2.2 or later (Java2) distribution.

Note:

<JAVA2_HOMES> is the installation directory of the JDK

1.2.2 or later distribution.

Ensure you have a full installation of Oracle9i Release 1 (9.0.1) (a full installation in
this case includes a typical Oracle9i Release 1 (9.0.1) installation. Follow Oracle9i
installation instructions to complete a full installation.

Important:

In Section 2.2, directory paths often show only the

UNIX path "/" specification. If you are installing on a Windows NT
system, the path specification is "\" and you must make this
change, as needed, for the installation to be successful.

2.2 Dynamic Services Distribution

For release 9.0.1, Oracle Dynamic Services is installed using the Oracle Universal
Installer into the ds directory within your <ORACLE_HOME> directory. The
distribution contains the subdirectories shown in Table 2-1.

Table 2—1 Oracle Dynamic Services ds Directory Contents

Subdirectories

Description

bin

Contains the DSAdmin command-line utility for registering or
unregistering a service, and running the test service
executions.

demo/consumer

Contains the sample client code for the service consumer.

demo/dsadmin

Contains the sample Oracle Dynamic Services script files.

demo/services

Contains the sample service packages.

2-2 Oracle Dynamic Services User’s and Administrator’'s Guide

Installing the DSSYS Schema

Table 2—1 Oracle Dynamic Services ds Directory Contents (Cont.)

Subdirectories Description

doc Contains the documentation about Dynamic Services
including the README.txt file, the Oracle Dynamic Services
FAQ file (dsfag.txt), and the JavaDoc API (apidoc.zip), which
contains those classes that are necessary for service consumers
and service developers to build and run services.

etc Contains miscellaneous configuration files.

etc/Apache_JServ Contains a sample servlet zone configuration file.

etc/dsadmin Contains a collection of system scripts and a properties file.

etc/services Contains the service packages needed for the monitor services.

etc/xsd Contains the XML schema for the service descriptor and
supplied adaptors.

jsp/management Contains the Management Console application.

Idif Contains the Lightweight Directory Access Protocol (LDAP)
schema definitions for the Oracle Internet Directory (OID)
registry.

lib Contains the jar file of the Dynamic Services code.

sql Contains SQL scripts for installing in Oracle9i the support

necessary for Oracle Dynamic Services.

logs Contains log files used by JMS daemon.

2.3 Installing the DSSYS Schema
The DSSYS schema SQL scripts do the following:
= Create the tablespaces for the DSSYS schema.
« Connect to the schema as DSSYS/<DSSY S-password>.
« Create all object and table definitions.
« Install the Dynamic Services registry.
« Initialize the user profile registry.
« Create a table for caching service responses.
« Install the Dynamic Services cache manager package.

« Create the Dynamic Services properties table.

Installation 2-3

Installing the DSSYS Schema

« Load the Dynamic Services properties package.

« Initialize queues and events.

« Create the Dynamic Services user roles.

To install the DSSYS schema, perform the following tasks:

1. Using acommand-line shell, change the current directory to the directory where
the DSSYS schema installation script is located, shown as follows;

On UNIX systems:
cd <QRAQLE HOVEH ds/ sql

On Windows NT systems:
cd <QRAALE HOVEA ds\ sql

2. Connect as SYS to the Oracle9i 9.0.1 instance using SQL*Plus as follows:

sql pl us sys/ <sys- passwor d>

The DSSYS schema installation script assumes the connected SYS user has the
required privileges to create users.

Note: The dsinstall.sql script invokes a dssys_ts_init.sql script
responsible for the creation of tablespaces that are needed by the
DSSYS schema. Review the dssys_ts_init.sql script and customize it
before running the dsinstall.sql script. For example, you may want
to store these tablespaces on another disk.

3. Run the dsinstall.sqgl script by issuing the following command in SQL*Plus:
SQA> @sinstall . sql
The install script creates a log file of its execution so that it can be checked for
errors. The log file is created within the same directory and is named
dsinstall.log. To check if the installation had errors, run the following file at the

UNIX prompt:<ORACLE_HOVE>bi n/ shower r or s (showerrors. bat on
Windows NT) as follows:

On UNIX systems:
<CQRACLE_ HOMEX ds/ bi n/ showerror s

2-4 Oracle Dynamic Services User’s and Administrator’'s Guide

Dynamic Services Configuration

On Windows NT systems:
<QRACLE_ HOMEX\ ds\ bi n\ shower r or s. bat

The shower r or s command only reports failure errors or installation errors. If
there are none shown, then there are no errors to report.

Note: The bi n/ showerr or s directory path on UNIX systems or
the bi n\ shower r or s directory path on Windows NT systems is
relative to the Oracle Dynamic Services installation home. On UNIX
systems, you must edit the bi n/ shower r or s file, or on Windows
NT, you must edit the bi n\ showerrors. bat file and enter the
correct location for your <ORACLE_HOME> location.

4. To verify the installation of the schema, exit SQL*Plus and try to reconnect to
the database as the DSSYS user by issuing the following command:

sql pl us dssys/ <dssys- passvor d>

Note: The default password for user DSSYS after installation is
DSSYS. For security reasons, you should change the default
password and modify the appropriate files in the installation.

2.4 Dynamic Services Configuration

After the installation is complete, you must first configure and run the DSAdmin
utility before you can register and execute services, which is the test that your
Dynamic Services installation and DSAdmin utility configuration is working
properly. To configure the DSAdmin utility and register and execute a service, you
must continue to Chapter 3.

Important: You cannot run any Dynamic Services service
registration scripts until you first configure and run the DSAdmin
utility described in Section 3.1.2 and Section 3.1.3. Then, to test the
DSAdmin configuration, follow the steps described in Section 3.2,
Section 3.3, and Section 3.4.

Installation 2-5

Dynamic Services Configuration

2-6 Oracle Dynamic Services User’s and Administrator’'s Guide

3

Configuration

To get started with Oracle Dynamic Services, you must first configure and run the
DSAdmin utility. Then you can use the DSAdmin utility to register a new service,
browse through your list of registered services, and finally, execute a registered
service. This chapter describes each of these topics.

3.1 Configuring and Running the DSAdmin Utility

To verify a successful installation, use the DSAdmin command-line utility
(dsadmi n on UNIX systems or dsadmni n. bat on Windows NT).

Note: For UNIX and Windows NT, you must first edit the
dsadnmi n or dsadni n. bat file to specify the correct <ORACLE
HOVE> before using the DSAdmin utility. On UNIX systems, the
dsadmi n file is located in the following directory:

<ORACLE HOVE>/ ds/ bi n/

On Windows NT systems, the dsadni n. bat file is located in the
following directory:

<ORACLE HOVE>\ ds\ bi n\

The DSAdmin utility allows command-line interactions with the Oracle Dynamic
Services engine and lets you perform common operations, such as service
registration, service unregistration, and service execution testing.

Configuration 3-1

Configuring and Running the DSAdmin Utility

3.1.1 Configuring Dynamic Services Proxy Settings

In order to connect to services located outside of a firewall for testing the sample
service, you must first configure the Dynamic Services proxy settings. To do this,
you must run SQL*Plus and connect as dssys user and enter your
<dssys-password> and execute three procedures as follows:

sql pl us dssys/ <dssys- passwor d>

set serverout put on

exec ds_properti es. show()
execds_properties.setProperty(proxyHost, <wwwyour complete proxy name>")
execds_properties.setProperty(proxySet, true’)

For more information about setting these Dynamic Services properties, see
Section 4.6.

3.1.2 Configuring the DSAdmin Utility

Before you run the DSAdmin utility, you must configure its configuration XML file,
DSAdni nConfi g. xm , located in the following directory:

On UNIX systems:
$<CRAQE_HOMESdsletc/dsadmin/

On Windows NT systems:
$<QRAQ_E_HOMESds\etc\dsadmin\

Note that this is the default path where the DSAdmin utility expects to find its
configuration file.

1. Open the DSAdM nConfi g. xni file in an editor.

With the basic Dynamic Services installation, only connections using the
DSDirectDriver driver can be used. Therefore, the only element you need to
change is DS_URL for connections that use the Direct driver.

2. Change the DS_URL element to point to your database instance that hosts
Oracle Dynamic Services for the connection descriptor with the name "Direct,"
shown as follows:

<DS OONNECTI ON DESCR PTCR nane="Di rect ">
<annot at i on>
-| For N cknane "Drect":
| These are specifications of the Drect Driver class
+H that will be used as well as the UR. to be used with it
</ annot at i on>

3-2 Oracle Dynamic Services User’s and Administrator’'s Guide

Configuring and Running the DSAdmin Utility

<068 DR VER>oracl e. ds. driver. DSD rect Dri ver </ DS DR VER>
<DS URL>j dbc: or acl e: t hi n: @your - host - nane>; <your - por t - nunber > <your - S </ D6_UR>
</ DS_CONNECTI ON DESCR PTCR>

You can also have your own configuration file and point to it by running the
command shown in Example 3-1 (the -c option and additional options are
described later in this section).

Example 3-1 Configure the DSAdmin Utility
O WN X systens:
<ORACLE _HOVE>/ ds/ bi n/dsadnin -c <your config file>

h Wndows NT syst ens:
<ORACLE HOVE>\ ds\ bi n\ dsadni n. bat -c¢ <your config file>

The configuration file conforms to the specifications of an XML document
containing elements and values. The specific elements that you can configure in the
file are described in Table 3-1.

Table 3—-1 DSAdmin Utility Configuration Elements

Element Description

DS_ADMIN_CONFIG The root element of the DSAdmin utility configuration
document.

DS_CONNECTION_ The connection descriptor section. Contains descriptions of the

DESCRIPTORS connection nickname, driver class specification, and associated
URL.

DS _CONNECTION_ The connection descriptor. Contains the name attribute

DESCRIPTOR describing the nickname for the connection that is used to

open Dynamic Services connections to be used throughout the
lifetime of the DSAdmin utility.

DS DRIVER The driver class name. This driver class will be loaded to set
up a Dynamic Services connection to be used throughout the
lifetime of the DSAdmin utility. The name depends on the
nickname specified in DS_CONNECTION_DESCRIPTOR.

Configuration 3-3

Configuring and Running the DSAdmin Utility

Table 3—-1 DSAdmin Utility Configuration Elements (Cont.)

Element

Description

DS_URL

The name of the URL. This URL is used by the specified driver
class to open a Dynamic Services connection. The value
depends on the nickname specified in DS_CONNECTION_
DESCRIPTOR. For each driver class name, there must be a
corresponding URL, (for example, j dbc: or acl e: oci 8: @b
for a Direct driver class name;

htt p://host - nane: 8888/ ds/ DSSer vl et for a Servlet
driver class name).

DEFAULT _SERVICE_
REQUESTS

The default service requests section. Contains descriptions of
the service ID and the default path to the XML request file
used for a service in the DSAdmin utility.

DEFAULT_SERVICE_
REQUEST

The default service request. Contains the service ID attribute
describing the service ID.

DEF_XML

The default path to the XML request file that is used for a
specific service corresponding to the given service ID.

In order to use the other drivers, such as HTTP, HTTPS, and JMS, you must
complete the advanced installation options (see Chapter 4 for more information).
When the Servlet driver is used, requests are sent using HTTP to a Java servlet that
directly interacts with a Dynamic Services engine in the same way the Direct driver
does. This means that the two drivers may not necessarily share the same execution
engine. See Section 1.3.1 through Section 1.3.3 for more information.

Note: Users of the DSAdmin utility should be concerned only
about modifying the DEF_XML elements and changing the URL of
the predefined driver nicknames so that it points to their database
instances, or to the appropriate servlet URL or zones.

Note: The paths specified are relative; thus, you should always
execute the DSAdmin utility from the Dynamic Services installation

directory.

3.1.3 Running the DSAdmin Utility

Run the DSAdmin utility by executing the command shown in Example 3-2.

3-4 Oracle Dynamic Services User’s and Administrator’'s Guide

Registering a New Service

Example 3-2 Run the DSAdmin Ultility

O WN X systens:
<QRACLE HOMEX/ ds/ bi n/ dsadniin

h Wndows NT systens:
<QRACLE HOMEA ds\ bi n\ dsadmi n

Following each prompt, enter the user name DSSYS, <DSSYS- passwor d> (default
is DSSYS) , and 1 to select the DSConnection nickname named Direct.

The command-line options for running the DSAdmin utility are described in
Table 3-2.

Table 3—-2 DSAdmin Utility Command-Line Options

Option Description

-¢c <config file> Allows the DSAdmin utility to load
configuration files from any location.

-d Checks whether all required jars (and
appropriate version) are in the CLASSPATH.

-h Displays help. Lists the DSAdmin utility
command-line options.

-i <script file> Allows actions to be scripted through this
option. The DSAdmin utility interprets each
command separately and displays the result
in standard output.

-S Executes the DSAdmin utility in silent mode.
This option is used only in conjunction with a
script file.

-u <username>/<password>@<nickname> [Allows a user nhame, password, and
DSConnection nickname to be specified upon
invoking the DSAdmin utility.

3.2 Registering a New Service

A Dynamic Services simple service package consists of the group of files shown in
Figure 3-1, and is located in a local directory structure on your system.

Configuration 3-5

Registering a New Service

Figure 3-1 Contents of a Simple Service Package

Simple Service Package

Manifest File (MANIFEST)

Servlice Descriptor File {.xml)
Specifies Service Adaptars:
Input Adaptor Protocal Adaptor
Execution Adaptor Uutput Adaptor
e "l azzification Descriptor File {.xml)
—t (Jrganization Deseriptor File {.xml)
—tp Contacts Descriptor File {.xml)
e Service Reguest Definition XML Schema File {.x=d)
— Service Response Definition XML Schema File {x=d)

The MANIFEST file contains a pointer to the service descriptor file. The service
descriptor file contains pointers within the appropriate XML tag definitions
pointing to the following:

« Classification descriptor file

« Organization descriptor file

= One or more contact descriptor files
= Service request definition file

= Service response definition file

In addition, the service descriptor file specifies the service adaptors to be used (see
Chapter 6 for more information about each of these files).

A compound service package invokes one or more other services and typically
includes one additional file, a jar file, which contains all Java classes and property
files needed by the compound service at execution time.

Simple and compound service packages to be used by Dynamic Services must be
registered in the registry.

Registration is a two-step process:

1. Classify a service under the LDAP category specified in its descriptor.

3-6 Oracle Dynamic Services User’s and Administrator’'s Guide

Registering a New Service

2. Register the new service package.

The location of this information is in the service. Categories are organized into a
Lightweight Directory Access Protocol (LDAP) hierarchical tree, and are therefore
defined by a Distinguished Name (DN). Before registering a service package, you
must be sure the category that it belongs to exists. If the category does not exist, it
must be created.

The entire process of registering the sample service package, YahooPortfolio, is
described, starting from category creation (see Section 3.2.1), to registering the
service (see Section 3.2.2). You must complete instructions described in these two
sections, then browse registered services described in Section 3.3, and finally
execute a registered service Section 3.4. Successfully completing these sections is the
test that your Dynamic Services installation and DSAdmin utility configuration is
working properly.

Note: On UNIX systems, you can use the file <ORACLE _

HOVE>/ ds/ deno/ servi ces/ i nstal | _exanpl es. dss to install
a set of sample service packages by entering the following
command from your <ORACLE HQOVE>/ ds directory:

bi n/ dsadm n -u dssys/ <dssys-password>@i r ect -i
deno/ servi ces/install _exanpl es. dss

On Windows NT systems, you can use the file <ORACLE _

HOVE>\ ds\ denp\ servi ces\i nstal | _exanpl es. dss toinstall
a set of sample service packages by entering the following
command from your <ORACLE HQOVE>/ ds directory:

bi n/ dsadm n -u dssys/ <dssys-password>@i r ect -i
denp\ servi ces\instal |l _exanpl es. dss

See Section 3.2.1 and Section 3.2.2 for more detailed information on what these
scripts do in creating a service package category and registering a service package.

3.2.1 Creating a New Service Package Category

Using a regular text editor, open the service descriptor file of the YahooPortfolio
sample service package. The service package is stored in the following directory:

O WN X systens:
<QRACLE HOME>/ ds/ denv/ ser vi ces/ YahooPortfolio

Configuration 3-7

Registering a New Service

h Wndows NT systens:
<QRACLE HOMEA\ ds/ deno\ ser vi ces\ YahooPortfol i o

As specified in the MANIFEST file, the location of the service descriptor file is
relative to the service package in the following file:

O WN X systens:
[wawe yahoo. cond dSer vi ces/ sd/ port f ol i of yahoo pfl . xn

h Wndows NT systens:
\ v yahoo. com dSer vi ces\ sd\ portf ol i o\ yahoo_pfl . xn

In the service descriptor file header, it is specified that the service category
(classification) information is available in an additional XML file stored in the same
directory under the file name of yahoo_pfl _cl assi fi cati on. xm . When
viewing this file, note that the following category information is specified for the
YahooPortfolio service package:

cn=portfolio, cn=finance, cn=business
Defined as a DN, this category information must be read in the following way:
business is the parent category of finance, which is the parent category of portfolio.

To create the needed category in the Dynamic Services engine, start the DSAdmin
utility and navigate with the following steps:

1. Start the DSAdmin utility using the following command on UNIX:

bi n/ dsadm n -u dssys/ <dssys- passvor d>@ r ect

Use the following command on Windows NT:

bi N\ dsadm n -u dssys/ <dssys- passvor d>@ r ect

(The Direct driver is the only driver that allows registry manipulation.)

2. Enter Reg or R to enter the registry subshell (where registry-related operations
are performed).

3. Enter Service or S to enter the service management subshell.

To create the set of categories required by the YahooPortfolio service package, issue
the commands shown in Example 3-3.

Example 3-3 Create a Set of Categories Required by the Yahoo Service Package

AddCat cn=busi ness
AddCat "cn=fi nance, cn=busi ness"

3-8 Oracle Dynamic Services User’s and Administrator’'s Guide

Browsing Registered Services

AddCat "cn=portfolio, cn=finance, cn=busi ness"

Note: The quotation marks are important in order to treat the
entire series of entries as one parameter.

3.2.2 Registering a Service Package

Once the service package categories have been created, you can register a new
service package from the same DSAdmin utility menu by issuing the command in
the same subshell, as shown in Example 3-4.

Example 3—-4 Register a Service Package

O WN X systens:
Regi ster <QRAQLE_ HOMES ds/ deno/ ser vi ces/ YahooPortfol i o

h Wndows NT syst ens:
Regi ster <QRAQLE HOMEA ds\ deno\ ser vi ces\ YahooPortfol i o

Note: Information presented in Example 3-4 is case-sensitive.

The service package directory is specified as a parameter.

The service package can also be presented in a zip archive file and you would then
enter the path to that file instead.

Note: Anytime you make a change to any service-related file, you
must reregister that service package using the DSAdmin utility
Reregister command.

3.3 Browsing Registered Services

Once a service has been registered, you can browse the list of service IDs in the
same registry subshell by entering Search (S) under the Registry Service menu
using the DSAdmin utility. You then need to specify the way in which you want to
search the services, by category, by keywords, or by interface. Then, you must
specify the matching search pattern. Category-based searches require exact pattern
matches because the supplied matching pattern must exist; otherwise, nothing is
returned. Example 3-5 shows how to search a list of registered services by category

Configuration 3-9

Browsing Registered Services

where the matching pattern includes the service ID of the YahooPortfolio service
package.

Example 3-5 Search a List of Registered Services by Category
Search CATEQRY "cn=portfolio, cn=finance, cn=busi ness"

If a category that contains subcategories is specified, a list of the subcategories is
also listed. For example, if the category on which to search is "cn=finance,
cn=business", then a subcategory of "cn=portfolio, cn=finance, cn=business" is
included in the result list. For example:

cn=busi ness

cn=f i nance

cn=portfolio

ur n: com yahoo:

Keyword searches are based on keywords that are supplied in the service descriptor
file. Wildcards are allowed. Thus, a keyword search with the pattern "*" returns a
list of all the service IDs registered in the Dynamic Services engine as the following
steps show.

1. Start the DSAdmin utility using the following command on UNIX:

bi n/dsadmn -u dssys/ <dssys- passvor d>@ r ect

Use the following command on Windows NT:

bi N\ dsadm n -u dssys/ <dssys- passvor d>@ r ect

2. Enter S to enter the Search subshell (where search-related operations are
performed).

3. Enter 2 to select the keyword classification scheme.

4. Enter the wildcard character * (the asterisk) and press Return to begin the
search, as Example 3-6 shows.

Example 3-6 Returning a List of Services Using the Wildcard "*" Search

Search for services where KEWCRD="*", . . DSREG search: 2 - *...
DSREG search: 2 - *... Done

Search Resul t:

3-10 Oracle Dynamic Services User’s and Administrator’'s Guide

Executing a Registered Service

Service | Ds:

ur n: com cnnf n: fi nance. port fol i 003

urn: comdsFai | Over: fi nance. portfol i 003
ur n: com oanda: conver si on. cur r ency03
urn: comual :travel . ml eage

ur n: com yahoo: fi nance. i pf| 04

ur n: com yahoo: f i nance. port f ol i 003

SubGCat egori es:

Done

Finally, searches based on the service interface finds matches with services using the
same named request and response schema as those delineated by the interface. The
interface name is case-sensitive. For example, if you are searching among all
registered services only for those that use the "PortfolioService" interface name, you
would enter that search string as shown in Example 3-7.

Example 3—7 Search a List of Registered Services by Interface

Search for services where | NTERFACE="Portfol i oServi ce". .. DSREG search: 3
- PortfolioService...
DSREG search: 3 - PortfolioService... Done

Search Result:

Service | Ds:

ur n: com cnnf n: fi nance. portfol i 003
urn: comdsFai | Over: fi nance. portfol i 003
ur n; com yahoo: f i nance. port f ol i 003

SubGCat egori es:

Done

3.4 Executing a Registered Service

Once the service has been registered, you can execute it with the following
commands:

Configuration 3-11

Executing a Registered Service

« Enter Exit or X twice to return to the top-level shell. If you are starting the shell
from the beginning, you can skip this step.

« Enter Exec or E to enter the Execution shell.
« Enter Synch or S to perform synchronous execution of a service.

The shell prompts you to choose a service ID from a list that was generated with a
keyword search using "*" as the matching pattern. For synchronous execution, the
final step is to choose the XML file that contains the request for that service as
shown in Example 3-8. The shell waits until the service execution is complete and
then, produces the response message.

Note: If you are running within an Intranet, you must set proxy
information. If you have already completed the instructions
described in Section 3.1.1, then you can execute the
YahooPortf ol i oservice.

Example 3-8 Execute a Registered Service

O WN X systens:
Exec Synch urn: comyahoo: fi nance. portfol i 003 <QRAQE_
HOME ds/ deno/ ser vi ces/ YahooPortfol i of pf| _req_ex. xm

h Wndows NT systens:
Exec Synch urn: comyahoo: fi nance. portfoli 003 <QRAQLE_
HOMEA ds\ deno\ ser vi ces\ YahooPort f ol i o\ pfl _req_ex. xn

- Sanple Qutput -

BEM execut e service: urn: com yahoo: fi nance. portfolio03... Done.
Wi ting synchronous Response
<PortfolioResp xmns="http://wmu portfolio.org/ Portfolio/ Rsponse" xnins:xhtm ="
ht t p: // waw W8. or g/ 1999/ xht m " >
<Quot e>
<Syniol >CRAL</ Synbol >
<Ti ne>1: 53PW/ Ti ne>
<Price>13. 61</ Pri ce>
<Change>- 11. 16%/ Change>
<Vol une>48, 135, 000</ Vol une>
</ Quot e>
<Quot e>

3-12 Oracle Dynamic Services User’s and Administrator’'s Guide

Executing a Registered Service

<Synbol >AAPL</ Syniol >
<Ti ne>1: 53PW/ Ti ne>
<Price>20. 82</ Pri ce>
<Change>- 3. 57%/ Change>
<\ol une>4, 500, 100</ Vol urme>
</ Quot e>
</ Portfol i oResp>

DSADm nShel | . Execut i on>

After successfully executing the YahooPort f ol i 0 service, you can begin
developing your own services. See Chapter 6 for information about how to build a
service.

To configure and use other deployment views of Dynamic Services, such as
HTTP/HTTPS, PL/SQL, or HTTP/Java Messaging Services (JMS), or to set up
LDAP as a central master registry, see the appropriate sections in Chapter 4.
Chapter 4 also describes other advanced features, such as enabling persistent
auditing, manually fine-tuning Dynamic Services properties, and installing the
management console.

Configuration 3-13

Executing a Registered Service

3-14 Oracle Dynamic Services User’s and Administrator's Guide

A4

Advanced Installation Options

After the dsi nstal | . sql script has been run, a package named DS_Properties is
created as a result of installing the DSSYS schema. Through this package, you can
call a setProperty procedure to change system properties of your current Dynamic
Services instance. The advanced installation options include the following:

Enabling PL/SQL interfaces (see Section 4.1)

Enabling persistent auditing or event monitor services (see Section 4.2)
Enabling HTTP communication (see Section 4.3)

Enabling Java Messaging Services (JMS) (see Section 4.4)

Using LDAP as a central master registry (see Section 4.5)

Manually fine-tuning Dynamic Services properties (see Section 4.6)

Section 4.1 through Section 4.6 describe these advanced installation options that are
provided in the installation package. These options can be invoked with the
individual scripts described in each section. Most of these scripts call the DS_
Properties.setProperty procedure.

Important: In part of Section 4.3.1, directory paths often show
only the UNIX path "/" specification. If you are installing on a
Windows NT system, the path specification is "\" and you must
make this change, as needed, for the installation to be successful.

4.1 Enabling PL/SQL Interfaces

This installation option coincides with the PL/SQL deployment view described in
Section 1.3.2.

Advanced Installation Options 4-1

Enabling PL/SQL Interfaces

1.

Run the provided SQL script named dssys_pl sql _init. sql thatis
provided to grant the necessary permissions to user DSSYS.

a.

Go to the directory location (ds/ sql on UNIX systems or ds\ sql on
Windows NT systems) of theds_pl sql _i ni t. sql file.

Log in to SQL*Plus as user SYS, as follows:

sql pl us SYY <SYS- passvor d>

Runthe dssys_pl sqgl _init.sql scriptas follows:

SQA> @ssys_plsqgl _init.sql

Running this script grants the necessary permissions to user DSSYS.

Next, run the SQL script named ds_pl sql . sql that is provided to install the
PL/SQL interface.

a.

Go to the directory location on UNIX systems (ds/ sql) or on Windows NT
systems (ds\ sql) of the ds_pl sql . sql file.

Log in to SQL*Plus as user DSSYS as follows:
sql pl us DSSYY <DSSYS- passvior d>

Runtheds_pl sql . sql scriptas follows:
SQA> @s_pl sql . sql

The following happens upon running this ds_pl sql . sql script:

At the beginning of the script, another script is invoked to load the
Dynamic Services library into Oracle JVM, along with its dependent
libraries.

Next, a subsequent script makes declarations of a PL/SQL package called
DynamicServices, mapped to the Java Stored Procedures exposed by the
library.

The ds_pl sql . | og file is checked to verify the installation of the package.

Then, the script is completed.

Describe the DynamicServices package by issuing the following command at a
SQL*Plus prompt.

SQA > desc Dynani cServi ces

4-2 Oracle Dynamic Services User’s and Administrator’s Guide

Enabling Persistent Auditing or Event Monitor Services

A sample, anonymous PL/SQL block is run to test the functions, having
already registered the YahooPortfolio service as described in Section 3.2. A
sample PL/SQL script deno/ consumer / sanpl e. sql on UNIX systems or
demo\ consuner \ sanpl e. sql on Windows NT systems, found in the
Dynamic Services installation directory, tests the DynamicServices package that
was just installed.

Refer to Section 5.2 for a more detailed description of how you can use the PL/SQL
interface.

4.2 Enabling Persistent Auditing or Event Monitor Services

Dynamic Services offers a persistent auditing feature in which events that can be
thrown during execution, can be monitored. The monitoring process involves
triggering of services to be executed upon receipt of a certain event. These services
that get triggered are called monitor services. A standalone monitor utility enables
the process of auditing these events. Persistent auditing performs among other
tasks, service execution logging and event failure notification. See Section 4.2.6 for
an example of using the logger monitor service.

4.2.1 Configuring Oracle Advanced Queuing

Because Dynamic Services makes use of Oracle Advanced Queuing for delivering
event messages, you must also set the dynamici ni t. or a parameter ag_t m_

pr ocesses for your database instance to a non-zero value (for example, set it to 1)
as shown in Example 4-1.

Example 4-1 Set the aq_tm_process init.ora Parameter
ag tmprocesses = 1

Refer to Oracle Advanced Queuing documentation for more information. Restart
the database instance after you modify thei ni t . or a file.

4.2.2 Installing Monitor Services

By default, monitor services (which are mostly JDBC services), insert entries into
tables under the DSSYS schema. If you changed the password for DSSYS, modify
the default DSSYS password in the Moni t or | nst al | . dss file to reflect that
change.

Advanced Installation Options 4-3

Enabling Persistent Auditing or Event Monitor Services

Before installing the event monitor services, you must first configure the

Moni t or I nstal | . dss file in the et ¢/ dsadmi n directory on UNIX systems or

et c\ dsadni n directory on Windows NT systems to point to the database where
the monitor services will write information. (Most of these monitor services are
database services that just load some processed information into tables.) Make this
the same database as the one used for the Dynamic Services engine instance shown
in Example 4-2. To make use of the of the notifier service, which is an SMTP service,
you must also configure the SMTP mail related properties in the

Moni tor I nstall . dss file.

Example 4-2 Configure the Monitorinstall.dss File

O WN X systens:
bi n/dsadmin -i etc/dsadmn/Mnitorinstall.dss

h Wndows NT syst ens:
bi n\dsadmn -i etc\dsadmn\Mnitorlnstall.dss

Then, run the dsnoni nst al | . sql scriptinthe ds/ sqgl directory on UNIX
systems or ds\ sql directory on Windows NT systems. Running this SQL script
will install the tables required by the monitor services.

1. Go to the directory location (ds/ sql on UNIX systems or ds\ sgl on Windows
NT systems) of the dsnoni nstal | . sql file.

2. Loginto SQL*Plus as user DSSYS as follows:
sql pl us DSSYS <DSSYS- passwvior d>

3. Runthedsnoni nstall.sql scriptas follows:

SQA> @snoni nstal | . sql

A set of default services is installed from the et ¢/ ser vi ces directory on UNIX
systems or et c\ ser vi ces directory on Windows NT systems, using the DSAdmin
command-line utility with some scripts. These services are invoked by the event
monitor utility that is described in Section 4.2.3. It is important to note that none of
the monitor services throws events. This prevents an infinite loop from happening
where the same monitor services are invoked for the event that they throw.

4.2.3 Using the Event Monitor Utility

In addition to the DSAdmin command-line utility, there is also an event monitor
command-line tool called dsrmon on UNIX systems (dsnon. bat on Windows NT

4-4 Oracle Dynamic Services User’s and Administrator’s Guide

Enabling Persistent Auditing or Event Monitor Services

systems). This tool lets you start and stop the event monitor, which executes
monitor services upon receipt of events published by the Dynamic Services engine.
Monitor services are services that are associated with a monitor and conform to a
service interface called EventHandlerTemplate. These services are located in the

et c/ servi ces directory on UNIX systems or et c\ ser vi ces directory on
Windows NT systems. The correct syntax for running this utility is shown in
Example 4-3.

Note: On Windows NT, you must customize the SET ORACLE_
HOME line in dsnon. bat to point to your <ORACLE_HOME>.

Example 4-3 Usage Syntax for Running the Event Monitor Utility
dsnon -u dssys/ <dssys- passvord>@ rect -e start

Note: Information presented in Example 4-3 is case-sensitive.

Using the event monitor utility, you can connect to a Dynamic Services engine; start
or stop the monitor; and have control over the output level of the messages during
the execution of the monitor services.

4.2.4 Enabling Persistent Auditing

The next step is to enable persistent auditing. With the default installation in
dsinstal l. sql, event messages are disabled in the properties table. Example 4-4
shows the setProperty PL/SQL procedure calls that enable event logging for the
logging and warning event types.

Example 4-4 Connect to the DSSYS Schema as DSSYS User

connect dssys/ <dssys- passvor d>;
SQL>exec DS_Properties.setProperty(DS_EV_LOGGING_enabled, ‘true’);
SQL> commit;

Configure persistent auditing to enable event messages only for the event types you
want.

4.2.5 Starting and Stopping the Event Monitor

Start the event monitor using the command shown in Example 4-5.

Advanced Installation Options 4-5

Enabling Persistent Auditing or Event Monitor Services

Example 4-5 Start the Event Monitor
dsnon -u dssys/ <dssys- passvord>@ rect -e start

Note: After starting the event monitor on Windows NT systems,
the DOS prompt does not display again. You must use another DOS
window to issue the stop command shown in Example 4-6.

Stop the event monitor using the command shown in Example 4-6.

Example 4-6 Stop the Event Monitor
dsnon -u dssys/ <dssys- passvord>dD rect -e stop

When you issue this stop event monitor command, you post a stop request in the
gqueue and the event monitor stops.

4.2.6 Using the Logger Monitor Service (Case Study)

One of the monitor services that is used is called the logger monitor service. It loads
a logging event message into a raw log table in the database. The log table is an
object table with the object definition as shown in Example 4-7.

Example 4-7 Define the Raw Log Object Table

CREATE (R REPLACE TYPE raw | oggi hg_typ AS GBIECT
(

base raw event_typ, -- Raw event type (base)

operation VARCHAR2(512), -- Qper: connect, |ookup, execute, session
st at us VARCHAR2(512), -- Satus of the operation: open, fail, close
comm nsg VARCHAR2(4000) -- Comnuni cation Message

E
/

The dependent object r aw_event _t yp has a definition as shown in Example 4-8.

Example 4-8 Definition of the Raw Event Object Table

CREATE (R REPLACE TYPE raw event _typ AS BIECT
(

time_stanp DATE, -- Tine stanp of the event
service_ id VARCHAR2(512), -- Maxinumlength of a service ID string
connection id VARCHAR2(256), -- Maxi num DSGonnection ID for a DSE user

4-6 Oracle Dynamic Services User’s and Administrator’s Guide

Enabling Persistent Auditing or Event Monitor Services

request _id VARCHAR2(256), -- Maxi numrequest |1D for a DSE user
consurer _i d VARCHAR2(256), -- Maxi numlength of a DB user
engi ne_id VARCHAR2(128) -- Engine identifier (instance of DSE)

)
/

With an object table created based on the r aw_| oggi ng_t yp object, you can then
make SQL queries to give a good view of the logging events that are thrown during
service execution, as shown in Example 4-9.

Example 4-9 Make a SQL Query of the Logging Events

column tinestanp fornmat ald
colum service fornat a37
col um consuner fornat a8
col umm operation format a8
col um status fornat a6

select TO_CHAR(tbase.time_stamp, MM/DD@HH24:MI.SS)) as timestamp,

thase.consumer_id as consumer,
toperation as operation,
thase.senvice id as senvice,
tstatus as status

fromraw_logging_table t
order by tbase.time_stamp asc;

— The following is a sample of some logging event information that
— might display from running the SQL query.

TIMESTAMP CONSUMER OPERATIO SERVICE STATUS
12/07@12:0520 DSSYS CONNECT OPEN
12/07@12:05:33DSSYS LOOKUP OPEN
12/07@12:05:33DSSYS LOOKUP CLOSE
12/07@12:05:36 DSSYS EXECUTE um:com.cnnfn:finance.portfolio03 OPEN

12/07@12:05:53 DSSYS
12/07@12:06:23 DSSYS

6 rows selected.

EXECUTE um:com.cnnfn:finance.portfolio03 CLOSE
CONNECT CLOSE

There are certain service properties used by the logger monitor service that are set
when the logger monitor service is installed. These service properties involve the
database URL as well as the schema in the database that contains the raw log tables,

Advanced Installation Options 4-7

Enabling HTTP Communications

and are therefore necessary for the logging monitor service to function properly.
These service properties are described in the script files mentioned in Section 4.2.2.

4.3 Enabling HTTP Communications

This installation option coincides with the HTTP deployment view described in
Section 1.3.3.

Dynamic Services can make use of the Apache servlet engine for handling remote
HTTP communication between its service consumers and the Dynamic Services
engine. To enable HTTP communications, first you must configure the
Apache/Jserv serviet engine (see Section 4.3.1), and then configure the DSAdmin
utility to use the Dynamic Services HTTP driver, DSHTTPDriver (see Section 4.3.2).

4.3.1 Configuring the Apache/Jserv Servlet Engine

The following instructions assume that you have Apache/JServ installed. Any Web
server with a servlet container will work, provided that the changes are done
correctly to the correct files. In this step, it is required that you configure your
installation of Apache/Jserv to install a new Dynamic Services zone. The following
is the list of tasks you must perform (refer to JServ documentation for more
information on how to create new zones):

1. Editthej serv. conf file.

This file is usually found within the Jser v/ et c directory on UNIX systems or
Jser v\ et c directory on Windows NT systems under your Apache installation.

Note: For an Oracle9i Release 1 (9.0.1) installation, the

j serv. conf fileis located in <ORACLE

HOVE>/ Apache/ Jser v/ et ¢ directory on UNIX and ORACLE
HOVE>\ Apache\ Jser v\ et ¢ on Windows NT.

Configure a new ds mount point by adding the new lines shown as follows:

Qracl e Dynanic Servi ces Zone
ApJServhMount /ds /ds

2. Editthej serv. properti es file.

This file is found in the same directory as the j ser v. conf file. Make the
following modifications:

4-8 Oracle Dynamic Services User’s and Administrator’s Guide

Enabling HTTP Communications

Ensure Jserv is running on Java2.

Modify the wrapper.bin line to show<JAVA2 HOVE> shown as follows.
<JAVA2_HOVE> is your Java 2 SDK installation directory.

W apper . bi n=<JAVA2 HOMEX bi n/ j ava

Create a new ds zone.
Append to the zones line, the ds zone as follows:

zones = <existing zones>, ds

Add a pointer to the ds zone properties as follows:
ds. properti es=CRACLE HOME/ ds/ et ¢/ Apache_JSer v/ zones/ ds/ ds. properti es

Update the Jserv classpaths.

Add all the necessary libraries needed by Dynamic Services as shown in the
following list of necessary modifications.

wr apper . cl asspat h=CRACLE HOME | i b/ xm par serv2. j ar
wr apper . cl asspat h=CRACLE HOME/ | i b/ xschena. j ar

w apper . ¢l asspat h=CRACLE_ HOME/ rdbns/ j | i b/ j nscomon. j ar
W apper . cl asspat h=CRACLE HOME/ rdbns/ j | i b/ agapi . j ar

W apper . cl asspat h=CRACLE HOME/ j | i b/ provi derutil .jar
W apper . cl asspat h=CRACLE HOME/ j | i b/ | dap. j ar
W apper . cl asspat h=CRACLE HOME/ j i b/jndi . j ar

w apper . cl asspat h=CRACLE HOME/ ds/ | i b/ j sse. j ar
w apper . cl asspat h=CRACLE HOME/ ds/ | i b/j net. j ar

Advanced Installation Options 4-9

Enabling HTTP Communications

3.

W apper . cl asspat h=CRACLE HOME/ ds/ | i b/ jcert.jar

wr apper . cl asspat h=CRACLE HOME rdbns/ j | i b/ xsul2. j ar
W apper . cl asspat h=CRACLE HOME/ | i b/ or acl exsq| . j ar

wr apper . cl asspat h=CRACLE HOME/ ds/ | i b/ ds.j ar

Set the environment variables.

Ensure that <ORACLE_HOME> and <LD_LIBRARY_PATH> environment
variables are properly set on UNIX and that the <ORACLE_HOME> and
<PATH> environment variables are properly set on Windows NT as follows;

On UNIX, set:

w apper . env=CRACLE_HOME=<your _or acl e_hone>
w apper . env=LD LI BRARY_PATH=<your_oracl e_home>/1ib

On Windows NT, set:

wr apper . env=CRACLE_HOME=<your _or acl e_hone>
wr apper . env=PATH=<your _or acl e_hone>\ bi n

Edit the file <ORACLE HOVE>/ ds/ et ¢/ Apache_

JServ/ zones/ ds/ ds. properties on UNIX systems or <ORACLE _

HOVE>\ ds\ et c\ Apache_JSer v\ zones\ ds\ ds. properti es on Windows
NT systems and make the following modifications:

a.

Update the repository location for the Dynamic Services zone.
Change the location of the Dynamic Services jar file as follows:
reposi tori es=CRACLE HOME/ ds/ | i b/ ds. | ar

Update Oracle Driver information for DSServlet.

Change the driver to be used by the DSServlet as a servlet property by
using the appropriate connection string for your database instance as
follows:

servl ets.defaul t.initA gs=D6 CRO._UR 5j dbc: or acl e: t hi n: @your - host >: <your - port : <your - 3 D>

4.

Restart Apache.

4-10 Oracle Dynamic Services User’s and Administrator’s Guide

Enabling Java Messaging Services (JMS) Communications

To restart Apache on UNIX, execute the following commands:

cd <Apache installation directory>
O WN X systens:
bi n/ apachect!| restart

h Wndows NT systens:
bi n\ apachect| restart

On Windows NT, restart the Apache server from the Start bar. For Oracle9i
Release 1 (9.0.1), start from your Oracle home, select Oracle HTTP Server, then
Start HTTP Server powered by Apache.

4.3.2 Configuring the DSAdmin Utility to Use the HTTP Driver

After the Apache/JServ installation is completed, you can use the DSHTTPDriver
with the DSAdmin utility after you perform the following tasks:

1.

Navigate to the et ¢/ dsadmni n/ DSAdmi nConf i g. xrm file on UNIX systems or
et c\ dsadni n\ DSAdni nConfi g. xm file on Windows NT systems.

Enable the HTTP driver by following the comments for the DS_DRIVERS
property. Update the URL used by the DSHTTPDriver by finding the DS_
CONNECTION_DESCRIPTOR name = HTTP element and within this element,
the element that begins with DS_URL. Change the value to point to the servlet
that you just installed.

Note: The URL used by the HTTP driver isan HTTP URL, while
the URL used by the Direct driver is a JDBC URL. The rationale is
that when the HTTP driver is used, requests are sent using HTTP to
the previously described installed Java servlet. This Java servlet
directly interacts with a Dynamic Services engine in the same way
that the Direct driver does. This means that the two drivers may not
necessarily share the same engine.

4.4 Enabling Java Messaging Services (JMS) Communications

This installation option coincides with the JMS deployment view described in
Section 1.3.3.

A SQL script named dsj ns_aqi ni t. sqgl is provided to install the JMS option.

Advanced Installation Options 4-11

Enabling Java Messaging Services (JMS) Communications

Go to the directory location (ds/ sql) on UNIX systems or (ds\ sql) on
Windows NT systems of the dsj ns_aqi ni t. sqgl file.

Log in to SQL*Plus as user DSSYS as follows:
sql pl us DSSYS <DSSYS- passwvior d>

Run the dsj ns_aqi ni t. sql script as follows:
SQA> @sj ns_aginit. sql

Running the dsj ns_aqi ni t. sql scriptina SQL*Plus session as the DSSYS
user, creates all the tables and queues necessary for JIMS communications.

4.4.1 Configuring and Running the JMS Daemon

To configure and run the JMS daemon, perform the following tasks:

1.

Edit the et ¢/ dsadmi n/ DSAdm nConfi g. xm configuration file on UNIX
systems or the et c\ dsadmi n\ DSAdmi nConf i g. xm configuration file on
Windows NT systems that is used to run the daemon. The following code
example shows the specific parameters that you must configure in this
configuration file.

<DS_CONNECTI ON_DESCR PTCR nane="JNVBDAEMIN' >
<annot at i on>
-| For N cknane "JNMSDAEMIN':
| These are specifications of the JM5 driver class
+ that will be used as well as the URL to be used with it
</ annot ati on>
<06 DR VER>oracl e. ds. dri ver. D80 rect Ixi ver </ 06 DR VER>
<BS UR>j dbc: oracl e: t hi n: @our - host : your - por t : your - si d</ DS UR>
<JMBD LGG H LE~ ogs/ j nsd. | og</ IMSD LGG F LE>
<IMBD NUM THREADS>10</ JIMSD_NM THREADS>
</ DS_CONNECTI ON_DESCR PTCR>

4-12 Oracle Dynamic Services User’s and Administrator’s Guide

Enabling Java Messaging Services (JMS) Communications

Note: There is only a single URL for the database. This is the
database that is used to host the request/response queues, as well
as the database for the Dynamic Services engine. It must be the
same database where the DSSYS schema was installed.

2. Run the following program to start the daemon that listens to all asynchronous
requests.

O N X systens:
bi n/dsj nsd -u dssys/ dssys@MSDAEMN - ¢ et ¢/ dsadm n/ DSADmi nGonfi g. xm -e start

n Wndows NT syst ens:
bi n\dsj nsd -u dssys/ dssys@MSDAEMN - ¢ et ¢\ dsadm n\ DSAdmi nGonfi g. xm -e start

Note: Before running the dsj nsd. bat file on Windows NT,
check and change the SET ORACLE_HOME line to point to your
Oracle home.

Also, in your DSAdni nConfi g. xm file, uncomment the DS_CONNECTION_
DESCRIPTOR element for the IMSDAEMON nickname.

For future reference, the following code example shows how to stop the JMS
daemon.

O WN X systens:
bi n/ dsj nsd -u dssys/ dssys@MSDAEMIN - ¢ et ¢/ dsadm n/ DS8Adm nConf i g. xm -e stop

h Wndows NT systens:
bi N\ dsj nsd -u dssys/ dssys@MSDAEMN - ¢ et ¢\ dsadni n\ D8Adni nConfi g. xm -e stop

4.4.2 Configuring the DSAdmin Utility to Enable JMS Communications

Before configuring the DSAdmin utility to enable JMS communications, you must
note that for all service consumer applications that want to use the JIMS
communication path, the database users that represent them must be granted the
AQ_Administrator_Role privilege. The client library needs to register itself as an
asynchronous subscriber to the response queue for asynchronous executions. Note
that DSSYS is already granted that role. To configure the DSAdmin utility to enable
JMS communications, perform the following tasks:

Advanced Installation Options 4-13

Using Lightweight Directory Access Protocol (LDAP) as a Central Master Registry

1. Navigate to the et ¢/ dsadmi n/ DSAdmi nConfi g. xm configuration file on
UNIX systems or the et c\ dsadmi n\ DSAdm nConf i g. xm configuration file
on Windows NT systems.

2. Editthe et c/ dsadmi n/ DSAdni nConfi g. xm file on UNIX systems or the
et c\ dsadmni n\ DSAdni nConfi g. xm file on Windows systems and update
the URL used by the DSIMSDriver by finding the DS_CONNECTION_
DESCRIPTOR name = JMS element, and within this element, the element that
begins with DS_URL. Change the value to point to the URL of the database that
is hosting the queues. Also, uncomment this JMS nickname DS _
CONNECTION_ DESCRIPTOR element.

During runtime, requests are sent to the request queue in this database. The
requests are picked up by the daemon that is communicating with this same
database, and used in a service execution that returns a response. That response is
submitted to a response queue in the same database, to be picked up
asynchronously by the initial request submitter.

4.5 Using Lightweight Directory Access Protocol (LDAP) as a Central
Master Registry

As installed in the dsi nst al | . sql script, the instance of the Dynamic Services
engine is a standalone instance with its own storage for the registry. To increase
scalability, you may want to install multiple Dynamic Services engines
communicating with a central master Lightweight Directory Access Protocol
(LDAP) registry (see Figure 1-8). First, you must successfully install the Oracle
Internet Directory (OID) LDAP server with all the appropriate schemas.

4.5.1 Setting Up LDAP with Oracle Internet Directory

To set up LDAP with OID, you must install OID (see Section 4.5.1.1), and then
install the Dynamic Services LDAP schema (see Section 4.5.1.2).

4.5.1.1 Oracle Internet Directory

To install Oracle Internet Directory, run the Oracle Installer of your Oracle9i Release
1 (9.0.1) distribution and choose the Oracle9i Management and Integration option.
Then, select Oracle Internet Directory from the list of displayed products. For more
information, refer to Oracle installation instructions.

4-14 Oracle Dynamic Services User’s and Administrator’s Guide

Using Lightweight Directory Access Protocol (LDAP) as a Central Master Registry

4.5.1.2 Dynamic Services LDAP Schema
Before proceeding in the installation, verify the following:

Ensure the oi dnon instance is running. If not, run the following command to
start it.

oi dnmon connect =0 CDBL sl eep=10 start

OIDDBL is the system identifier (SID) of the database instance created by the
OID installer.

Ensure the oi dl dapd server is running. If not, run the following command to
start an instance of the OID LDAP server.

oi dct| connect =0 CDB1 server =oi dl dapd i nstance=1 start

Then, proceed with the installation of the Dynamic Services LDAP schema and
issue the following command from a command-line shell:

O WN X systens:
| daprmodi fy - h oracl edevl- sun. us. oracl e. com-p 389 -D "cn=orcl adnmin" -w "wel corme"
-v -c -f $<QRAAQLE HOMES/ ds/ | di T/ oi ddsschena. | di f

O Wndows syst ens:
| daprodi fy -h oracl edevl- sun. us. oracl e. com-p 389 -D "cn=or cl admn" -w "wel cone"
-v -c -f $<QRAQ.E HOMEA\ ds\ | di f\ oi ddsschena. | di f

Table 4-1 describes the Idapmodify command-line options that can be used for
installing the Dynamic Services LDAP schema.

Table 4-1 Idapmodify Command-Line Options for Installing Dynamic Services LDAP
Schema

Options |Description

h Specifies the host machine where OID is running.

o] Specifies the port number to which OID is listening. By default, the port
number is 389.

D Specifies the user name (in Distinguished Name (DN) format defined by
LDAP). By default, the admin for OID is "cn=orcladmin".

w Specifies the password for the user claimed in option "-D". By default, the
password for admin is "welcome".

\Y Specifies verbose mode.

Advanced Installation Options 4-15

Using Lightweight Directory Access Protocol (LDAP) as a Central Master Registry

Table 4-1 Idapmodify Command-Line Options for Installing Dynamic Services LDAP

Schema

c Specifies that all warning or error messages during the installation are delayed
from being viewed until the end.

f Specifies the location of the schema file to be uploaded to OID. In this example,
<ORACLE_HOME-> refers to your Oracle9i installation.

The oi ddsschenma. | di f file includes all the necessary steps for the installation of
the Dynamic Services schema into OID. These steps are:

1. Create unique attributes used by Oracle Dynamic Services.
2. Create an index on those attributes.
3. Create the object classes.

After successfully installing the Dynamic Services LDAP schema, the next step is to
create default entries for Dynamic Services, such as the release number of the
product and the root of the User Profile Subtree. Issue the command shown in
Example 4-10 to do this.

Example 4-10 Run the Idapmodify Command to Create Default Entries for Dynamic
Services

O WN X systens:
| daprmodi fy - h oracl edevl- sun. us. oracl e. com-p 389 -D "cn=or cl admin" -w "wel corme"
-v -c -f <ORAQLE HOMES/ ds/ | di f/oi ddsdit. | dif

h Wndows NT systens:
| daprmodi fy - h oracl edevl-sun. us. oracl e. com-p 389 -D "cn=orcl admin" -w "wel conme"
-v -c -f <QRAQLE HOMEA\ ds\ | di f\oi ddsdit. | dif

Note: In this release, the oi ddsdit. | dif file assumes the DN of
OracleContext to be "cn=OracleContext, C=US". Change the DN to
one of your choice, if needed.

4.5.2 Configuring Dynamic Services Registry to Use LDAP

In order to change this instance of the Dynamic Services engine into one that
communicates with the master LDAP server, you must change some properties in
the properties table. This is done by executing the two setProperty PL/SQL
procedure calls shown in Example 4-11.

4-16 Oracle Dynamic Services User’s and Administrator’s Guide

Manual Fine-Tuning of Dynamic Services Properties

Example 4-11 Configure the Dynamic Services Registry to Use the Master LDAP
Server

exec DS_Properties.setProperty(‘'oracle.ds.registry.defaultRegistry’,
‘oracle.ds.registry. DSMasterMirorRegistry);

exec DS_Properties.setProperty(‘oracle.ds.registry.Idap.providerUr,
Idap:/iyour.ldap.server:389);

The first call instructs the instance to go to a master LDAP server for the central
master registry rather than to itself (the default value that was set during
installation is "oracle.ds.registry.DSSimpleRegistry’). The second call points your
instance to the correct LDAP server for its registry communications.

You must change your . | dap. ser ver to the host name of the machine that is
running Oracle Internet Directory.

After you complete the preceding step, perform the following tasks:

1. Run the DSAdmin utility again and go to the
DSAdni nShel | . Regi stry. Engi ne subshell to register your engine with the
central master registry; however, this step is optional and needed only for
management purposes.

2. Browse the DSAdni nShel | . Regi st ry. Engi ne subshell to see the directives
available to manage the list of engines that communicate with the central
master registry.

4.6 Manual Fine-Tuning of Dynamic Services Properties

Table 4-2 describes the Dynamic Services properties that you can change after
installing Dynamic Services.

Table 4-2 Dynamic Services Properties

Property Description

proxySet Controls usage of proxy server for HTTP access;
(true | false)

proxyHost Proxy server host name

proxyPort Proxy server port number

oracle.ds.registry.ldap.providerUrl URL of the LDAP server to be used as central

master registry

oracle.ds.registry.ldap.principal User name to be used to connect to LDAP server

Advanced Installation Options 4-17

Manual Fine-Tuning of Dynamic Services Properties

Table 4-2 Dynamic Services Properties

oracle.ds.registry.ldap.credential Password to be used to connect to LDAP server

oracle.ds.registry.ldap.rootdn DN of the root of the Dynamic Services tree in
LDAP(cn=OracleDynamicService, cn=Products,
<DN of OracleContext>)

cacheSet Enables or disables service response caching;
(true | false)

debugLevel Controls debug output level;
(TERSE | VERBOSE | TRACE)

Note: Both property name and property values are case-sensitive.

The properties are stored in the installed DSSYS schema. To set a property:
1. Connect to the Oracle database as DSSYS using SQL*Plus as follows:
sql pl us DSSYS <DSSYS- passwvior d>
2. Run the setProperty PL/SQL procedure by issuing the following SQL
statement:
SQL>EXECUTE DS_PROPERTIES setProperty('<property name>', '<property
value>);
3. Display a list of current properties by issuing the following SQL statements:

SQL> SET SERVEROUTPUT ON;
SQL>EXECUTE DS_Properties.show;

4-18 Oracle Dynamic Services User’s and Administrator’s Guide

D

Service Consumer Interfaces

This chapter describes how to use the Java and PL/SQL Web application
development interfaces.

Important: In Section 5.1.1, directory paths often show only the
UNIX path "/" specification. If you are running a Windows NT
system, the path specification is "\" and you must make this
change, as needed, for configurations to be successful.

5.1 Java Interface for Service Consumers

The client library provides service consumers (application developers) with a Java
application programming interface (API) that can be used to access the functions of
the Dynamic Services engine. This section illustrates some examples for writing
client Java code to create a service request for some of the sample services supplied
with Oracle Dynamic Services, and executing them. Before proceeding, make sure
the Dynamic Services engine is properly installed, and that you can register and
execute services as described in Chapter 3. Also, using the DSAdmin utility, make
sure the YahooPortfolio service is registered, because it is used in these examples.

For more information, refer to the supplied sample code in the <ORACLE
HOVE>/ ds/ deno/ consuner directory on UNIX systems or <ORACLE
HOVE>\ ds\ deno\ consuner directory on Windows NT systems and to the
supplied Javadoc API (api doc. zi p file) in the <ORACLE HOVE>/ ds/ doc
directory on UNIX systems or in the <ORACLE HOVE>\ ds\ doc directory on
Windows NT systems.

Service Consumer Interfaces 5-1

Java Interface for Service Consumers

5.1.1 Setting the Classpath

Make sure your classpath includes all the necessary libraries shown in Example 5-1
(that is, concatenate these paths together with a colon (;) in your classpath, (a
semicolon (;) on Windows NT)):

Example 5-1 Include These Dynamic Services Libraries in Your Classpath

<QRACLE HOMEX ds/ i b/ ds. jar

<QRACLE HOME! | i bl xmh par serv2. j ar
<QRACLE HOMEX! | i bl xschena. j ar

<QGRAQLE HOMES ds/j li b/ provi derutil . jar
<GRAQLE HOMES/ ds/jli b/ I dap. j ar
<RAQLE HMES/ ds/jlibljndi.jar
<QRAQLE HOMEX rdbns/ j | i b/ xsul2. j ar
<QRACLE HOMEX/ i bl oracl exsql . j ar
<QRACLE HOMES ds/libljcert.jar
<GRAQLE HOMES/ ds/libl/jnet.jar

<GRAQLE HOMES/ ds/libljsse.jar

<GRAQLE HOMES jdbcl |1 bl ¢l asses12. zi p
<QRACLE HOMEX rdbns/ j | i b/ j necommon. j ar
<QRAQLE HOMEX rdbns/ j | i b/ agapi . j ar

5.1.2 Registering a Service Consumer Application in the Application Profile Registry

Registering an service consumer application in the Dynamic Services application
profile registry is a two-step process.

Step 1: Create a new database user in the database instance where the DSSYS
schema was installed during the installation process. Example 5-2 shows how a
new database user can be created by issuing SQL statements.

Example 5-2 Create a New Database User Using These SQL Statements

QONNECT SYSTEM <syst em passwor d>;

CREATE USER servi ceconsuner 1 | DENTI FI ED BY servi ceconsuner 1;
GRANT GONNECT TO ser vi ceconsuner 1;

GRANT DBUSER RCLE t o servi ceconsuner 1;

The third SQL statement lets the service consumer application named
servi ceconsuner 1 start using Dynamic Services.

Step 2: Using the DSAdmin utility, register the user identity as a new Dynamic
Services service consumer application with the following commands:

5-2 Oracle Dynamic Services User’s and Administrator’'s Guide

Java Interface for Service Consumers

1. Enter dsadnin -u DSSYS/ <DSSYS- passwor d>@Dir ect
2. Enter Reg or R to enter the registry subshell.

3. Enter Consumer or C to enter the consumer application profile registry
subshell.

4. Enter Add or A to add a new service consumer application, followed by
entering a name of a previously defined database user.

The following code example shows how to add a service consumer application
named ser vi ceconsuner 1 associated with the database user created
previously.

Add servi ceconsuner 1

5. Enter Grant or G to grant a user privileges to execute services or administer the
engine.

6. Enter Service or 1 to grant service privileges, followed by the user name to
receive the grant, and then select the desired service ID from a list of service
IDs. Following the same example, execute the following line to grant the
YahooPortfolio service to the service consumer application identified by the
name, ser vi ceconsuner 1.

Example 5-3 Register the Application as a New Dynamic Services Consumer
G ant servi ceconsunerl Service urn:com yahoo: fi nance. portfol i 003

In Example 5-3, ur n: com yahoo: fi nance. portf ol i 003 is the service ID
of the YahooPortfolio service that is granted to the new user named
servi ceconsuner 1 that was created in Step 1.

You can try to connect to the Oracle Dynamic Services engine as the new user,
servi ceconsuner 1, by executing the command shown in Example 5-4.

Example 5-4 Connect to the Oracle Dynamic Services Engine as User
serviceconsumerl

dsadm n -u servi ceconsuner 1/ ser vi ceconsuner 1@ r ect

You can display a list of service IDs in the same registry subshell by entering
Search or S. See Section 3.3 for more information.

Service Consumer Interfaces 5-3

Java Interface for Service Consumers

5.1.3 Opening a Connection to the Dynamic Services Engine

The first step that a service consumer application must perform to work with the
Dynamic Services engine is to open a connection to it. This is similar to opening a
JDBC connection. There are multiple connection drivers available with Dynamic
Services that allow different connection paths from service consumer applications to
the engine. Service consumer applications must specify the desired driver, and then
operate with the returned connection. The communication protocol used in the
driver implementation is completely hidden from service consumer application
developers, who will be always writing code using the same API. Some drivers
allow asynchronous service requests. Example 5-5 shows how to specify a driver
and open a connection for a service consumer application.

Example 5-5 Specify a Driver and Open a Connection for a Service Consumer
Application

/!l FHrst open the connection with the Drect driver

DsDxi ver Manager . regi sterDri ver("oracl e. ds. driver. D80 rectDriver");
CSConnecti on dsconn =

CeDx i ver Manager . get Gonnect i on("j dbc: oracl e: t hi n: @ocal host : 1521: ARQL") ;
dsconn. connect (" Ser vi ceConsuner 1", " Servi ceConsuner1");

5.1.3.1 Available Connection Drivers
The following drivers are supplied by Dynamic Services:

« oracle.ds.driver.DSDirectDriver for synchronous access to services and service
lookup operations

« oracle.ds.driver. DSHTTPDriver and oracle.ds.driver. DSHTTPSDriver for remote
synchronous access to services

« oracle.ds.driver.DSIMSDriver for remote synchronous and asynchronous access
to services

The following sections describe some important function differences of which
service consumer application developers must be aware when using these drivers.

5.1.3.1.1 oracle.ds.driver.DSDirectDriver Use of the Direct driver means the service
consumer application assumes the Dynamic Services engine is available in its own
classpath, and therefore accessible through direct Java method calls. Through the
DSConnection acquired using the Direct driver, service consumer applications can
perform service lookup operations as well as synchronous service executions. The
URL specified in the getConnection call has to be a valid Oracle JDBC connection
string, pointing to the database instance where the DSSYS schema is installed.

5-4 Oracle Dynamic Services User’s and Administrator’'s Guide

Java Interface for Service Consumers

5.1.3.1.2 oracle.ds.driver.DSHTTPDriver DSHTTPDriver permits submission of service
requests to a remote Dynamic Services engine using HTTP as a communication
protocol. DSHTTPDriver assumes the existence of a gateway in the form of a Web
server with an installed servlet that can accept service requests. The servlet is
installed using the oracle.ds.comm.protocol.http.DSServlet class. See Section 4.3 for
more information.

5.1.3.1.3 oracle.ds.driver.DSHTTPSDriver DSHTTPSDriver is similar to DSHTTPDriver
except that it goes through a secure HTTP (HTTPS) channel when communicating
with the remote Dynamic Services engine. In addition, it assumes that the Web
server hosting the oracle.ds.comm.protocol.http.DSServlet servilet has the HTTPS
option enabled.

5.1.3.1.4 oracle.ds.driver.DSIJMSDriver DSIMSDriver permits remote synchronous and
asynchronous access to services using a Dynamic Services gateway in the form of a
JMS daemon. The mode of operation with this driver lets it submit requests
asynchronously to an AQ/JMS queue in a remote database. The driver assumes the
existence of this JMS daemon and it listens asynchronously to the same queue
where requests are submitted. The daemon takes on the role of the Dynamic
Services engine and processes the request, generates a response, and submits that
response to another queue to which the DSIMSDriver asynchronously listens. On
the service consumer application side, therefore, listeners can be registered to be
informed when the response is returned.

Note: Itisimportant to note that alternating between the supplied
drivers requires no modifications in the service consumer
application code other than the registration of the driver itself.

5.1.4 Example: Executing the YahooPortfolio Service
The steps required to execute any service involve:

1. Creating a service request context and the request
2. Making the execution call

Example 5-6 illustrates these steps.

Example 5-6 Request a Service and the Service Execution Call

I/l Geate a request wth a default request context fromthe DSConnecti on.
/1 Aternatively, the user can create a default request context hinself
/1 and redirect the debugger to sonewhere el se.

Service Consumer Interfaces 5-5

Java Interface for Service Consumers

DSRequest dsReq = dsconn. cr eat eDSRequest (nySer vi cel D,
new F | eReader (nyRegFi |)) ;

/1 Execute synchronously, get the response and print it.
CBResponse dsResp = dsconn. execut eSynch(dsReq) ;

In Example 5-6, the service request is read from a file. Any j ava. i 0. Reader can
be used to supply the XML request document.

Example 5-7 describes the example request of the YahooPor t f ol i o service in the
pfl _req_ex.xm fileinthe ds/ deno/ servi ces/ YahooPort f ol i o directory
on UNIX systems or in the ds\ deno\ ser vi ces\ YahooPor t f ol i o directory on
Windows NT systems.

Example 5-7 Request the YahooPortfolio Service

<?xnm version="1.0"?>
<!I'-- Exanpl e request of the YahooPortfolio service -->
<PortfolioReq xmins="http://ww portfolio.org/ Portfoliol Request”
xnhns: xsi = "http://ww w3. or g/ 1999/ XM_Schena/ i nst ance"
Xsi : schemaLocation = "http://ww portfolio.org/Portfolio/ Rquest
http://ww portfolio.org/Portfoliol Request pfl_req.xsd">
<Synbol >CRAL</ Synbol >
<Synbol >AAPL</ Syniol >
</ Portfol i oReg>

The supplied XML request document has to comply with request syntax defined for
the YahooPortfolio service.

5.1.5 Displaying Service Response

Once a service response has been obtained, its content can be parsed by the Oracle
XML parser and printed as shown in Example 5-8.

Example 5-8 Display a Service Response

SringWiter sw= new SringWiter();
dsResp. wri t eResponse(sw) ;

DOWPar ser xnbp = new DOWPar ser () ;
xm p. parse(new StringReader (swtoString()));

XM.Docunent xmhdoc = xnh p. get Docunent () ;
xmdoc. print(new PrintWiter(Systemerr));

5-6 Oracle Dynamic Services User’s and Administrator’'s Guide

PL/SQL Interface for Service Consumers

5.1.6 Service Consumer Application Sessions

Within the life cycle of a Dynamic Services connection, service consumer
applications can execute multiple services. Each of these services can actually create
a session with the remote service provider. For example, a service connecting to a
Web site can receive as part of the response an HTTP cookie that has to be supplied
with every request that follows.

Before executing a set of services, Dynamic Services allows service consumer
applications to create a session and execute a set of services within the session so
that all the session context (for example, HTTP cookies or database connections) are
preserved for that session only. By calling the DSConnection.openSession() method,
service consumer applications obtain an opaque session identifier. To continue the
session, service consumer applications must set the session identifier in the header
of those service requests that are to be executed within the session. Corresponding
DSResponses contain header information about the session to which they belong.
To close a session, service consumer applications can use the
DSConnection.closeSession() method, which releases all the resources related to the
specified session. Refer to the sample Java code for details.

The information stored for the session (for example, HTTP cookies and database
connections) is not persistent across startup and shutdown of the Dynamic Services
engine. This information is stored in memory and it persists only through the life
cycle of the host JVM where the Dynamic Services engine is running.

It is the responsibility of the service consumer (application) to close any session that
it created so the associated resources are released. Closing a Dynamic Services
connection does not close the service consumer sessions and release their resources.

5.2 PL/SQL Interface for Service Consumers

The PL/SQL DynamicServices package defines the PL/SQL interface for service
execution. The PL/SQL DynamicServices package is defined with invoker’s
privileges; therefore, to access it in a PL/SQL block that is defined with definer’s
privileges, the package and related types must be explicitly granted to service
consumers as shown in Example 5-9.

Example 5-9 Use These Grant Statements to Access the PL/SQL DynamicServices
Package

GRANT EXEQUTE QN DSSYS. DYNAM CSERV CES TO ser vi ceconsuner 1;

GRANT EXEQUTE ON DSSYS. XM._ELEM NAMES TO ser vi ceconsuner 1;

GRANT EXEQUTE ON DSSYS. XM._ELEM VALS TO ser vi ceconsuner 1;

Service Consumer Interfaces 5-7

PL/SQL Interface for Service Consumers

To easily create a service consumer application that uses Dynamic Services, you can
inspect the cr eat ePLSQLConsurer . sgl file in the deno/ consuner directory.
For more details about users and the database, refer to Oracle9i documentation.

As described in Section 1.3.2, in a PL/SQL deployment of Dynamic Services, the
Dynamic Services engine runs in the Oracle9i JVM, and its functions are exposed as
a set of Java stored procedures through a PL/SQL interface (see Example 5-10). A
service consumer application makes use of the services through PL/SQL calls to
these procedures and functions shown in Example 5-10.

Example 5-10 PL/SQL Interface for Dynamic Services

-- This procedure initializes the D/namc Services engine wthin JServer

-- and opens a Dynamic Services connection. It is a prerequisite before any
-- kind of execution is done.

PROCEDURE open;

-- This closes the Dynanic Services connection opened by the open functi on.
-- |If no connection is opened, this will throw a Tear DownException error.
PROCEDURE cl ose;

-- This function executes a service with a given service identifier and
-- arequest inthe formof an XM docunent.

-- It synchronously executes the service and

-- returns the response in the formof an XM. docunent as a VARCHARZ type.
FUNCTI ON execut e(servi ce_i d VARCHAR?, request VARCHAR?) RETURN VARCHAR?;

-- This executes a service with a given service identifier and

-- two QB locators. It reads in the request A.B and starts

-- a synchronous execution. Woon finishing, it wites the result

-- into the response LB locator that is passed in.

PROCEDURE execut e(servi ce_i d VARHAR2, request OL(B, response ALCB);

-- Wility method: The supplied string has to be an XM el enent .
-- It wll take the XM. docunent and traverse down an entry
-- inthe supplied arrays for each el enent in the docunent.
-- Inthe keys array, it will store the path of the el enent where the sl ash
-- (/) is used to separate the child files. The corresponding entry
-- inthe VALS array wi Il have the value of the el enent.
PROCEDURE f | at XML(szXM. VARCHAR2,
keys IN QUT DSSYS XM._H EM NAMES,
vals IN QJT DSSYS. XM._H EMVALS);

-- Wility nethod to handl e the array returned by flat XM.

5-8 Oracle Dynamic Services User’s and Administrator’'s Guide

PL/SQL Interface for Service Consumers

-- It will take the supplied key, iterate over the
-- keys arrays, and if it finds a nmatch, return the
-- correspondi ng val ue fromthe VALS array.
FUNCTI ON get XM_Val ue(key VARCHAR?,
keys | N DSSYS. XM._ELEM NAMES,
vals | N D8SYS. XM._H EM VALS)
RETURN VARCHAR?;

Example 5-11 shows some PL/SQL sample code from the sanpl e. sql file in the
deno/ consuner directory that illustrates a typical scenario where the PL/SQL
DynamicServices package can be used.

Example 5-11 Sample Code to Use the Dynamic Services PL/SQL Interface Package

-- Sone out put specifications
SET SERVERQUTPUT ON S ZE 20000;
CALL DBVE JAVA SET_QJTPUT(20000) ;

-- Anonyrmous bl ock

DEQLARE
-- Servi ce Execution
ds_req VARHAR2(512); -- Arequest in the formof an XM. docunent.
ds_resp VARCHAR2(4000); -- Aresponse in the formof an XM docunent.
ds_svcid VAR(HAR2(128); -- A string that tells which service to execute.

-- For response processing
ds_el emnanes DSSYS. XM. HEM NAMES, -- Henent Nanes VARRAY
ds elemvals DBSYS XM. HEMVALS, -- Henent Val ues VARRAY

BEA N

-- Frst connect; nust do this before any execution
CSSYS. Dynani cSer vi ces. open() ;

-- Set up the service ID
ds_svcid :='um:com.yahoo:finance.portfolio03’;

— Set up the service request

ds req =
'<PortfolioReq xmins="http/Amwv.portfolio.org/Portfolio/Request |
" <SymboP>ORCL</Symbol>||
'</PortfolioReq™’;

— Execute the senvice

Service Consumer Interfaces 5-9

PL/SQL Interface for Service Consumers

ds_resp : = DBSYS. Dynami cSer vi ces. execut e(ds_svcid, ds_req);

-- dose connection
DSSYS. Dynanmi cSer vi ces. cl ose();

-- Print the response (Banner)

DBMS_OUTPUT.PUT_LINE(———);
DBMS_OUTPUT.PUT_LINE(Dynamic Services Response);
DBMS_OUTPUT.PUT_LINE(———);

— First flatten out the XML

DSSYS.DynamicServices flatXML(ds_resp, ds_elem_names, ds_elem_vals);

- Which symbol did we try to check?

DBMS_OUTPUT.PUT_LINE(Value of "/PortfolioResp/Quote/Symbol” is |
DSSYS.DynamicServices.getXMLValue(/PortfolioResp/Quote/Symboal,
ds_elem_names, ds_elem vals));

—Whatsits price?

DBMS_OUTPUT.PUT_LINE(Value of "/PortfolioResp/Quote/Priceis ||
DSSYS.DynamicServices.getXMLValue(/PortfolioResp/Quote/Price’,
ds_elem_names, ds_elem vals));

END;
/

The connected database user is the service consumer application connecting to the
service engine. Refer to Section 5.1.2 on how to register a service consumer
application with the Dynamic Services application profile registry.

For a more extensive sample that makes use of the currency service, refer to the
deno/ consuner/ currency. sqgl file on UNIX systems or to the
denmo\ consuner\ currency. sql file on Windows NT systems.

5-10 Oracle Dynamic Services User’s and Administrator’'s Guide

S

Service Development Guide

In this chapter, the process of service development is described as well as how you
can test a service after you build one.

A service is a component within the Internet computing model that delivers a
specialized value-added function. A service is bundled into a simple service
package (see Figure 3-1) and structured as a local directory containing at least:

« A MANI FEST file that points to the service descriptor XML file

« Aservice descriptor XML file that is the key XML document that describes the
service and points to the following descriptor .xml files and .xsd files within its
service header section:

One classification descriptor .xml file containing suggested classification
information from the service provider

One organization descriptor .xml file containing company information
about the service provider

One or more contact descriptor .xml files containing contact information
from the service provider

One request definition (.xsd) file for the service interface specification

One response definition (.xsd) file for the service interface specification

The service descriptor file also describes in its service body section how the four
types of service adaptors are to be used to do any of the following:

« Handle the submitted service request (input adaptor).

« Adapt the XML service request to the communication protocol used by the
remote service provider (protocol adaptor).

« Determine execution flow (if desired) of a service (execution adaptor).

Service Development Guide 6-1

Quick Start

« Transform the raw response returned by the remote service provider into a
service XML response (output adaptor).

A compound service package invokes one or more other services and has
everything a simple service package has plus it typically includes a jar file
containing all Java classes and property files needed by the compound service.

The MANI FEST file is expected to be found in the root directory of the simple or
compound service package and with the name MANI FEST (uppercase,
case-sensitive on Solaris systems; initial capitalization, non case-sensitive on
Windows NT systems). The MANI FEST file is a text file where the first non-empty
line should specify a URL link to the service descriptor XML file. If a link starts with
aslash (/), it indicates the link is an absolute link with respect to the root directory
of the current service package. The root directory is interpreted to be the root of the
directory structure for the service package.

6.1 Quick Start

You can quickly start developing your own service by following the steps described
in this section. These steps are necessary to build a simple HTTP service. Later, you
can enhance your service after reading about some more advanced concepts in
other sections of this chapter. The service that you will build is a simple HTTP
service that gets stock quotes from Yahoo.com.

The tasks to complete this quick-start service development tutorial are as follows:
1. Create a service package (see Section 6.1.1).

2. Edit the service provider organization and contact XML files (see Section 6.1.2).
3. Edit the service provider classification XML file (see Section 6.1.3).
4

Create your XML schema file for the service request definition (see
Section 6.1.4).

5. Create your XML schema file for the service response definition (see
Section 6.1.5).

6. Edit the service descriptor file, including both the service header and the service
body sections (see Section 6.1.6).

7. Test the execution of your service (see Section 6.1.7).

6-2 Oracle Dynamic Services User’s and Administrator’s Guide

Quick Start

Note: The <ORACLE HOVE>/ ds/ et ¢/ xsd directory on UNIX
systems or the <ORACLE HOVE>\ ds\ et c\ xsd directory on
Windows NT systems contains the XML schema files for the service
descriptor and supplied adaptors. Refer to the files in this directory
for more information.

6.1.1 Creating a Service Package
Perform the following steps to create your service package:

1.

Copy the entire deno/ ser vi ces/ Sanpl eSer vi ce directory on UNIX
systems or the deno\ ser vi ces\ Sanpl eSer vi ce directory on Windows NT
systems into a new directory using your name, for example,

deno/ servi ces/ nySer vi ce on UNIX systems or

deno\ servi ces\ nmySer vi ce on Windows NT systems.

This step creates a default service package. You can modify the name of the
subdirectories to reflect the nature of the service you want to build. In this
tutorial, you will make the following changes shown in Example 6-1.

For UNIX Systems:

Example 6-1 Create a Default Service Package

cp
cd
nv

cd

333

cd
nv
nv

-r deno/ servi ces/ Sanpl eSer vi ce deno/ servi ces/ nyServi ce
deno/ ser vi ces/ nyServi ce
Sanpl eProvi der waw yahoo. com

waw yahoo. cond dSer vi ces

Sanpl eServi ce portfolio

Sanpl eO g. xnb YahooQr g. xni

Sanpl eCont act . xm YahooGont act . xni

portfolio
Sanpl eServi ce. xnt ypfl. xm
Sanpl eServi ced assi fi cation. xm ypfl d ass. xm

For NT Systems:

a. Copy the entire deno\ ser vi ces\ Sanpl eSer vi ce directory into a new
directory using your name, for example, deno\ ser vi ces\ nySer vi ce.

Service Development Guide 6-3

Quick Start

b. Navigate to the denp\ ser vi ces\ nySer vi ce directory and rename
Sanpl eProvi der to ww. yahoo. com

c. Navigate to the ww. yahoo. coml dSer vi ces directory and rename
Sanpl eServi ce toportfolio, Sampl eOrg. xm to YahooOr g. xm
and Sanpl eCont act . xm to YahooCont act . xm .

d. Navigate to the port f ol i o subdirectory and rename
Sanpl eServi ce. xn toypfl.xm and
Sanpl eServi ceC assification.xm toypfl C ass. xm .

2. Update the MANI FEST file in the deno/ ser vi ces/ mySer vi ces directory on
UNIX systems or the denp\ ser vi ces\ nySer vi ces directory on Windows
NT systems to contain the line shown in Example 6-2.

Example 6-2 Update the MANIFEST File
O WN X systens:

/v yahoo. cond dSer vi ces/ portfol i o/ ypfl . xn

h Wndows NT syst ens:
\ wawe yahoo. com dSer vi ces\ portfol i o\ypfl . xm

Step 2 lets the service package point to the correct service descriptor file that
you will edit soon. Notice that all paths used in this quick-start document are
relative to the deno/ ser vi ces/ nySer vi ce directory on UNIX systems or the
deno\ ser vi ces\ nySer vi ce directory on Windows NT systems.

6.1.2 Service Provider -- Organization and Contacts XML Files

Recall that the YahooOr g. xmi file and the YahooCont act . xm file described in
Section 6.1.1, reside in the directory / ww. yahoo. coni dSer vi ces on UNIX
systems or \ ww. yahoo. com dSer vi ces on Windows NT systems. These files
contain service provider information about the organization and contacts for this
particular service.

« Editthe YahooOr g. xml file to appear as shown in Example 6-3.

Example 6-3 Edit the YahooOrg.xml File

<?xm versi on="1.0"?>

<l-- Fully scope informati on for good practice -->

<dsQ g: GRGAN ZATI N
xmins: dsQ g="ht t p: / / waw or acl e. comt ds/ 2000/ SERVI CE_DESCR PTCR CRGAN ZATI ON' >
<dsQ g: NAME>Yahoo! </ dsQ g: NAME>

6-4 Oracle Dynamic Services User’s and Administrator’s Guide

Quick Start

<dsQ g: QPYR GHT>(¢) Yahoo!, 2000</dsQ g: GCPYR GHI>

<dsQ g: URL>ht t p: / / wawn yahoo. conx/ dsQ g: URL>

<dsQ g: LOBOR >htt p: // us. yi ng. conti / fi/ mai n4. gi f </ dsQ g: LOZOUR >
</ dsC g: GRGAN ZATI O\N>

« Editthe YahooCont act . xri file to appear as shown in Example 6-4.

Example 6-4 Edit the YahooContact.xml File

<?xm versi on="1.0"?>
<l-- Fully scope infornmati on for good practice -->
<dsQ : GONTACT
xmins: dsC ="http://waw or acl e. cond ds/ 2000/ SERVI CE_DESCR PTCR GONTACT >
<dsC : NAME>bar 1</ dsQ : NAME>
<dsQ : BEMN L>bar 1@ahoo. cons/ dsG : EMA L>
<dsQ : PHONE>(000) 000- 0000</ dsC : PHONE>
<dsQ : FAX>(000) 000- 0000</ dsCt : FAX>
<dsQ : PAGER>(000) 000- 0000</ dsC : PAGER>
<dsQ : MBI LE>(000) 000- 0000</ dsCt : MBI LE>
</ dsQ : QONTACT>

6.1.3 Service Classification XML File

Theypfl O ass. xm file described in Section 6.1.1 resides in the directory

/ www. yahoo. conml dSer vi ces/ portfolio/ on UNIX systems or

\ www. yahoo. com dSer vi ces\ portfolio\ onWindows NT systems. This file
should contain classification information of your service.

Edit the ypf | Cl ass. xm file to appear as shown in Example 6-5.

Example 6-5 Edit the ypfiClass.xml File

<?xm versi on="1.0"?>
<I-- Rully scope informati on for good practice -->
<dsd s: ALASS FI CATI ON
xmins: dsd s="ht t p: // ww or acl e. cond ds/ 2000/ SERVI CE_DESCR PTCR ALASS| H CATI ON' >
<dsd s: CATEGRY>cn=portfolio, cn=finance, cn=busi ness</dsd s: CATEQRY>
<dsd s: KEYWRDS>por t f ol i 0, st ocks, fi nance</ dsd s: KEWRDS>
</dsQ s: AASS F CATI ON>

Service Development Guide 6-5

Quick Start

Note: The category section follows the Lightweight Directory
Access Protocol (LDAP) Distinguished Name (DN) (backwards
tree) convention. The category specified must exist in the registry
before you can register the service.

6.1.4 Service Interface Specification -- Request Definition

Before editing the service descriptor, you must understand how requests are
defined.

« Start by looking at a typical HTML form. Example 6-6 shows a portion of an
HTML form that you can find on the Yahoo Web site accessed from
http://quote. yahoo. com

Example 6-6 Examine a Typical HTML Form

<f or m net hod=get acti on="/q"><nobr >
<input type=text size=25 nane=Synbol Li st>
<i nput type=submt val ue="Get Quot es">

<Iform
The form takes one input called SymbolList and an HTTP GET request is made
tohttp://quote. yahoo. com g when you click Submit. An HTML page

returns the stock quotes of the symbols that are specified in the input called
SymbolList.

« Make the HTTP form into a service in the Dynamic Services framework.

The form takes one input called SymbolList. From there, you can expect the
service consumer application to pass in only one argument, and generate an
XML schema file for your request, such as shown in Example 6-7.

Example 6-7 Generate an XML Schema File for the Service Request

<?xm version ="1.0"7?>

<l-- Input schema of the currency service -->

<schema xnmins = "http://ww w3. or g/ 1999/ XM_Schena”
target Nanespace = "http://waw portfolio.org/ Portfolio/ Request™
xmins: pfl Req = "http://ww portfolio. org/ Portfoliol Request">

<el enent nanme = "Portfoli oReq">
<conpl exType content = "el enentnl y">
<sequence>

6-6 Oracle Dynamic Services User’s and Administrator’s Guide

Quick Start

<l-- ke a nore user-friendly nane as a synbol and an augnent ed
string type called Ticker to restrict its format. Have a
default as well because XM. Scherma allows for it. A so,
restrict it sothere are 1 or nore synbols at least. -->
<el enent
nane = "Synbol " type="pfl Req: Ti cker"
defaul t ="CROL" minCccurs="1" maxQccur s="*"/>
</ sequence>
</ conpl exType>
</ el enent >

<si npl eType nane = "Ti cker" base = "string">
<pattern val ue="[Ms]+" />
</ si npl eType>
</ schena>

In the use of the service, an XML request must conform to this schema to be
used correctly.

« Create your request XML file and place it in the directory
/ www. yahoo. com dSer vi ces/ portfolio/ onUNIX systems or
\ wwww. yahoo. com dSer vi ces\ portfolio\ onWindows NT systems and
name itypfl _req. xsd.

6.1.5 Service Interface Specification -- Response Definition

When the HTTP GET request is made, the HTML page shown contains the actual
stock quote that you want.

« Examine the code that contains the price for the stock symbol ORCL in
Example 6-8.

Example 6-8 Examine the Code and Note the Stock Symbol ORCL

<tr align=right>
<l-- "Synpol " -->
<td nowap align=l eft>CRO.</ a></ t d>
<-- "Time" -->
<td now ap ali gn=cent er>12: 14P\&/t d>
<l-- "Price" -->
<td now ap>82 <sup>15</ sup>/ <sub>16</ sub></td>
<l-- "Change" -->
<td now ap>+1 <sup>3</ sup>/ <sub>4</ sub></t d>
<td now ap>+2. 16%/ t d>
<l-- "Volune" -->

Service Development Guide 6-7

Quick Start

<td now ap>6, 218, 900</ t d>
<td nowap ali gn=cent er><snal | >

« Transform the HTML into an XML document that a service consumer
application can use. Determine what useful information should be extracted.

« Create another XML schema file, this time for the service response, as shown in
Example 6-9.

Example 6-9 Create an XML Schema File for the Service Response

<?xm version ="1.0"7?>
<l-- Input schema of the currency service -->
<schema xnmins = "http://ww w3. or g/ 1999/ XM_Schena”
tar get Nanespace = "http://waw portfolio.org/ Portfoli o/ Response"”
xmins: pfl Resp = "http://waw portfolio.org/Portfoliol Response”>
<l-- This is the input val ue in which the input should be specified. -->
<el enent nanme = "Portfol i oResp" >
<conpl exType content = "el enentnl y">
<el ement nane = "Quote" minCQcurs="1" nmaxQcurs="*">
<conpl exType content = "el enent Ol y">
<sequence>
<el enent nane
<el enent nare
<el enent nare
<el enent nare
<el enent nane
</ sequence>
</ conpl exType>
</ el enent >
</ conpl exType>
</ el enent >

"Synbol * type="pfl Resp: Ti cker" />
"Tine" type="string" />

"Price" type="string" />

"Change" type="string" />

"Vol une" type="string" />

<si npl eType nane = "Ticker" base = "string" >
<pattern val ue="[Ms]+" />
</ si npl eType>
</ schena>

You have decided that the symbol, time, price, change of last trade, and the
volume are all useful pieces of information that you can gather from the HTML
page. Consequently, you model your response using the previous schema.

« Create your response XML file and place it in the
/ www. yahoo. com dSer vi ces/ portfolio/ directory on UNIX systems or

6-8 Oracle Dynamic Services User’s and Administrator’s Guide

Quick Start

\ www. yahoo. com dSer vi ces\ portfolio\ directory on Windows NT
systems and name itypf | _resp. xsd.

6.1.6 Editing the Service Descriptor

Next, the steps to modify the service descriptor ypf | . xm file in the directory
/ www. yahoo. com dSer vi ces/ portfolio/ on UNIX systems or

\ www. yahoo. com dSer vi ces\ portfolio\ on Windows NT systems are
described. The beginning of the service descriptor, with namespaces sd for all
service descriptor tags and x| i nk for all your document links that use XLink
attributes, is shown in Example 6-10.

Example 6-10 Examine the Beginning of the Service Descriptor

<sd: SERV CE_ DESCR PTCR
xmins: sd="ht tp://ww or acl e. coni ds/ 2000/ SERVI CE_DESCR PTCR'
xmhins: xl i nk="ht tp://wan w3. or g/ 1999/ xI i nk" >

Note: Oracle Corporation recommends that you fully qualify the
elements in the service descriptor document using the sd prefix
and referring to the following namespace:

http://ww. oracl e. com ds/ 2000/ SERVI CE_DESCRI PTOR

6.1.6.1 Service Header

Modify your service header as shown in Example 6-11, and read the comments that
tell you what must be changed when you build the YahooPortfolio service.

Example 6-11 Modify the Service Header

<sd: SERV CE HEADER>
<I-- In the NA\MNG section, the only thing you really need to nodify is
the IDfield. It has to uniquely identify your service and nust be a
uni versal resource nane (URN. But nodify the rest as you see fit. -->
<sd: NAM NG
<sd: | D>ur n: com yahoo: fi nance. portf ol i 003</ sd: | D>
<sd: NAME>Yahoo Portfol i o service</ sd: NAME>
<sd: DESCR PTIONSFi nd current prices for stocks</ sd: DESCR PTI O\>
</ sd: NAM N&>

<sd: PACKAGE>

<sd: VERS O\>1. 0</ sd: VERS ON>
<sd: RELEASEDATE>05- MAY- 2000</ sd: RELEASEDATE>

Service Development Guide 6-9

Quick Start

<sd: UPDATELR_>ht t p: / / wawe yahoo. cond dSer vi ces/ pf | . zi p</ sd: UPDATEUR_>
</ sd: PACKACE>
<sd: DEPLOYMENT>
<l-- Point the classification file to the file that you edited previously in
Section 6.1.3 and note that the path starts fromthe directory of the
servi ce package. -->
<sd: ALASS| H CATI ON
xI'i nk: href ="/ ww yahoo. com dSer vi ces/ portfol i o/ ypfl d ass. xn "/ >

<I-- Aso, change the caching paraneters to set cache expiration in
seconds, or to specify that the cache has session know edge. -->
<sd: CACH N&
<l-- Expiration in seconds. -->
<sd: MMX_AE>60</ sd: MWX_AE>
<l-- WIIl the cache be session-aware? -->
<sd: ON PR VATE>t rue</ sd: ON PR VATE>
<l-- This Boolean field tells the engine to all owthe expiration of
the cache to be controlled by the underlying protocol. Specifying
a val ue of true would nake the engine ignore the MAX ACE tag. -->
<sd: USE_PROTO0CL>f al se</ sd: USE_PROTC0O>
</ sd: CACH N&

</ sd: DEPLOYMENT>
<sd: PRO/ DER>
<l-- This is nandatory and should point to the organi zation file
that you edited previously in Section 6.1.2. -->
<sd: CRGAN ZATI N xI i nk: hr ef ="/ wawv yahoo. comt dSer vi ces/ YahooQr g. xm "/ >

<I-- This is mandatory (at |east one contact el enent in the contacts
section), and should point to the contact file that you
edited previously in Section 6.1.2. -->
<sd: QONTACTS>
<sd: QONTACT xl i nk: hr ef ="/ waw yahoo. cond dSer vi ces/ YahooCont act . xm "/ >
</ sd: QONTACTS>
</ sd: PROVI DER>
<sd: | NTERFACE>
<I-- Change this to your own service interface (nade up of a request/
response schena specification pair). W wll not put Yahoo here
because maybe ot her organi zations can have the sane kind of servi ce,
which can be used in a fail over scenario. -->
<sd: NAME>Por t f ol i 0Ser vi ce</ sd: NAMVE>
<l-- This is nmandatory; point this to the XM. schena file that you
created previously in Section 6.1.4. -->
<sd: | NPUT_SCHEMA
xl'i nk: href ="/ wmn yahoo. comt dSer vi ces/ portfol i of pfl _req. xsd"/ >

6-10 Oracle Dynamic Services User’s and Administrator's Guide

Quick Start

<l-- This is nmandatory; point this to the XM. schena file that you
created previously in Section 6.1.5. -->
<sd: QUTPUT_SCHEMA
xl'i nk: href ="/ wan yahoo. comt dSer vi ces/ portfol i of pfl _resp. xsd"/ >
</ sd: | NTERFACE>
</ sd: SERVl CE_ HEADER>

6.1.6.2 Service Body

This section describes the service body from the same YahooPortfolio service. The
fields that you must change to modify your own service are described in this
section, starting from the service body as shown in Example 6-12.

Example 6-12 Look for the Beginning of the Service Body
<sd: SERV CE_BDY>

6.1.6.2.1 Input Handling and Input Adaptor Specification
This section describes the input section of the service body.

Modify the input section of the service body of your descriptor to appear as shown
in Example 6-13.

Example 6-13 Modify the Input Section of the Service Body

<sd: | NPUT>
<I-- Aliases are what nap the XM. requests that the service consuner
w |l supply when using the service, to the paraneters on
the HTM. formof our Vb service. -->
<sd: ALI ASES>
<sd: ALl AS>
<l-- This nane is just a variable nane; all references to it in
the service descriptor wll access the sane val ue. -->
<sd: NAME>Synbol Li st </ sd: NAME>
<I'-- No namespace prefix is needed, as the request transforned by
i nput adapt or has no nanespace. -->
<sd: VALUEX{ @pat h: val ue=/ Port f ol i oReq/ Synbol Li st} </ sd: VALUE>
</ sd: ALI AS>
</sd: ALl ASES>
<sd: ADAPTCR>
<sd: NAME>or acl e. ds. engi ne. i oa. DEXSLTI nput Adapt or </ sd: NAMVE>
<sd: PARAMETERS>
<xi aParans: XSLT | A PARAVG
xmins: xi aPar ans="ht t p: / / waw or acl e. cond ds/ 2000/ XSLT_| A PARANE' >
<xi aPar ans: XSLT>

Service Development Guide 6-11

Quick Start

<xsl : styl esheet
versi on="1.0"
xmins: xsl ="ht t p: // wan W3. or g/ 1999/ XSL/ Tr ansf or i
xmns: xht m="ht t p: / / wan wB. or g/ 1999/ xht m "
xmins: pflreq="http://wm portfolio.org/Portfoliol Rquest">
<xsl :tenpl ate natch="/">
<pflreq: Portfol i oReg>
<xsl : appl y-tenpl at es sel ect="pflreq: PortfolioReq"/>
</ pflreq: Portfol i oReg>
</xsl :tenpl at e>
<xsl:tenpl ate natch="pflreq: Portfol i oReq">
<pflreq: Synbol Li st >
<xsl : for-each sel ect ="pfl req: Synibol ">
<xslvalue-of select="concat(text(), ',)'/>
</xslfor-each>
<pfireq:SymbolList>
</xsltemplate>
</xslstylesheet>
</xiaParams:XSLT>
</xiaParams:XSLT_IA_PARAMS>
</sd:PARAMETERS>
</sd:ADAPTOR>
</sdINPUT>

6.1.6.2.2 Protocol Adaptor Specifications The protocol adaptor specifications contain
information on how to map the aliases defined in Example 6-13 with the actual
HTTP GET request.

Modify the protocol section of the service body of your service descriptor as shown
in Example 6-14.

Example 6-14 Moaodify the Protocol Section of the Service Body

<sd: PROTGO>
<sd: ADAPTCR>
<sd: NAME>or acl e. ds. engi ne. pa. htt p. DBHTTPPr ot ocol Adapt or </ sd: NAME>
<sd: DR VER> ava. net . URLGonnect i on</ sd: DR VER>
<sd: PARAMETERS>
<hpPar ans: HTTP_PA PARANG
xm ns: hpPar ans="ht t p: / / waw or acl e. con ds/ 2000/ HTTP_PA PARANS' >
<hpPar ans: Met hod>GET</ hpPar ans: Met hod>
<hpPar ans: URL>quot e. yahoo. cont quer y</ hpPar ans: URL>
<hpPar ans: Quer yStri ngPar anet er s>
<hpPar ans: Quer yStri ngPar anet er
nane="Synbol Li st">{ @ynbol Li st} </ hpPar ans: Quer yS ri ngPar anet er >

6-12 Oracle Dynamic Services User’s and Administrator’'s Guide

Quick Start

</ hpPar ans: Quer ySt ri ngPar anet er s>
</ hpPar ans: HTTP_PA PARAVG>
</ sd: PARAMETERS>
</ sd: ADAPTCR>
</ sd: PROTGOQ>

In the QueryStringParameters and QueryStringParameter sections, the HTTP GET
parameter SymbolList is mapped to your alias (which is conveniently also called
SymbolList). For more detailed descriptions of the protocol adaptor section, see
Section 6.3.2.

6.1.6.2.3 Execution Adaptor Specifications There are no special execution adaptors that
you will use in this service, so none is specified. For more detailed descriptions of
the execution adaptor section, see Section 6.3.2.

6.1.6.2.4 Output Adaptor Specifications The output adaptor specifications contain
information on how the raw output from the Web service (HTML) is to be
transformed into the structured XML format that is described with your response
XML Schema file described previously.

Modify your service descriptor to contain what is shown in Example 6-15.

Note: If the raw response is an XML document and if no
stylesheet is supplied, the service will return the raw response
without any processing.

Example 6-15 Moaodify the Output Section of the Service Body

<sd: QJTPUT>
<sd: ADAPTCR>
<sd: NAME>or acl e. ds. engi ne. i oa. DEXSLTQut put Adapt or </ sd: NAME>
<sd: PARAMETERS>
<xoPar ans: XL T_QA PARAMG
xmi ns: xoPar ans="ht t p: / / waw or acl e. cont ds/ 2000/ XSLT_CA PARANE' >
<xoPar ans: XSLT>
<xsl : styl esheet version="1.0"
xmins: xsl ="ht t p: // wan W3. or g/ 1999/ XSL/ Tr ansf or i
xm ns: pfl Resp="http://wwu portfolio.org/Portfoli o/ Response"
xmns: xht mh="ht t p: / / wwn w8. or g/ 1999/ xht m "' >

<xsl:tenpl ate natch="/">

<pf | Resp: Portf ol i oResp>
<xsl : appl y-tenpl at es

Service Development Guide 6-13

Quick Start

xmns="http://wawn w8. or g/ 1999/ xht m "
sel ect ="ht mi/ body/ center/tabl e[5]/tr[1]/td/tabl e"/>
</ pfl Resp: Port f ol i oResp>
</xsl :tenpl at e>
<xsl :tenpl ate natch="xhtni:tabl e">
<xsl :for-each sel ect="xhtnh:tr">
<xsl:if test="position()!=1">
<l-- Fully scope quote with the response XM. schema file -->
<pf| Resp: Quot e>
<l-- Fully scope synbol also -->
<pf | Resp: Synbol >
<xsl :val ue-of sel ect="xhtnh:td[1]/xhtni:a"/>
</ pf | Resp: Synbol >
<pf | Resp: Ti ne>
<xsl :val ue-of select="xhtnm:td[2]"/>
< pf | Resp: Ti ne>
<pf | Resp: Pri ce>
<xsl : val ue-of sel ect="xhtnh:td[3]/xhtni:b"/>
</ pfl Resp: Pri ce>
<pf | Resp: Change>
<xsl :val ue-of sel ect="xhtn:td[5]"/>
</ pf | Resp: Change>
<pf | Resp: Vol une>
<xsl :val ue-of select="xhtni:td[6]"/>
</ pf | Resp: Vol une>
</ pf | Resp: Quot e>
<xsl:if>
</ xsl : for-each>
</xsl :tenpl at e>
</ xsl : styl esheet >
</ xoPar ans: XSLT>
</ xoPar ans: XSLT_QA PARANG>
</ sd: PARAVETERS>
</ sd: ADAPTCR>
</ sd: QUTPUT>

The DSXSLTOutputAdaptor specified first, converts the returned HTML into a
more XML-compliant XHTML format. It then applies the supplied XSL stylesheet to
that XHTML document to form an XML document that conforms to the response
XML schema file that you previously defined in Section 6.1.5.

Close the service body and the service descriptor elements as shown in
Example 6-16.

6-14 Oracle Dynamic Services User’s and Administrator's Guide

Creating Advanced Services -- Service Package

Example 6-16 Close the Service Body and Service Descriptor Elements

</ sd: SERv CE_BCDY>
</ sd: SERVl CE_DESCR PTCR>

6.1.7 Testing the Execution of Your Service

After constructing the service package and editing the service descriptor, do the
following to test the execution of your service:

1. Run the DSAdmin utility. Use the DSAdmin utility to:
a. Add the categories by following the instructions in Section 3.2.1.

b. Register the service by pointing to the deno/ ser vi ces/ nySer vi ce
directory on UNIX systems or deno\ ser vi ces\ nySer vi ce directory on
Windows NT systems as described in Section 3.2.2.

Note: Anytime you make a change to any service related file, you
must reregister that service package using the DSAdmin utility
Reregister command.

2. Build a sample service request definition and a sample service response
definition following the examples described in Example 6-7 and Example 6-9.

3. Use the DSAdmin utility to execute the service. See Section 3.4 for more
information.

You can turn the execution output level to trace by selecting Prop (P) at the top-level
menu, and then selecting Change (C) to change the debug output levels. Finally,
select TRACE (3) to turn it to the trace level, so you can see every step of the
execution flow.

This completes the description of the steps needed to create, register, and test a
simple HTTP service.

To create more advanced services, see Section 6.2 through Section 6.5.

6.2 Creating Advanced Services -- Service Package

The service package is structured as a local directory containing a set of files with
the following structures:

« A MANI FEST file pointing to the service descriptor

Service Development Guide 6-15

Creating Advanced Services -- Service Descriptor

= The service descriptor XML file, and other XML files it points to, including
classification, provider information (organization and contacts), input or output
schemas, and so forth

= Ajar file containing all Java classes and stylesheets needed by the service

The MANI FEST file is expected to be found in the root directory of the package, and
with the name MANIFEST (uppercase, case-sensitive on Solaris systems; initial
uppercase, non case-sensitive on Windows NT systems). The MANI FEST file is a text
file where the first non-empty line should specify a URL link to the service
descriptor. If a link starts with a slash (/), it indicates the link is an absolute link
with respect to the root of the current service package. The root is interpreted to be
the root of the directory structure of the service package. The MANI FEST file must
end with a new line.

Note: The <ORACLE HOVE>/ ds/ et ¢/ xsd directory on UNIX
systems or the <ORACLE HOVE>\ ds\ et c\ xsd directory on
Windows NT systems contains the XML schema for the service
descriptor and supplied adaptors. See the files in this directory for
more information.

6.3 Creating Advanced Services -- Service Descriptor

A service package is modeled through an XML document called a service descriptor
that provides a centralized source of description for the service. A service is defined
by a multitude of logical components, all of which are specified in the service
descriptor or in other documents to which the descriptor refers. There are two
sections of the service descriptor:

« Service header: Describes the high-level behavior of the service
= Service body: Describes the implementation details of the service

These descriptor sections, described in Section 6.3.1 and Section 6.3.2 correspond to
XML elements with the same names in the service descriptor. For service descriptor
examples, refer to the supplied sample services under the <ORACLE

HOVE>/ ds/ deno/ ser vi ces directory on UNIX systems or the <ORACLE _
HOVE>\ ds\ deno\ ser vi ces directory on Windows NT systems.

6.3.1 Service Header Section

The service header section contains high-level behavior descriptions of the service.
For the most part, information specified in the service header section is descriptive

6-16 Oracle Dynamic Services User’s and Administrator's Guide

Creating Advanced Services -- Service Descriptor

and non-interpretive and primarily for browsing and documentation purposes. The
exceptions are the service identifier specification described in Section 6.3.1.1 and the
service interface specification described in Section 6.3.1.5.

6.3.1.1 Naming Specification

The service header section has naming information that contains a globally unique
identifier for the services, as well as short and long descriptions of what the service
does. Each service has a unique name specified using the universal resource name
(URN) conventions. Example 6-17 shows a sample naming specification.

Example 6-17 Sample Naming Specification

<l-- Naming specification provides identification infornati on about the
service. Among the elenents, IDis the inportant one, which
serves as unique identification. It nust be a URN -->
<sd: NAM NG
<sd: | D>ur n: com f oobar : servi ce_nane</ sd: | D>
<sd: NAME>Put a hunan-r eadabl e nane here. </ sd: NAME>
<sd: DESCR PTI ON>Sone descri ption about the service. </ sd: DESCR PTI ON>
</ sd: NAM NG>

6.3.1.2 Package Specification

The service header section includes package information with version specifications
and pointers to how and where the service update is to be performed. Coupled with
support contacts from the service provider information section (see Section 6.3.1.3),
this information is critical for service maintenance. Example 6-18 shows a sample
package specification.

Example 6-18 Sample Package Specification

<lI'-- Package provides version infornmati on, update |ocations, and
bi nary resource specifications. -->
<sd: PACKACE>
<sd: VERS O\>1. 0</ sd: VERS O\>
<sd: RELEASEDATE>25- MAR- 2000</ sd: RELEASEDATE>
<sd: UPDATEUR >ht t p: / / wan f oobar . comt dSer vi ces/ svc. zi p</ sd: UPDATEURL>
<sd: Bl NARY_RESORCES>
<l-- JARPONIER s used only in the special case that you
have customJava cl asses. Skip the whol e JAR PO NTER
section if no customJava cl asses are needed. -->
<sd: JAR PO NTER
xl'i nk: href ="/ waw f oobar . cont dSer vi ces/ dummy. jar" />
<I-- EXCBPTIONS i s the section where the resource bundl e for

Service Development Guide 6-17

Creating Advanced Services -- Service Descriptor

customexceptions can be specified. |f the exceptions
do not rely on customresource bundl es, the whol e EXCEPTI ONS
section can be skipped. -->

<sd: EXCEPTI ONS>

<sd: EXCEPTI ON_MBG BUNDLE>com f oobar . Bundl e</ sd: EXCEPTI ON_MBG BUNDLE>
</ sd: EXCEPTI ONS>
</ sd: Bl NARY_RESORCES>
</ sd: PACKAE>

6.3.1.3 Service Provider Specification -- Organization and Contacts

This service header section includes high-level information about the service
provider, including the service provider’s company name, copyright information,
and company URL. Detailed information includes contacts for support and URLS
for logos. This information is provided in the form of an X-Link that points to
another XML document in the service package. Example 6-19 shows a sample
service provider specification.

Example 6-19 Sample Service Provider Specification

<sd: PRO/ DER>
<I-- The CRGAN ZATI ON section is a nandatory docunent that gives infornation
about the service provider. For a quick start, it can be filled
wth dummy data. -->
<sd: CRGAN ZATI CN
xI'i nk: href ="/ ww f oobar . cond dSer vi ces/ f oobar _org. xm "/ >
<!I-- Each CRGAN ZATI ON section can be associated with zero or nore
contact docurents. -->
<sd: QONTACTS>
<sd: QONTACT xl i nk: hr ef ="/ ww f oobar . cond dSer vi ces/ cont act . xm "/ >
</ sd: QONTACTS>
</ sd: PROV DER>

6.3.1.4 Deployment Specification -- Classification and Caching

This service header section includes a set of deployment properties that includes
suggestions from the service provider to aid the service administrator during
registration time. These suggestions include classification guidelines with
hierarchical categories, as well as flat keywords and recommendations of caching
parameters. This information is also provided in the form of an X-Link that points
to another XML document specifying the classification schemes. The values
specified here are only suggestions to a service administrator during service
registration. The values stored in the service registry could be different from the

6-18 Oracle Dynamic Services User’s and Administrator's Guide

Creating Advanced Services -- Service Descriptor

values specified in the service descriptor. Example 6-20 shows a sample
deployment specification.

Example 6-20 Sample Deployment Specification

<sd: DEPLOYMENT>
<I-- Followthe convention in path nane within the zip file. -->
<sd: QLASS FI CATI ON
xl'i nk: href ="/ wan oanda. comt dSer vi ces/ cur rency/ cl ass. xm "/ >
<sd: CACH N&>
<sd: MAX_ACE>300</ MAX_AE>
<sd: SESS ON PR VATESf al se</ sd: SESSI ON_PR VATE>
<sd: USE_PROTO0CL>f al se</ sd: USE_PROTC0O>
</ sd: CACH NG>
</ sd: DEPLOYMENT>

See Section 7.3 for more information about service response caching.

6.3.1.5 Service Interface Specification -- Request and Response Definitions

The service header allows for the definition of an interface characterized by the
schema specifications of its input, output, and exceptions. The specifications are
dispersed in external XML schema documents. The location of the XML schema
document file is specified by URLSs, when a relative URL is used, that is, relative to
the service package submitted by the service providers. By specifying these
schemas, the service provider enforces the syntax in which service consumer
applications send requests to it, as well as the way in which it provides the
responses. The validation will be done in the Dynamic Services engine when a
service consumer application sends a request, before the service provider is
contacted.

The service provider can also suggest a name for the interface, which is a
deployment option and can be overwritten by the service administrator. Any new
service that conforms to the same service interface must provide the same
input/output (not necessarily the exception) definition. The Dynamic Services
engine also exposes to service consumer applications the capability to search for
services by interface. Two services that conform to the same interface are considered
compatible services, a concept useful for failover.

Service Development Guide 6-19

Creating Advanced Services -- Service Descriptor

Note: To facilitate the development of code that works with
Dynamic Services, class generators can be used to create Java
classes that correspond to the request/response XML schema files.

Example 6-21 shows a sample service interface specification.

Example 6-21 Sample Service Interface Specification

<sd: | NTERFACE>
<sd: NAME>Foobar Tenpl at e</ sd: NAME>
<sd: | NPUT_SCHEMA xI i nk: hr ef ="/ ww f oobar . cond dSer vi ces/ fb_req. xsd"/ >
<sd: QJTPUT_SCHEMA xl i nk: hr ef ="/ wa f oobar . comd dSer vi ces/ fb_resp. xsd"/ >
</ sd: | NTERFACE>

6.3.2 Service Body Section

The service body section contains more detailed descriptions and information used
by the Dynamic Services engine at service execution time. Specifically, its sections
are specifications (including adaptors) on the input, protocol, execution, and output,
where:

« Input deals with the handling of the submitted service request

« Protocol adapts the XML service request to the communication protocol used by
the remote service provider

« Execution determines the execution flow of a service

« Output transforms the raw response returned by the remote service provider
into a service XML response

Figure 6-1 shows a sample service execution and the roles of the input, protocol,
and output adaptors, and the flow of information.

6-20 Oracle Dynamic Services User’s and Administrator’'s Guide

Creating Advanced Services -- Service Descriptor

Figure 6-1 Sample Service Execution Showing the Role of the Input, Protocol, and
Output Specifications as Specified Adaptors

Sample Service Execution

XML

Service —

Request

Oracle Dynamic Services XSLT

XSLT
Preprocessed
Eequests l
Input | Execution | HTMT., Output. | | Service
Adaptor | XML Adaptaor; Adaptor Response
XML | HTML
Protocol
Adaptor ST

I ¥
HTTP* 'HTTP
Request Response

Service Provider

Figure 6-2 shows a sample execution adaptor and the role the execution adaptor
plays in identifying the way in which one or more sample services is to be executed.
In this case, an execution adaptor would specify in its execution flow logic how and
why a set of one or more sample services is to be executed. For example, a failover
execution adaptor would specify the preferred order of execution of the sample
services from its list of compatible services in the event that one or more services
failed to execute. In this figure, sample service 1 fails to execute, thus sample service
2 is executed; meanwhile sample service 3 is ready for execution in the event that
sample service 2 fails to execute.

Service Development Guide 6-21

Creating Advanced Services -- Service Descriptor

Figure 6-2 Sample Execution Adaptor

Preprocessed XSLT

Requests l
XML) Input |Execution| HTMI, | OQutput _hXItﬂ.
Request | Adaptor | Adaptor | Adaptor| Response

Failover Adaptor

8 g J T
Exs:imple Service 1

Sample Service 2

Sample Service 3

The service provider can specify the needed adaptor for each of these layers. A set
of pre-built, customizable adaptors is supplied by Oracle Dynamic Services. See
Section 6.4 for a description of these adaptors.

6.3.2.1 Input Handling and Adaptor Specifications

The service body section has input specifications that provide a list of necessary as
well as optional processing steps for the request that is submitted by the service
consumer application. This includes the following input specifications:

« Namespaces

= Alias directives

« Input adaptor

« Rendering directives

Section 6.3.2.1.1 through Section 6.3.2.1.4 describe each of these input specifications.

6.3.2.1.1 Input: Namespaces A list of namespaces with their prefixes can be specified
before specifying the aliases. The prefixes can be used in the aliases specification to

6-22 Oracle Dynamic Services User’s and Administrator’'s Guide

Creating Advanced Services -- Service Descriptor

build the XPaths pointing to where the data is. If no namespaces are needed, this
item can be skipped. Example 6-22 shows a sample namespaces specification.

Example 6-22 Sample Namespaces Specification

<sd: NAMESPACES>
<sd: NAMESPACE>
<sd: PREH X>f b</ sd: PREF X>
<sd: VALUE>ht t p: / / v f oobar . cond f oobar / Request </ sd: VALUE>
</ sd: NAMESPACE>
</ sd: NAMESPACES>

6.3.2.1.2 Input: Aliases Directives Service providers may specify alias directives.
Aliases are used to create a map that can translate the parameters embedded in the
XML service request document to actual parameters needed by the communication
protocol of the service. For example, for HTTP, a service provider can specify an
XPath for the request XML document addressing an element that represents one of
the HTTP request parameters to be sent to the HTTP server. There are currently two
possible ways of specifying an alias:

= Supply an XPath, which at service execution time, is applied to the XML service
request file and used to extract either the value of the node pointed to by the
XPath, or the XML fragment for which this node is the root.

« Supply a service consumer application profile property and optionally its
modifier. The corresponding value is fetched dynamically at execution time
according to the identity of the service consumer application. See Section 7.1 for
more information about how to manage properties.

Example 6-23 shows a sample aliases specification, the first using the XPath
approach for a value, using the namespace described previously; the second using
the XPath approach for a document fragment; and the last using the profile
property approach.

This sample uses the f b prefix and the namespace,
ht t p: // wa f oobar . cont f oobar / Request described in Section 6.3.2.1.1.

Example 6-23 Sample Aliases Specification

<sd: ALl ASES>
<sd: ALl AS>
<sd: NAME>Account Nunber </ sd: NAME>
<l-- Indicates that the value is obtained dynanical |y fromthe user
request follow ng the namespace specifed by fb -->
<sd: VALUEX{ @ypat h: val ue=/ f b: f oobar Req/ f b: par ani} </ sd: VALUE>

Service Development Guide 6-23

Creating Advanced Services -- Service Descriptor

</ sd: ALI AS>
<sd: ALl AS>
<sd: NAMVE>SoneFr agnent </ sd: NAME>
<l-- Indicates that the value is obtained dynamical |y fromthe user
request follow ng the namespace specifed by fb -->
<sd: VALUEX{ @pat h: fragnent =/ f b: f oobar Reg/ f b: f r agl} </ sd: VALUE>
</ sd: ALI AS>
<sd: ALl AS>
<sd: NAME>Passwor d</ sd: NAMVE>
<l-- Indicates that the value of the alias should be retrieved as a
property fromthe service consuner application profile registry
and that the property nane is foobarPropl. -->
<sd: VALUEX{ @scr : pr oper t y=f oobar Pr op1} </ sd: VALUE>
</ sd: ALI AS>
</ sd: ALI ASES>

6.3.2.1.3 Input: Adaptor Specification The input adaptor specification can optionally
specify an adaptor that further processes the service request before sending it to the
service provider. Examples of such processing include semantic or higher-level
validation of the request. This input adaptor specification is a fully qualified name
of the class implementing the or acl e. ds. engi ne. | nput Adapt or Java interface
that handles the processing. For the specified adaptor, the service provider has the
option of specifying some adaptor-specific parameters in the PARAMETERS
element under the adaptor specification that are validated at service registration
time, and interpreted at runtime by the adaptor. The parameters are opague to the
service descriptor parser and service registry, and must be in XML syntax.

6.3.2.1.4 Input: Rendering Directives Under normal execution flow, the request XML
that the service consumer application submits or sends to the Dynamic Services
engine is validated with the input XML schema file that is specified previously in
the header. However, a service provider can optionally supply some form of schema
mapping specifications (for example, through an XSL transformation) that could
map this input XML schema file to a presentation form such as HTML or Wireless
Markup Language (WML). As a result, the service consumer application can easily
provide to its clients a way to submit service requests, for applications that have an
HTML or WML interface.

The Dynamic Services engine is not responsible for the rendering: all that the engine
is responsible for is the capabilities to store and retrieve the mapping. The Dynamic
Services engine provides only the mapping(s) of the transformation. The actual
transformation is done on the service consumer application side by the client
toolkit. If you map the schema to an HTML form, the service consumer applications
can use the mapping to render the input schema to an HTML form for their Web

6-24 Oracle Dynamic Services User’s and Administrator’'s Guide

Creating Advanced Services -- Service Descriptor

application. The service consumer application can then transform the HTTP
requests back to an XML document that conforms to the request XML schema file
specified by the service provider. Finally, the request XML schema file is sent to the
Dynamic Services engine formulating the service request.

6.3.2.2 Protocol Adaptor Specification

The protocol adaptor specification identifies the way that the Dynamic Services
engine accesses the underlying service. For example, a service may be accessed
through the HTTP protocol, while another service may be accessed through the
JDBC protocol. This protocol adaptor specification is a fully qualified name of the
class implementing the or acl e. ds. engi ne. Pr ot ocol Adapt or interface. The
interface handles the communication to the underlying service. This class name is
found either in the service package given by the service provider during
registration, or in the set of libraries that the Dynamic Services engine provides.

A driver specification can make sure that a certain class is in the classpath for the
adaptor to function properly.

Finally, for the identified adaptor, the service provider has the option of specifying
some adaptor-specific parameters in the PARAMETERS element in the adaptor
specification, which are validated at service registration time and interpreted at
runtime by the adaptor. For example, for HTTP, the adaptor may specify the HTTP
method used and the URL that does the actual servicing. These parameters are
opaque to the service descriptor parser and service registry, and must be in XML
syntax.

Example 6-24 shows a sample protocol adaptor specification using the HTTPS
protocol adaptor.

Example 6-24 Sample HTTPS Protocol Adaptor Specification

<sd: PROTGOCOL>
<sd: ADAPTCR>
<sd: NAME>or acl e. ds. engi ne. pa. htt p. DBHTTPSPr ot ocol Adapt or </ sd: NAME>
<sd: DR VER>com sun. net . ssl . H t psURLGonnect i on</ sd: DR VER>
<sd: PARAVETERS>
<l'-- Adaptor-specific parameters -->
</ sd: PARAVETERS>
</ sd: ADAPTCR>
</ sd: PROTGOOL>

Service Development Guide 6-25

Creating Advanced Services -- Service Descriptor

6.3.2.3 Execution Adaptor Specification

The execution adaptor specification identifies the way in which the service has to be
executed. Its responsibility is to receive the request XML schema file and return the
response from the underlying service provider.

The default execution adaptor is a standard simple adaptor that follows the path
described previously. There can also be complex or compound execution adaptors
that aggregate several services, such as in the International Portfolio example.

This execution adaptor specification is a fully qualified class name of a class
implementing the or acl e. ds. engi ne. Execut i onAdapt or interface, which
performs the execution. For the identified adaptor, the service provider has the
option of specifying some adaptor-specific parameters in the PARAMETERS
element in the adaptor specification, which are validated at service registration time
and interpreted at runtime by the adaptor.

The result of the execution adaptor is the response from the service. If the service is
a simple service, the response will be in the native format of the service provider.
For example, for a Web-based service, the response may be in HTML format. If the
service is a compound service, the response will be a structured service response.

Usually, if the service is a simple service, a service provider will use the default
prepackaged simple adaptor. For complex and compound service execution, the
service provider can use the supplied compound execution adaptor or
DSFailOverExecutionAdaptor or DSConditionalExecutionAdaptor to greater
advantage.

6.3.2.4 Output Handling and Adaptor Specification

The output specification specifies the list of necessary as well as optional processing
to produce the service response to the service consumer application. This includes
the following output specifications:

« Output adaptor

« Rendering directives

Section 6.3.2.4.1 and Section 6.3.2.4.2 describe each of these output sections.
6.3.2.4.1 Output: Adaptor Specification The output adaptor specification can specify
an output adaptor to be used to transform the output returned by the execution
adaptor. That output is transformed into an XML document compliant with the
output XML schema file specified in the service interface. This output adaptor

specification is a fully qualified name of the class implementing the
oracl e. ds. engi ne. Qut put Adapt or interface, which handles the

6-26 Oracle Dynamic Services User’s and Administrator’'s Guide

Creating Advanced Services -- Description of Supplied Adaptors

transformation. For the identified output adaptor, the service provider has the
option of specifying some adaptor-specific parameters in the PARAMETERS
element in the adaptor specification, which are validated at service registration time
and interpreted at runtime by the adaptor. These parameters are opague to the
service descriptor parser and service registry, and must be in XML syntax.

Usually, for simple services, service providers will use either of the prepackaged
adaptors, such as the XSLT adaptor. For compound services, service providers can
use no adaptor because the response from the execution adaptor is often in the
proper format prescribed by the output XML schema file.

6.3.2.4.2 Output: Rendering Directives As far as the service execution flow is
concerned, the output specification is the final step. However, Dynamic Services
also provides additional mechanisms for the service provider to optionally specify
mappings (for example, in the form of XSL transforms) that map this response XML
file to other forms, such as HTML or WML. Service consumer applications, rather
than the Dynamic Services engine, are responsible for making use of the
transformation to produce the desired output. Dynamic Services merely provides a
means to store it and make it accessible from the service consumer application.

6.4 Creating Advanced Services -- Description of Supplied Adaptors

Table 6-1 describes the complete set of supplied adaptors provided by Oracle
Dynamic Services.

Table 6-1 Adaptors Supplied by Oracle Dynamic Services

Adaptor name Type
oracle.ds.engine.ioa.DSXSLTInputAdaptor Input
oracle.ds.engine.pa.http.DSHTTPProtocolAdaptor Protocol
oracle.ds.engine.pa.http.DSHTTPSProtocol Adaptor Protocol
oracle.ds.engine.pa.jdbc.DSIDBCProtocol Adaptor Protocol
oracle.ds.engine.pa.smtp.DSSMTPProtocol Adaptor Protocol
oracle.ds.engine.ea.DSFailOverExecutionAdaptor Execution

oracle.ds.engine.ea.compound.DSCompoundServiceExecutionAdaptor Execution
oracle.ds.engine.ea.DSConditionalExecutionAdaptor Execution

oracle.ds.engine.ioa.DSXSLTOutputAdaptor Output

Service Development Guide 6-27

Creating Advanced Services -- Description of Supplied Adaptors

Section 6.4.1 through Section 6.4.4 offer a more detailed description of the adaptors
supplied by Oracle Dynamic Services.

6.4.1 Input Adaptor
Section 6.4.1.1 describes the input adaptor supplied by Oracle Dynamic Services.

6.4.1.1 oracle.ds.engine.ioa.DSXSLTInputAdaptor

DSXSLTInputAdaptor applies an XSLT transformation to the incoming requests and
returns the transformed request as a result. In order to use this adaptor, the
INPUT/ADAPTOR/NAME must be:

oracl e. ds. engi ne. i oa. DSXSLTI nput Adapt or

The INPUT/ADAPTOR/PARAMETERS element in the service descriptor must
contain what is shown in Example 6-25.

Example 6-25 Sample XSL Stylesheet Information

<Xi Parans: XSLT_| A PARANS
xmins: xi Parans="ht t p: // waw or acl e. con ds/ 2000/ XSLT_| A PARANG' >
<xi Par ans: XSLT>
<l-- The XSL Syl esheet -->
</ xi Par ans: XSL. T>
</ xi Params: XSLT | A PARANG>

The specified XSL stylesheet can use the aliases defined as xsl| variables in the two
ways shown in Example 6-26.

Example 6-26 Sample Aliases Defined as XSL Variables
When the value of the alias is used as an XPath expression:

<xsl :vari abl e name="nyvar"sel ect = "{@l i asNane}"/>

Or, when the value of the alias is used as a string literal:

<xsl :vari abl e name="nyvar">{ @l i asNane} </ xsl : vari abl e>

In the DSXSLTInputAdaptor, there is an option of bringing in other service
descriptors before applying the stylesheet. This can be done using an attribute of
the xiParams:XSLT element called appl yW t hSer vi ceDescr i pt or. Refer to the
notifier event monitor service that comes with the Oracle Dynamic Services
installation. For more examples of the input adaptor specification for
DSXSLTInputAdaptor, refer to the YahooPortfolio service.

6-28 Oracle Dynamic Services User’s and Administrator's Guide

Creating Advanced Services -- Description of Supplied Adaptors

6.4.2 Protocol Adaptors

Section 6.4.2.1 through Section 6.4.2.4 describe the protocol adaptors supplied by
Oracle Dynamic Services.

6.4.2.1 oracle.ds.engine.pa.http.DSHTTPProtocolAdaptor

DSHTTPProtocolAdaptor processes the HTTP/1.0 specification, sets up the
HTTP/1.0 connection, and returns a handler to process the raw output from the
service provider.

The parameters and other details needed to execute DSHTTPProtocolAdaptor are
defined in the service description, in the section SERVICE_
BODY/PROTOCOL/ADAPTOR as shown in Example 6-27.

Example 6-27 Sample HTTP Protocol Adaptor Specification
<sd: SERV CE BADY>

<sd: PROTOOOL>
<sd: ADAPTCR>
<sd: NAME>or acl e. ds. engi ne. pa. ht t p. DSHTTPPr ot ocol Adapt or </ sd: NAME>
<sd: DR VER> ava. net . URLGonnect i on</ sd: DR VER>
<sd: PARAMETERS>
<I-- Each protocol adaptor has a nanespace where all the
following el enents and/or attributes are defined: -->
<hpPar ans: HTTP_PA PARAME
xnh ns: hpPar ans="ht t p: / / waw or acl e. cond ds/ 2000/ HTTP_PA PARANE' >
<hpPar ans: Met hod>GET</ hpPar ans: Met hod>
<hpPar ans: URL>wan oanda. conmd conver t er/ ¢l assi c</ hpPar ans: URL>
<hpPar ans: Quer yS ri ngPar anet er s>
<hpPar ans: Quer yStri ngPar anet er
nane= "pnanel" >{ @val uel} </ hpPar ans: Quer yStri ngPar anet er >
<hpPar ans: Quer yStri ngPar anet er
nane= "pnane2" >{ @val ue2} </ hpPar ans: Quer ySt ri ngPar anet er >
</ hpPar ans: Quer ySt ri ngPar anet er s>
<hpPar ans: Request Header s>
<hpPar ans: Request Header nanme="hdr 1" >{ @al 1} </ hpPar ans: Request Header >
<hpPar ans: Request Header nane="hdr 2" >{ @al 2} </ hpPar ans: Request Header >
</ hpPar ans: Request Header s>
</ hpPar ans: HTTP_PA PARANS>
</ sd: PARAVETERS>
</ sd: ADAPTCR>
</ sd: PROTGOL>

Service Development Guide 6-29

Creating Advanced Services -- Description of Supplied Adaptors

This specification consists of two parts. One is a generic part, the other is specific for
the given adaptor. The first part includes <NAME> and <DRIVER> elements,
which indicate the class names of the specific HTTP adaptor and the handler to
process the response from the HTTP resource. The second part, bounded by
<PARAMETERS>, is for the specific adaptor; in this case, it must fit the
requirements of DSHTTPProtocol Adaptor.

The DSHTTPProtocolAdaptor parameters consist of mandatory and optional
elements. The mandatory elements include <Method> and <URL>. <Method> must
be one of the three options: GET, POST, or HEAD. The optional elements are
<QueryString> and <Authorization>.

In some cases, there may be one or more parameters for the HTTP query string.
Each <QueryStringParameter> element within <QueryStringParameters> element
defines one parameter. The parameter name is specified as the "name" attribute of
the <QueryStringParameter> element, while the parameter value is the element
value of <QueryStringParameter>. The element value <QueryStringParameter>
may be an alias, which is resolved according to what has been defined in the section
SERVICE_BODY/INPUT /ALIASES.

The <RequestHeaders> element is optional in the specification; it is useful for
manually setting HTTP request headers in the request. In the example, the two
request headers that are set will be used every time an HTTP request is made. The
request header name is specified with the "name" attribute of <RequestHeader>,
while the request header value is the element value of <RequestHeader>.

Another optional element is <Authorization>, which is useful for some secured
Web sites that require the user’s login name and password. According to the
HTTP/1.0 specification, the content of <Authorization> can be defined in one of
two possible structures. The first one puts the login name and password as a single
string, while the second one separates them. In both cases, the login name and
password are encrypted in Base64. The login name and password can be aliases that
refer to other sources as shown in Example 6-28. For more information, refer to the
HTTP 1.0 specification Web site listed in Appendix A.

Example 6-28 Sample Login and Password Aliases in the Authorization Specification

<hpPar ans: Aut hori zati on>
<hpPar ans: EncodedSt ri ng>encoded! ogi npasswd</ hpPar ans: EncodedSt ri ng>
</ hpPar ans: Aut hori zati on>

<hpPar ans: Aut hori zat i on>

<hpPar ans: O edent i al >
<hpPar ans: User nane>encodeduser nane</ hpPar ans: User nane>

6-30 Oracle Dynamic Services User’s and Administrator’'s Guide

Creating Advanced Services -- Description of Supplied Adaptors

<hpPar ans: Passwor d>encodedpasswor d</ hpPar ans: Passwor d>
</ hpPar ans: O edenti al >
</ hpPar ans: Aut hori zat i on>

DSHTTPProtocolAdaptor also supports cookies (see Section 5.1.6). The lifetime of
cookies lasts only as long as a service consumer application session.

6.4.2.2 oracle.ds.engine.pa.http.DSHTTPSProtocolAdaptor

This release also provides an HTTPS protocol adaptor. Syntactically it is identical to
DSHTTPProtocolAdaptor.

The implementation is based on Sun Microsystems JSSE 1.0.2 global reference
implementation.

6.4.2.3 oracle.ds.engine.pa.jdbc.DSIJDBCProtocolAdaptor

DSJDBCProtocolAdaptor allows services to interface with an Oracle database by
creating a row response from the execution of a SQL statement or a PL/SQL stored
procedure. The DSJIDBCProtocolAdaptor uses the Oracle XSQL pages technology to
express SQL or PL/SQL operations in XML. The parameters supplied in the
adaptor are used to define the database connections to be used as well as the XSQL
page to be executed. For more information about XSQL pages, see the Oracle XSQL
Servlet documentation available on Oracle Technology Network.

Example 6-29 shows the parameters and other details to execute
DSJDBCProtocolAdaptor as defined in the service descriptor, in the section
SERVICE_BODY/PROTOCOL/ADAPTOR.

Example 6-29 Sample JDBC Protocol Adaptor Specification
<sd: SERV CE BADY>

<sd: PROTGOCL>
<sd: ADAPTCR>
<sd: NAME>or acl e. ds. engi ne. pa. j dbc. DSIDBCPr ot ocol Adapt or </ sd: NAME>
<sd: DR VER>or acl e. j dbc. dri ver. O acl eDx i ver </ sd: DR VER>
<sd: PARAMETERS>
<I-- Each protocol adaptor has a nanespace where all the
followng elenents and/or attributes are defined: -->
<j pPar ans: JDBC PA PARAME
xnh ns: j pParans="ht t p: / / waw or acl e. cond ds/ 2000/ JDBC PA PARANE'
xnh ns: xsgl = "urn: oracl e-xsql ">

<j pPar ans: connect i ondef s>

Service Development Guide 6-31

Creating Advanced Services -- Description of Supplied Adaptors

<j pPar ans: connecti on nane="denp" >
<j pPar ans: user nane>{ @ser nane} </ j pPar ans: user nane>
<j pPar ans: passwor d>{ @asswor d} </ j pPar ans: passwor d>
<j pPar ans: dbur | > dbc: or acl e: t hi n: @ost nane: port : si d</j pPar ans: dbur | >
<j pPar ans: dri ver>oracl e. j dbc. dri ver. O acl eDxi ver </ j pParans: dri ver >
<j pPar ans: aut ocomm t >t r ue</ j pPar ans: aut oconmi t >

</j pPar ans: connect i on>

</ j pPar ans: connect i ondef s>

<j pPar ans: page connect i on="deno" >
<xsql : query> sel ect enane fromenp </ xsql : query>
</ j pPar ans: page>

</j pPar ans: JOBC PA PARAVG>
</ sd: PARANVETERS>
</ sd: ADAPTCR>
</ sd: PROTGOOL>

These DSIDBCProtocolAdaptor parameters consist of two parts: the first one
defines the JDBC connections necessary for processing the XSQL page, while the
second one defines the XSQL page to be processed. Because the implementation of
DSJDBCProtocolAdaptor uses the Oracle XSQL package, the xsgl namespace must
be declared in the JDBC_PA_PARAMS elements to correctly scope the XSQL page
elements. The use of <username>, <password><dburl>, <driver>, and
<autocommit> are consistent with those defined in Oracle JDBC Driver 2.0.

As defined by the XSQL syntax, any query statement is quoted within the pair of
<xsql:query>, while other DML statements are bounded by <xsgl:dml> pairs. The
statements may contain some aliases, which are resolved according to what has
been defined in the SERVICE_BODY/INPUT/ALIASES section.

In general, all the ALIASES defined for the service are supplied as XSQL parameters
to the XSQL page processor. DBService is a sample service to illustrate how to
execute any actions to a database.

If additional resources need to be accessed by the XSQL page (for example another
XSQL page, an XSL stylesheet, or an XML document), they can be bundled in a jar
file packaged as a binary resource for the service. The location of the jar file
containing the resource has to be specified as a service binary resource using the
BINARY_RESOURCE/JAR_POINTER element in the package section of the service
header. The path specified to access those resources will be used to load them from
the supplied jar file.

6-32 Oracle Dynamic Services User’s and Administrator’'s Guide

Creating Advanced Services -- Description of Supplied Adaptors

When a service using DSIDBCProtocol Adaptor is executed within a service
consumer (application) session, the JDBC connection (identified by its name) is
reused within the session. Also, if within a session, two connections are defined
with the same name but their connection strings (identified as user name,
password, and dburl) do not match, an exception will be raised.

At session closing time, the JDBC connection is rolled back. To commit any updates,
a service must explicitly make a commit() call, or set autocommit to be true. The
behavior is analogous to discarding cookies for an HTTP connection. It is the
responsibility of the service consumer (application) to close any session that it
created so that the associated resource will be released.

See the DBService sample service package for more information.

6.4.2.4 oracle.ds.engine.pa.smtp.DSSMTPProtocolAdaptor

DSSMTPProtocol Adaptor is the protocol adaptor used for service providers that use
SMTP as an underlying service access mechanism. Such services can include simple
mail sending services that get invoked upon the occurrence of an error.

The parameters and other details needed to execute DSSMTPProtocolAdaptor are
defined in the service descriptor, in the section SERVICE_
BODY/PROTOCOL/ADAPTOR, as shown in Example 6-30. They include
information such as the host name, port number of the SMTP server, the from, to,
cc, bee, and subject fields of an e-mail message, additional message headers, and
finally a message body. This is an example that is taken from the notifier service that
comes with the installation package.

Example 6-30 Sample SMTP Protocol Adaptor Specification
<sd: SERV CE_BDY>

<sd: PROTCOOL>
<sd: ADAPTCR>
<sd: NAME>or acl e. ds. engi ne. pa. snt p. DSSMIPPr ot ocol Adapt or </ sd: NAME>
<sd: DR VER>j ava. net . Socket </ sd: DR VER>
<sd: PARAMETERS>
<I-- Predefined XM. schena of the SMIP protocol adaptor paraneters -->
<spPar ans: SMIP_PA PARAVG
xm ns: spParans="ht t p: / / ww Xyz. comt ds/ 2000/ SMIP_PA PARANS' >
<spPar ans: Host >ser ver 1. xyzcor p. conx/ spPar ans: Host >
<spPar ans: Por t >25</ spPar ans: Port >
<spPar ans: Fr om»gr oup@er ver 2. xyz. conx/ spPar ans: Fr on»
<I-- Notice how aliases can be used in each of these fields. -->
<spPar ans: To>{ @o} </ spPar ans: To>

Service Development Guide 6-33

Creating Advanced Services -- Description of Supplied Adaptors

<spPar ans: cc>{ @c} </ spPar ans: cc>
<spPar ans: Subj ect >

Notification for svc: {@vtSvc} p: {@vtType} Sat: {@vtSXat}
</ spPar ans: Subj ect >

<spPar ans: MsgHeader s>
<spPar ans: MsgHeader nane="M ne- Ver si on" >1. 0</ spPar ans: MsgHeader >
<spPar ans: MsgHeader
nane="Cont ent - Type" >t ext/ ht m ; char set =" us-ascii"
</ spPar ans: MsgHeader >
</ spPar ans: MsgHeader s>

<spPar ans: MsgBody>
<ht nb >
<title>Notification for service {(@vtService}.
Qperation: {@vtType} Satus: {@vtSatus}</title>

<body>
<H3>Servi ce: { @vt Servi ce} </ B></ H3>
<H3>Consuner : { @vt Consuner } </ B></ H3>
<H3>Ti meSt anp: { @vt Ti neS anp} </ B></ H3>
<H3>(per at i on: { @vt Type} </ B></ H3>
<H3>S at us:

{ @vt S at us} </ f ont >/ B>

</ H3>
<H3>Descri ption: { @vt Descri pti on} </ B></ H3>
<P></ P>
<H3>Message</ H3>
<PRE>{ @Vt Body} </ PRE>

</ body>

</ htnm>
</ spPar ans: MsgBody>
</ spPar ans: SMIP_PA PARANG>
</ sd: PARAMVETERS>
</ sd: ADAPTCR>
</ sd: PROTGOO>

In Example 6-30, the message body actually is an HTML document that displays
the status of a certain operation.

6.4.3 Execution Adaptors

Section 6.4.3.1 through Section 6.4.3.3 describe the execution adaptors supplied by
Oracle Dynamic Services.

6-34 Oracle Dynamic Services User’s and Administrator's Guide

Creating Advanced Services -- Description of Supplied Adaptors

6.4.3.1 oracle.ds.engine.ea.DSFailOverExecutionAdaptor

DSFailOverExecutionAdaptor takes as parameters an ordered list of compatible
services, which means the services respond to the same service interface. At
execution time, the failover execution adaptor tries to execute the first one in the
list; if it fails, it moves to the second list item, and so on, until it finds a service that
executes with no exception. If none succeeds, an exception is raised. Example 6-31
shows a sample adaptor specification for a failover service taken from the
FailOverPortfolio service.

Example 6-31 Sample Failover Adaptor Specification

<sd: EXEQUN O\>
<sd: ADAPTCR>
<sd: NAME>or acl e. ds. engi ne. ea. DSFai | Over Execut i onAdapt or </ NAME>
<sd: PARAMETERS>
<f ePar ans: FAl LO/ER EA PARANG
xmins: f ePar ans="ht t p: / / ww or acl e. cont ds/ 2000/ FAl LOVER_EA PARANE' >
<f ePar ans: execut e priority="0">
ur n: com yahoo: fi nance. portfolio fails
</ f ePar ans: execut e>
<f ePar ans: execute priority="1">
urn: com cnnf n: fi nance. portfol i 003
</ f ePar ans: execut e>
</ f ePar ans: FAl LOVER EA PARANG>
</ sd: PARAMETERS>
</ sd: ADAPTCR>
</ sd: EXEQUTI ON>

6.4.3.2 oracle.ds.engine.ea.compound.DSCompoundServiceExecutionAdaptor

DSCompoundServiceExecutionAdaptor controls the execution of compound
services. Example 6-32 shows the XML portion of a compound service, execution
adaptor specification.

Example 6-32 Sample Compound Service Specification

<sd: EXEQUT O\
<sd: ADAPTCR>

<sd: NAME>or acl e. ds. engi ne. ea. conpound. DSConpoundSer vi ceExecut i onAdapt or </ NAME>
<sd: PARAMETERS>
<cePar ans: COMPOND EA PARANVG
xmi ns: cePar ans="ht t p: / / waw or acl e. comt ds/ 2000/ GCOMPOND_EA PARAMNE' >

Service Development Guide 6-35

Creating Advanced Services -- Description of Supplied Adaptors

Compound services let you encapsulate the execution of a multitude of services by
combining them into a directed graph of service executions. Each node of the graph
is identified as a CompoundEAModule. There are four possible types of modules
that can be used in the graph. Each of the modules is designed as a JavaBean with
exposed properties. Those properties are set at compound service design time
(probably through service provider design tools), and persist through runtime,
when they are used to control the execution.

DSCompoundServiceExecutionAdaptor coordinates the execution of the modules
according to the graph specifications, triggering the module executions through
JavaBeans events. The following subsections describe the four available modules
and their properties.

oracle.ds.engine.ea.compound.ServiceExecution

This module executes one service. It accepts an array of messages, interpreting them
as requests, and produces another array of messages composed of responses
returned by the service execution(s). There are two possible syntax forms for its
properties:

« executeSingleRequest

With this option for the properties, the module takes in a message index
number as an attribute -- a request event can contain a list of requests -- and
takes the ID of the service to be executed, as an element value. Only one
execution is performed using the one selected request message, and the service
executed is the one specified by the ID with that request. Example 6-33 shows a
sample ServiceExecution module specification with the executeSingleRequest
property option.

Example 6-33 Sample Service Execution Module with the executeSingleRequest
Property

<cePar ans: Modul e name="| 2" >
<cePar ans: d ass>
oracl e. ds. engi ne. ea. conpound. Ser vi ceExecuti on
</ cePar ans: d ass>
<cePar ans: Properti es>
<cePar ans: execut eS ngl eRequest i ndex="0">
Servi cel DL
</ cePar ans: execut eS ngl eRequest >
</ cePar ans: Properti es>
</ cePar ans: Mbdul e>

« executeAllRequests

6-36 Oracle Dynamic Services User’s and Administrator's Guide

Creating Advanced Services -- Description of Supplied Adaptors

With this option for the properties, the module takes the ID of the service as an
element value, and executes the service with all the request messages from the

request event, generating response messages and building up a response event.
Example 6-34 shows a sample ServiceExecution module specification with the

executeAllRequests property option.

Example 6-34 Sample Service Execution Module with the executeAllRequests
Property

<cePar ans: Modul e name="| D3" >
<cePar ans: d ass>
oracl e. ds. engi ne. ea. conpound. Ser vi ceExecuti on
</ cePar ans: d ass>
<cePar ans: Properti es>
<cePar ans: execut eAl | Request s>
servi cel DL
</ cePar ans: execut eAl | Request s>
</ cePar ans: Properti es>
</ cePar ans: Mbdul e>

oracle.ds.engine.ea.compound.MessageTransformer

This module transforms service messages to either requests or responses. It takes an
XSLT stylesheet as a property in its properties element, and applies that XSLT
stylesheet to all the incoming service messages to produce a list of outgoing services
messages. Note that the MessageTransformer module can take an optional attribute
index to select one message from an array of messages of a MessageSplitter module.
Example 6-35 shows a sample module specification of the MessageTransformer
Module. The stylesheet specified for this adaptor can use the aliases in the same
way they are used by the DSXSLTInputAdaptor (see Section 6.4.1.1 for more
information). If the <XSLT> element is not supplied, the MessageTransformer
module behaves as if an identity transformation was applied.

The XSLTs to be applied by the MessageTransformer module must be packaged into
a jar file. The location of the jar file containing the XSLTs must be specified as a
service binary resource using the BINARY_RESOURCE/JAR_POINTER element in
the package section of the service header. The XSLT path specified in the module
properties is used to load the XSLT as a resource from that jar file.

Example 6-35 Sample MessageTransformer Module

<cePar ans: Modul e name="1 4" >
<cePar ans: d ass>
oracl e. ds. engi ne. ea. conpound. MessageTr ansf or ner

Service Development Guide 6-37

Creating Advanced Services -- Description of Supplied Adaptors

</ cePar ans: d ass>
<cePar ans: Properti es>
<ceParans: XSLT i ndex="0">SoneXSLTUR.. xsl| </ cePar ans: X3.T>
</ cePar ans: Properti es>
</ cePar ans: Mdul e>

oracle.ds.engine.ea.compound.MessageSplitter

This module splits a single message into multiple messages. It does so in one of two
ways:

« SingleTransformation

With this option of the properties, an XSLT stylesheet is specified in an element
called XSLT and this stylesheet is able to transform the starting service message
into a well-known structure described in Example 6-36. A list of service
messages can then be generated from it.

Example 6-36 Sample Message Section of the MessageSplitter Module

<MESSACES>
<MESSACE i ndex="0">. . . </ MESSACE>
<MESSACE i ndex="1">. .. </ MESSACE>
</ MESSACES>

Each message must have a valid index, and indexes must be sequential and
starting from 0. If this syntax is not matched after applying the transformation
to the incoming message, an exception is raised. Example 6-37 shows a sample
module specification of the MessageSplitter Module using the
SingleTransformation option.

Example 6-37 Sample MessageSplitter Module Using the SingleTransformation
Option

<cePar ans: Modul e nanme="| 6" >
<cePar ans: d ass>
oracl e. ds. engi ne. ea. conpound. MessageSpl i tter
</ cePar ans: d ass>
<cePar ans: Properti es>
<cePar ans: S ngl eTr ansf or nat i on>
<cePar ans: XL T>SoneXSLT. xsl </ cePar ans: XSLT>
</ cePar ans: S ngl eTransf or nati on>
</ cePar ans: Properti es>
</ cePar ans: Mbdul e>

6-38 Oracle Dynamic Services User’s and Administrator's Guide

Creating Advanced Services -- Description of Supplied Adaptors

The stylesheet specified for this adaptor can use the aliases in the same way they are
used by the DSXSLTInputAdaptor (see Section 6.4.1.1 for more information).

« MultipleTransformations

With this option, a list of XSLT stylesheets is specified that correspond to a list
of transformations performed on the original service message. This results in a
list of resulting messages. With each XSLT stylesheet, an index is specified to
order the list of service messages that result in the one-by-one application of the
XSLT stylesheets. Example 6-38 shows a sample module specification of the
MessageSplitter Module using the MultipleTransformations option.

Example 6-38 Sample MessageSplitter Module Using the Multiple Transformation
Option
<cePar ans: Mdul e nane="1D6">
<cePar ans: d ass>
oracl e. ds. engi ne. ea. conpound. MessageSpl i tter
</ cePar ans: d ass>
<cePar ans: Properti es>
<cePar ans: Mil ti pl eTr ansf or nat i ons>
<ceParans: XSLT i ndex="0">req2req_curr. xsl </ cePar ans: XSLT>
<ceParans: XSLT i ndex="1">req2req_pfl . xsl| </ cePar ans: XSLT>
</ cePar ans: Ml ti pl eTr ansf or nat i ons>
</ cePar ans: Properti es>
</ cePar ans: Mbdul e>

The XSLTs to be applied by the MessageSplitter module must be packaged into a jar
file. The location of the jar file containing the XSLTs must be specified as a service
binary resource using the BINARY_RESOURCE/JAR_POINTER element in the
package section of the service header. The XSLT path specified in the module
properties is used to load the XSLT as a resource from that jar file. The stylesheet
specified for this module can use the aliases in the same way they are used by the
DSXSLTInputAdaptor (see Section 6.4.1.1 for more information). If the <XSLT>
element is not supplied, the MessageSplitter module behaves as if an identity
transformation was applied.

oracle.ds.engine.ea.compound.MessageMerger

This module merges multiple service messages into one single message in the form
shown in Example 6-39, and then applies an XSLT stylesheet to transform that
message.

The XSLT to be applied by the MessageMerger module must be packaged into a jar
file. The location of the jar file containing the XSLTs must be specified as a service

Service Development Guide 6-39

Creating Advanced Services -- Description of Supplied Adaptors

binary resource using the BINARY_RESOURCE/JAR_POINTER element in the
package section of the service header. The XSLT path specified in the module
properties is used to load the XSLT as a resource from that jar file. The stylesheet
specified for this module can use the aliases in the same way they are used by the
DSXSLTInputAdaptor (see Section 6.4.1.1 for more information). If the <XSLT>
element is not supplied, the MessageMerger module behaves as if an identity
transformation was applied.

Example 6-39 Sample Messages Section of the MessageMerger Module

<MESSACES>
<MDLLE nane="| D1">
A 1 1o TN
</ MDULE>
<MDULE narme="
... nBg ...
</ MDULE>

</ MESSACES>

5
\%

Each of the incoming messages is included in a new XML element called Module.
Each of the module elements has an attribute reporting the name of the module that
generated the message. Example 6-40 shows a sample module specification for the
MessageMerger module.

Example 6-40 Sample MessageMerger Module

<cePar ans: Modul e name="| D4" >
<cePar ans: d ass>
or acl e. ds. engi ne. ea. conpound. MessageMer ger
</ cePar ans: d ass>
<cePar ans: Properti es>
<cePar ans: XSLT>r esp2resp_i pfl . xsl </ cePar ans: XSLT>
</ cePar ans: Properti es>
</ cePar ans: Mbdul e>

DSCompoundServiceExecutionAdaptor acts as a coordinator to control the
execution flow among the CompoundEAModules. To define the modules that
participate in the execution flow, DSCompoundsServiceExecutionAdaptor requires a
dependency matrix parameter that is used to evaluate the execution flow.

Figure 6-3 shows an example of a network of two service execution adaptors
running in parallel.

6-40 Oracle Dynamic Services User’s and Administrator's Guide

Creating Advanced Services -- Description of Supplied Adaptors

Figure 6-3 Parallel Execution of Services

Juli
M1 ServiceExec M4
o0— MMessageSplitter MessagehMerger —0©
ServiceExee
I3

Figure 6-3 shows a possible use of the modules described previously. In this case,
you can achieve the parallel execution of a couple of services by first splitting the
service consumer application-supplied request, and then, joining the two services
responses into one single response. The dependency matrix supplied in the
DSCompoundServiceExecutionAdaptor parameters appears as shown in
Example 6-41.

Example 6-41 Sample Dependency Matrix

<cePar ans: G aph>

<cePar ans: r ow nanme="M">
<cePar ans: col umm>0</ cePar ans: col um>
<cePar ans: col umm>0</ cePar ans: col um>
<cePar ans: col umm>0</ cePar ans: col um>
<cePar ans: col um>0</ cePar ans: col um>

</ cePar ans: r ow>

<cePar ans: r ow nane="M" >
<cePar ans: col umm>1</ cePar ans: col um>
<cePar ans: col umm>0</ cePar ans: col um>
<cePar ans: col umm>0</ cePar ans: col um>
<cePar ans: col um>0</ cePar ans: col unm>

</row>

<cePar ans: r ow nane="M" >
<cePar ans: col umm>1</ cePar ans: col um>
<cePar ans: col umm>0</ cePar ans: col um>
<cePar ans: col umm>0</ cePar ans: col um>
<cePar ans: col um>0</ cePar ans: col umm>

</ cePar ans: r ow>

<cePar ans: r ow nane="M" >
<cePar ans: col umm>0</ cePar ans: col um>

Service Development Guide 6-41

Creating Advanced Services -- Description of Supplied Adaptors

<cePar ans: col umm>1</ cePar ans: col um>
<cePar ans: col umm>1</ cePar ans: col um>
<cePar ans: col um>0</ cePar ans: col unm>
</ cePar ans: r ow>
</ cePar ans: G aph>

The matrix shows the dependencies on the input of each of the modules.
DSCompoundServiceExecutionAdaptor uses this information to coordinate the
execution flow, and creates the necessary threads to allow for parallel execution, if
necessary. For a complete example showing how to define compound services, refer
to the supplied International Portfolio (IPFL) sample service in the sample service
packages directory (see Appendix D for more information).

6.4.3.3 oracle.ds.engine.ea.DSConditionalExecutionAdaptor

DSConditionalExecutionAdaptor controls the flow of execution because it executes
a specified service based on the value of a certain defined alias. Service providers
can configure the adaptor with switch statements that can be nested, to specify
something like a decision tree, where the leaf elements are the IDs of the services to
execute.

For each switch element, there is an attribute called on that you must specify to tell
the adaptor which alias to switch on. In this case, only the alias is referenced, thus
the value of this attribute should be just the alias name rather than {@alias}. The
{@alias} value means preprocessing the value, and using the value of the alias.

For each case element under a switch element, there is an attribute called value that
you must specify to tell the adaptor which match of the alias brings you to the
inside of the case element. Inside the case element, there can be either an execute
element, which means that you have reached a leaf and that its element value is the
ID of the service to be executed, or you have reached another nested switch
statement.

Example 6-42 shows a sample execution adaptor specification for a
DSConditionalExecutionAdaptor taken from the smartlog service that comes with
the installation package.

Example 6-42 Sample DSConditionalExecutionAdaptor Execution Adaptor

<sd: EXEQUN O\>
<sd: ADAPTCR>
<sd: NAME>or acl e. ds. engi ne. ea. D8Condi ti onal Execut i onAdapt or </ sd: NAME>
<sd: PARAMETERS>
<dePar ans: GONDI Tl ONAL_EA PARANVG
xm ns: dePar ans="ht t p: / / waw or acl e. coni ds/ 2000/ GONDI TI ONAL_EA PARANE' >

6-42 Oracle Dynamic Services User’s and Administrator's Guide

Creating Advanced Services -- Description of Supplied Adaptors

<I-- event Type has been defined previously as an alias; note, here
we are referencing it only so the syntax used is just the alias
nane and not {@lias}. -->
<dePar ans: sw t ch on="event Type">
<dePar ans: case val ue="CONNECT" >
<l-- Here is an exanpl e of the nesting of switch statenents. -->
<dePar ans: swi tch on="event S at us">
<I-- V& traverse here if the eventType alias == "FA LED' -->
<dePar ans: case val ue="FAl LED' >
<l-- This is where you specify what service to execute. -->
<dePar ans: execut e>ur n: com or acl e: ds. | ogger </ dePar ans: execut e>
</ dePar ans: case>
<dePar ans: case val ue="CQ.CBE'>
<dePar ans: execut e>ur n: com or acl e: ds. | ogger </ dePar ans: execut e>
</ dePar ans: case>
<dePar ans: def aul t >ur n: com or acl e: ds. | ogger </ dePar ans: def aul t >
</ dePar ans: swi t ch>
</ dePar ans: case>

<dePar ans: case val ue="LOKUP' >
<dePar ans: sw tch on="event & at us" >
<dePar ans: case val ue="CPEN'>
<dePar ans: execut e>ur n: com or acl e: ds. | ogger </ dePar ans: execut e>
</ dePar ans: case>
<dePar ans: case val ue="FA LED'>
<dePar ans: execut e>ur n: com or acl e: ds. | ogger </ dePar ans: execut e>
</ dePar ans: case>
<dePar ans: def aul t >ur n: com or acl e: ds. | ogger </ dePar ans: def aul t >
</ dePar ans: swi t ch>
</ dePar ans: case>

</ dePar ans: swi t ch>
</ dePar ans: GOND Tl ONAL_EA PARAND>
</ sd: PARAMETERS>
</ sd: ADAPTCR>
</ sd: EXEQUT O\>

6.4.4 Output Adaptor
Section 6.4.4.1 describes the output adaptor supplied by Oracle Dynamic Services.

6.4.4.1 oracle.ds.engine.ioa.DSXSLTOutputAdaptor

DSXSLTOutputAdaptor applies an XSLT stylesheet to transform either a
java.net.URLConnection or an oracle.xml.parser.v2. XMLDocument raw response. In

Service Development Guide 6-43

Creating Advanced Services -- Building Your Own Adaptors

the case of a URLConnection, this adaptor first checks if the content-type is
text/html, text/xml, or application/xml. In the HTML case, it first applies a
stylesheet to transform the HTML representation into XHTML, compliant with
W3C XHTML 1.0 specifications. Finally, an XSLT stylesheet is applied to the XML
response. The adaptor parameters in the service descriptor define the stylesheet to
apply. The stylesheet specified for this adaptor can use the aliases in the same way
they are used by the DSXSLTInputAdaptor (see Section 6.4.1.1 for more
information). Refer to the YahooPortfolio sample service for an example. If no
<XSLT> argument is passed to the DSXSLTOutputAdaptor, the
DSXSLTOutputAdaptor behaves as if an identity XSLT transformation is applied.

In the DSXSLTOutputAdaptor, there is an option of bringing in other service
descriptors before applying the stylesheet. This can be done using an attribute of
the xiParams:XSLT element called appl yW t hSer vi ceDescr i pt or. Refer to the
notifier event monitor service that comes with the Oracle Dynamic Services
installation. This option can be used, for example, to bring in the logo of the service
provider.

6.5 Creating Advanced Services -- Building Your Own Adaptors

Service providers can supply their own adaptors. As described previously,
according to the layer or role that the adaptor addresses during the service
execution, each adaptor must implement the corresponding Java interface. For
example, input adaptors must implement the

oracl e. ds. engi ne. | nput Adapt or interface and so on.

For more information about the responsibilities of each adaptor and the interfaces,
see the description in the JavaDoc documentation.

For an example of building your own adaptors, refer to the
YahooPortfolioCustomAdaptor demo service provided in the

ds/ deno/ servi ces/ YahooPort f ol i oCust omAdapt or directory on Solaris or
ds\ deno\ ser vi ces\ YahooPort f ol i oCust omAdapt or directory on Windows
NT.

6.5.1 Packaging Your Adaptor

Once you have built your classes, grouped them into a jar file, and bundled the file
into your service package, ensure the jar pointer element in the binary resource
section of the service descriptor refers to the correct jar file. See Section 6.3.1.2 for
more information.

6-44 Oracle Dynamic Services User’s and Administrator’'s Guide

v

Service Administration

In the previous chapters, some service administrator tasks included how to use the
DSAdmin utility to perform basic tasks such as registering a service, creating a new
service consumer application identity, and how to test a service execution. Other
basic tasks such as unregistering a service, adding service consumer application
properties, and so forth can also be performed using the DSAdmin utility. In this
chapter, a brief overview of other topics relevant to administrators is provided.

7.1 Managing Consumer Applications

Using the DSAdmin utility, you can manage service consumer applications with
respect to the application profile registry. Managing service consumer applications
includes these tasks:

Add A: adds the named service consumer application to the application profile
registry. This operation assumes that this service consumer application name is
a database user, who has been granted the connect privilege to this schema, and
has been granted the DSUSER_ROLE privilege. See Section 5.1.2 for more
information.

Remove R: removes the named service consumer application from the
application profile registry. Removing a service consumer application from the
application profile registry does not remove the database user associated with
it; it removes only the named service consumer application from the application
profile registry.

Grant G: grants the named service consumer application the privilege to
execute the named service. Only a user with administrative privilege can
perform this operation.

Revoke K: revokes the named service consumer application the privilege to
execute the named service. All properties owned by the named service

Service Administration 7-1

Managing Services

consumer application for the named service are removed. Only a user with
administrative privilege can perform this operation.

AddProp AP: adds a property name and property value for the named service
to the named service consumer application profile. Only a user with
administrative privilege can perform this operation.

RemoveProp RP: removes the named property name and property value for the
named service from the named service consumer application profile. Only a
user with administrative privilege can perform this operation.

GetProp GP: gets the named property and named property value of the named
service belonging to the named service consumer application from the service
consumer application profile registry.

ListConsumers LC: lists all the currently registered consumer applications, the
service IDs for which each service consumer application has execute privilege,
and the properties of each service. Only a user with administrative privilege can
perform this operation.

ListServices LS: lists all service IDs for the named service consumer application
to which it has been explicitly granted the privilege to access. Only a user with
administrative privilege can perform this operation.

ListProperties LP: lists all properties of the named service consumer application
for the named service. Only a user with administrative privilege can perform
this operation.

7.2 Managing Services

Using the DSAdmin utility, you can manage services with respect to the service
registry. Managing services includes these tasks:

Register R: registers a service in the service registry. See Section 3.2.2 for more
information.

Deregister D: unregisters a service from the service registry. Registered services
can be unregistered using this command.

Reregister RR: reregisters a service in the service registry. Previously registered
services that have been unregistered, can be reregistered using this command.

Lookup L: looks up a registered service in the service registry by service ID.

Search S: searches the registered services in the service registry by category or
keywords. See Section 3.3 for more information.

7-2 Oracle Dynamic Services User’s and Administrator’'s Guide

Service Response Caching

« AddCat AC: adds a service category to the service registry. See Section 3.2.1 for
more information.

=« RemoveCat RC: removes a service category from the service registry.

7.3 Service Response Caching

The Dynamic Services engine uses the Oracle database for caching the service
responses. The caching policy for a given service is controlled through deployment
parameters in the service descriptors. Before registering a service, the service
administrator can review these parameters and modify them as needed. The
caching parameters are defined in the SERVICE_HEADER, DEPLOYMENT, and
CACHING elements in the service descriptor.

In this release, to change the caching parameters of a given service, you must
unregister the service and register it again with the new parameter settings. The
following information describes the caching parameters that are available:

« MAX_AGE: specifies the number of seconds the service response remains valid
in the cache. After the specified amount of time elapses, the cached response is
discarded. When the MAX_AGE value is specified to be zero or less, the service
response is never cached.

« SESSION_PRIVATE: takes a Boolean value (TRUE or FALSE) to indicate
whether cached responses for this service should be visible only within the
current session, or if they should be visible to all executions. Table 7-1 shows an
overview of the behavior of four possible service response cases.

Table 7-1 Possible Service Response Cases When Using a SESSION_PRIVATE

Parameter Setting
Where the
Service Is How the Service Response Cache Is Specified, Where the
Executed Response Is Stored, and to Whom It Is Accessible
The service response cache is The service response cache is not
specified as session private. specified as session private.
Service is executed [The response is stored in the The response is stored in the
within a session cache and it is accessible only to cache and it is accessible to all
service execution within that service executions.
session.
Service is not The response is not stored in the [The response is stored in the
executed withina |cache. cache and it is accessible to all
session service executions.

Service Administration 7-3

Cache Cleanup

« USE_PROTOCOL: takes a Boolean value (TRUE or FALSE) to indicate if the
expiration date of a service response should be set by what is specified through
the communication protocol between the Dynamic Services engine and the
remote service provider. If this parameter is true, the value of the MAX_AGE
parameter described previously is ignored.

If the USE_PROTOCOL caching parameter is true, the supplied HTTP/HTTPS
protocol adaptors check the Expired HTTP header to determine the expiration date
of the response. The supplied JDBC protocol adaptor does not support caching.

7.4 Cache Cleanup

The cache can grow to be rather large. If caching is enabled, you may want to
manually run the DS_CacheManager package procedure, deleteExpiredResponses,
or start a DBMS_JOB package to periodically clean up the cache. A procedure is
supplied within the DS_CacheManager package to start the DBMS_JOB package
that performs the cache cleanup. This procedure is called startCleanupJlob, and it
takes a VARCHAR?2 argument that specifies the interval between cleanup jobs.

7.5 Connecting Multiple Dynamic Services Engine Instances

Note: The information presented in this section assumes that you
have performed the advanced installation option of installing the
Oracle Internet Directory (OID) and set up LDAP with OID as
described in Section 4.5. Once OID is installed and set up with
LDAP, you can use the DSAdmin utility to manage Dynamic
Services engine instances with the master registry or repository.

A logical service engine can be deployed with multiple physical service engine
instances running, all sharing the same central master registry. The system can then
be tuned by adding additional service execution engines. The central registry will
not become a bottleneck because of the heavy use of caches at the service execution
engine.

No load-balancing or failover feature is available in the current release.
Administrators should partition the requests based on workload pattern. For
example, an administrator can direct all applications in a subnet to a service engine
in the same subnet.

7-4 Oracle Dynamic Services User’s and Administrator’'s Guide

Additional Operations of the DSAdmin Utility

There is no automatic synchronizing between multiple service engines in this
current release. Administrators should synchronize all engines with the central
master registry after an update. Therefore, Oracle Corporation recommends that
you schedule the updates in batch mode, during low-load hours.

By default, installing a Dynamic Services engine includes:
= Aregistry mirror in an Oracle database

= A central master registry in a Lightweight Directory Access Protocol (LDAP)
directory, for example, Oracle Internet Directory (OID)

To install an additional Dynamic Services engine:

1. Install a Dynamic Services engine as usual, but do not install the LDAP
directory again.

2. Configure the LDAP connection system properties.

3. Invoke the r esync command to resynchronize the registry. Using the
DSAdmin utility, you can navigate to this command by selecting Reg or R for
registry operations, and then select Engine or E to manage engine instances.

The registry should be running. Administrators should direct some users to the new
Dynamic Services engines.

To perform any updates:

1. Connect to a Dynamic Services engine and perform the update (or a set of
updates).

2. Connect to all other Dynamic Services engines, and invoke the r esync
command as described previously in step 3 using the DSAdmin utility.

Again, Oracle Corporation recommends that you schedule the updates in batch
mode, during low-load hours.

7.6 Additional Operations of the DSAdmin Utility

You can browse through the DSAdmin utility to find additional administrative
tasks that may be useful to perform.

7.6.1 Using Script Files with the DSAdmin Utility

Script files can be used with the DSAdmin utility to facilitate the process of
regression testing and batch processing. Example 7-1 shows the command line and
option to use is as described in Section 3.1.

Service Administration 7-5

Additional Operations of the DSAdmin Utility

Example 7-1 Run the DSAdmin Utility Using the -i Option

O N X systens:
<CRACLE_HOME>! ds/ bi n/ dsadmin -u dssys/ <dssys-passviord> -i <script file nane>

h Wndows NT syst ens:
<CRACLE_HOMEX\ ds\ bi n\ dsadmi n -u dssys/ <dssys-passvord> -i <script file nane>

Comments are allowed in the script in the form of lines that begin with the two
slash (//) characters. Every string token supplied in the script file is treated as a
separate command, or as user input. Commands are usually single string tokens,
whereas user input need not be. For example, a category string can contain spaces
within it. To use a parameter with spaces, you must enclose the entire parameter
between quotation marks. This is true whether the DSAdmin utility is being used
interactively or with a script.

7-6 Oracle Dynamic Services User’s and Administrator’'s Guide

8

Known Issues and Problems

8.1 Communications

= The current release does not throw events for warnings. So for now, the
warnings take on the form of debug messages.

« Ifno JMS daemon is running to listen to asynchronous requests, the current
implementation of the JMS driver does not time out.

8.2 Service Execution

« Service requests and responses are not validated against the corresponding
XML schema.

« The FailOver adaptor does not yet enforce the service interface consistency.

8.3 Service Definitions and Creation

= Service providers defining a new service package may be able to define new
adaptors.

8.4 Other Problems and Issues

For problems and issues that have become known after the release of this guide, see
the online README.txt file in your ORACLE_HOME directory. Depending on your
operating system, this file may be in:

On UNIX systems: QRACLE HOVH ds/ doc/ README. t xt
On Windows NT systems: ORACLE HOVE\ ds\ doc\ README. t xt

Known Issues and Problems 8-1

Other Problems and Issues

8-2 Oracle Dynamic Services User’s and Administrator’s Guide

A

Links

The following is a list of Web sites that you may find useful during the use or
development of services:

« W3C Extensible Markup Language (XML) 1.0 (Second Edition) Specification
ht t p: // waw W8. or g/ TR 2000/ WD xnt - 2e- 20000814

« W3C Extensible Stylesheet Language (XSL) Specifications
htt p: // waww w8. or g/ TR xsl /

« W3C XSL Transformations (XSLT) Specifications
ht t p: // waw w8. or g/ TR 1999/ PR- xsl t - 19991008

« W3C XML Schema Specifications Part 0: Primer
ht t p: // waw W8. or g/ TR xnh schena- 0/

« W3C XML Schema Specifications Part 1: Structures
htt p: // waw W8. or g/ TR xnh schena- 1/

« W3C XML Schema Specifications Part 2: Datatypes
ht t p: // waw W8. or g/ TR xnh schena- 2/

« W3C Namespaces in XML
ht t p: // waw w8. or g/ TR 1999/ REG xnh - nanes- 19990114/

« W3C Extensible HyperText Markup Language (XHTML) Specifications
htt p: // waw wB. or g/ TR 1999/ xht mh 1- 19990505/ | ast Cal | O f f

Links A-1

« WB3C HTTP 1.0 Specification
htt p: // waw w3c. or g/ Prot ocol s

A-2 Oracle Dynamic Services User’s and Administrator’'s Guide

B

Frequently Asked Questions

A text file containing a list of frequently asked questions is available online after
installing Oracle Dynamic Services.

This text file can be found at:
On UNIX systems:
$RAQ_E HOME ds/ doc/ dsf ag. t xt

On Windows NT systems:
$ORAAE HOMA ds\ doc\ dsf aq. t xt

Frequently Asked Questions B-1

B-2 Oracle Dynamic Services User’s and Administrator’s Guide

C

Descriptive Matrix

This appendix describes the descriptive matrix of the schemas and adaptors sup-
plied by Oracle Dynamic Services.

C.1 Syntax of the Service Descriptor Schema

At the top level, a service descriptor schema contains the data shown in Table C-1.
Table Table C-2 through Table C-4 show the descriptive matrix for the classifica-
tion, contact, and organization schemas. Required data is designated by bold ele-
ment names. Element names are indented to show the relationship and hierarchy of
elements. A service provider will define a service by writing an XML document that
complies with the XML schema file sd.xsd and other auxiliary documents such as
the classification, organization, and contact XML documents. See Example 6-11
through Example 6-15 to view the contents of sample service header and service
body sections of a service descriptor schema.

Table C-1 Descriptive Matrix of the Service Descriptor Schema

Element Name

Description

SERVICE_DESCRIPTOR Required element. The root element in the service descrip-

tor document.

SERVICE_HEADER Required element. The service header section. Contains

high-level descriptions of the service.

NAMING Required element. The naming section. Contains a glo-
bally unique identifier ID, as well as NAME and
DESCRIPTION elements describing what the service does.
ID Required element. An identifier uniquely identifies the

service and must be a uniform resource name (URN).

Descriptive Matrix C-1

Syntax of the Service Descriptor Schema

Table C-1 Descriptive Matrix of the Service Descriptor Schema (Cont.)

Element Name

Description

NAME Required element. The name of the service.
DESCRIPTION Required element. The description of the service.
PACKAGE Required element. The package section. Contains version

specifications and pointers to where the service update is
to be performed.

VERSION Required element. The version number of the service defi-
nition package.

RELEASEDATE Required element. The release date of the service defini-
tion package.

UPDATEURL Optional element. The URL to obtain the latest version of

the service definition package. In general, a service should
contain an update URL.

Note: However, for services created by an administrator,
this parameter is meant to be used locally and UPDA-
TEURL is not applicable (not used currently).

BINARY_RESOURCES

Optional element. The binary resources section. For
advanced usage, such as specifying locations for Java class
files or stylesheets for custom services and adaptors, as
well as names of resource bundles.

JAR_POINTER Optional element. The URL of the jar file containing ser-
vice-specific Java classes and resources within the service
definition zip file.

EXCEPTIONS Optional element. The exceptions section. Contains the

specification for the resource bundle for custom excep-
tions.

EXCEPTION_MSG_BUNDLE

Optional element. The specification for the custom excep-
tions that rely on the custom resource bundle.

DEPLOYMENT

Required element. The deployment section. Contains a set
of deployment properties from the service provider to aid
the service administrator during service registration.

CLASSIFICATION

Required element. An xlink to the classification XML doc-
ument. Service providers can provide suggestions while a
service administrator will decide the classification of the
service. The XML file should comply with
sd_classification.xsd. See Table C-2 for a description of the
classification schema.

C-2 Oracle Dynamic Services User’s and Administrator’'s Guide

Syntax of the Service Descriptor Schema

Table C-1 Descriptive Matrix of the Service Descriptor Schema (Cont.)

Element Name Description

CACHING Required element. The caching section. Contains recom-
mended caching parameter values.

MAX_AGE Required element. The duration that a cache entry is valid
for, in seconds. If the value is 0, it means the entry should
not be cached. The default value is 0.

SESSION_PRIVATE Required element. A value of TRUE means that the scope
of the cache entry is within the service engine user ses-
sion. The default value is FALSE.

USE_PROTOCOL Required element. A value of TRUE means that the proto-
col caching parameters will override MAX_AGE. The
default value is FALSE.

PROVIDER Required element. The service provider section. Contains
information about the service provider including the pro-
vider’s company name, copyright information, company
URL, contacts for support, and URLSs for logos.

ORGANIZATION Required element. An xlink to the organization XML doc-
ument. Provides generic information about the service
provider. The xml file should comply with
sd_organization.xsd. See Table C—4 for a description of the
organization schema.

CONTACTS Required element. The contacts section. Contains detailed
support contacts for this service.
CONTACT Required repeating element. An xlink to the contact XML

document. Provides information to contact a person for
any issues related to the service. The xml file should com-
ply with sd_contact.xsd. See Table C-3 for a description of
the contact schema.

INTERFACE Required element. The service interface specification.
Contains the definition of an interface characterized by
the schema specifications of its input, output, and excep-

tions.
NAME Required element. The name of the interface template.
INPUT_SCHEMA Required element. An xlink to the request XML docu-

ment. The URL to the request definition XML schema doc-
ument, or the DTD defining the XML service request
syntax.

Descriptive Matrix C-3

Syntax of the Service Descriptor Schema

Table C-1 Descriptive Matrix of the Service Descriptor Schema (Cont.)

Element Name Description

OUTPUT_SCHEMA Required element. An xlink to the response XML docu-
ment. The URL to the response definition XML schema
document, or the DTD defining the XML service response
syntax.

SERVICE_BODY Required element. The service body section. Contains
detailed descriptions and information used by the
Dynamic Services engine at execution time. Information is
sectioned into specifications (including adaptors) for
input, protocol, execution, and output.

INPUT Optional element. The input section. Contains the details
for preprocessing the XML request from the service con-
sumer application and includes the following sections:
namespaces, alias directives, input adaptor, and render-
ing directives.

NAMESPACES Optional element. The namespaces section. Declares any
namespaces and their prefixes that can be used in the
aliases section to build the XPaths pointing to where the
data is located.

NAMESPACE Required repeating element. A single entry of a
namespace definition.
PREFIX Required element. The namespace prefix.
VALUE Required element. The namespace value.
ALIASES Optional element. The aliases section. Used by service

providers to specify additional directives for the purpose
of creating aliases. Aliases are used to create a map that
can translate the parameters embedded in the XML docu-
ment to actual parameters needed by the adaptor (for
example, the protocol adaptor).

ALIAS Required repeating element. A single entry of an alias def-
inition.
NAME Required element. The alias name.
VALUE Required element. The alias value. Can be specified as an

XPath or as a service consumer application profile prop-
erty and optionally its modifier. The XPath is used at
run-time to extract either the value of the node pointed to
by the XPath, or the XML fragment (for which this node is
the root) from the service request.

C-4 Oracle Dynamic Services User’s and Administrator’'s Guide

Syntax of the Service Descriptor Schema

Table C-1 Descriptive Matrix of the Service Descriptor Schema (Cont.)

Element Name Description

RENDERERS Optional element. The renderers section. Contains addi-
tional rendering directives. The service provider can
optionally supply some form of schema mapping specifi-
cations, such as an XSL transformation, that could map
the input XML schema to a presentation form such as
HTML or Wireless Markup Language (WML). Thus, the
service consumer application can provide to its clients a
way to enter service requests, for applications that have
an HTML or WML interface.

RENDERER Optional element. A single entry of the renderers defini-
tion.
TYPE Optional element. The type of rendering directive, such as

the request XML document or the type of input transfor-
mation, or both.

STYLESHEET Optional element. An xlink to the request XML document
or the schema mapping specification XSL transformation,
or both. The URL to the request XML document or the
XSL transformation mapping the input XML schemato a
presentation form, or both.

ADAPTOR Optional element. The input adaptor section. Specifies,
optionally, an adaptor that further processes the service
request before sending it to the service provider. A pack-
aged adaptor is the XSLT input adaptor.

NAME Optional element. The fully qualified name of the class
implementing the oracle.ds.engine.InputAdaptor Java
interface that handles the processing.

PARAMETERS Optional element. The parameters specification. The ser-
vice provider can optionally specify adaptor-specific
parameters that are validated at service registration time
and interpreted at runtime by the adaptor. These parame-
ters must be in XML syntax. See Table C-5 for a descrip-
tion of the input adaptors parameters specification.

PROTOCOL Optional element. The protocol section. Contains the
details for submitting a request to the service provider.
Identifies the way that a service engine accesses the
underlying service.

Descriptive Matrix C-5

Syntax of the Service Descriptor Schema

Table C-1 Descriptive Matrix of the Service Descriptor Schema (Cont.)

Element Name Description

ADAPTOR Optional element. The protocol adaptor section. Specifies,
optionally, an adaptor that transforms the standard ser-
vice request into the input needed by the underlying ser-
vice, using the underlying protocol.

NAME Required element. The fully qualified name of the class
implementing the oracle.ds.engine.ProtocolAdaptor inter-
face that handles the communication to the underlying
service. Packaged protocol adaptors support the HTTP,
HTTPS, SMTP, or JDBC protocols.

DRIVER Required element. The driver specification. Ensures that a
certain class in the classpath for the adaptor to function
properly.

PARAMETERS Optional element. The parameters specification. The ser-

vice provider can optionally specify adaptor-specific
parameters that are validated at service registration time
and interpreted at runtime by the adaptor. These parame-
ters must be in XML syntax. See Table C-7, Table C-8, and
Table C-9 for a description of the HTTP, JDBC, and SMTP
protocol adaptors parameters specifications.

EXECUTION Optional element. The execution section. Identifies the
way in which the service must be executed. It takes the
request XML and returns the response from the underly-
ing service provider.

ADAPTOR Optional element. The execution adaptor section. Speci-
fies, optionally, an adaptor that executes a service request
in a particular flow or order.

NAME Optional element. The fully qualified name of the class
implementing the oracle.ds.engine.ExecutionAdaptor Java
interface that performs the execution. Packaged adaptors
are compound, failover, and conditional service execution
adaptors.

PARAMETERS Optional element. The parameters specification. The ser-
vice provider can optionally specify adaptor-specific
parameters that are validated at service registration time
and interpreted at runtime by the adaptor. These parame-
ters must be in XML syntax. See Table C-10 and

Table C-11 for a description of the compound and condi-
tional execution adaptors parameters specifications.

C-6 Oracle Dynamic Services User’s and Administrator’'s Guide

Syntax of the Service Descriptor Schema

Table C-1 Descriptive Matrix of the Service Descriptor Schema (Cont.)

Element Name Description

OUTPUT Optional element. The output section. Specifies the list of
necessary as well as optional processing to produce the
service response to the service consumer application.
Includes the output adaptor and rendering directives sec-
tions.

RENDERERS Optional element. The renderers section. Contains addi-
tional rendering directives. The service provider can
optionally supply some form of schema mapping specifi-
cations, such as an XSL transformation, that could map
this response XML to other forms, such as HTML or
WML. Thus, the service consumer application can pro-
vide to its clients a way to produce service responses, for
applications that have an HTML or WML interface.

RENDERER Optional element. A single entry of the renderers defini-
tion.
TYPE Optional element. The type of rendering directive, such as

the response XML document or the type of output trans-
formation, or both.

STYLESHEET Optional element. An xlink to the response XML docu-
ment or the schema mapping specification XSL transfor-
mation, or both. The URL to the response XML document
or the XSL transformation mapping the output XML
schema to a presentation form, or both.

Descriptive Matrix C-7

Syntax of the Service Descriptor Schema

Table C-1 Descriptive Matrix of the Service Descriptor Schema (Cont.)

Element Name

Description

ADAPTOR

Optional element. The output adaptor section. Specifies
an output adaptor to be used to transform the output
returned by the execution adaptor into an XML document
compliant with the output XML schema specified in the
service interface. The output name is a fully qualified
name of the class implementing the oracle.ds.engine.Out-
putAdaptor interface that handles the transformation. A
packaged adaptor is the XSLT output adaptor.

NAME

Optional element. The fully qualified name of the class
implementing the oracle.ds.engine.OutputAdaptor Java
interface that handles the transformation.

PARAMETERS

Optional element. The parameters specification. The ser-
vice provider can optionally specify adaptor-specific
parameters that are validated at service registration time
and interpreted at runtime by the adaptor. These parame-
ters must be in XML syntax. See Table C-5 for a descrip-
tion of the output adaptors parameters specification.

At the next level, a Classification schema contains the data shown in Table C-2.

Required data is designated by bold element names. Element names are indented to
show the relationship and hierarchy of elements. See Example 6-5 to view the con-

tents of a classification schema.

Table C-2 Descriptive Matrix of the Classification Schema

Element Name Description

CLASSIFICATION Required element. The classification information from the
service provider to assist the service administrator during
registration.

CATEGORY Required element. The hierarchical categories specified
using the substring of the Distinguished Name (DN) spec-
ified in the RFC2253 specification (htt p: / /

www. i et f.orgl/).

KEYWORDS Required element. The keywords, separated by commas.

At the next level, a Contact schema contains the data shown in Table C-3. Required
data is designated by bold element names. Element names are indented to show the

C-8 Oracle Dynamic Services User’s and Administrator’'s Guide

Syntax of the Parameters Section for the Packaged Adaptors

relationship and hierarchy of elements. See Example 6—4 to view the contents of a
contact schema.

Table C-3 Descriptive Matrix of the Contact Schema

Element Name Description
CONTACT Required element. The contact information from the ser-
vice provider.

NAME Required element. The name of the contact.
EMAIL Required element. The electronic mail address.
PHONE Required element. The phone number.
FAX Required element. The FAX number. The defaultis " ".
PAGER Required element. The pager number. The defaultis " ".
MOBILE Required element. The mobile number. The defaultis"".

At the next level, an Organization schema contains the data shown in Table C—4.
Required data is designated by bold element names. Element names are indented to
show the relationship and hierarchy of elements. See Example 6-3 to view the con-
tents of an organization schema.

Table C—4 Descriptive Matrix of the Organization Schema

Element Name Description
ORGANIZATION Required element. The company information from the ser-
vice provider.
NAME Required element. The service provider’s company name.
COPYRIGHT Required element. The copyright information for the com-
pany.
URL Required element. The URL for the company.
LOGOURL Required element. The URL for the company’s logo.

C.2 Syntax of the Parameters Section for the Packaged Adaptors

Table C-5 through Table C-12 show the descriptive matrix for the parameters sec-
tion of each type of adaptor schema supplied by Oracle Dynamic Services.

Descriptive Matrix C-9

Syntax of the Parameters Section for the Packaged Adaptors

C.2.1 oracle.ds.engine.ioa.DSXSLTInputAdaptor

An Input Adaptor schema contains the data shown in Table C-5. Required data is
designated by bold element names. Element names are indented to show the rela-
tionship and hierarchy of elements. See Example 6-13 to view the contents of the
input adaptor schema contained within the service body description.

Table C-5 Descriptive Matrix of the Input Adaptor Parameters

Element Name Description

XSLT_IA_PARAMS Optional element. The parameters section of the input
adaptor supplied by Oracle Dynamic Services.

XSLT Optional element. The XSL stylesheet used by the input
adaptor. Takes in two attributes: the isSchemaCompliant
attribute specifies whether or not the XML request schema
is compliant after applying the XSL stylesheet, and the
applyWithServiceDescriptor attribute specifies the names
of additional service descriptors to bring in before apply-
ing the stylesheet.

isSchemaCompliant Attribute. Specifies whether or not the XML request
schema is compliant after applying the XSL stylesheet.
The data type is Boolean. The default value is false. This
attribute is currently not in use.

applyWithServiceDescriptor |Optional attribute. Specifies the names of additional ser-
vice descriptors to bring in before applying the stylesheet.
The data type is string.

C.2.2 oracle.ds.engine.ioa.DSXSLTOutputAdaptor

An Output Adaptor schema contains the data shown in Table C-6. Required data is
designated by bold element names. Element names are indented to show the rela-
tionship and hierarchy of elements. See Example 6-15 to view the contents of the
output adaptor schema contained within the service body description.

C-10 Oracle Dynamic Services User’s and Administrator’s Guide

Syntax of the Parameters Section for the Packaged Adaptors

Table C—6 Descriptive Matrix of the Output Adaptor Parameters

Element Name

Description

XSLT_OA_PARAMS Optional element. The parameters section of the output

adaptor supplied by Oracle Dynamic Services.

XSLT

Optional element. The XSL stylesheet used by the output
adaptor. Takes in two attributes: the isSchemaCompliant
attribute specifies whether or not the XML response
schema is compliant after applying the XSL stylesheet,
and the applyWithServiceDescriptor attribute specifies the
names of additional service descriptors to bring in before
applying the stylesheet.

isSchemaCompliant Attribute. Specifies whether or not the XML response

schema is compliant after applying the XSL stylesheet.
The data type is Boolean. The default value is false. This
attribute is currently not in use.

applyWithServiceDescriptor |Optional attribute. Specifies the names of additional ser-

vice descriptors to bring in before applying the stylesheet.
The data type is string.

C.2.3 oracle.ds.engine.pa.DSHTTPProtocolAdaptor

An HTTP Protocol Adaptor schema contains the data shown in Table C-7. Required
data is designated by bold element names. Element names are indented to show the
relationship and hierarchy of elements. See Example 6-27 to view the contents of
the HTTP protocol adaptor parameters section contained within the service body
description.

Table C—7 Descriptive Matrix of the HTTP Protocol Adaptor Parameters

Element Name Description
HTTP_PA_PARAMS Optional element. The section for the HTTP Protocol Adaptor parameters.
Method Required element. The method used for the HTTP request. Must be one of three
options: GET, POST, or HEAD.
URL Required element. The URL to be contacted.
RequestHeaders Optional element. Setting HTTP request headers in the request. Contains the defi-

nition of additional HTTP request headers that the user wants to define.

Descriptive Matrix C-11

Syntax of the Parameters Section for the Packaged Adaptors

Table C-7 Descriptive Matrix of the HTTP Protocol Adaptor Parameters (Cont.)

Element Name

Description

RequestHeader Required repeating element. The request header. Used to set the HTTP request
header in the request. It is specified as a name attribute and element value of this
element. Any number of request headers can be specified.

name Attribute. The name of the request header. The data type is string.

QueryStringParameters

Optional element. The definition of the query string used for complex GET or
POST requests.

QueryStringParameter

Required repeating element. The query string parameter. There can be one or more
parameters for the HTTP query string. Each of these elements defines one parame-
ter. It is specified as a "name" attribute and element value of this element. Any
number of query string parameters can be specified.

name

Attribute. The name of the query string parameter. The data type is string.

Authorization

Optional element. Used for some secured Web sites that require the user’s login
name and password. It contains either an encoded string element or a credential
element.

type

Attribute. The type of authorization. The value is fixed to the value Basic.

EncodedString

Required element. The encoded string that contains the user’s login name and
password. The data type is string.

Credential Required element. The credential section. Contains the user name and password
elements.
Username Required element. The user’s login name. The data type is string.
Password Required element. The user’s login password. The data type is string.

C.2.4 oracle.ds.engine.pa.DSIJDBCProtocolAdaptor

A JDBC Protocol Adaptor schema contains the data shown in Table C-8. Required
data is designated by bold element names. Element names are indented to show the
relationship and hierarchy of elements. See Example 6-29 to view the contents of
the JDBC protocol adaptor parameters section contained within the service body

description.

C-12 Oracle Dynamic Services User’s and Administrator’s Guide

Syntax of the Parameters Section for the Packaged Adaptors

Table C-8 Descriptive Matrix of the JDBC Protocol Adaptor Parameters

Element Name Description
JDBC_PA_PARAMS Optional element. The section for the JDBC Protocol
Adaptor parameters.
Connectiondefs Required element. The section for connection definitions.
Connection Required repeating element. The connection section. Spec-

ifies the database connection parameters.

Username Required element. The database user name. The data type
is string.
Password Required element. The database password. The data type
is string.
dburl Required element. The database URL. The data type is
string.
driver Optional element. The name of the Oracle JDBC driver.
The data type is string.
autocommit Required element. The automatic commit parameter
value. The data type is Boolean. The default is TRUE to
automatically commit any updates.
Page Required element. The name of the connection page.
Query Required element. The query string.

C.2.5 oracle.ds.engine.pa.DSSMTPProtocolAdaptor

An SMTP Protocol Adaptor schema contains the data shown in Table C-9. Required
data is designated by bold element names. Element names are indented to show the
relationship and hierarchy of elements. See Example 6-30 to view the contents of
the SMTP protocol adaptor parameters section contained within the service body
description.

Table C-9 Descriptive Matrix of the SMTP Protocol Adaptor Parameters

Element Name

Description

SMTP_PA_PARAMS Optional element. The section for the SMTP Protocol

Adaptor parameters.

Host

Required element. The SMTP host name. The data type is
string.

Descriptive Matrix C-13

Syntax of the Parameters Section for the Packaged Adaptors

Table C-9 Descriptive Matrix of the SMTP Protocol Adaptor Parameters (Cont.)

Port Required element. The SMTP port number. The data type
is positive integer.

From Required element. From whom the mail was sent. The
data type is string.

To Required element. To whom the mail is to be sent. The
data type is string.

cc Optional element. To whom else should receive a copy of
the mail. The data type is string.

bce Optional element. To whom else should receive a copy of
the mail, but that is unseen by anyone else who receives a
copy. The data type is string.

Subject Required element. The subject line of the mail. The data
type is string.

MsgHeaders Optional element. The message header section.

MsgHeader Required repeating element. The header of the mail mes-
sage. It is specified as a name attribute and element value
of this element.
name Attribute. The name of the message header. The data type

is string.

MsgBody Required element. The body of the mail message.

C.2.6 oracle.ds.engine.ea.compound.DSCompoundServiceExecutionAdaptor

A Compound Execution Adaptor schema contains the data shown in Table C-10.
Required data is designated by bold element names. Element names are indented to
show the relationship and hierarchy of elements. See Example 6-32 through
Example 6-41 to view the contents of the compound execution adaptor parameters
sections contained within the service body description that are described in

Table C-10.

C-14 Oracle Dynamic Services User’s and Administrator’s Guide

Syntax of the Parameters Section for the Packaged Adaptors

Table C-10 Descriptive Matrix of the Compound Execution Adaptor Parameters

Element Name

Description

COMPOUND_EA PARAMS

Optional element. The section for the compound execu-
tion adaptor parameters. Contains the specification that
encapsulates the execution of a multitude of services,
combining them into a directed graph of service execu-
tions.

Modules Required element. The modules section.
Module Required element. A single entry of a module. The name
attribute specifies the name of the module.
Name Attribute. The module name. The data type is string.
Class Required element. The class type. One of four classes of
compound service execution modules: service execution,
message transformer, message splitter, and message merger.
Properties Required element. Properties needed by each module.

Message Splitter Properties: choice of MultipleTransformations or SingleTransformation

MultipleTransformations

Required element. The multiple transformations module.
This module splits a single message into multiple mes-
sages, working with a specified list of XSLTs. With each
XSLT, an index is also specified to order the list of service
messages that result in the one-by-one application of the
XSLTs. Each service message has a valid index that is
sequential, starting from 0.

XSLT Required repeating element. The specified list of XSLTs.
This list corresponds to a list of transformations to the
original service message, which then produces a list of
resulting messages.

index Attribute. The XSLT index number. The data type is a

non-negative integer.

SingleTransformation

Required element. The single transformation module. This
module splits a single message into multiple messages.
The specified XSLT transforms the starting service mes-
sage into a list of service messages, each with a valid
index that is sequential, starting from 0.

XSLT

Required element. The specified XSLT.

Service Execution Properties: choice of executeSingleRequest or executeAllIRequests

Descriptive Matrix C-15

Syntax of the Parameters Section for the Packaged Adaptors

Table C-10 Descriptive Matrix of the Compound Execution Adaptor Parameters (Cont.)

Element Name

Description

executeSingleRequest

Required element. The execute single request option. This
compound service execution takes in a message index
number as an attribute (a request event can contain a list
of requests) and takes the ID of the service to be executed,
as an element value. Only one execution is performed
using one selected request message. The service specified
by the ID with that request is executed.

index

Attribute. The message index number. The data type is a
non-negative integer.

executeAllRequests

Required element. The execute-all-requests option. This
compound service execution takes the ID of the service as
an element value and executes the service with all the
request messages from the request event, generating
response messages to create a response event. The data
type is string.

Message Merger Properties

XSLT

Required element. The message merger XSLT. The data
type is string.

Message Transformer Properties

XSLT

Required element. The message transformer XSLT. The
data type is string.

Execution Flow Definition Using a Dependency Matrix

Graph

Required element. The dependency matrix. Contains the
definition of the execution flow among a set of modules
using a dependency matrix. In the dependency matrix,
each module is specified by a row name and each module
is also ordered by column. A dependency is represented
by a column value of 1, while a value of 0 means there is
no dependency.

row

Required repeating element. The row element. The name
attribute specifies the row name.

name

Attribute. The name of the row. The data type is string.

column

Required repeating element. The dependency column
value for each module. A value of 1 means that for the
specified row, there is a dependency upon those modules
representing those columns. A value of 0 means there is
no dependency. The data type is a non-negative integer.

C-16 Oracle Dynamic Services User’s and Administrator’s Guide

Syntax of the Parameters Section for the Packaged Adaptors

C.2.7 oracle.ds.engine.ea.DSConditionalExecutionAdaptor

A Conditional Execution Adaptor schema contains the data shown in Table C-11.
Required data is designated by bold element names. Element names are indented to
show the relationship and hierarchy of elements. See Example 6-42 to view the con-
tents of a sample conditional execution adaptor parameters section contained
within the service body description.

Table C-11 Descriptive Matrix of the Conditional Execution Adaptor Parameters

Element Name

Description

CONDITIONAL_EA_PARAMS

Optional element. The section for the conditional exe-
cution adaptor parameters. Contains an execution flow
for a group of services based on a series of switch, case,
and execute elements that can be nested to present a
decision tree whose leaf elements are the 1Ds of the ser-
vice to execute.

switch

Required element. The switch element. The on
attribute specifies the alias name on which the switch is
based.

on

Attribute. Specifies which alias to switch on. The data
type is string.

case

Required repeating element. The case element. The
value attribute specifies the value of the switch.

value

Attribute. Specifies which match of the alias brings you
to the inside of the case element. The data type is
string.

execute

Optional element. The ID of the service to execute if a
case match occurs. The data type is string.

switch

Optional element. The switch element. The on attribute
specifies the alias name on which the switch is based.

on

Attribute. Specifies which alias to switch on. The data
type is string.

case Required repeating element. The case element. The
value attribute specifies the value of the switch.
value Attribute. Specifies which match of the alias brings you

to the inside of the case element. The data type is
string.

Descriptive Matrix

C-17

Syntax of the Parameters Section for the Packaged Adaptors

Table C-11 Descriptive Matrix of the Conditional Execution Adaptor Parameters (Cont.)

execute Optional element. The ID of the service to execute if a
case match occurs. The data type is string.

default Optional element. The branch to follow if no case
match occurs.

execute Required repeating element. The ID of the service to
execute if no case match occurs. The data type is string.

default Optional element. The branch to follow if no case
match occurs.

execute Required repeating element. The ID of the service to
execute if no case match occurs. The data type is string.

C.2.8 oracle.ds.engine.ea.DSFailOverExecutionAdaptor

A Failover Execution Adaptor schema contains the data shown in Table C-12.
Required data is designated by bold element names. Element names are indented to
show the relationship and hierarchy of elements. See Example 6-31 to view the con-
tents of a sample failover execution protocol adaptor parameters section contained
within the service body description.

Table C-12 Descriptive Matrix of the Failover Execution Adaptor Parameters

Element Name Description

FAILOVER_EA PARAMS Optional element. The section for the failover execution
adaptor parameters. Contains an execution priority value
list of services to execute in the event that a service fails to
execute.

execute Required repeating element. The execute element. The pri-
ority attribute defines the priority among the services.

priority Attribute. The value determines the execution priority.
Data type is a non-negative integer.

C-18 Oracle Dynamic Services User’s and Administrator’s Guide

D

Sample Service Packages

A set of sample service packages (see Table D-1 through Table D-10) is available
online after installing Oracle Dynamic Services. The sample service packages can be
found at:

On UNIX systems:
$CRACQLE HOMA ds/ denol ser vi ces

On Windows NT systems:
$ORAAE HOME ds\ deno)\ ser vi ces

These sample service packages can be installed as described in the note at the end of
Section 3.2. In creating your own services, you can use these sample service pack-
ages as beginning points and copy the entire sample service package directory to a
directory of your choice and then begin making modifications. Once you have
determined category information for the classification XML file and have modified
the remaining files to your liking, follow the steps in Section 3.2.1 to create a set of
categories required by your service using the DSAdmin utility and Section 3.2.2 to
register your service. Next, browse your registered services (see Section 3.3) and test
your service by executing it using the DSAdmin utility (see Section 3.4).

Sample Service Packages D-1

Table D-1 CnnPortfolio Sample Service Package

Service Package Description

CnnPortfolio Simple service package. CNN Financial Network. Given a
stock ticker, this service returns the stock ticker symbol, time,
current price, change in its value, and transaction volume. This
service specifies:

1. Aninput section that uses no input namespaces, no
aliases, specifies an input adaptor to do some validation of
the request and specifically of the specified parameters,
specifies rendering directives that maps the input XML
schema file to HTML for presentation to service consumer
application clients, then the service consumer application
transforms the HTTP request back into an XML document
that conforms to the request XML schema file specified by
the service provider.

2. A protocol section that uses the HTTP Web protocol to
communicate to the HTTP-based service provider and
specifies in the parameters section the HTTP GET request
method, the servicing URL, and the HTTP query string
named symbols, which resolves to the alias SymbolList.

3. Uses the default, standard simple execution adaptor.

4. Anoutput section that uses an adaptor that takes the
HTML response, transforms it to XHTML, then another
stylesheet transforms the XHTML response to the XML
response defined by the output schema; the output
schema points to the XML Schema documents (or DTDs)
that define the XML output the service returns to the ser-
vice consumer application. The output section formats the
XML response in the form of a template containing the
items Symbol, Time, Price, Change, and Volume.

D-2 Oracle Dynamic Services User’s and Administrator’s Guide

Table D-2 Currency Sample Service Package

Service Package

Description

Currency

Simple service package. Oanda Currency Conversion service.
Given a source currency, this service returns a currency conver-
sion value. This service specifies:

1. Aninput section that uses the namespace curreq, the
aliases SourceCurrency, DestCurrency, and Value, all of
which specify the xpath used to extract the values of each
respective node, specifies no input adaptor, specifies ren-
dering directives that maps the input XML schema file to
HTML for presentation to service consumer application
clients, then the service consumer application transforms
the HTTP request back into an XML document that con-
forms to the request XML schema file specified by the ser-
vice provider.

2. A protocol section that uses the HTTP Web protocol to
communicate to the HTTP-based service provider and
specifies in the parameters section the HTTP GET request
method, the servicing URL, and the HTTP query strings
named exch, which resolves to the alias SourceCurrency,
expr, which resolves to the alias DestCurrency, and value,
which resolves to the alias Value.

3. Uses the default, standard simple execution adaptor.

4. An output section that uses an adaptor that takes the
HTML response, transforms it to XHTML, then another
stylesheet transforms the XHTML response to the XML
response defined by the output schema; the output
schema points to the XML Schema documents (or DTDs)
that define the XML output the service returns to the ser-
vice consumer application. The output section formats the
XML response in the form of a template containing the
items SourceCurrency, DestCurrency, and Value.

Sample Service Packages D-3

Table D-3 DBService Sample Service Package

Service Package Description

DBService Simple service package. Database service. Given a connection
name, username, password and dbURL string, this service con-
nects to an Oracle database using the JDBC protocol adaptor,
queries a table, and returns the results of the query. This ser-
vice specifies:

1. Aninput section that uses the namespace db, the aliases
username, password, dburl, TableName, and Where, all of
which specify the xpath used to extract the values of each
respective node, specifies no input adaptor, specifies ren-
dering directives that maps the input XML schema file to
HTML for presentation to service consumer application
clients, then the service consumer application transforms
the HTTP request back into an XML document that con-
forms to the request XML schema file specified by the ser-
vice provider.

2. A protocol section that uses the JDBC protocol to commu-
nicate to a database-based service provider and specifies
in the connectiondefs section the connection information,
the connection page name and associated query string.

3. Uses the default, standard simple execution adaptor.

4. Anoutput section that uses an adaptor that takes the
HTML response, transforms it to XHTML, then another
stylesheet transforms the XHTML response to the XML
response defined by the output schema; the output
schema points to the XML Schema documents (or DTDs)
that define the XML output the service returns to the ser-
vice consumer application. The output section formats the
XML response in the form of a template containing the
rowset row consisting of resultnum, employee name, and
employee salary.

D-4 Oracle Dynamic Services User’s and Administrator’s Guide

Table D—4 FailOverPortfolio Sample Service Package

Service Package

Description

FailOverPortfolio

Failover service package. Given a stock ticker, this service
returns the current price. Should the first service not be avail-
able, a failover to a second service guarantees a result. This ser-
vice specifies:

1.

An input section that uses no input hamespaces, no
aliases, no input adaptor, and specifies rendering direc-
tives that maps the input XML schema file to HTML for
presentation to service consumer application clients, then
the service consumer application transforms the HTTP
request back into an XML document that conforms to the
request XML schema file specified by the service provider.

No protocol section.

A failover execution adaptor that takes as parameters an
ordered list of two compatible services. At execution time,
should the first service fail to execute, the second service
in the list is executed.

No output section.

Sample Service Packages D-5

Table D-5 Ipfl Sample Service Package

Service Package Description

Ipfl Compound service package. International Portfolio service.
Given a stock ticker, this service returns current prices in the
supplied currency. This service specifies:

1. Aninput section that uses no input namespaces, no
aliases, no input adaptor, and specifies rendering direc-
tives that maps the input XML schema file to HTML for
presentation to service consumer application clients, then
the service consumer application transforms the HTTP
request back into an XML document that conforms to the
request XML schema file specified by the service provider.

2. No protocol section.

3. A compound execution adaptor that splits a single mes-
sage into two messages, applies a list of two XSLT
stylesheets by specifying an index that corresponds to the
list of transformations to be performed on the original ser-
vice message, which results in a list of two resulting mes-
sages. A conversion currency service and failover finance
service are executed as single requests and each of the two
messages is merged back into a single message. By modu-
larizing each message, a dependency matrix is utilized
that shows the dependencies of the input of each of the
modules, thereby controlling the execution flow of each
service on each message. The XSLTs are packaged in a jar
file and its location specified as a service binary resource
in the package section of the service header.

4. No output section.

D-6 Oracle Dynamic Services User’s and Administrator’s Guide

Table D—-6 SampleService Sample Service Package

Service Package Description

SampleService Simple service package. Oanda Currency Conversion service.
Note that this service contains annotations describing how its
various sections work. Given a source currency, this service
returns a currency conversion value. This service specifies:

1. Aninput section that uses the fbreq namespace, aliases
named SourceCurrency, DestCurrency, and Value, all of
which specify the xpath used to extract the values of each
respective node, no input adaptor, and specifies rendering
directives that maps the input XML schema file to HTML
for presentation to service consumer application clients,
then the service consumer application transforms the
HTTP request back into an XML document that conforms
to the request XML schema file specified by the service
provider.

2. A protocol section that uses the HTTP Web protocol to
communicate to the HTTP-based service provider and
specifies in the parameters section the HTTP GET request
method, the servicing URL, and the HTTP query strings
named exch, which resolves to the alias SourceCurrency,
expr, which resolves to the alias DestCurrency, and value,
which resolves to the alias Value.

3. Uses the default, standard simple execution adaptor.

4. Anoutput section that uses an adaptor that takes the
HTML response, transforms it to XHTML, then another
stylesheet transforms the XHTML response to the XML
response defined by the output schema; the output
schema points to the XML Schema documents (or DTDs)
that define the XML output the service returns to the ser-
vice consumer application. The output section formats the
XML response in the form of a template containing the
items SourceCurrency, DestCurrency, and Value.

Sample Service Packages D-7

Table D-7 Ual Sample Service Package

Service Package Description

Ual Simple service package. United Airlines service. Given a user-
name and password, this service returns the mileage informa-
tion from your UAL account including mileage summary,
account number, membership level, and year-to-date premier
miles. This service specifies:

1. Aninput section that uses the namespace ualreq, the
aliases AccountNumber and Password, both of which
specify the xpath used to extract the values of each respec-
tive node, and specifies no input adaptor or rendering
directives.

2. A protocol section that uses the HTTP Web protocol to
communicate to the HTTP-based service provider and
specifies in the parameters section the HTTP POST request
method, the servicing URL, the request header names to
manually set the HTTP request headers in the request, and
the HTTP query strings named stamp, user, which
resolves to the alias AccountNumber, pwd, which resolves
to the alias Password, ur_return_to, and ur_action.

3. Uses the default, standard simple execution adaptor.

4. An output section that uses an adaptor that takes the
HTML response, transforms it to XHTML, then another
stylesheet transforms the XHTML response to the XML
response defined by the output schema; the output
schema points to the XML Schema documents (or DTDs)
that define the XML output the service returns to the ser-
vice consumer application. The output section formats the
XML response in the form of a template containing the
items AccountNumber, MembershipLevel, PrimierMiles,
and CurrentBalance.

D-8 Oracle Dynamic Services User’s and Administrator’s Guide

Table D-8 Yahoo Sample Service Package

Service Package Description

YahooPortfolio Simple service package. Yahoo Portfolio service. Given stock
tickers, this service returns the current price. This service speci-
fies:

1. Aninput section that uses no namespace, the alias Sym-
bolList, which specifies the xpath used to extract the val-
ues of the node, specifies an input adaptor to do some
validation of the request and specifically of the specified
parameters, and specifies rendering directives that maps
the input XML schema file to HTML for presentation to
service consumer application clients, then the service con-
sumer application transforms the HTTP request back into
an XML document that conforms to the request XML
schema file specified by the service provider.

2. A protocol section that uses the HTTP Web protocol to
communicate to the HTTP-based service provider and
specifies in the parameters section the HTTP GET request
method, the servicing URL, the HTTP query string named
SymbolList, which resolves to the alias SymbolList.

3. Uses the default, standard simple execution adaptor.

4. Anoutput section that uses an adaptor that takes the
HTML response, transforms it to XHTML, then another
stylesheet transforms the XHTML response to the XML
response defined by the output schema; the output
schema points to the XML Schema documents (or DTDs)
that define the XML output the service returns to the ser-
vice consumer application. The output section formats the
XML response in the form of a template containing the
items Symbol, Time, Price, Change, and Volume.

Sample Service Packages D-9

Table D-9 YahooPortfolioCustomAdaptor Sample Service Package

Service Package Description
YahooPortfolioCustom- Simple service package. Yahoo Portfolio service. Given a stock
Adaptor ticker, this service returns the stock ticker symbol, time, cur-

rent price, change in value, and transaction volume using text
response. This service specifies:

1. Aninput section that uses no namespace, the alias Sym-
bolList, which specifies the xpath used to extract the val-
ues of the node, specifies an input adaptor to do some
validation of the request and specifically of the specified
parameters, and specifies rendering directives that maps
the input XML schema file to HTML for presentation to
service consumer application clients, then the service con-
sumer application transforms the HTTP request back into
an XML document that conforms to the request XML
schema file specified by the service provider.

2. A protocol section that uses the HTTP Web protocol to
communicate to the HTTP-based service provider and
specifies in the parameters section the HTTP GET request
method, the servicing URL, the HTTP query strings
named Symbols, which resolves to the alias SymbolList
and format.

3. Uses the default, standard simple execution adaptor.

4. An output section that specifies the name of the custom
output adaptor.

D-10 Oracle Dynamic Services User’s and Administrator’s Guide

Table D-10 YahooPortfolioCustomProperty Sample Service Packages

Service Package Description

YahooPortfolioCustomProperty Simple service package. Yahoo portfolio service. Given a
stock ticker, this service returns the stock ticker symbol,
time, current price, change in value, and transaction vol-
ume based on the profile of the user. This service specifies:

1. Aninput section that uses a ppflreq namespace, the
aliases Username and SymbolList, both of which spec-
ify the xpath used to extract the values of the node,
specifies no input adaptor, and specifies rendering
directives that maps the input XML schema file to
HTML for presentation to service consumer applica-
tion clients, then the service consumer application
transforms the HTTP request back into an XML docu-
ment that conforms to the request XML schema file
specified by the service provider.

2. A protocol section that uses the HTTP Web protocol to
communicate to the HTTP-based service provider and
specifies in the parameters section the HTTP GET
request method, the servicing URL, the HTTP query
string named SymbolList, which resolves to the alias
SymbolList.

3. Uses the default, standard simple execution adaptor.

4. An output section that uses an adaptor that takes the
HTML response, transforms it to XHTML, then
another stylesheet transforms the XHTML response to
the XML response defined by the output schema; the
output schema points to the XML Schema documents
(or DTDs) that define the XML output the service
returns to the service consumer application. The out-
put section formats the XML response in the form of a
template containing the items Symbol, Time, Price,
Change, and Volume.

Sample Service Packages D-11

D-12 Oracle Dynamic Services User’s and Administrator’s Guide

E

Error Messages

The following sections describe the error messages of Oracle Dynamic Services.

E.1 Execution Engine Errors
The following errors are associated with execution engine exceptions:

DS-010, Not connected

Cause: A DSConnection object attempts to make any call before the connection
is established.

Action: Make sure the connection has been established for the DSConnection
object.

DS-011, Already connected

Cause: A DSConnection object attempts to establish a connection after the con-
nection is established.

Action: Make sure that the DSConnection object does not establish a connec-
tion again.

DS-020, No privilege has been granted to set DS property

Cause: A service consumer application attempts to modify Dynamic Services
properties without the required privilege.

Action: Connect as DSSYS to modify a Dynamic Services property.

DS-021, No {0} property entry is found from DS property
Cause: The requested Dynamic Services property is not found.

Error Messages E-1

Communication Errors

Action: Make sure the name of the property is correct, including the case. If the
name of the property is correct, contact Oracle Customer Support Services.

DS-029, Unknown error in processing DS properties
Cause: Unknown error occurred during the processing of Dynamic Services
properties.

Action: Contact Oracle Customer Support Services.

DS-099, Internal Exception
Cause: An unexpected runtime exception occurred during service execution.

Action: Contact Oracle Customer Support Services.

E.2 Communication Errors
DS-101, Communication Message not valid because missing header {1}
Cause: A mandatory header of a message is missing.

Action: Contact Oracle Customer Support Services.

DS-102, Communication Message not valid because there is no XML message
while being validated
Cause: The payload of a message is missing during validation.

Action: Populate the payload of the message.

DS-103, Communication Message not valid due to failure of XML parsing while
being validated
Cause: The payload of a message is not well-formed XML.

Action: Correct the payload of a message so that it is well-formed.

DS-104, Communication Message not valid due to 10 failed while reading from
reader
Cause: Input/output related error occurred in writing the payload to a mes-
sage from the designated Reader.

Action: Resolve the hardware or software failure that causes the error.

DS-105, Communication Message not valid due to 10 failed while writing to
writer
Cause: Input/Zoutput related error occurred in writing the payload to the desig-
nated Writer from a message.

E-2 Oracle Dynamic Services User’s and Administrator’'s Guide

Communication Errors

Action: Resolve the hardware or software failure that causes the error.

DS-106, Communication Message not valid due to JMS error while reading from
JMS TextMessage
Cause: Some error related to Java Messaging Service (JMS) occurred in deseri-
alizing a message from the message queue.

Action: Make sure the message queue and the associated hardware/software
are functioning.

DS-107, Communication Message does not have xpath {0}
Cause: The supplied XPath, used to access a message, is not valid.

Action: Contact Oracle Customer Support Services.

DS-108, Communication Message not valid due to failure of XSLT transforma-
tion while reading message

Cause: An XSLT or XPath related error happened in processing a message.
Action: Contact Oracle Customer Support Services.

DS-109, Communication Message not valid because {0} is not of type of {1} mes-
sage
Cause: The message is of unrecognized type.
Action: Contact Oracle Customer Support Services.

DS-121, Event Message not valid since it is not of type of Event message
Cause: An event message is invalid.

Action: Contact Oracle Customer Support Services.

DS-122, Event Message not valid due to JMS error while reading from JMS Text-
Message
Cause: Some error related to Java Messaging Service (JMS) occurred in deseri-
alizing an event from the event message queue.

Action: Make sure the event message queue and the associated hardware/soft-
ware are functioning.

DS-123, Event Message not valid due to failure of XML parsing while reading
from reader

Cause: The payload of an event, generated by the service execution engine, is
not well-formed XML unexpectedly.

Error Messages E-3

Communication Errors

Action: Contact Oracle Customer Support Services.

DS-132, Initialization failed due to authentication error

Cause: Invalid service consumer application credential is supplied in an
attempt to connect to Dynamic Services engine.

Action: Supply a valid credential, such as a valid name and password combi-
nation. Contact your service administrator, if necessary.

DS-137, {0} failed to load due to AQ/IMS error in initializing {1}

Cause: The named module initialization failed due to failure in initializing the
named queue.

Action: Make sure the installation and configuration of the named queue is
correct.

DS-154, DSE Executing failed trying to decrement null Request ID
Cause: The Request ID in a response message is unexpectedly null.

Action: Contact Oracle Customer Support Services.

DS-155, DSE Execution failed with inconsistent Request Count: {0}
Cause: Request count integrity is violated in an asynchronous DSDriver.

Action: Contact Oracle Customer Support Services.

DS-156, DSE Execution failed with null request synch type

Cause: The synchronous type is unexpectedly null in a message sent through
an asynchronous channel.

Action: Contact Oracle Customer Support Services.

DS-161, Publishing event failed due to 10 error
Cause: An input/output related error occurred in publishing an event.

Action: Make sure the associated hardware/software are functioning.

DS162, Publishing event failed due to AQ error
Cause: An error related to the message queue occurred in publishing an event.

Action: Make sure the message queue and the associated hardware/software
are functioning.

DS-181, Monitor (connect or startup) failed
Cause: Unexpected error occurred in event monitor daemon initialization.

Action: Make sure the event support installation and configuration is correct.

E-4 Oracle Dynamic Services User’s and Administrator’'s Guide

DS Registry Errors

E.3 DS Registry Errors

DS-201, Unable to communicate with registry

Cause: The user is unable to communicate with the registry. The inability to
communicate with the registry might be a result of many factors, such as net-
work partitioning, hardware or interface problems, failures on either the client
or server side.

Action: Retry the call that causes the exception. If the problem persists, contact
your system administrators.

DS-206, Unable to service the request

Cause: The registry is not able to service the request. It might be unavailable
for different reasons. For example, the server might be too busy to service the
request, the server is running out of memory, and so forth.

Action: Retry the call that causes the exception.

DS-211, Unsupported Operation
Cause: The operation is not supported by the current release.

Action: Contact Oracle Customer Support Services for the workaround or the
availability of the feature.

DS-219, Category {0} is not empty
Cause: An attempt was made to remove a service category that contains sub-
categories or services.

Action: Remove all services and sub-categories under the category before
re-attempting to remove the category.

DS-221, Unauthorized service consumer. login denied.
Cause: Login to the registry is denied because of improper credential.

Action: Make sure the credential is correct. If the credential is correct, contact
the service administrator.

DS-222, Insufficient privileges
Cause: The service consumer application attempted to perform an administra-
tive operation without the required privilege.

Action: Ask the service administrator to perform the administrative operation.

DS-223, Service privilege {0} is not granted to user {1}
Cause: The service consumer application does not have the service privilege

Error Messages E-5

DS Registry Errors

for the named service.

Action: Ask the service administrator to grant the required service privilege to
the service consumer application.

DS-224, Administrative privilege is not granted to user {0}

Cause: An attempt was made to revoke the administrative privilege of the ser-
vice consumer application. However, the service consumer application does not
have the administrative privilege.

Action: Do not revoke the administrative privilege.

DS-231, Service {0} does not exist
Cause: An attempt was made to access a service that does not exist.

Action: Contact the service administrator to make sure that the service does
exist and the required service privilege is granted.

DS-232, Category {0} does not exist
Cause: An attempt was made to access a category that does not exist.

Action: Contact the service administrator to make sure that the category does
exist.

DS-233, Property {0} does not exist
Cause: An attempt was made to access a property that does not exist.

Action: Contact the service administrator to make sure that the property does
exist for the connected service consumer application.

DS-234, User {0} does not exist

Cause: An attempt was made to access a service consumer application that
does not exist.

Action: Contact the service administrator to make sure that the service con-
sumer application does exist.

DS-235, Engine {0} has not been registered

Cause: An attempt was made to access the metadata of an engine instance that
has not been registered.

Action: Contact the service administrator to make sure that the engine instance
is registered.

DS-236, Document {0} does not exist
Cause: An attempt was made to access a document that does not exist. Exam-

E-6 Oracle Dynamic Services User’s and Administrator’'s Guide

DS Registry Errors

ples of documents include input schema, output schema, input renderers, and
output renderers.

Action: Contact the service administrator to make sure that the requested doc-
ument does exist.

DS-237, Binary {0} does not exist

Cause: An attempt was made to access a binary file that does not exist. Exam-
ples include .jar file that contains specific resources or custom adaptors.

Action: Contact the service administrator to make sure that the requested
binary does exist.

DS-238, Category for service {0} does not exist

Cause: During service registration, the category specified in the service
descriptor does not exist in the registry.

Action:; Create the required category before registering the service.

DS-251, Service {0} exists
Cause: The service to be registered already exists.

Action: If the intention is to replace the existing service, perform reregister.
Otherwise, no action needs to be taken since the service already exists.

DS-252, Category {0} exists
Cause: The category to be added already exists.

Action: No action needs to be taken since the category already exists.

DS-253, Property {0} exists
Cause: The property to be added already exists.

Action: If the intention is to replace the existing property, remove the existing
property before adding the property. Otherwise, no action needs to be taken
since the property already exists.

DS-254, User {0} exists
Cause: The service consumer application to be added already exists.

Action: No action needs to be taken since the service consumer application
already exists.

DS-255, Engine has been registered
Cause: The engine instance to be registered already exists.

Error Messages E-7

DS Registry Errors

Action: If the intention is to update the metadata of the engine instance, unreg-
ister the current engine instance before registering it again. Otherwise, no action
needs to be taken since the engine instance has been registered.

DS-261, Invalid XML document {0}

Cause: The named XML document, typically part of a service package, is not
valid.

Action: Make sure the named XML document is XML well-formed and valid.

DS-262, Invalid service package - error in accessing component {0}
Cause: An error occurred in accessing the named component of a service pack-
age. Itis typically a file in a service package.

Action: Make sure the component does exist and is accessible. If the service
package is a file-based service package, make sure the path is correct.

DS-263, Invalid service package - component {0} is missing its key {1}
Cause: The required element (or attribute) which serves as a key of the compo-
nent is missing.

Action: Make sure the component does contain the required element (or
attribute).

DS-266, Invalid or null category string {0} - syntax error
Cause: The category supplied is null or syntactically invalid.

Action: Make sure the category string is non-null and follows LDAP DN syn-
tax.

DS-267, Invalid classification scheme constant {0}

Cause: An invalid classification scheme constant was used in conducting a
search of services.

Action: Make sure the constant being used is one of those defined in the Java
interface oracle.ds.registry.DSClassificationConstants.

DS-268, Invalid or null keyword string {0} - syntax error
Cause: The keyword supplied is null.

Action: Make sure the keyword string is non-null.

DS-269, Invalid or null interface string {0} - syntax error
Cause: The interface name supplied is null.

E-8 Oracle Dynamic Services User’s and Administrator’'s Guide

DS Registry Errors

Action: Make sure the interface name string is non-null.

DS-275, Invalid engine metadata - object: {0}
Cause: The engine instance metadata supplied is null or invalid.

Action: Make sure the supplied metadata is non-null and is valid.

DS-279, Invalid object - object: {0} ; reason: {1}
Cause: The object being accessed is invalid for some unexpected reason.
Action: Contact Oracle Customer Support Services.

DS-291, Internal Error (misconfiguration) - parameter: {0}; required class type (if
applicable): {1}
Cause: An unexpected mis-configuration occurred.

Action: Make sure the installation is successful. If the installation is successful
and you still get this error, contact Oracle Customer Support Services.

DS-292, Internal Error (DSRegistryProvider sanity check failure) - provider class:
{0}; sanity test method: {1}
Cause: An unexpected mis-configuration occurred.
Action: Contact Oracle Customer Support Services.

DS-293, Internal Error (initializing internal resources) - resource name (if known):
{0}
Cause: An unexpected mis-configuration occurred.
Action: Make sure the installation is successful. If the installation is successful
and you still get this error, contact Oracle Customer Support Services.

DS-294, Internal Error (unexpected null object) - object: {0}
Cause: An unexpected internal error occurred.

Action: Contact Oracle Customer Support Services.

DS-295, Internal Error (registry integrity violation) - related object: {0}

Cause: The integrity of the registry is compromised, possibly because of exter-
nal intervention to the registry.

Action: Use a backup of the registry, if available. Otherwise, contact Oracle
Customer Support Services.

DS-296, Internal Error (mismatch in size of write) - expected: {0} bytes; actual: {1}
bytes

Error Messages E-9

DS Engine Errors

Cause: An unexpected internal error occurred.
Action: Contact Oracle Customer Support Services.

DS-299, Internal Error (others) - {0}
Cause: An unexpected internal error occurred.

Action: Contact Oracle Customer Support Services.

E.4 DS Engine Errors

DS-302, Invalid Request: Cannot process the request because invalid {0}
Cause: The request message sent from a service consumer application is
invalid. The execution engine cannot process it.

Action: Make sure the service consumer application generates a valid request
message.

DS-303, Invalid Raw Response: Cannot process the service provider raw response
of type {0}
Cause: The raw response returned by the protocol adaptor is not supported by
the output adaptor used.

Action: Modify and re-register the service package to use an output adaptor
that supports the type of raw response returned by the protocol adaptor.

DS-304, Invalid Response: Cannot process the response of type {0}
Cause: An error occurred in processing the named response.

Action: Make sure the named response is a well-formed XML document.

DS-305, Empty Response: The service produced an empty response

Cause: The response produced is an empty one. It means that the response con-
tains one and only one XML element and the element is an empty element with-
out an attribute.

Action: Modify the parameters of the appropriate adaptor in the service pack-
age so that the service does not return an empty XML element only. Re-register
the service package after the modification. The adaptor is typically an execu-
tion adaptor or an output adaptor.

DS-306, Invalid Session: The supplied session ID {0} is expired or invalid
Cause: The DS session ID supplied in executing a service is invalid or expired.

E-10 Oracle Dynamic Services User’s and Administrator’s Guide

DS Engine Errors

Action: Make sure the DS session ID is valid. Obtain a new session, if neces-
sary.

DS-310, Invalid Adaptor: Cannot load adaptor {0}

Cause: The named adaptor cannot be loaded for any reason. A typical cause is
that there is a typo in the adaptor name in the service package.

Action: Refer to the underlying exception for actions.

DS-311, Invalid Adaptor Parameter: Cannot process adaptor parameters: {0}
Cause: The adaptor parameter is invalid either during service registration or
service execution.

Action: If the error occurs during service registration, check the syntax used of
the adaptor parameter in the service package. If the error occurs during service
execution, make sure all the other runtime requirements such as alias resolu-
tion have been satisfied.

DS-312, Invalid Alias: Required alias {0} could not be resolved

Cause: The named alias specified in the adaptor parameter is missing in the
ALIASES declaration in the service package.

Action: Make sure the named alias is defined with a proper value (a proper
XPath, string constant, and so forth) in the service package. Re-register the ser-
vice package if any modification is made.

DS-320, Invalid XML document: {0}
Cause: The named XML document used by an adaptor is invalid.

Action: Make sure the XML document supplied is valid.

DS-321, Invalid XSL document: {0}
Cause: The named XSLT document used by an adaptor is invalid.

Action: Make sure the XSLT document supplied is valid.

DS-322, Missing Protocol Adaptor
Cause: A protocol adaptor is required in a service.

Action: Add a protocol adaptor to the service package and re-register the ser-
vice package. If you believe a protocol adaptor is not required, contact the sup-
port responsible for the execution adaptor being used regarding the
requirement on protocol adaptor.

DS-323, Invalid protocol {0}

Error Messages E-11

DS Engine Errors

Cause: The named protocol is not supported by the module.

Action: If there is an error in the name of the protocol, correct it. Otherwise,
contact Oracle Customer Support Services.

DS-325, HTML Parsing errors: {0}
Cause: An error occurred in HTML parsing. This error should only occur in
development tools.

Action: Make sure the HTML specified is valid.

DS-326, Element with tag {0} cannot be nested into each other, position {1}
Cause: An error occurred in HTML parsing. This error should only occur in
development tools.

Action; Make sure the HTML specified is valid.

DS-327, Encountered element with tag {0} outside of a {1} tag at position {2}
Cause: An error occurred in HTML parsing. This error should only occur in
development tools.

Action: Make sure the HTML specified is valid.

DS-330, Error occurred processing XSQL request: {0}
Cause: An error occurred in processing the XSQL request in DSJDBCProtocol-
Adaptor.

Action: Check the adaptor parameter in the service package and make sure the
XSQL request is valid.

DS-331, Error opening SQL connection. Zero or more connection definitions sup-
plied, or invalid connection parameters: {0}
Cause: An error occurred in opening a JDBC connection in DSJIDBCProtocol-
Adaptor.

Action: Make sure the adaptor parameter in the service package contains con-
nection elements with valid parameters, and the connection attribute of the
page element refers to a valid connection.

DS-332, Error closing SQL connection: {0}

Cause: An error occurred in closing the JDBC connection in DSIDBCProtocol-
Adaptor.

E-12 Oracle Dynamic Services User’s and Administrator’s Guide

DS Engine Errors

Action: Refer to the underlying SQL exception for actions.

DS-333, Error trying to open a connection with name {0}. Another connection with
the same name has been found in the session, but its JDBC connection string
does not match

Cause: When a service is executed in a DS session, an attempt was made to
re-use an existing JDBC connection. However, the JDBC connection refers to a
different database/schema.

Action: Make sure all the JDBC-based services executed in a DS session do not
declare connections with the same name but different connection string.

DS-340, Error during HTTP/S connection: {0}
Cause: An HTTP transport error occurred with the named HTTP error code in
DSHTTPProtocolAdaptor.

Action: Refer to the HTTP error code for resolution.

DS-341, Unsupported HTTP/S status code: {0}
Cause: The named HTTP status code is not supported by DSHTTPProtocol-
Adaptor.

Action: Make sure the status code is not caused by errors in the service pack-
age or the service request. Contact Oracle Customer Support Services, if neces-
sary.

DS-342, HTTP/S reported a fatal error with status code: {0}
Cause: An HTTP error (with status code 4XX and 5XX) was reported by the
HTTP server.

Action: Refer to the underlying status code for further action. The error can
also happen because of errors in the service to be executed, such as missing
HTTP parameters.

DS-343, Cannot follow redirect as no Location tag has been supplied

Cause: DSHTTPProtocolAdaptor cannot follow a redirect command because
the Location header is missing from the HTTP response.

Action: Contact the administrator of the HTTP server.

DS-344, Invalid HTTP/S Cookie supplied. The cookie has the wrong syntax or
wrong parameters

Cause: DSHTTPProtocolAdaptor encounters an invalid cookie.

Error Messages E-13

DS Engine Errors

Action: Contact the administrator of the HTTP server.

DS-350, Error opening connection to SMTP host: {0}
Cause: An error occurred in establishing an SMTP connection to the named
host in DSSMTPProtocol Adaptor.

Action: Make sure the host name and the port number are valid. If they are cor-
rect, contact system administrators to resolve any network, hardware, or soft-
ware issues.

DS-351, Error closing connection to SMTP host: {0}
Cause: An error occurred in closing an SMTP connection to the named host in
DSSMTPProtocolAdaptor.

Action: Contact the administrator of the SMTP server.

DS-352, Error sending message: {0}
Cause: An error occurred in sending the message to the SMTP server.

Action: Make sure the message is correctly formatted. If necessary, contact sys-
tem administrators.

DS-353, SMTP reported fatal error with code: {0}
Cause: An SMTP error (with status code 4XX and 5XX) was reported by the
SMTP server.

Action: Refer to the underlying status code for further action. The error can
also happen because of errors in the service to be executed, such as missing
SMTP headers, invalid email address in From header, and so forth.

DS-354, SMTP invalid mail parameter, missing {0} element
Cause: DSSMTPProtocolAdaptor reported that the named header is missing
from the email to be sent.

Action: Make sure the named header is present in the adaptor parameter in the
service package.

DS-360, Operation {0} on files not supported
Cause: The named operation is not supported by DSFILEProtocolAdaptor.
Action: Correct the operation to be used in the adaptor parameter in the ser-
vice package.

DS-361, IOException occurred during a file operation: {0}
Cause: An Input/output related error occurred in accessing a file with the

E-14 Oracle Dynamic Services User’s and Administrator’s Guide

DS Engine Errors

named operation.
Action: Make sure the named operation can be done on the file.

DS-380, One or more dependent services failed during execution: {0}
Cause: One or more dependent services in a compound service, executed by
DSCompoundServiceExecutionAdaptor, failed.

Action: Refer to the underlying exception for actions.

DS-383, The module ID {0} has already been defined

Cause: Multiple modules are defined with the same unique identifier incor-
rectly. The error is specific to DSCompoundServiceExecutionAdaptor.

Action:; Find all the modules that share the same IDs in the adaptor parameter
of the service package and specify different IDs for each of the modules. Re-reg-
ister the modified service package.

DS-384, A module has been specified with a supplied ID or its associated class

Cause: A module is either missing the ID or the implementation class. The
error is specific to DSCompoundServiceExecutionAdaptor.

Action: Fill in the missing ID or class in the Module element in the adaptor
parameter of the service package. Re-register the modified service package.

DS-385, The number of rows in the execution flow matrix, {0}, does not match the
number of modules defined, {1}

Cause: The Graph element in the service package, which defines the connectiv-
ity of the modules, does not map to the module declaration. The error is spe-
cific to DSCompoundServiceExecutionAdaptor.

Action: Change the Graph element or the Module elements in the adaptor
parameter of the service package so that each row in the graph maps to a mod-
ule. Re-register the service package.

DS-386, A row in the execution flow matrix does not specify the associated mod-
ule name
Cause: The name attribute of a row element in a Graph element in the service
package is missing or empty. The error is specific to DSCompoundServiceExe-
cutionAdaptor.

Error Messages E-15

DS Engine Errors

Action: Find the row element and fill in the name attribute. Re-register the
modified service package.

DS-387, The number of columns in the execution flow matrix, {0}, does not match
the number of rows {1}
Cause: The Graph element in the service package, which defines the connectiv-
ity of the modules, does not map to the module declaration. The error is spe-
cific to DSCompoundServiceExecutionAdaptor.

Action: Change the Graph element or the Module elements in the adaptor
parameter of the service package so that each column in the graph maps to a
module. Re-register the modified service package.

DS-388, The execution flow matrix does not have an empty row. Such a row is
necessary to identify the starting modules.
Cause: In the Graph element in the service package, there is no starting row
(indicated by 0 in all column elements). Such a row is required to indicate the
first module to be invoked. The error is specific to DSCompoundServiceExecu-
tionAdaptor.

Action: Correct the Graph element so that one row is set to be a starting row:
all of its column elements are 0. Re-register the modified service package.

DS-389, Module with 1D {0} is not a DSEventListener
Cause: The implementation class of the named module does not implement the
required DSEventListener interface. The error is specific to DSCompoundServi-
ceExecutionAdaptor.

Action: Check the name of the implementation class of the module in the ser-
vice package. Make sure the name is one of the modules defined in the User’s
and Administrator’s Guide. Re-register the modified service package.

DS-390, Execution flow terminated with more than one message
Cause: More than one message was generated by the last module in a com-
pound service execution flow. The error is specific to DSCompoundServiceExe-
cutionAdaptor.

Action: Check the last module being executed and change it so that it does not
generate multiple messages. For example, a ServiceExecution module should
only be used with executeSingleRequest option. Re-register the modified ser-
vice package.

DS-391, Module with 1D {0} does not have a corresponding row in the execution
flow matrix

E-16 Oracle Dynamic Services User’s and Administrator’s Guide

DS Engine Errors

Cause: The Graph element in the service package, which defines the connectiv-
ity of the modules, does not map to the module declaration. The error is spe-
cific to DSCompoundServiceExecutionAdaptor.

Action: Change the Graph element or the Module elements in the adaptor
parameter of the service package so that each module maps to a row in the
graph. Re-register the modified service package.

DS-392, Module with 1D {0} could not clone a message {1}
Cause: Unexpected exception occurred in cloning a message. The error is spe-
cific to DSCompoundServiceExecutionAdaptor.

Action: Refer to the underlying exception to resolve the problem causing the
error.

DS-393, The execution flow matrix contains more than one empty column. Only
one empty column is necessary to identify the ending module.
Cause: In the Graph element in the service package, there are multiple mod-
ules identified as the ending module, indicated by multiple empty columns.
The error is specific to DSCompoundServiceExecutionAdaptor.

Action: Correct the Graph element so that one and only one module is the end-
ing module: one and only one column has all its values to be 0. Re-register the
modified service package.

DS-395, FailOverExecution Adaptor cannot find the service to be executed with
priority
Cause: An entry in the adaptor parameter of a failover service is either missing
the priority or the service ID.

Action: Correct the entry so that it has both the priority and the service ID.
Re-register the modified service package.

DS-396, FailOver Execution Adaptor Warning: Execution of service {0} failed ({1})
Cause: Itis an indication that the named service execution fails. The failover
service will attempt to execute a backup service.

Action: Service administrators should try to resolve the problem by referring to
the underlying exception.

DS-397, Execution of FailOver service failed as none of the services successfully
completed

Cause: A failover service execution failed because all of the backup services to
be executed fail.

Error Messages E-17

DS Driver Errors

Action: Resolve any problems that cause the execution of the backup services
to fail.

DS-398, An internal error occurred during response caching {0}

Cause: An internal error occurred in processing the Dynamic Services response
cache.

Action: Refer to the underlying exception for actions.

DS-399, An internal error occurred in the execution engine {0}
Cause: An unexpected internal error occurred in service execution.

Action: Contact Oracle Customer Support Services.

E.5 DS Driver Errors

DS-401, A transport protocol error occurred for {0}. Error code: {1}

Cause: An error occurred in the transport layer between a service consumer
application and a service engine. The error code, if available, is the trans-
port-specific error code.

Action: Correct the underlying transport layer error. Contact the relevant
administrator, if necessary.

DS-402, The received message has an invalid content type: {0}

Cause: The content type of the message returned by the transport layer is
incorrect.

Action: Contact the service administrator.

DS-403, The received message has no transport session information
Cause: Session information is missing in the transport layer.

Action: Contact the service administrator.

E.6 DS Compound Execution Adaptor Module Errors

DS-501, Module {0} ({1}): Invalid or missing XSLT in the module parameters
Cause: The XSLT element of the named module is missing or invalid.

Action: Make sure the named module in the compound service execution
adaptor parameter has a valid XSLT element.

DS-502, Module {0} ({1}): Module received {2} messages. Too many messages
received

E-18 Oracle Dynamic Services User’s and Administrator’s Guide

DS Compound Execution Adaptor Module Errors

Cause: The named module receives more messages than it is designed to han-
dle.

Action: Check the GRAPH element in the compound service execution adap-
tor parameter. Make sure the named module receives the correct number of
messages.

DS-503, Module {0} ({1}): Module received zero or null message

Cause: The named module receives no or null message.

Action: Check the GRAPH element in the compound service execution adap-
tor parameter. Make sure the named module receives the correct number of
messages.

DS-504, Module {0} ({1}): No message has been found at index {2}

Cause: The named module expects to receive a message with the named index
out of an array of messages.

Action: Check the GRAPH element in the compound service execution adap-
tor parameter. Make sure the module that produces messages to the named
module does create an message at the named index.

DS-505, Module {0} ({1}): XSL error applying stylesheet: {2}

Cause: The named module encounters XSLT error in applying the named XSLT
stylesheet.

Action: Make sure the named XSLT stylesheet is correct with respect to the
input source.

DS-508, Module {0} ({1}): Execution of service {2}, failed: {3}

Cause: The service execution of the named module fails.
Action: Check the nested exception for resolution.

DS-509, Module {0} ({1}): Internal Exception occurred: {2}

Cause: Unexpected exception occurred in the named module.
Action: Contact Oracle Customer Support Services.

DS-510, Module {0} ({1}): After applying the single transformation, the resulting

message does not contain sectioning tags such as "{2}">"

Cause: The resulting XML of the named message splitter module does not con-
tain the required sectioning tags.

Error Messages E-19

DS Compound Execution Adaptor Module Errors

Action: Check the single XSLT stylesheet used in the message splitter module
and make sure the XML document generated is compliant to the specification
required by single transformation in a MessageSplitter.

DS-511, Module {0} ({1}): The module {2} cannot accept more than one depen-
dency (e.g. more than one non-null column in its row in the execution flow
matrix.)

Cause: The named module cannot depend on more than one other module.

Action: Check the GRAPH element in the compound service execution adap-
tor parameter. Make sure the named module depends on one and only one
other module.

E-20 Oracle Dynamic Services User’s and Administrator’s Guide

Glossary

application profile registry

A storage place that maintains the application security profile governing service
access. Registering service consumer applications allows the service administrator
to choose the services that are to be visible to a particular application.

central master registry

A Lightweight Directory Access Protocol (LDAP) registry that is the main registry
that can communicate with multiple Dynamic Services engine instances each
containing its own registry cache. Using the DSAdmin utility, a service
administrator can update the central master registry, broadcast a message to all
other instances of Dynamic Services engines to manually synchronize their registry
cache with the central master registry. Using a central master registry in this manner
increases the scalability of Dynamic Services.

compound service package

A service package that invokes one or more other services and typically includes
one additional file, a jar file, which contains all Java classes and stylesheets needed
by the compound service package.

Distinguished Name (DN)

The unique name of a directory entry in Oracle Internet Directory (OID). It includes
all the individual names of the parent entries back to the root. The Distinguished
Name tells you exactly where the entry resides in the directory’s hierarchy. This
hierarchy is represented by a directory information tree (DIT).

Glossary-1

Glossary-2

Dynamic Services

A component of the Internet computing model that delivers a specialized
value-added function. A dynamic service typically comprises some content, or
some process, or both, with an open programmatic interface.

Dynamic Services engine

An engine that provides storage, access, and management of dynamic Internet and
Intranet services.

Dynamic Services framework

An open, Java-based programmatic framework for enhancing Oracle as the Internet
platform to incorporate, manage, and deploy dynamic Internet services. The
framework includes a Dynamic Services engine, a set of dynamic services, and
users of these services (service consumer applications). Oracle Dynamic Services
makes it easy for application developers to rapidly incorporate existing services
from a variety of Web sites, local databases, or proprietary systems into their own
applications.

Dynamic Services Thin Java Client Library

Handles communication using either HTTP, HTTPS, or Java Messaging Services
(JMS) communication protocol between the service consumer application and the
Dynamic Services engine, which is running in the Dynamic Services gateway.
Because the Dynamic Services Java client library does not contain the Dynamic
Services Java engine, the Dynamic Services Java client library is referred to as a
Dynamic Services thin Java client library. This is the Java (HTTP/JMS) deployment
view of the Dynamic Services framework.

Dynamic Services Thick Java Client Library

Handles communication using direct Java calls between the service consumer
application and the Dynamic Services engine. When the Dynamic Services Java
engine is running on the machine hosting the service consumer application it is
using the thick Java client library, which contains the Dynamic Services Java engine.
This is the Java deployment view of the Dynamic Services framework.

execution adaptor

A routine that executes a service request in a particular flow. A flow could be as
simple as relaying a request, to contacting a service provider, or as complicated as
relaying a request to a service provider and relaying the response to another service
provider.

input adaptor

A routine that post-processes the service input from service consumer applications
to produce the standard service input that is fed to the underlying service.

monitor services

A set of services (profiler, logger, and smartlog) that are configured in the
MonitorProperties.dss file for monitoring event messages generated by the
Dynamic Services engine.

output adaptors

A routine that transforms the raw output from the underlying service into the
standard service response.

protocol adaptor

A routine that transforms the standard service request into the input needed by the
underlying service, using the underlying protocol.

service

A component within the Internet computing model that delivers a specialized
value-added function.

service administrator

The person who performs administrative tasks for the Dynamic Services engine,
such as enabling or disabling of services, tuning caching parameters of a service,
and so forth.

service consumer application

An application that uses Dynamic Services to collect Web services from service
providers and provide a dynamic service to their customers.

service descriptor

An XML schema file that defines the behavior of a service and contains service
developer information, a description of service features, service management
information, service input adaptors, service output adaptors, and other service
provider-specific information, such as secure access, caching parameters, and so
forth.

service provider

A business partner or application developer who provides and manages the content
of a service for the Dynamic Services execution engine; typically, the service

Glossary-3

Glossary-4

provider is the owner of some data resource or process, such as, the owner of a
currency exchange rate Web site. Also, someone who provides content for a service.
service registry

A storage place that maintains the service package information of registered
services that enables Dynamic Services engines to set up and execute a service and
access distributed sources from service providers.

simple service package

A service that is bundled into a simple service package and modeled as a local
directory. This directory contains at least a MANI FEST file that points to the service
descriptor XML file, which is the key XML document that describes the service and
points to the following descriptor (.xml) and definition (.xsd) files:

= One classification XML file

= One service developer organization XML file

« One or more service developer contact XML files

= One service interface specification request (.xsd) file

= One service interface specification response (.xsd) file

A

access control

making services visible to an application, 1-13

access to services

using PL/SQL, Java, or HTTP,

adaptors

1-14

custom-built by resource providers,

execution, 6-13, 6-26
compound service,

6-35

6-44

compound service message merger, 6-39
compound service message splitter, 6-38

compound service message

transformer,
conditional, 6-42

6-37

failover, 6-34, 6-35
input, 6-11, 6-22, 6-28

XSLT, 6-28

output, 6-13, 6-26, 6-43

XSLT, 6-43

protocol, 6-12, 6-25, 6-29

HTTP, 6-29
HTTPS, 6-31
JDBC, 6-31
SMTP, 6-33

supplied by Dynamic Services,

administration

DSAdmin command-line utility,

application

6-28

3-1

creating a session with a remote resource

provider, 5-7
sessions

executing multiple services,

opening, closing,

5-7

5-7

Index

application profile registry, 1-10, 1-13
registering a service consumer application, 5-2

B

browsing registered services, 3-9

C

cache cleanup, 7-4
central master registry, 4-17
classification descriptor XML file, 6-1, 6-5, 6-18
communication
between service administrator and Dynamic
Services engine, 1-12
between service consumer application and
Dynamic Services engine, 1-12, 1-13
supported protocols, 1-13
compound service execution adaptor, 6-35
message merger, 6-39
message splitter, 6-38
message transformer, 6-37
compound service package
contents, 3-6, 6-2
conditional execution adaptor, 6-42
configuring
DSAdmin utility, 3-2
connection drivers, 1-6, 5-4
direct, 5-4
HTTP, 5-5
HTTPS, 5-5
JMS, 5-5
contact descriptor XML file, 6-1, 6-4, 6-18
creating

Index-1

new service category, 3-7 F

failover execution adaptor, 6-35
D frequently asked questions (FAQ), B-1,E-1

direct connect driver
performing service lookup operations, 5-4 H
performing synchronous service executions, 5-4
displaying service response, 5-6
drivers
connection, 5-4
DSAdmin utility I
browsing registered services, 3-9 input adaptor, 6-22, 6-24, 6-28
creating a new service category, 3-7 . -
installation

creating script files for administration, 7-5 Dynamic Services distribution, 2-2

Ie;(;:nu'::n%t?ore?:asdtzr'et)%iz\gci’rat'scﬁ]ls 7.5 installing Dynamic Services in Oracle VM, 4-2
mane: ?1 sel; ice clolns mefa :'cat:ons 7.1 installing Dynamic Services LDAP schema, 4-15
ging servi 7uz pplications, installing Oracle Internet Directory, 4-14
maf‘ag'.”g serV|ce_s,) installing the DSSYS schema, 2-3
registering a service package, 3-9 -
S . . . system requirements, 2-1

registering user identity as a new Dynamic

Services service consumer application, 5-2

HTTP protocol adaptor, 6-29
HTTPS protocol adaptor, 6-31

setting configuration file parameters, 3-2 J

setting options, 3-4 jar file, 6-16

starting, 3-4 Java API for application developers, 5-1
Dynamic Services JDBC protocol adaptor, 6-31

adaptors, 6-28
administrator, 1-10

application profile registry, 1-10 K
application scenarios, 1-4 known issues and problems, 8-1
benefits, 1-3

client library, 1-12,1-13

communication, 1-12,1-13 M
driver, 1-13 managing
engine, 1-11,1-12 cache cleanup, 7-4
framework, 1-14,1-16, 1-17 central master registry, 4-17
service registry, 1-10, 1-13 multiple Dynamic Services instances, 7-4
service consumer applications, 7-1
E service response caching, 7-3
services, 7-2
executing a registered service, 3-11 manifest file, 6-1, 6-15
executing a sample service, 5-5
execution adaptor, 6-26, 6-34 0

opaque session identifier, 5-7
Oracle Internet Directory server, 1-13

Index-2

organization descriptor XML file, 6-1, 6-4, 6-18
output adaptor, 6-26, 6-43

P

PL/SQL interface for application developers, 5-8
protocol adaptor, 6-25, 6-29

R

registering a service, 3-6

registering a service consumer application, 5-2
registering a service package, 3-9

request definition xsd file, 6-1, 6-6, 6-19
response definition xsd file, 6-1, 6-7, 6-19
running DSAdmin utility, 3-4

S

sample service
executing, 5-5
service
browsing registered services, 3-9
creating a new service category, 3-7
creating a service package, 6-15
describing using a service descriptor, 6-16
displaying response, 5-6
executing a registered service, 3-11
execution adaptors, 6-34
managing response caching, 7-3
registering a service package, 3-6, 3-9
service administration
connecting multiple Dynamic Services engine
instances, 7-4
modifying service response caching, 7-3
scripting the DSAdmin utility, 7-5
service administrator, 1-10
service consumer application, 1-10
development interfaces
Java API, 5-1
PL/SQL, 5-8
opening a connection to Dynamic Services
engine, 1-6,5-4
registering in application profile registry, 5-2
using a direct connect driver, 5-4

service descriptor XML file, 6-9, 6-16
service body described, 6-20
service header described, 6-16
service package, 6-15
adaptors
execution, 6-13, 6-26, 6-34
input, 6-11, 6-24, 6-28
output, 6-13, 6-26, 6-43
protocol, 6-12, 6-25, 6-29
classification descriptor XML file, 6-1, 6-5, 6-18
contact descriptor XML file, 6-1, 6-4, 6-18
jar file, 6-16
manifest file, 6-1, 6-15
organization descriptor XML file, 6-1, 6-4, 6-18
registering, 3-6
request definition xsd file, 6-1, 6-6, 6-19
response definition xsd file, 6-1, 6-7, 6-19
service descriptor XML file, 6-1, 6-9, 6-16
service provider, 1-9
simple service package
contents, 3-5, 6-1
registering, 3-5
SMTP protocol adaptor, 6-33

U

using adaptors, 6-28
using connection drivers, 1-6, 5-4
using PL/SQL interface

supplied sample code, 5-8, 5-9
using the Java API

supplied sample code, 5-1

X

XSLT input adaptor, 6-28
XSLT output adaptor, 6-43

Index-3

Index-4

	User’s and Administrator’s Guide
	List of Examples
	List of Figures
	List of Tables
	Send Us Your Comments
	Preface
	Audience
	Organization
	Related Documents
	Conventions
	Documentation Accessibility

	1 Introduction
	1.1� Application Scenarios
	1.1.1� Business Problems or Technical Challenges
	1.1.2� Oracle Dynamic Services Solutions

	1.2� Overview of Concepts
	1.2.1� Service Provider
	1.2.2� Service Registry
	1.2.3� Application Profile Registry
	1.2.4� Service Administrator
	1.2.5� Service Consumer Application
	1.2.6� Dynamic Services Engine
	1.2.7� Services as Application Components
	1.2.8� Communication Between the Service Consumer Application and the Dynamic Services Engine
	1.2.9� Communication Between the Service Administrator and the Dynamic Services Engine

	1.3� Dynamic Services Implementation Overview
	1.3.1� Java Deployment View
	1.3.2� PL/SQL Deployment View
	1.3.3� Java (HTTP/Java Messaging Services (JMS)) Deployment View

	1.4� Using Multiple Dynamic Services Engines
	1.5� How to Get Started with Oracle Dynamic Services

	2 Installation
	2.1� System Requirements
	2.2� Dynamic Services Distribution
	2.3� Installing the DSSYS Schema
	2.4� Dynamic Services Configuration

	3 Configuration
	3.1� Configuring and Running the DSAdmin Utility
	3.1.1� Configuring Dynamic Services Proxy Settings
	3.1.2� Configuring the DSAdmin Utility
	3.1.3� Running the DSAdmin Utility

	3.2� Registering a New Service
	3.2.1� Creating a New Service Package Category
	3.2.2� Registering a Service Package

	3.3� Browsing Registered Services
	3.4� Executing a Registered Service

	4 Advanced Installation Options
	4.1� Enabling PL/SQL Interfaces
	4.2� Enabling Persistent Auditing or Event Monitor Services
	4.2.1� Configuring Oracle Advanced Queuing
	4.2.2� Installing Monitor Services
	4.2.3� Using the Event Monitor Utility
	4.2.4� Enabling Persistent Auditing
	4.2.5� Starting and Stopping the Event Monitor
	4.2.6� Using the Logger Monitor Service (Case Study)

	4.3� Enabling HTTP Communications
	4.3.1� Configuring the Apache/Jserv Servlet Engine
	4.3.2� Configuring the DSAdmin Utility to Use the HTTP Driver

	4.4� Enabling Java Messaging Services (JMS) Communications
	4.4.1� Configuring and Running the JMS Daemon
	4.4.2� Configuring the DSAdmin Utility to Enable JMS Communications

	4.5� Using Lightweight Directory Access Protocol (LDAP) as a Central Master Registry
	4.5.1� Setting Up LDAP with Oracle Internet Directory
	4.5.2� Configuring Dynamic Services Registry to Use LDAP

	4.6� Manual Fine-Tuning of Dynamic Services Properties

	5 Service Consumer Interfaces
	5.1� Java Interface for Service Consumers
	5.1.1� Setting the Classpath
	5.1.2� Registering a Service Consumer Application in the Application Profile Registry
	5.1.3� Opening a Connection to the Dynamic Services Engine
	5.1.4� Example: Executing the YahooPortfolio Service
	5.1.5� Displaying Service Response
	5.1.6� Service Consumer Application Sessions

	5.2� PL/SQL Interface for Service Consumers

	6 Service Development Guide
	6.1� Quick Start
	6.1.1� Creating a Service Package
	6.1.2� Service Provider -- Organization and Contacts XML Files
	6.1.3� Service Classification XML File
	6.1.4� Service Interface Specification -- Request Definition
	6.1.5� Service Interface Specification -- Response Definition
	6.1.6� Editing the Service Descriptor
	6.1.7� Testing the Execution of Your Service

	6.2� Creating Advanced Services -- Service Package
	6.3� Creating Advanced Services -- Service Descriptor
	6.3.1� Service Header Section
	6.3.2� Service Body Section

	6.4� Creating Advanced Services -- Description of Supplied Adaptors
	6.4.1� Input Adaptor
	6.4.2� Protocol Adaptors
	6.4.3� Execution Adaptors
	6.4.4� Output Adaptor

	6.5� Creating Advanced Services -- Building Your Own Adaptors
	6.5.1� Packaging Your Adaptor

	7 Service Administration
	7.1� Managing Consumer Applications
	7.2� Managing Services
	7.3� Service Response Caching
	7.4� Cache Cleanup
	7.5� Connecting Multiple Dynamic Services Engine Instances
	7.6� Additional Operations of the DSAdmin Utility
	7.6.1� Using Script Files with the DSAdmin Utility

	8 Known Issues and Problems
	8.1� Communications
	8.2� Service Execution
	8.3� Service Definitions and Creation
	8.4� Other Problems and Issues

	A Links
	B Frequently Asked Questions
	C Descriptive Matrix
	C.1� Syntax of the Service Descriptor Schema
	C.2� Syntax of the Parameters Section for the Packaged Adaptors
	C.2.1� oracle.ds.engine.ioa.DSXSLTInputAdaptor
	C.2.2� oracle.ds.engine.ioa.DSXSLTOutputAdaptor
	C.2.3� oracle.ds.engine.pa.DSHTTPProtocolAdaptor
	C.2.4� oracle.ds.engine.pa.DSJDBCProtocolAdaptor
	C.2.5� oracle.ds.engine.pa.DSSMTPProtocolAdaptor
	C.2.6� oracle.ds.engine.ea.compound.DSCompoundServiceExecutionAdaptor
	C.2.7� oracle.ds.engine.ea.DSConditionalExecutionAdaptor
	C.2.8� oracle.ds.engine.ea.DSFailOverExecutionAdaptor

	D Sample Service Packages
	E Error Messages
	E.1� Execution Engine Errors
	E.2� Communication Errors
	E.3� DS Registry Errors
	E.4� DS Engine Errors
	E.5� DS Driver Errors
	E.6� DS Compound Execution Adaptor Module Errors

	Glossary
	Index

