
Oracle� Workflow
Guide
RELEASE 2.6.2
VOLUME 1

March 2002

Oracle Workflow Guide Volume 1, Release 2.6.2

The part number for this volume is A95276–03. To reorder this book, please use the set part
number, A95265–03.

Copyright � 1996, 2002 Oracle Corporation. All rights reserved.

Primary Authors: Siu Chang, Clara Jaeckel

Major Contributors: George Buzsaki, John Cordes, Mark Craig, Kevin Hudson, George
Kellner, David Lam, Jin Liu, Kenneth Ma, Steve Mayze, Tim Roveda, Robin Seiden,
Sheryl Sheh, Susan Stratton

The Programs (which include both the software and documentation) contain proprietary information
of Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent
required to obtain interoperability with other independently created software or as specified by law, is
prohibited.

The information contained in this document is subject to change without notice. If you find any
problems in the documentation, please report them to us in writing. Oracle Corporation does not
warrant that this document is error–free. Except as may be expressly permitted in your license
agreement for these Programs, no part of these Programs may be reproduced or transmitted in any
form or by any means, electronic or mechanical, for any purpose, without the express written
permission of Oracle Corporation.

If the Programs are delivered to the US Government or anyone licensing or using the Programs on
behalf of the US Government, the following notice is applicable:

RESTRICTED RIGHTS NOTICE
Programs delivered subject to the DOD FAR Supplement are ”commercial computer software” and
use, duplication and disclosure of the Programs including documentation, shall be subject to the
licensing restrictions set forth in the applicable Oracle license agreement. Otherwise, Programs
delivered subject to the Federal Acquisition Regulations are ”restricted computer software” and use,
duplication and disclosure of the Programs shall be subject to the restrictions in FAR 52.227–19,
Commercial Computer Software – Restricted Rights (June, 1987). Oracle Corporation, 500 Oracle
Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be licensee’s responsibility to take all appropriate fail–safe,
back up, redundancy and other measures to ensure the safe use of such applications if the Programs
are used for such purposes, and Oracle disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Express, JInitiator, Oracle8, Oracle8i, Oracle9i, OracleMetaLink,
Oracle Press, Oracle Store, PL/SQL, and SQL*Plus are trademarks or registered trademarks of Oracle
Corporation. Other names may be trademarks of their respective owners.

 iiiContents

Contents

VOLUME 1Volume 1 i.

Preface xix.
Audience for This Guide xx.
How To Use This Guide xx.
Documentation Accessibility xxi.
Other Information Sources xxii.
Online Documentation xxii.
Related User’s Guides xxiii.
Guides Related to All Products xxiii.
User Guides Related to This Product xxiv.
Installation and System Administration xxv.
Other Implementation Documentation xxvi.
Training and Support xxviii.
Do Not Use Database Tools to Modify Oracle
Applications Data xxix.
About Oracle xxix.
Your Feedback xxx.

Chapter 1 Overview of Oracle Workflow 1 – 1.
Introduction to Oracle Workflow 1 – 2.

Major Features and Definitions 1 – 3.
Workflow Processes 1 – 6.

 iv Oracle Workflow Guide

Chapter 2 Setting Up Oracle Workflow 2 – 1.
Oracle Workflow Hardware and Software Requirements 2 – 2.
Overview of Setting Up 2 – 6.

Overview of Required Setup Steps for the
Standalone Version of Oracle Workflow 2 – 6.
Overview of Required Setup Steps for the Version of
Oracle Workflow Embedded in Oracle Applications 2 – 7.
Optional Setup Steps 2 – 7.
Other Workflow Features 2 – 8.
Identifying the Version of Your Oracle Workflow Server 2 – 9. . .
Setup Flowchart 2 – 10.
Setup Checklist 2 – 11.
Setup Steps 2 – 12.

Overview of Oracle Workflow Access Protection 2 – 101.
Setting Up a Default Access Level 2 – 105.

Using the Workflow Definitions Loader 2 – 107.
Using the Workflow XML Loader 2 – 112.

Chapter 3 Defining a Workflow Process 3 – 1.
Overview of Oracle Workflow Builder 3 – 2.

The Navigator Tree Structure 3 – 3.
Viewing the Navigator Tree 3 – 4.

Creating Process Definitions in Oracle Workflow Builder 3 – 7.
Opening and Saving Item Types 3 – 12.
Quick Start Wizard Overview 3 – 18.
Using Oracle Workflow Builder with Different
Server Versions 3 – 21.

Item Type Definition Web Page 3 – 24.

Chapter 4 Defining Workflow Process Components 4 – 1.
Workflow Process Components 4 – 2.

Item Types 4 – 2.
Allowing Access to an Object 4 – 17.
Lookup Types 4 – 19.
Messages 4 – 23.
Activities 4 – 42.
Voting Activity 4 – 61.

Deleting Objects in Oracle Workflow Builder 4 – 68.
Modifying Objects in Oracle Workflow Builder 4 – 69.

Workflow Objects That Support Versioning 4 – 70.

 vContents

Workflow Objects That Do Not Support Versioning 4 – 71.

Chapter 5 Defining a Workflow Process Diagram 5 – 1.
Process Window 5 – 2.

Modifying Fonts in Oracle Workflow Builder 5 – 21.
Creating a Shortcut Icon for a Workflow Process 5 – 22.

Roles 5 – 24.

Chapter 6 Predefined Workflow Activities 6 – 1.
Standard Activities 6 – 2.

And/Or Activities 6 – 2.
Comparison Activities 6 – 3.
Compare Execution Time Activity 6 – 3.
Wait Activity 6 – 4.
Block Activity 6 – 5.
Defer Thread Activity 6 – 6.
Launch Process Activity 6 – 6.
Noop Activity 6 – 7.
Loop Counter Activity 6 – 7.
Start Activity 6 – 8.
End Activity 6 – 8.
Role Resolution Activity 6 – 9.
Notify Activity 6 – 9.
Vote Yes/No Activity 6 – 10.
Master/Detail Coordination Activities 6 – 11.
Wait for Flow Activity 6 – 12.
Continue Flow Activity 6 – 12.
Assign Activity 6 – 14.
Get Monitor URL Activity 6 – 14.
Get Event Property Activity 6 – 15.
Set Event Property Activity 6 – 15.
Compare Event Property Activity 6 – 16.
XML Get Tag Value Activity 6 – 18.
XML Compare Tag Value Activities 6 – 19.
XML Transform Activity 6 – 20.

Concurrent Manager Standard Activities 6 – 22.
Execute Concurrent Program Activity 6 – 22.
Submit Concurrent Program Activity 6 – 23.
Wait for Concurrent Program Activity 6 – 24.

Default Error Process 6 – 26.

 vi Oracle Workflow Guide

System: Error Item Type and Item Attributes 6 – 27.
Default Error Process 6 – 28.
Retry–only Process 6 – 32.
Default Event Error Process 6 – 34.

Chapter 7 Defining Procedures and Functions for Oracle Workflow 7 – 1. . . .
Defining Procedures and Functions for Oracle Workflow 7 – 2.
Standard API for PL/SQL Procedures Called by Function
Activities 7 – 3.
Standard API for Java Procedures Called by Function
Activities 7 – 8.
Standard API for an Item Type Selector or Callback Function 7 – 13. .
Standard APIs for ”PL/SQL” and ”PL/SQL CLOB”
Documents 7 – 17.

”PL/SQL” Documents 7 – 17.
”PL/SQL CLOB” Documents 7 – 19.

Standard API for an Event Data Generate Function 7 – 21.
Standard APIs for a Queue Handler 7 – 23.

Enqueue 7 – 23.
Dequeue 7 – 24.

Standard API for an Event Subscription Rule Function 7 – 25.

Chapter 8 Oracle Workflow APIs 8 – 1.
Oracle Workflow Procedures and Functions 8 – 2.
Overview of the Workflow Engine 8 – 3.

Oracle Workflow Java Interface 8 – 5.
Additional Workflow Engine Features 8 – 8.

Workflow Engine APIs 8 – 19.
CreateProcess 8 – 21.
SetItemUserKey 8 – 23.
GetItemUserKey 8 – 24.
GetActivityLabel 8 – 25.
SetItemOwner 8 – 26.
StartProcess 8 – 28.
LaunchProcess 8 – 30.
SuspendProcess 8 – 32.
ResumeProcess 8 – 34.
AbortProcess 8 – 36.
CreateForkProcess 8 – 38.
StartForkProcess 8 – 40.

 viiContents

Background 8 – 41.
AddItemAttribute 8 – 43.
AddItemAttributeArray 8 – 46.
SetItemAttribute 8 – 48.
SetItemAttrDocument 8 – 51.
SetItemAttributeArray 8 – 53.
getItemTypes 8 – 56.
GetItemAttribute 8 – 57.
GetItemAttrDocument 8 – 59.
GetItemAttrClob 8 – 60.
getItemAttributes 8 – 61.
GetItemAttrInfo 8 – 62.
GetActivityAttrInfo 8 – 63.
GetActivityAttribute 8 – 64.
GetActivityAttrClob 8 – 66.
BeginActivity 8 – 67.
CompleteActivity 8 – 69.
CompleteActivityInternalName 8 – 72.
AssignActivity 8 – 74.
Event 8 – 75.
HandleError 8 – 77.
SetItemParent 8 – 79.
ItemStatus 8 – 80.
getProcessStatus 8 – 81.

Workflow Function APIs 8 – 82.
loadItemAttributes 8 – 83.
loadActivityAttributes 8 – 84.
getActivityAttr 8 – 85.
getItemAttr 8 – 87.
setItemAttrValue 8 – 88.
execute 8 – 89.

Workflow Attribute APIs 8 – 90.
WFAttribute 8 – 92.
value 8 – 93.
getName 8 – 94.
getValue 8 – 95.
getType 8 – 96.
getFormat 8 – 97.
getValueType 8 – 98.
toString 8 – 99.
compareTo 8 – 100.

Workflow Core APIs 8 – 101.

 viii Oracle Workflow Guide

CLEAR 8 – 102.
GET_ERROR 8 – 103.
TOKEN 8 – 104.
RAISE 8 – 105.
CONTEXT 8 – 108.
TRANSLATE 8 – 110.

Workflow Purge APIs 8 – 111.
Items 8 – 113.
Activities 8 – 114.
Notifications 8 – 115.
Total 8 – 116.
TotalPERM 8 – 117.
AdHocDirectory 8 – 118.
Purge Obsolete Workflow Runtime Data Concurrent
Program 8 – 119.

Workflow Directory Service APIs 8 – 121.
GetRoleUsers 8 – 123.
GetUserRoles 8 – 124.
GetRoleInfo 8 – 125.
GetRoleInfo2 8 – 126.
IsPerformer 8 – 127.
UserActive 8 – 128.
GetUserName 8 – 129.
GetRoleName 8 – 130.
GetRoleDisplayName 8 – 131.
SetAdHocUserStatus 8 – 132.
SetAdHocRoleStatus 8 – 133.
CreateAdHocUser 8 – 134.
CreateAdHocRole 8 – 136.
AddUsersToAdHocRole 8 – 138.
SetAdHocUserExpiration 8 – 139.
SetAdHocRoleExpiration 8 – 140.
SetAdHocUserAttr 8 – 141.
SetAdHocRoleAttr 8 – 142.
RemoveUsersFromAdHocRole 8 – 143.

Workflow LDAP APIs 8 – 144.
Synch_changes 8 – 145.
Synch_all 8 – 146.
Schedule_changes 8 – 147.

Workflow Preferences API 8 – 148.
get_pref 8 – 148.

Workflow Monitor APIs 8 – 149.

 ixContents

GetAccessKey 8 – 150.
GetDiagramURL 8 – 151.
GetEnvelopeURL 8 – 153.
GetAdvancedEnvelopeURL 8 – 155.

Oracle Workflow Views 8 – 157.
WF_ITEM_ACTIVITY_STATUSES_V 8 – 157.
WF_NOTIFICATION_ATTR_RESP_V 8 – 159.
WF_RUNNABLE_PROCESSES_V 8 – 160.
WF_ITEMS_V 8 – 161.

Workflow Queue APIs 8 – 162.
EnqueueInbound 8 – 165.
DequeueOutbound 8 – 167.
DequeueEventDetail 8 – 170.
PurgeEvent 8 – 172.
PurgeItemType 8 – 173.
ProcessInboundQueue 8 – 174.
GetMessageHandle 8 – 175.
DequeueException 8 – 176.
DeferredQueue 8 – 177.
InboundQueue 8 – 178.
OutboundQueue 8 – 179.
ClearMsgStack 8 – 180.
CreateMsg 8 – 181.
WriteMsg 8 – 182.
SetMsgAttr 8 – 183.
SetMsgResult 8 – 184.

Document Management APIs 8 – 185.
get_launch_document_url 8 – 186.
get_launch_attach_url 8 – 187.
get_open_dm_display_window 8 – 188.
get_open_dm_attach_window 8 – 189.
set_document_id_html 8 – 190.

Overview of the Oracle Workflow Notification System 8 – 192.
Notification Model 8 – 192.

Notification APIs 8 – 197.
Send 8 – 199.
Custom Callback Function 8 – 200.
SendGroup 8 – 203.
Forward 8 – 205.
Transfer 8 – 207.
Cancel 8 – 209.

 x Oracle Workflow Guide

CancelGroup 8 – 210.
Respond 8 – 211.
Responder 8 – 212.
VoteCount 8 – 213.
OpenNotificationsExist 8 – 214.
Close 8 – 215.
AddAttr 8 – 216.
SetAttribute 8 – 217.
GetAttrInfo 8 – 219.
GetInfo 8 – 220.
GetText 8 – 221.
GetShortText 8 – 222.
GetAttribute 8 – 223.
GetAttrDoc 8 – 225.
GetSubject 8 – 226.
GetBody 8 – 227.
GetShortBody 8 – 228.
TestContext 8 – 229.
AccessCheck 8 – 230.
WorkCount 8 – 231.
getNotifications 8 – 232.
getNotificationAttributes 8 – 233.
WriteToClob 8 – 234.

Overview of the Oracle Workflow Business Event System 8 – 235.
Business Event System Datatypes 8 – 236.

Agent Structure 8 – 237.
getName 8 – 237.
getSystem 8 – 237.
setName 8 – 238.
setSystem 8 – 238.
Parameter Structure 8 – 239.
getName 8 – 239.
getValue 8 – 239.
setName 8 – 240.
setValue 8 – 240.
Parameter List Structure 8 – 241.
Event Message Structure 8 – 242.
Initialize 8 – 245.
getPriority 8 – 245.
getSendDate 8 – 245.
getReceiveDate 8 – 246.
getCorrelationID 8 – 246.

 xiContents

getParameterList 8 – 246.
getEventName 8 – 246.
getEventKey 8 – 247.
getEventData 8 – 247.
getFromAgent 8 – 247.
getToAgent 8 – 247.
getErrorSubscription 8 – 247.
getErrorMessage 8 – 248.
getErrorStack 8 – 248.
setPriority 8 – 248.
setSendDate 8 – 248.
setReceiveDate 8 – 249.
setCorrelationID 8 – 249.
setParameterList 8 – 249.
setEventName 8 – 250.
setEventKey 8 – 250.
setEventData 8 – 250.
setFromAgent 8 – 251.
setToAgent 8 – 251.
setErrorSubscription 8 – 251.
setErrorMessage 8 – 251.
setErrorStack 8 – 252.
Content 8 – 252.
Address 8 – 253.
AddParameterToList 8 – 253.
GetValueForParameter 8 – 253.
Example for Using Abstract Datatypes 8 – 255.
Mapping Between WF_EVENT_T and
OMBAQ_TEXT_MSG 8 – 257.

Event APIs 8 – 260.
Raise 8 – 261.
Send 8 – 265.
NewAgent 8 – 267.
Test 8 – 268.
Enqueue 8 – 269.
Listen 8 – 270.
Workflow Agent Listener Concurrent Program 8 – 272.
SetErrorInfo 8 – 273.
SetDispatchMode 8 – 274.
AddParameterToList 8 – 275.
AddParameterToListPos 8 – 276.
GetValueForParameter 8 – 277.

 xii Oracle Workflow Guide

GetValueForParameterPos 8 – 278.
Event Subscription Rule Function APIs 8 – 279.

Default_Rule 8 – 281.
Log 8 – 283.
Error 8 – 284.
Warning 8 – 285.
Success 8 – 286.
Workflow_Protocol 8 – 287.
Error_Rule 8 – 288.
SetParametersIntoParameterList 8 – 289.

Event Function APIs 8 – 290.
Parameters 8 – 291.
SubscriptionParameters 8 – 293.
AddCorrelation 8 – 294.
Generate 8 – 296.
Receive 8 – 298.

Business Event System Replication APIs 8 – 300.
WF_EVENTS Document Type Definition 8 – 302.
WF_EVENTS_PKG.Generate 8 – 303.
WF_EVENTS_PKG.Receive 8 – 304.
WF_EVENT_GROUPS Document Type Definition 8 – 305.
WF_EVENT_GROUPS_PKG.Generate 8 – 306.
WF_EVENT_GROUPS_PKG.Receive 8 – 307.
WF_SYSTEMS Document Type Definition 8 – 308.
WF_SYSTEMS_PKG.Generate 8 – 309.
WF_SYSTEMS_PKG.Receive 8 – 310.
WF_AGENTS Document Type Definition 8 – 311.
WF_AGENTS_PKG.Generate 8 – 312.
WF_AGENTS_PKG.Receive 8 – 313.
WF_EVENT_SUBSCRIPTIONS Document Type
Definition 8 – 314.
WF_EVENT_SUBSCRIPTIONS_PKG.Generate 8 – 315.
WF_EVENT_SUBSCRIPTIONS_PKG.Receive 8 – 316.

Index

 xiiiContents

VOLUME 2Volume 2 i.

Chapter 9 Oracle Workflow Home Page 9 – 1.
Accessing the Oracle Workflow Home Page 9 – 2.

Setting User Preferences 9 – 6.

Chapter 10 Viewing Notifications and Processing Responses 10 – 1.
Overview of Notification Handling 10 – 2.

Reviewing Notifications via Electronic Mail 10 – 2.
Viewing Notifications from a Web Browser 10 – 12.
Reviewing a Summary of Your Notifications via
Electronic Mail 10 – 24.
Defining Rules for Automatic Notification Processing 10 – 25.

Chapter 11 Monitoring Workflow Processes 11 – 1.
Overview of Workflow Monitoring 11 – 2.

Workflow Monitor 11 – 2.
Workflow Monitor Access 11 – 7.

Chapter 12 Testing a Workflow Definition 12 – 1.
Testing Workflow Definitions 12 – 2.

Chapter 13 Managing Business Events 13 – 1.
Managing Business Events 13 – 2.

Events 13 – 4.
Systems 13 – 17.
Agents 13 – 22.
Event Subscriptions 13 – 34.
Setting Up Message Propagation 13 – 53.
Raising Events 13 – 65.
Signing Up Systems 13 – 67.
Synchronizing Systems 13 – 70.
Reviewing Local Queues 13 – 72.

Workflow Agent Ping/Acknowledge 13 – 77.
The Workflow Agent Ping/Acknowledge Item Type 13 – 78.
Summary of the Master Ping Process 13 – 79.
Master Ping Process Activities 13 – 80.
Summary of the Detail Ping Process 13 – 81.

 xiv Oracle Workflow Guide

Detail Ping Process Activities 13 – 82.

Chapter 14 Predefined Workflow Events 14 – 1.
Predefined Workflow Events 14 – 2.

Event Definition Events 14 – 2.
Event Group Definition Events 14 – 3.
System Definition Events 14 – 4.
Agent Definition Events 14 – 4.
Event Subscription Definition Events 14 – 5.
Synchronize Event Systems Event 14 – 5.
Seed Event Group 14 – 6.
Ping Agent Events 14 – 8.
System Signup Event 14 – 9.
Any Event 14 – 10.
Unexpected Event 14 – 12.
User Entry Has Changed Event 14 – 15.

Workflow Send Protocol 14 – 17.
The Workflow Send Protocol Item Type 14 – 18.
Summary of the Workflow Event Protocol Process 14 – 20.
Workflow Event Protocol Process Activities 14 – 21.
Workflow Send Protocol Events 14 – 24.

Chapter 15 Demonstration Workflow Processes 15 – 1.
Sample Workflow Processes 15 – 2.

Displaying the Process Diagram of a Sample Workflow 15 – 3. . . .
Requisition Process 15 – 5.

Installing the Requisition Data Model 15 – 6.
Initiating the Requisition Workflow 15 – 8.
The Requisition Item Type 15 – 12.
Summary of the Requisition Approval Process 15 – 13.
Requisition Process Activities 15 – 15.
Summary of the Notify Approver Subprocess 15 – 19.
Notify Approver Subprocess Activities 15 – 21.
Sample StartProcess Function 15 – 23.
Example Function Activities 15 – 26.
Example: Select Approver 15 – 26.
Example: Verify Authority 15 – 29.
Example Notification Activity 15 – 31.
Example: Notify Requisition Approval Required 15 – 31.

Product Survey Process 15 – 34.

 xvContents

Installing the Product Survey Data Model 15 – 35.
Initiating the Product Survey Workflow 15 – 36.
The Product Survey Item Type 15 – 38.
Summary of the Survey – Single Process 15 – 39.
Survey – Single Process Activities 15 – 41.
Summary of the Survey – Master/Detail Process 15 – 42.
Survey – Master/Detail Process Activities 15 – 44.
Summary of the Detail Survey Process 15 – 46.
Detail Survey Process Activities 15 – 47.

Document Review Process 15 – 49.
The Document Management Item Type 15 – 49.
Summary of the Document Review Process 15 – 50.
Document Review Process Activities 15 – 52.

Error Check Process 15 – 54.
The Periodic Alert Item Type 15 – 54.
Summary of the Error Check Process 15 – 56.
Error Check Process Activities 15 – 57.
Summary of the User Defined Alert Action Process 15 – 60.
User Defined Alert Action Process Activities 15 – 61.

Event System Demonstration 15 – 63.
Installing the Event System Demonstration Data Model 15 – 64. . .
Initiating the Event System Demonstration Workflow 15 – 66.
The Event System Demonstration Item Type 15 – 71.
Summary of the Buyer: Top Level PO Process 15 – 73.
Buyer: Top Level PO Process Activities 15 – 75.
Summary of the Buyer: Send PO to Supplier Subprocess 15 – 78. . .
Buyer: Send PO to Supplier Subprocess Activities 15 – 78.
Summary of the Buyer: Receive Supplier PO
Acknowledgement Subprocess 15 – 80.
Buyer: Receive Supplier PO Acknowledgement
Subprocess Activities 15 – 81.
Summary of the Buyer: Advanced Shipment Notice
Subprocess 15 – 83.
Buyer: Advanced Shipment Notice Subprocess Activities 15 – 84. .
Summary of the Buyer: Receive Supplier Invoicing
Subprocess 15 – 85.
Buyer: Receive Supplier Invoicing Subprocess Activities 15 – 86. . .
Summary of the Supplier: Top Level Order Process 15 – 87.
Supplier: Top Level Order Process Activities 15 – 88.
Summary of the Supplier: Get Order Details Subprocess 15 – 91. . .
Supplier: Get Order Details Subprocess Activities 15 – 92.
Summary of the Supplier: Credit Check Subprocess 15 – 94.

 xvi Oracle Workflow Guide

Supplier: Credit Check Subprocess Activities 15 – 95.
Summary of the Supplier: Stock Check Subprocess 15 – 96.
Supplier: Stock Check Subprocess Activities 15 – 97.
Summary of the Supplier: Advanced Shipment Notice
Subprocess 15 – 98.
Supplier: Advanced Shipment Notice Subprocess
Activities 15 – 99.
Summary of the Supplier: Send Supplier Invoice
Subprocess 15 – 100.
Supplier: Send Supplier Invoice Subprocess Activities 15 – 101.
B2B Purchase Order Event 15 – 102.
B2B Purchase Order Acknowledgement Event 15 – 105.
B2B Advanced Shipment Notice Event 15 – 106.
B2B Invoice Event 15 – 107.

Chapter 16 Workflow Administration Scripts 16 – 1.
Miscellaneous SQL Scripts 16 – 2.

FNDWFLST 16 – 4.
FNDWFPR 16 – 5.
WFNLADD.sql 16 – 5.
Wfagtlst.sql 16 – 6.
Wfbkg.sql 16 – 6.
Wfbkgchk.sql 16 – 7.
Wfchact.sql 16 – 7.
Wfchacta.sql 16 – 7.
Wfchita.sql 16 – 8.
Wfchitt.sql 16 – 8.
Wfchluc.sql 16 – 8.
Wfchlut.sql 16 – 9.
Wfchmsg.sql 16 – 9.
Wfchmsga.sql 16 – 9.
Wfdirchk.sql 16 – 10.
Wfevtenq.sql 16 – 10.
Wfjvstop.sql 16 – 11.
Wfmqupd.sql 16 – 12.
Wfnlena.sql 16 – 12.
Wfntfsh.sql 16 – 12.
Wfprot.sql 16 – 12.
Wfqclean.sql 16 – 13.
Wfrefchk.sql 16 – 13.
Wfretry.sql 16 – 13.
Wfrmall.sql 16 – 14.

 xviiContents

Wfrmita.sql 16 – 14.
Wfrmitms.sql 16 – 15.
Wfrmitt.sql 16 – 15.
Wfrmtype.sql 16 – 15.
Wfrun.sql 16 – 15.
Wfstat.sql 16 – 16.
Wfstatus.sql 16 – 16.
Wfstdchk.sql 16 – 16.
Wfver.sql 16 – 16.
Wfverchk.sql 16 – 17.
Wfverupd.sql 16 – 17.

Appendix A Oracle Workflow Builder Menus and Toolbars A – 1.
Oracle Workflow Builder Menus A – 2.
Oracle Workflow Builder Toolbars A – 7.

Appendix B Oracle Workflow Implementation in Other Oracle Products B – 1.
Predefined Workflows Embedded in Oracle E–Business Suite B – 2. .
Oracle Workflow Business Event System Implementation
in Oracle E–Business Suite B – 16.
Oracle Workflow Implementation in the Oracle9i Platform B – 18. . . .
Oracle Support Policy for Predefined Workflows, Events,
and Subscriptions B – 20.

Customization Guidelines B – 20.
Resolving Customization Issues B – 21.
What Is NOT Supported B – 21.
What Is Supported B – 21.

Appendix C Oracle Workflow Performance Concepts C – 1.
Oracle Workflow Performance Concepts C – 2.

Designing Workflow Processes for Performance C – 2.
Managing Runtime Data for Performance C – 8.

Glossary

Index

 xviii Oracle Workflow Guide

 xixPreface

Preface

 xx Oracle Workflow Guide

Audience for This Guide

Welcome to the Oracle Workflow Guide.

This guide assumes you have a working knowledge of the following:

• The principles and customary practices of your business area.

• Oracle Workflow

If you have never used Oracle Workflow, Oracle suggests you
attend one or more of the Oracle Workflow training classes
available through Oracle University.

See Other Information Sources for more information about Oracle
Applications product information.

The Oracle Workflow Guide also assumes you have a basic
understanding of operating system concepts and familiarity with
Oracle database server, PL/SQL, and Oracle9i Application Server
technology. If you have not yet been introduced to any of these
systems, Oracle suggests you attend one or more of the training classes
available through Oracle University.

How To Use This Guide

This guide contains the information you need to understand and use
Oracle Workflow.

• Chapter 1 provides an overview of Oracle Workflow.

• Chapter 2 describes how to implement Oracle Workflow for your
site.

• Chapter 3 describes how to begin defining a workflow process.

• Chapter 4 describes how to define the components necessary to
build a workflow process.

• Chapter 5 describes how to draw and define a workflow process
diagram.

• Chapter 6 describes the standard activities provided with Oracle
Workflow.

• Chapter 7 describes the standard APIs for the PL/SQL and Java
functions that can be called by Oracle Workflow.

• Chapter 8 provides detailed information about Oracle
Workflow’s APIs.

 xxiPreface

• Chapter 9 describes the Oracle Workflow home page, where
users and administrators can centrally access all the web–based
features of Oracle Workflow.

• Chapter 10 discusses how a user can view and act on a workflow
notification.

• Chapter 11 describes how to use the Workflow Monitor to
administer or view the status of a workflow process.

• Chapter 12 describes how to launch a workflow process for
testing purposes.

• Chapter 13 describes how to manage business events.

• Chapter 14 describes the standard events provided with Oracle
Workflow.

• Chapter 15 describes the demonstration workflow processes
included with Oracle Workflow.

• Chapter 16 describes the miscellaneous administrative SQL
scripts included with Oracle Workflow.

• Appendix A describes the Oracle Workflow Builder menus and
toolbar.

• Appendix B lists the predefined workflow processes that are
included with the Oracle Applications–embedded version of
Oracle Workflow, the Oracle Applications features that leverage
the Business Event System, and the Oracle9i platform features
that leverage Oracle Workflow. This appendix also includes the
Oracle Workflow support policy.

• Appendix C describes concepts and techniques that you can use
for performance gain when running Oracle Workflow.

At the end of this guide, we include a glossary of Oracle Workflow
terms.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting
documentation accessible, with good usability, to the disabled
community. To that end, our documentation includes features that
make information available to users of assistive technology. This
documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with
other market–leading technology vendors to address technical

 xxii Oracle Workflow Guide

obstacles so that our documentation can be accessible to all of our
customers. For additional information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

JAWS, a Windows screen reader, may not always correctly read the
code examples in this document. The conventions for writing code
require that closing braces should appear on an otherwise empty line;
however, JAWS may not always read a line of text that consists solely
of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies
or organizations that Oracle Corporation does not own or control.
Oracle Corporation neither evaluates nor makes any representations
regarding the accessibility of these Web sites.

Other Information Sources

You can choose from many sources of information, including online
documentation, training, and support services, to increase your
knowledge and understanding of Oracle Workflow.

If this guide refers you to other Oracle Applications documentation,
use only the Release 11i versions of those guides.

Online Documentation

If you are using the version of Oracle Workflow embedded in Oracle
Applications, note that all Oracle Applications documentation is
available online (HTML or PDF).

• Online Help – The new features section in the HTML help
describes new features in 11i. This information is updated for
each new release of Oracle Workflow. The new features section
also includes information about any features that were not yet
available when this guide was printed. For example, if your
administrator has installed software from a mini–pack or an
upgrade, this document describes the new features. Online help
patches are available on OracleMetaLink.

 xxiiiPreface

• 11i Features Matrix – This document lists new features available
by patch and identifies any associated new documentation. The
new features matrix document is available on OracleMetaLink.

• Readme File – Refer to the readme file for patches that you have
installed to learn about new documentation or documentation
patches that you can download.

Portions of this guide are also available online in Windows Help
format. The Windows Help is available from the Oracle Workflow
Builder Help menu.

If you are using the standalone version of Oracle Workflow, note that
this guide is available online in HTML format, and portions of the
guide are available in Windows Help format as well. The Windows
Help is available from the Oracle Workflow Builder Help menu. The
HTML documentation is available from a URL provided by your
system administrator or from the help icon in the Oracle Workflow web
pages.

Related User’s Guides

Oracle Workflow is used by other Oracle Applications products to
provide embedded workflows. Therefore, if you are using the version
of Oracle Workflow embedded in Oracle Applications, you may want
to refer to other user’s guides when you set up and use Oracle
Workflow to learn more about the embedded workflows.

You can read the guides online by choosing Library from the
expandable menu on your HTML help window, by reading from the
Oracle Applications Document Library CD included in your media
pack, or by using a Web browser with a URL that your system
administrator provides.

If you require printed guides, you can purchase them from the Oracle
Store at http://oraclestore.oracle.com.

Guides Related to All Products

Oracle Applications User’s Guide

This guide explains how to enter data, query, run reports, and navigate
using the graphical user interface (GUI) available with this release of
Oracle Workflow (and any other Oracle Applications products). This
guide also includes information on setting user profiles, as well as
running and reviewing reports and concurrent processes.

 xxiv Oracle Workflow Guide

You can access this user’s guide online by choosing ”Getting Started
with Oracle Applications” from any Oracle Applications help file.

User Guides Related to This Product

Oracle General Ledger User Guide

This guide provides information about journal entry, budgeting, and
multi–company accounting and consolidation.

Oracle Purchasing User’s Guide

This guide provides information about entering and managing
purchase orders and requisitions.

Implementing Oracle Self–Service Human Resources (SSHR)

This guide provides information about setting up the self–service
human resources management functions for managers and employees.
Managers and employees can then use an intranet and Web browser to
have easy and intuitive access to personal and career management
functionality

Oracle Payables User Guide

This guide provides information about entering and managing
suppliers, invoices, and payments.

Oracle Projects User Guide

This guide provides information about entering and managing projects,
budgets, expenditures, costing, and billing.

Oracle Receivables User Guide

This guide provides information about entering and managing
customers, receipts, collections, and transactions.

Oracle Business Intelligence System Implementation Guide

This guide provides information about implementing Oracle Business
Intelligence (BIS) in your environment.

 xxvPreface

BIS 11i User Guide Online Help

This guide is provided as online help only from the BIS application and
includes information about intelligence reports, Discoverer workbooks,
and the Performance Management Framework.

Oracle Financials Open Interface Reference

This guide is a compilation of all open interface descriptions in all
Oracle Financial Applications user’s guides.

Oracle XML Gateway User’s Guide

This guide explains how to implement the production and
consumption of valid, well–formed XML messages between Oracle
Applications and trading partners.

Installation and System Administration

Oracle Applications Concepts

This guide provides an introduction to the concepts, features,
technology stack, architecture, and terminology for Oracle Applications
Release 11i. It provides a useful first book to read before an installation
of Oracle Applications. This guide also introduces the concepts behind
Applications–wide features such as Business Intelligence (BIS),
languages and character sets, and Self–Service Web Applications.

Installing Oracle Applications

This guide provides instructions for managing the installation of Oracle
Applications products. In Release 11i, much of the installation process
is handled using Oracle Rapid Install, which minimizes the time to
install Oracle Applications, the Oracle8 technology stack, and the
Oracle8i Server technology stack by automating many of the required
steps. This guide contains instructions for using Oracle Rapid Install
and lists the tasks you need to perform to finish your installation. You
should use this guide in conjunction with individual product user’s
guides and implementation guides.

Upgrading Oracle Applications

Refer to this guide if you are upgrading your Oracle Applications
Release 10.7 or Release 11.0 products to Release 11i. This guide
describes the upgrade process and lists database and product–specific

 xxvi Oracle Workflow Guide

upgrade tasks. You must be either at Release 10.7 (NCA, SmartClient,
or character mode) or Release 11.0, to upgrade to Release 11i. You
cannot upgrade to Release 11i directly from releases prior to 10.7.

Maintaining Oracle Applications

Use this guide to help you run the various AD utilities, such as
AutoUpgrade, AutoPatch, AD Administration, AD Controller, AD
Relink, License Manager, and others. It contains how–to steps,
screenshots, and other information that you need to run the AD
utilities. This guide also provides information on maintaining the
Oracle applications file system and database.

Oracle Applications System Administrator’s Guide

This guide provides planning and reference information for the Oracle
Applications System Administrator. It contains information on how to
define security, customize menus and online help, and manage
concurrent processing.

Oracle Alert User’s Guide

This guide explains how to define periodic and event alerts to monitor
the status of your Oracle Applications data.

Oracle Applications Developer’s Guide

This guide contains the coding standards followed by the Oracle
Applications development staff. It describes the Oracle Application
Object Library components needed to implement the Oracle
Applications user interface described in the Oracle Applications User
Interface Standards for Forms–Based Products. It also provides information
to help you build your custom Oracle Forms Developer 6i forms so that
they integrate with Oracle Applications.

Other Implementation Documentation

Oracle Applications Product Update Notes

Use this guide as a reference for upgrading an installation of Oracle
Applications. It provides a history of the changes to individual Oracle
Applications products between Release 11.0 and Release 11i. It includes
new features, enhancements, and changes made to database objects,
profile options, and seed data for this interval.

 xxviiPreface

Multiple Reporting Currencies in Oracle Applications

If you use the Multiple Reporting Currencies feature to record
transactions in more than one currency, use this manual before
implementing Oracle Workflow. This manual details additional steps
and setup considerations for implementing Oracle Workflow with this
feature.

Multiple Organizations in Oracle Applications

This guide describes how to set up and use Oracle Workflow with
Oracle Applications’ Multiple Organization support feature, so you can
define and support different organization structures when running a
single installation of Oracle Workflow.

Oracle Applications Flexfields Guide

This guide provides flexfields planning, setup and reference
information for the Oracle Workflow implementation team, as well as
for users responsible for the ongoing maintenance of Oracle
Applications product data. This manual also provides information on
creating custom reports on flexfields data.

Oracle eTechnical Reference Manuals

Each eTechnical Reference Manual (eTRM) contains database diagrams
and a detailed description of database tables, forms, reports, and
programs for a specific Oracle Applications product. This information
helps you convert data from your existing applications, integrate
Oracle Applications data with non–Oracle applications, and write
custom reports for Oracle Applications products. Oracle eTRM is
available on OracleMetaLink.

Oracle Applications User Interface Standards
for Forms–Based Products

This guide contains the user interface (UI) standards followed by the
Oracle Applications development staff. It describes the UI for the
Oracle Applications products and how to apply this UI to the design of
an application built by using Oracle Forms.

Oracle Manufacturing APIs and Open Interfaces Manual

This manual contains up–to–date information about integrating with
other Oracle Manufacturing applications and with your other systems.

 xxviii Oracle Workflow Guide

This documentation includes APIs and open interfaces found in Oracle
Manufacturing.

Oracle Order Management Suite APIs and Open Interfaces Manual

This manual contains up–to–date information about integrating with
other Oracle Manufacturing applications and with your other systems.
This documentation includes APIs and open interfaces found in Oracle
Order Management Suite.

Oracle Applications Message Reference Manual

This manual describes all Oracle Applications messages. This manual is
available in HTML format on the documentation CD–ROM for Release
11i.

Training and Support

Training

Oracle offers a complete set of training courses to help you and your
staff master Oracle Workflow and reach full productivity quickly. These
courses are organized into functional learning paths, so you take only
those courses appropriate to your job or area of responsibility.

You have a choice of educational environments. You can attend courses
offered by Oracle University at any one of our many Education
Centers, you can arrange for our trainers to teach at your facility, or
you can use Oracle Learning Network (OLN), Oracle University’s
online education utility. In addition, Oracle training professionals can
tailor standard courses or develop custom courses to meet your needs.
For example, you may want to use your organization structure,
terminology, and data as examples in a customized training session
delivered at your own facility.

Support

From on–site support to central support, our team of experienced
professionals provides the help and information you need to keep
Oracle Workflow working for you. This team includes your Technical
Representative and Account Manager, and Oracle’s large staff of
consultants and support specialists with expertise in your business
area, managing an Oracle database server, and your hardware and
software environment.

 xxixPreface

Do Not Use Database Tools to Modify Oracle Applications Data

Oracle STRONGLY RECOMMENDS that you never use SQL*Plus,
Oracle Data Browser, database triggers, or any other tool to modify
Oracle Applications data unless otherwise instructed.

Oracle provides powerful tools you can use to create, store, change,
retrieve, and maintain information in an Oracle database. But if you use
Oracle tools such as SQL*Plus to modify Oracle Applications data, you
risk destroying the integrity of your data and you lose the ability to
audit changes to your data.

Because Oracle Applications tables are interrelated, any change you
make using Oracle Applications can update many tables at once. But
when you modify Oracle Applications data using anything other than
Oracle Applications, you may change a row in one table without
making corresponding changes in related tables. If your tables get out
of synchronization with each other, you risk retrieving erroneous
information and you risk unpredictable results throughout Oracle
Applications.

When you use Oracle Applications to modify your data, Oracle
Applications automatically checks that your changes are valid. Oracle
Applications also keeps track of who changes information. If you enter
information into database tables using database tools, you may store
invalid information. You also lose the ability to track who has changed
your information because SQL*Plus and other database tools do not
keep a record of changes.

About Oracle

Oracle Corporation develops and markets an integrated line of
software products for database management, applications
development, decision support, and office automation, as well as
Oracle Applications, an integrated suite of more than 160 software
modules for financial management, supply chain management,
manufacturing, project systems, human resources, and customer
relationship management.

Oracle products are available for mainframes, minicomputers, personal
computers, network computers and personal digital assistants,
allowing organizations to integrate different computers, different
operating systems, different networks, and even different database
management systems, into a single, unified computing and information
resource.

 xxx Oracle Workflow Guide

Oracle is the world’s leading supplier of software for information
management, and the world’s second largest software company. Oracle
offers its database, tools, and applications products, along with related
consulting, education, and support services, in over 145 countries
around the world.

Your Feedback

Thank you for using Oracle Workflow and this guide.

Oracle values your comments and feedback. At the end of this guide is
a Reader’s Comment Form you can use to explain what you like or
dislike about Oracle Workflow or this guide. Mail your comments to
the following address or call us directly at (650) 506–7000.

Oracle Applications Documentation Manager
Oracle Corporation
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Or, send electronic mail to appsdoc_us@oracle.com.

C H A P T E R

1
T

1 – 1Overview of Oracle Workflow

Overview of Oracle
Workflow

his chapter introduces you to the concept of a workflow process
and to the major features of Oracle Workflow. These features include:

• Oracle Workflow Builder, a graphical tool that lets you create
business process definitions.

• The Workflow Engine, which implements process definitions at
runtime.

• The Notifications System, which sends notifications to and
processes responses from users in a workflow.

• Workflow Monitor, which allows you to track your workflow
process using a web browser.

• The Business Event System, which communicates business events
between systems.

1 – 2 Oracle Workflow Guide

Introduction to Oracle Workflow

Business processes today involve getting many types of information to
multiple people according to rules that are constantly changing. Oracle
Workflow lets you automate and continuously improve business
processes, routing information of any type according to business rules
you can easily change to people both inside and outside your enterprise.
See: Major Features and Definitions: page 1 – 3.

Routing Information

With so much information available, and in so many different forms,
how do you get the right information to the right people? Oracle
Workflow lets you provide each person with all the information they
need to take action. Oracle Workflow can route supporting information
to each decision maker in a business process.

Defining and Modifying Business Rules

Oracle Workflow lets you define and continuously improve your
business processes using a drag–and–drop process designer.

Unlike workflow systems that simply route documents from one user to
another with some approval steps, Oracle Workflow lets you model
sophisticated business processes. You can define processes that loop,
branch into parallel flows and then rendezvous, decompose into
subflows, and more. Because Oracle Workflow can decide which path
to take based on the result of a stored procedure, you can use the full
power of PL/SQL, the language of the Oracle database server, to express
any business rule that affects a workflow process. See: Workflow
Processes: page 1 – 6.

Delivering Electronic Notifications

Oracle Workflow extends the reach of business process automation
throughout the enterprise and beyond to include any e–mail or Internet
user. Oracle Workflow lets people receive notifications of items
awaiting their attention via e–mail, and act based on their e–mail
responses. You can even view your list of things to do, including
necessary supporting information, and take action using a standard Web
browser.

1 – 3Overview of Oracle Workflow

Integrating Systems

Oracle Workflow lets you set up subscriptions to business events which
can launch workflows or enable messages to be propagated from one
system to another when business events occur. You can communicate
events among systems within your own enterprise and with external
systems as well. In this way, you can implement point–to–point
messaging integration or use Oracle Workflow as a messaging hub for
more complex system integration scenarios. You can model business
processes that include complex routing and processing rules to handle
events powerfully and flexibly.

Major Features and Definitions

Oracle Workflow Builder

Oracle Workflow Builder lets you create, view, or modify a business
process with simple drag and drop operations. Using the Workflow
Builder, you can create and modify all workflow objects, including
activities, item types, and messages. See: Workflow Processes: page
1 – 6.

At any time you can add, remove, or change workflow activities, or set
up new prerequisite relationships among activities. You can easily work
with a summary–level model of your workflow, expanding activities
within the workflow as needed to greater levels of detail. And, you can
operate Oracle Workflow Builder from a desktop PC or from a
disconnected laptop PC.

Workflow Engine

The Workflow Engine embedded in the Oracle database server monitors
workflow states and coordinates the routing of activities for a process.
Changes in workflow state, such as the completion of workflow
activities, are signaled to the engine via a PL/SQL API or a Java API.
Based on flexibly–defined workflow rules, the engine determines which
activities are eligible to run, and then runs them. The Workflow Engine
supports sophisticated workflow rules, including looping, branching,
parallel flows, and subflows.

Business Event System

The Business Event System is an application service that uses the Oracle
Advanced Queuing (AQ) infrastructure to communicate business events

1 – 4 Oracle Workflow Guide

between systems. The Business Event System consists of the Event
Manager, which lets you register subscriptions to significant events, and
event activities, which let you model business events within workflow
processes.

When a local event occurs, the subscribing code is executed in the same
transaction as the code that raised the event. Subscription processing can
include executing custom code on the event information, sending event
information to a workflow process, and sending event information to
other queues or systems.

Workflow Definitions Loader

The Workflow Definitions Loader is a utility program that moves
workflow definitions between database and corresponding flat file
representations. You can use it to move workflow definitions from a
development to a production database, or to apply upgrades to existing
definitions. In addition to being a standalone server program, the
Workflow Definitions Loader is also integrated into Oracle Workflow
Builder, allowing you to open and save workflow definitions in both a
database and file.

Complete Programmatic Extensibility

Oracle Workflow lets you include your own PL/SQL procedures or
external functions as activities in your workflows. Without modifying
your application code, you can have your own program run whenever
the Workflow Engine detects that your program’s prerequisites are
satisfied.

Electronic Notifications

Oracle Workflow lets you include users in your workflows to handle
activities that cannot be automated, such as approvals for requisitions or
sales orders. Electronic notifications are routed to a role, which can be
an individual user or a group of users. Any user associated with that
role can act on the notification.

Each notification includes a message that contains all the information a
user needs to make a decision. The information may be embedded in
the message body or attached as a separate document. Oracle Workflow
interprets each notification activity response to decide how to move on
to the next workflow activity.

1 – 5Overview of Oracle Workflow

Electronic Mail Integration

Electronic mail (e–mail) users can receive notifications of outstanding
work items and can respond to those notifications using their e–mail
application of choice. An e–mail notification can include an attachment
that provides another means of responding to the notification.

Internet–Enabled Workflow

Any user with access to a standard Web browser can be included in a
workflow. Web users can access a Notification Web page to see their
outstanding work items, then navigate to additional pages to see more
details or provide a response.

Monitoring and Administration

Workflow administrators and users can view the progress of a work
item in a workflow process by connecting to the Workflow Monitor
using a standard Web browser that supports Java. The Workflow
Monitor displays an annotated view of the process diagram for a
particular instance of a workflow process, so that users can get a
graphical depiction of their work item status. The Workflow Monitor
also displays a separate status summary for the work item, the process,
and each activity in the process.

If you are using the version of Oracle Workflow embedded in Oracle
Applications and you have implemented Oracle Applications Manager,
you can also use the Oracle Workflow Manager component of Oracle
Applications Manager as an additional administration tool for Oracle
Workflow. Oracle Applications Manager is a tool that provides
administrative and diagnostic capabilities for concurrent processing,
Oracle Workflow, and other functionality in Oracle Applications. For
more information, please refer to the Oracle Applications Manager
online help.

Also, if you are using the standalone version of Oracle Workflow
available with Oracle9i Release 2, you can use the standalone Oracle
Workflow Manager component available through Oracle Enterprise
Manager as an additional administration tool for Oracle Workflow. For
more information, please refer to the Oracle Workflow Manager online
help.

1 – 6 Oracle Workflow Guide

Workflow Processes

Oracle Workflow manages business processes according to rules that
you define. The rules, which we call a workflow process definition,
include the activities that occur in the process and the relationship
between those activities. An activity in a process definition can be an
automated function defined by a PL/SQL stored procedure or an
external function, a notification to a user or role that may optionally
request a response, a business event, or a subflow that itself is made up
of a more granular set of activities.

A workflow process is initiated when an application calls a set of Oracle
Workflow Engine APIs. The Workflow Engine takes over by driving
the relevant work item defined by the application, through a specific
workflow process definition. According to the workflow process
definition, the Workflow Engine performs automated steps and invokes
appropriate agents when external processing is required.

The following diagram depicts a simplified workflow process definition
that routes a requisition to a manager or set of managers for approval.

1 – 7Overview of Oracle Workflow

We refer to the whole drawing as a process or process diagram. The
icons represent activities, and the arrows represent the transitions
between the activities. In the above example, new items are created for
the process when a user creates and submits a requisition in the
appropriate application.

This process contains several workflow activities implemented as
PL/SQL stored procedures, including:

• Select Approver—to select, according to your business rules, who
should approve the requisition.

• Verify Authority—to verify that a selected approver has the
spending authority to approve the requisition.

1 – 8 Oracle Workflow Guide

C H A P T E R

2
T

2 – 1Setting Up Oracle Workflow

Setting Up Oracle
Workflow

his chapter describes the requirements for Oracle Workflow and
provides the steps necessary to set up Oracle Workflow at your site.

2 – 2 Oracle Workflow Guide

Oracle Workflow Hardware and Software Requirements

The components of Oracle Workflow require the following hardware
and software configurations:

• Oracle Workflow Builder is installed using Oracle Universal
Installer and requires the installation of Oracle Net Services
(version 8.1.6 or higher for Oracle8i, or version 9.0.1 or higher for
Oracle9i) and Required Support Files (version 8.1.6 or higher for
Oracle8i, or version 9.0.1 or higher for Oracle9i). You should
install Oracle Workflow Builder on an IBM, Compaq or 100%
compatible personal computer with the following:

– A 486 processor or better

– Clock speed of 66 Mhz or greater (90 Mhz or greater is
recommended)

– Network card

– SVGA color monitor

– Modem configured with dial–in access for use by Oracle
Worldwide Customer Support. At least one PC at your site
should be configured with a modem.

– Remote access and control software to be used by Customer
Support for dial–in access through a modem to your PC.
The preferred software is Symantec’s Norton
pcANYWHERE, or Microcom’s Carbon Copy. Without
some form of remote access and control software, Oracle
Worldwide Customer Support will not be able to dial in to
your site to diagnose problems, nor will they be able to
supply patches directly to your client PC.

Warning: Please follow the necessary security precautions
against viruses and unauthorized access when installing any
software that allows remote access.

– Dual speed, ISO 9660 format CD–ROM available as a logical
drive

– Microsoft Windows 95, Windows 98, Windows 2000, or
Windows NT 4.0 or higher

– At least 60 Mb of available disk space to install Oracle
Workflow Builder, Oracle Net Services, and Required
Support Files.

– At least 32 Mb of memory, 64 Mb recommended

�

�

2 – 3Setting Up Oracle Workflow

Attention: Oracle Net Services require and only support the
use of Microsoft’s TCP/IP drivers.

• The Oracle Workflow Server requires the following:

– Oracle8i Enterprise or Standard Edition database version
8.1.6 or higher, or Oracle9i Enterprise or Standard Edition
database version 9.0.1 or higher, along with the Oracle
Objects and JServer Options, installed on a supported
server machine

– At least 40 Mb of available disk space for Oracle Workflow
Server once it is installed in your Oracle Home

– At least 128 Mb of memory, 256 Mb recommended

– Oracle Net Services version 8.1.6 or higher for Oracle8i, or
version 9.0.1 or higher for Oracle9i

– SQL*Plus version 8.1 or higher for Oracle8i, or version 9.0.1
or higher for Oracle9i

If you are installing Oracle Workflow Server on Microsoft
Windows NT, the following additional hardware and software
configurations are required:

– ISO 9660 format CD–ROM available as a logical drive

– Microsoft Windows NT 4.0 or higher

Attention: While the version of Oracle Workflow offered to
Oracle8i Standard Edition customers is exactly the same as the
version offered to Oracle8i Enterprise Edition customers, it is
important to note that Oracle Workflow leverages Oracle8i
functionality. Consequently, using an Oracle8i Standard Edition
database limits some of the features available for use by the
Oracle Workflow Business Event System.

For example:

– You cannot create any additional queues in Oracle8i
Standard Edition beyond the default queues provided by
Oracle Workflow. If you require additional queues, you
should choose Oracle8i Enterprise Edition.

– Oracle Advanced Queuing propagation in Oracle8i
Standard Edition does not support propagating messages
outside the local database. If you require messages to be
propagated to other systems, you should choose Oracle8i
Enterprise Edition.

�

2 – 4 Oracle Workflow Guide

In Oracle9i, however, these restrictions no longer apply. Exactly
the same functionality is available with Oracle Workflow in an
Oracle9i Standard Edition database as in an Oracle9i Enterprise
Edition database.

• The e–mail notifications component contains a Notification
Mailer program that can send mail through UNIX Sendmail or a
Windows NT MAPI–compliant mail application. Oracle
Workflow can also send mail to other e–mail applications as long
as you install the appropriate UNIX gateway product to
communicate with your e–mail application of choice.

Attention: The Microsoft Outlook E–mail Security Update
that was released on June 7, 2000 desupports the MAPI
Commmon Messaging Calls (CMC) interface used by the
Oracle Workflow MAPI Mailer. (See: OL2000: Developer
Information About the Outlook E–mail Security Update,
http://support.microsoft.com/support/kb/articles/
Q262/7/01.ASP.) As a result, the Oracle Workflow MAPI Mailer
is not certified on any Microsoft Windows platforms where this
Microsoft Outlook E–mail Security Update or above has been
applied. The Oracle Workflow MAPI Mailer is not certified on
Windows XP.

Workflow customers running on NT/2000 are certified to
install the UNIX version of the Oracle Workflow Notification
Mailer (on UNIX) and connect to a Workflow Server database
running on NT/2000.

• To send and respond to e–mail notifications with HTML
attachments, your e–mail application should support HTML
attachments and you should have a Web browser application
that supports JavaScript and Frames to view the attachment.

• The Web notifications, Workflow Monitor, and Event Manager
components require Oracle HTTP Server and mod_plsql to be
installed on a server machine. The Oracle HTTP Server and
mod_plsql components are included with Oracle8i Database
version 8.1.7 or higher and with Oracle9i Database version 9.0.1
or higher, as well as with Oracle9i Application Server version
1.0.1 or higher.

To view notifications you need a Web browser application that
supports JavaScript and Frames. To view the Workflow Monitor
you need a Web browser that supports Java Development Kit
(JDK), Version 1.1.8 or higher and Abstract Windowing Toolkit
(AWT), such as Netscape Communicator version 4.76 or a higher
version of 4.7x, or Microsoft Internet Explorer version 5.0x or
5.5x.

2 – 5Setting Up Oracle Workflow

• To run external Java function activities and to use the Workflow
XML Loader, you must have Java Runtime Environment (JRE)
version 1.1.8, or a higher 1.1.x version, installed.

• To extract the HTML help for the standalone version of Oracle
Workflow, you need an unzip utility.

• To implement Oracle Internet Directory integration, you must
have Oracle Internet Directory Release 2 (9.0.2) installed. To
implement Single Sign–On integration, you must implement
Oracle Internet Directory integration, and you must have
Oracle9iAS Single Sign–On Server Release 2 (9.0.2) and
Oracle9iAS Portal Release 2 (9.0.2) installed and have mod_osso
installed with Oracle HTTP Server.

2 – 6 Oracle Workflow Guide

Overview of Setting Up

After you install Oracle Workflow, you implement it for your site by
setting up the preferences and components appropriate for your
enterprise.

Overview of Required Setup Steps for the Standalone Version of Oracle
Workflow

1. Set up the default Oracle Workflow user preferences for your entire
enterprise using the Global Preferences web page. The Global
Preferences web page also lets you define your workflow
administrator role and your Workflow web agent. See: Setting
Global User Preferences: page 2 – 14.

2. Map Oracle Workflow’s directory service to the users and roles
currently defined in your organization’s directory repository by
constructing views based on those database tables. The
Notification System uses these views to send notifications to the
performers specified in your activities. Your roles can be either
individual users or a group of users. Oracle Workflow provides
example directory services views that you can modify and reload.
See: Setting Up an Oracle Workflow Directory Service: page 2 – 21.

3. Create a view called WF_LANGUAGES that identifies the
languages defined in your Oracle database server installation.
Oracle Workflow uses this view to create in its translation tables, a
row that maps to a row found in its non–translated base table for
each installed language. See: Creating the WF_LANGUAGES
View: page 2 – 38.

4. Define an environment variable called WF_RESOURCES if your
Workflow server is installed on a UNIX platform. See: Setting the
WF_RESOURCES Environment Variable: page 2 – 42.

5. Set up background Workflow Engines to control the load and
throughput of the primary Workflow Engine on your system. You
can specify the cost threshold level of your primary and
background engines to determine the activities an engine processes
and the activities an engine defers. See: Setting Up Background
Workflow Engines: page 2 – 43.

�

2 – 7Setting Up Oracle Workflow

Overview of Required Setup Steps for the Version of Oracle Workflow
Embedded in Oracle Applications

1. Set up the default Oracle Workflow user preferences for your entire
enterprise using the Global Preferences web page. The Global
Preferences web page also lets you define your workflow
administrator role and your Workflow web agent. See: Setting
Global User Preferences: page 2 – 14.

2. Set the system profile options called Socket Listener Activated and
Socket Listener Port. See: Setting the Socket Listener Profile
Options: page 2 – 40.

3. Set up background Workflow Engines to control the load and
throughput of the primary Workflow Engine on your system. You
can specify the cost threshold level of your primary and
background engines to determine the activities an engine processes
and the activities an engine defers. See: Setting Up Background
Workflow Engines: page 2 – 43.

Attention: Although your Oracle Workflow installation
automatically sets up the following for you, you may want to
refer to their appropriate sections for additional background
information:

– Directory services: page 2 – 21

– WF_LANGUAGES view: page 2 – 38

– Path to the language–dependent resources file: page 2 – 42

Optional Setup Steps

1. You can partition the WF_ITEM_ACTIVITY_STATUSES,
WF_ITEM_ACTIVITY_STATUSES_H,
WF_ITEM_ATTRIBUTE_VALUES, and WF_ITEMS tables for
performance gain. See: Partitioning Workflow Tables: page 2 – 12.

2. If you are using the standalone version of Oracle Workflow with
Oracle9i Database Server Release 2 or Oracle9i Application Server
(Oracle9iAS) Release 2 or higher, you can synchronize the user
information in your Workflow directory service with Oracle
Internet Directory (OID). Additionally, if you have installed
Oracle9iAS Release 2 or higher, you can also use OID integration to
implement single sign–on integration. See: Synchronizing
Workflow Directory Services with Oracle Internet Directory: page
2 – 30.

2 – 8 Oracle Workflow Guide

3. Set up the Notification Mailer program if you want to allow your
users to receive notifications by e–mail. See: Implementing the
Notification Mailer: page 2 – 48.

4. You can modify the templates for your electronic mail notifications.
See: Modifying Your Message Templates: page 2 – 69.

5. Customize the company logo that appears in Oracle Workflow’s
web pages. See: Customizing the Logo on Oracle Workflow’s Web
Pages: page 2 – 84.

6. You can include additional icons to your Oracle Workflow Icons
subdirectory to customize the diagrammatic representation of your
workflow processes. Use custom symbols for each activity you
define. See: Adding Custom Icons to Oracle Workflow: page 2 – 85.

7. Set up the Java Function Activity Agent if you are using the
standalone version of Oracle Workflow and you want to run
external Java function activities. See: Setting Up the Java Function
Activity Agent: page 2 – 86.

8. Set up the Business Event System if you want to communicate
business events between systems using event subscription
processing and Workflow process event activities. See: Setting Up
the Business Event System: page 2 – 96.

9. Set up the WF_EVENT_OMB_QH queue handler if you are using
the Business Event System with Oracle8i and you want to use
Oracle Message Broker to propagate event messages between
systems. See: Setting Up the WF_EVENT_OMB_QH Queue
Handler: page 2 – 100.

Other Workflow Features

Before deploying Oracle Workflow and custom process definitions to
other branches of your enterprise, you can protect your data from
further modification by determining the level of access your users have
to the data. See: Overview of Oracle Workflow Access Protection: page
2 – 101.

You can also use the Workflow Definitions Loader to load workflow
process definitions from flat files to the database without using Oracle
Workflow Builder. See: Using the Workflow Definitions Loader: page
2 – 107.

If you are using the Business Event System, you can use the Workflow
XML Loader to load XML definitions for Business Event System objects

2 – 9Setting Up Oracle Workflow

between a database and a flat file. See: Using the Workflow XML
Loader: page 2 – 112.

Identifying the Version of Your Oracle Workflow Server

If you ever need to determine the version of the Oracle Workflow
server you are running, you can connect to your Workflow server
account using SQLPLUS and run a script called wfver.sql. See:
wfver.sql: page 16 – 16.

In addition, all Oracle Workflow modules, such as the Workflow
Definitions Loader, Oracle Workflow Builder, Notification Mailer, and
the Workflow Monitor, automatically verify that the module is
compatible with the version of the Oracle Workflow server that it is
operating against. This version compatibility check helps to prevent
problems such as running Oracle Workflow Builder 2.6 against an
Oracle Workflow 2.0.3 database.

2 – 10 Oracle Workflow Guide

Setup Flowchart

The following flowchart shows the Oracle Workflow setup steps. Some
of the steps are required and some are optional. You need to perform
optional steps only if you plan to use the related feature or complete
certain business functions.

2 – 11Setting Up Oracle Workflow

Setup Checklist

The following table lists Oracle Workflow setup steps. A reference to
whether the step is pertinent to the standalone or embedded version of
Oracle Workflow or both and whether the step is optional or required
is provided.

Step
No.

Required Step
Standalone/
Embedded/

Both

Step 1 Optional Partitioning Workflow Tables: page 2 – 12 Both

Step 2 Required Setting Global User Preferences: page 2 – 14 Both

Step 3 Required Setting Up an Oracle Workflow Directory Service: page
2 – 21

Standalone

Step 4 Optional Synchronizing Workflow Directory Services with Oracle
Internet Directory: page 2 – 30

Standalone

Step 5 Required Creating the WF_LANGUAGES View: page 2 – 38 Standalone

Step 6 Required Setting the Socket Listener Profile Options: page 2 – 40 Embedded

Step 7 Required Setting the WF_RESOURCES Environment Variable:
page 2 – 42

Standalone

Step 8 Required Setting Up Background Workflow Engines: page 2 – 43 Both

Step 9 Optional Implementing the Notification Mailer: page 2 – 48 Both

Step 10 Optional Modifying Your Message Templates: page 2 – 69 Both

Step 11 Optional Customizing the Logo on Oracle Workflow’s Web Pages:
page 2 – 84

Both

Step 12 Optional Adding Custom Icons to Oracle Workflow: page 2 – 85 Both

Step 13 Optional Setting Up the Java Function Activity Agent: page 2 – 86 Standalone

Step 14 Optional Setting Up the Business Event System: page 2 – 96 Both

Step 15 Optional Setting Up the WF_EVENT_OMB_QH Queue Handler:
page 2 – 100

Both

Step 1

2 – 12 Oracle Workflow Guide

Setup Steps

Partitioning Workflow Tables

Partitioning addresses key issues in supporting very large tables and
indexes by letting you decompose them into smaller and more
manageable pieces called partitions. SQL queries and DML statements
do not need to be modified in order to access partitioned tables.
However, once partitions are defined, DDL statements can access and
manipulate individual partitions rather than entire tables or indexes. In
this way, partitioning can simplify the manageability of large database
objects. Also, partitioning is entirely transparent to applications.

You can optionally run a script to partition certain Workflow tables that
store runtime status data. For the version of Oracle Workflow
embedded in Oracle Applications, the script is called wfupartb.sql; for
the standalone version of Oracle Workflow, the script is called
wfupart.sql. This step is highly recommended for performance gain.

The script partitions four Workflow tables and recreates the associated
indexes. The following table shows the Workflow tables and indexes on
which the script runs.

Table Index

WF_ITEM_ACTIVITY_STATUSES WF_ITEM_ACTIVITY_STATUSES_PK

WF_ITEM_ACTIVITY_STATUSES_N1

WF_ITEM_ACTIVITY_STATUSES_N2

WF_ITEM_ACTIVITY_STATUSES_H WF_ITEM_ACTIVITY_STATUSES_H_N1

WF_ITEM_ACTIVITY_STATUSES_H_N2

WF_ITEM_ATTRIBUTE_VALUES WF_ITEM_ATTRIBUTE_VALUES_PK

WF_ITEMS WF_ITEMS_PK

WF_ITEMS_N1

WF_ITEMS_N2

WF_ITEMS_N3

Table 2 – 1 (Page 1 of 1)

Before running the partitioning script, you should back up these four
tables so that you can restore them in case the script fails.

�

2 – 13Setting Up Oracle Workflow

To run the script, you must have sufficient free space on the table and
index tablespaces. During the creation of the partitioned tables, the
script requires slightly more diskspace than the underlying tables, in
the same tablespace where the underlying tables are located. Similarly,
sufficient free space is required for the index tablespace.

Additionally, you should allow sufficient time for the script to run. The
amount of time needed depends on the amount of data in the tables.
When the tables already contain existing data, such as after an upgrade
from a previous release, the script requires more time than it does
when the tables are empty, such as after a fresh installation of Oracle
Workflow. To minimize the time required, run the script as early as
possible in your setup process.

Attention: If you are running the partitioning script through
Oracle Net Services, then you must set the TWO_TASK
variable before you begin.

For Oracle Workflow embedded in Oracle Applications, the
wfupartb.sql script is located in the admin/sql subdirectory under
$FND_TOP. Use the script as follows:

sqlplus <apps_user>/<apps_passwd> @wfupartb <fnd_user>

<fnd_passwd> <apps_user> <apps_passwd>

For example:

sqlplus apps/apps @wfupartb applsys apps apps apps

For standalone Oracle Workflow, the wfupart.sql script is located in the
wf/admin/sql subdirectory in your Oracle Home. Use the script as
follows:

sqlplus <wf_user>/<wf_passwd> @wfupart <wf_user> <wf_passwd>

For example:

sqlplus owf_mgr/owf_mgr @wfupart owf_mgr owf_mgr

If the partitioning script fails, you must perform any necessary cleanup
manually. Since the script’s operations are DDL operations running in
nologging mode, rollback is not possible.

Context: You need to perform this step only once.

See Also

Partitioning for Performance: page C – 8

Step 2

�

�

2 – 14 Oracle Workflow Guide

Setting Global User Preferences

You can control how you interact with Oracle Workflow by specifying
user preferences that you can set from the User Preferences web page.
As a workflow administrator, you also have access to the Global
Preferences web page, which you can use to globally set default user
preference values for the entire enterprise. An individual user can
override a default user preference at any time by changing the value of
the user preference in the User Preferences web page. Both web pages
are accessible from the Oracle Workflow Home page, but only a
workflow administrator has access to the Global Preferences page.

Attention: The Language, Territory, and Notification
preference settings in the Global Preferences and User
Preferences web pages are valid only if your directory service
views map the Language, Territory, and
Notification_Preference columns to the Oracle Workflow
preferences table. If you map to some other preference source
or set a hard–coded value to these columns, any changes you
make to the preferences via the preferences web pages are
ignored. See: Setting Up an Oracle Workflow Directory
Service: page 2 – 21.

Context: You need to perform this step only once.

See: Setting User Preferences: page 9 – 6.

� To Set Global User Preferences

1. Use a web browser to connect to the Oracle Workflow home page,
then choose the Global Preferences link:

<webagent>/wfa_html.home

Alternatively, you can connect directly to the Global Preferences
web page:

<webagent>/wf_pref.edit?edit_defaults=Y

<webagent> represents the base URL of the web agent you
configured for Oracle Workflow in your Web server.

Attention: These are secured pages, so if you have not yet
logged on as a valid user in the current web session, you will
be prompted to do so before the page appears.

2 – 15Setting Up Oracle Workflow

2. The Global Preferences web page displays a summary of your
current global preferences. Choose Update to modify these
preferences.

2 – 16 Oracle Workflow Guide

3. In the Workflow Administrator field, use the list of values to select
the role to which you want to assign workflow administrator
privileges. Any user associated with this role can run the Oracle
Workflow Find Processes web page, which provides full access to
Oracle Workflow’s administration features. In addition, any user
in the administration role can view any other user’s notifications
and access the Event Manager web pages.

If you want all users and roles to have workflow administrator
privileges, such as in a development environment, enter an asterisk
(*) in the Workflow Administrator field. See: Setting Up an Oracle
Workflow Directory Service: page 2 – 21.

Note: To find out which role currently has workflow
administrator privileges, without accessing the Global
Workflow Preferences page, you can use the following
command:

2 – 17Setting Up Oracle Workflow

select text

from wf_resources

where name = ’WF_ADMIN_ROLE’;

After installing Oracle Workflow, you should change the Workflow
Administrator preference from the default setting to the role that
you want to have administrator privileges.

• For the standalone version of Oracle Workflow, the default
setting after installation is an asterisk (*). You can log in as any
user to access the Global Workflow Preferences page and specify
the preferences you want.

• For the version of Oracle Workflow embedded in Oracle
Applications, the default setting after installation is SYSADMIN.
You must log in as the SYSADMIN user to access the Global
Workflow Preferences page and specify the preferences you
want.

Note: The SYSADMIN role is different than the role associated
with the System Administrator responsibility in Oracle
Applications. If you want to assign workflow administrator
privileges to this or any other Oracle Applications
responsibility, you must set the Workflow Administrator
preference to the internal name of the Workflow role associated
with that responsibility.

You can query the WF_ROLES view to find the role name for a
responsibility. For example, to find the role names for various
administrator responsibilities in Oracle Applications, use the
following command:

select name, display_name

from wf_roles

where display_name like ’%Admin%’;

If you set the Workflow Administrator preference to the role
name of a responsibility, then any Oracle Applications user
with that responsibility will have workflow administrator
privileges.

4. In the Workflow Web Agent field, enter the base URL of the Oracle
web agent you defined for Oracle Workflow in Oracle HTTP
Server.

Caution: The list of values fields that are implemented in
many of Oracle Workflow’s web pages will not function
properly unless you specify the base URL of your Oracle
Workflow web agent in this field.

�

2 – 18 Oracle Workflow Guide

The base URL should look like this if you are using Oracle HTTP
Server as your Web server:

http://<server.com:portID>/pls/<DAD_name>

<server.com:portID> represents the server and TCP/IP port
number on which your web listener accepts requests and
<DAD_name> represents the name of the DAD you configured for the
Oracle Workflow database schema.

See your Oracle HTTP Server documentation for more information.

Attention: If you are using the version of Oracle Workflow
embedded in Oracle Applications, you should also edit the
APPS_WEB_AGENT profile option.

5. If you are using the version of Oracle Workflow embedded in
Oracle Applications, enter the Jinitiator plugin class ID, download
location, and version number. This information is required for
Oracle Workflow to launch Oracle Applications forms linked to
notifications and to display the Workflow Monitor. See: Setting the
Socket Listener Profile Options: page 2 – 40.

You can find the class ID and version number for the version of
JInitiator you have installed in the jinit–version.txt file
(<drive>:\Program Files\Oracle\jinit<version>\doc\
jinit–version.txt). The download location is the location where you
have staged the JInitiator executable for download to users’ client
machines. For more information, refer to Complete Guide to
JInitiator for Oracle’s E–Business Suite (Note 162488.1) and
Upgrading Oracle JInitiator with Oracle Applications 11i (Note
124606.1), available on MetaLink.

6. The Local System field displays the system name for the database
where this installation of Oracle Workflow is located. Oracle
Workflow automatically creates the system definition for this
database in the Event Manager during installation. The Business
Event System treats this system as the local system and all others as
external systems. See: Systems: page 13 – 17.

Note: The Local System setting is specific to this installation of
Oracle Workflow and is not included when Business Event
System data is replicated to other systems.

7. In the System Status field, use the list of values to select the
Business Event System status that you want to assign to the local
system.

• Enabled—Subscriptions are executed on all events.

2 – 19Setting Up Oracle Workflow

• Local Only—Subscriptions are executed only on events raised on
the local system.

• External Only—Subscriptions are executed only on events
received from external systems.

• Disabled—No subscriptions are executed on any events.

Note: Oracle Workflow sets the system status to Enabled by
default. After you finish setting up the Business Event System,
you can change the setting to the status you want for event
processing.

Note: The System Status setting is specific to this installation
of Oracle Workflow and is not included when Business Event
System data is replicated to other systems.

8. If you are implementing Oracle Internet Directory (OID)
synchronization, specify the Lightweight Directory Access Protocol
(LDAP) server information for the LDAP directory to which you
want to connect.

• LDAP Host—The host on which the LDAP directory resides.

• LDAP Port—The port on the host.

9. If you are implementing OID synchronization, specify the LDAP
user account used to connect to the LDAP server. This LDAP user
account must have write privileges.

• LDAP User Name—The LDAP user. This user name is required
to bind to the LDAP directory. For example:

cn=orcladmin

• LDAP Password—The LDAP password. The password is stored
in encrypted form.

10. If you are implementing OID synchronization, specify the
directories for the change log and the user records.

• LDAP Changelog Base Directory—The LDAP node under which
change logs are located. For example:

cn=changelog

• LDAP User Base Directory—The LDAP node under which user
records can be found. For example:

cn=Base, cn=OracleSchemaVersion

11. In the Language and Territory fields, use the list of values to select
the NLS_LANGUAGE and NLS_TERRITORY combination that

2 – 20 Oracle Workflow Guide

defines the default language–dependent behavior and
territory–dependent formatting of your users’ notification sessions.

12. In the Date Format field, specify an Oracle8i–compliant date format
that defines the default date format for the workflow database
sessions of all users. An example of an Oracle8i–compliant date
format is DD–Mon–RRRR. If you do not specify a date format,
then the date format defaults to DD–MON–YYYY.

Note: Oracle Workflow may include a time element when
relevant for certain displayed dates, even if you do not include
a time format with your date format. If you specify a time
format along with your date format, then in those situations
when Oracle Workflow displays a time element, you will see
two time elements following your date.

13. Leave the Document Home Node field blank. This functionality is
reserved for future use.

14. In the ’Send me electronic mail notifications’ field, use the list of
values to select a notification preference:

• HTML mail—Send notifications as HTML e–mail. Users must
read their mail using an HTML e–mail viewer.

• Plain text mail with HTML attachments—Send notifications as
plain text e–mail but include the HTML–formatted version of the
notifications as attachments.

• Plain text mail—Send notifications as plain text e–mail.

• Plain text summary mail—Send a summary of all notifications as
plain text e–mail. Users must use the Notifications web page to
take action on individual notifications.

• Do not send me mail—Do not send the notifications as e–mail.
Users must view the notifications and take action from the
Notifications web page.

15. Click OK once you are satisfied with your changes.

Note: These global language, territory, document home node,
and notification preferences are saved to the Oracle Workflow
Preferences table for a special user name called
–WF_DEFAULTS–. The workflow administrator role,
workflow web agent, local system, and LDAP information is
saved to the Workflow Resources table.

Step 3

�

2 – 21Setting Up Oracle Workflow

Setting Up an Oracle Workflow Directory Service

Oracle Workflow offers you flexibility in defining who your workflow
users and roles are. You determine the directory repository you want
Oracle Workflow to reference for users and roles information by
creating three views based on the database tables that make up that
repository. The views are:

• WF_USERS

• WF_ROLES

• WF_USER_ROLES

In addition, Oracle Workflow provides three local tables called
WF_LOCAL_USERS, WF_LOCAL_ROLES, and
WF_LOCAL_USER_ROLES that contain columns similar to those
defined in the WF_USERS, WF_ROLES, and WF_USER_ROLES views,
respectively. You can use these tables to store users and roles not
included in your existing directory repository by calling the
appropriate Directory Service PL/SQL API. See: Workflow Directory
Service APIs: page 8 – 121.

Attention: You should avoid selecting from DUAL to
incorporate additional users and roles into the directory service
views as this allows you to violate the unique constraint on
certain columns of the views and reduces performance with
unnecessary joins between the ’select from DUAL’ statements.

Note: If you are using the standalone version of Oracle
Workflow, and you have installed Oracle9i Release 2 or higher
or Oracle9iAS Release 2 or higher, you can integrate your
Workflow directory service with Oracle Internet Directory
(OID) as your directory repository. In this case, you must map
your directory service views only to the WF_LOCAL tables to
enable synchronization of Workflow user information with
OID. See: Integrating Oracle Workflow Directory Services with
Local Workflow Users: page 2 – 28 and Synchronizing
Workflow Directory Services with Oracle Internet Directory:
page 2 – 30.

Context: You need to perform this step only once.

See: Predefined Directory Services: page 2 – 26

See: Ad Hoc Users and Roles: page 5 – 24

�

2 – 22 Oracle Workflow Guide

WF_USERS

The WF_USERS view should reference information about all the
individuals in your organization who may receive workflow
notifications. Create this view, making sure it contains the following
columns:

• Name—The internal name of the user as referenced by the
Workflow Engine and Notification System. For example, an
internal name for a user can be mbeech or 009, where 009
represents the user’s employee ID.

Attention: The Name column must be sourced from a column
that is less than 30 characters long and is all uppercase. If your
source table does not have a column that meets these criteria,
DO NOT use string functions to force these restrictions.
Instead, define the Name column to be
<orig_system>:<orig_system_id> so that Oracle Workflow can
reference the original base table where users are stored and a
unique user in that table. For example, ”PER_PEOPLE:009”
represents a user whose employee ID is 009 and is stored in the
personnel table called PER_PEOPLE.

• Display_Name—The display name of the user. An example of a
display name can be ’Beech, Matthew’.

• Description—An optional description of the user.

• Notification_Preference—Indicate how this user prefers to
receive notifications. A value of MAILTEXT, MAILHTML,or
MAILATTH allows users to receive and respond to notifications
by plain text e–mail, HTML–formatted e–mail or by plain text
e–mail with HTML attachments, respectively. A value of QUERY
allows users to query notifications from the Notifications Web
page. Finally, a value of SUMMARY allows users to get periodic
e–mail summaries of their open notifications. However, to
respond to the individual notifications, they have to query the
notification from the Notification Web page. See: Overview of
Notification Handling: page 10 – 2 and Notification Preferences:
page 2 – 49.

Note: A notification preference of MAILTEXT, MAILHTML,
or MAILATTH also allows users to query their notifications
from the Notifications Web page.

Note: You can map the Notification_Preference column over
the Oracle Workflow preferences table using the statement
below. The benefit of this is that you can then globally set the
default notification preference for all users in your enterprise
using the Global Preferences web page and let individual users

�

2 – 23Setting Up Oracle Workflow

override that default value by changing their notification
preference in the User Preferences web page. See: Global
Preferences: page 2 – 14, User Preferences: page 9 – 6 and
get_pref: page 8 – 148.

NVL(wf_pref.get_pref(USR.USER_NAME,’MAILTYPE’),

’MAILHTML’)

• Language—The value of the database NLS_LANGUAGE
initialization parameter that specifies the default
language–dependent behavior of the user’s notification session.
Refer to your Oracle Database user’s guide or installation
manual for the list of supported language conventions.

Note: You can globally set the language for all the users in
your enterprise, by specifying a language in the Global
Preferences web page. Individual users may override that
default value by changing their language in the User
Preferences web page. See: Global Preferences: page 2 – 14,
User Preferences: page 9 – 6 and get_pref: page 8 – 148.

Note: You can map the Language column over the Oracle
Workflow preferences table using the statement below. The
benefit of this is that you can then globally set the default
Language for all users in your enterprise using the Global
Preferences web page and let individual users override that
default value by changing their Language in the User
Preferences web page. See: Global Preferences: page 2 – 14 and
User Preferences: page 9 – 6.

NVL(wf_pref.get_pref(USR.USER_NAME,’LANGUAGE’),

FNDL.NLS_LANGUAGE)

Attention: Make sure that the e–mail templates used by the
Notification Mailer to send notifications have been translated
by Oracle to the language you wish to set. The e–mail
templates are delivered in a file called wfmail.wft under the
subdirectory $ORACLE_HOME/wf/res/<lang>. You can
check the appropriate language subdirectory to verify if the
templates have been translated to the language you wish to set.
See: Modifying Your Message Templates: page 2 – 69.

• Territory—The value of the database NLS_TERRITORY
initialization parameter that specifies the default
territory–dependant formatting used in the user’s notification
session. Refer to your Oracle Database user’s guide or
installation manual for the list of supported territory
conventions.

�

2 – 24 Oracle Workflow Guide

Note: You can map the Territory column over the Oracle
Workflow preferences table using the statement below. The
benefit of this is that you can then globally set the default
Territory for all users in your enterprise using the Global
Preferences web page and let individual users override that
default value by changing their Territory in the User
Preferences web page. See: Global Preferences: page 2 – 14,
User Preferences: page 9 – 6 and get_pref: page 8 – 148.

NVL(wf_pref.get_pref(USR.USER_NAME,’TERRITORY’),

FNDL.NLS_TERRITORY)

• Email_Address—A valid electronic mail address for this user or
a mail distribution list defined by your electronic mail system.

• Fax—A Fax number for the user.

• Orig_System—A code that you assign to the directory repository
that this view is based on. For example, if this view is based on
the personnel data stored in a Human Resource Management
System, Orig_System can be defined as PER.

• Orig_System_ID—The primary key that identifies the user in this
repository system. For example, Orig_System_ID can be defined
as the value stored in a column called PERSON_ID in a Human
Resources database table called PER_PEOPLE.

• Status—The availability of the user to participate in a workflow
process. The possible statuses are: active (ACTIVE), unavailable
for an extended period (EXTLEAVE), permanently unavailable
(INACTIVE), and temporarily unavailable (TMPLEAVE). These
statuses are also stored in the lookup type called
WFSTD_AVAILABILITY_STATUS.

• Expiration_Date—The date at which the user is no longer valid
in the directory service.

WF_ROLES

The WF_ROLES view should reference information about all the roles in
your organization who may receive workflow notifications. Create this
view, making sure it contains the following columns pertaining to the
roles in your repository. Those columns that are preceded by an
asterisk (*) are similar to the matching column described for the
WF_USERS view:

Attention: We require that you also define each user
identified by WF_USERS as a role.

2 – 25Setting Up Oracle Workflow

Note: If a user is a member of a role and the user information
is different from the role information, the role information will
override the user information when the Notification System
delivers a notification to the role. For example, suppose a user
has a notification preference of ’SUMMARY’, and the user is
also a member of a multi–user role, whose notification
preference is ’MAILHTML’. When a notification is assigned to
the multi–user role, the user will receive a single notification
message addressed to the role, as opposed to a summary
message that includes that notification in it.

• Name—The internal name of the role. The Name column must
be sourced from a column that is less than or equal to 30
characters long and is all uppercase. If your source table does
not have a column that meets these criteria, DO NOT use string
functions to force these restrictions. Instead, define the Name
column to be <orig_system>:<orig_system_id> so that Oracle
Workflow can reference the original base table where roles are
stored and a unique role in that table. For example,
”PER_POSITION:009” represents a position whose ID is 009 and
is stored in the personnel table called PER_POSITION.

• *Display_Name

• *Description

• *Notification_Preference

• *Language

• *Territory

• Email_Address—if the e–mail address is null for a given role, the
Notification Mailer sends an individual e–mail to each user
within the role.

• *Fax

• *Orig_System

• *Orig_System_ID

• *Status

• *Expiration_Date

WF_USER_ROLES

The WF_USER_ROLES view is an intersection of the users and roles in
WF_USERS and WF_ROLES. Create this view, making sure it contains
the following columns:

�

2 – 26 Oracle Workflow Guide

• User_Name—The internal name of the user as listed in the view
WF_USERS.

• User_Orig_System—A code that you assign to the user directory
repository as listed in the view WF_USERS.

• User_Orig_System_ID—The primary key that identifies the user
in the user directory repository as listed in the view WF_USERS.

• Role_Name—The internal name of the role as listed in the view
WF_ROLES.

• Role_Orig_System—A code that you assign to the role directory
repository as listed in the view WF_ROLES.

• Role_Orig_System_ID—The primary key that identifies the role
in the role directory repository as listed in the view WF_ROLES.

Attention: To take advantage of unique indexes when
querying users, make sure you initially enter the usernames in
your database in uppercase only. Forcing the usernames to
uppercase in your view definition results in poor performance
when accessing these views.

Warning: Avoid making a join to a view that contains a union
as this results in poor database performance. The Oracle
database server is unable to preserve the indexes in that view
when you make such a join. The workflow directory services
views you create will most likely contain unions, therefore you
should not join to them directly. If you need to retrieve data
from any of the three directory services views, use the
appropriate directory services API. See: Workflow Directory
Services APIs: page 8 – 121.

Predefined Directory Services

Oracle Workflow provides scripts for you to implement any one of
three directory service environments. If you are using the version of
Oracle Workflow embedded in Oracle Applications you automatically:

• Integrate your Oracle Workflow directory service with a unified
Oracle Applications environment.

If you are using the standalone version Oracle Workflow, you can
choose to implement one of the following two directory services or
create your own:

• A directory services with native Oracle users.

• A directory services with local workflow users.

�

2 – 27Setting Up Oracle Workflow

You can customize any of these directory services environments further
by editing and rerunning their scripts against your Workflow Server.

Attention: If you create your own directory service or edit
any of the predefined directory services listed above, you
should run the script wfdirchk.sql to validate your directory
service data model. The script is located on your server in the
Oracle Workflow admin/sql subdirectory for the standalone
version of Oracle Workflow, or in the sql subdirectory under
$FND_TOP for the version of Oracle Workflow embedded in
Oracle Applications. See: Wfdirchk.sql: page 16 – 10.

� Integrating Oracle Workflow Directory Services with a Unified
Oracle Applications Environment

If you are using the version of Oracle Workflow embedded in Oracle
Applications, your Oracle Workflow directory service views are
automatically based on a unified Oracle Applications environment.
The unified environment maps over Oracle Human Resources tables,
Oracle Application Object Library tables, various Oracle Applications
tables, and the WF_LOCAL tables.

Oracle Workflow provides a sql script that defines the WF_USERS,
WF_ROLES, and WF_USER_ROLES views that map to this unified
environment. When you install Oracle Applications, you automatically
install this script to create the unified environment. However, if you
should need to edit and rerun this script for whatever reason, the script
is called wfdirhrv.sql and is located on your server in the admin/sql
subdirectory under $FND_TOP.

Aside from the users and roles stored in WF_LOCAL_USERS and
WF_LOCAL_ROLES, the default notification preference for all
workflow users and roles in the unified environment is set to
’MAILHTML’.

� Integrating Oracle Workflow Directory Services with Native Oracle
Users

If you plan to use the standalone version of Oracle Workflow, you can
map your directory service to the native users and roles in the Oracle
RDBMS. You base your views on the tables DBA_USERS,
WF_LOCAL_USERS, DBA_ROLES, and WF_LOCAL_ROLES.

Oracle Workflow provides a script you can use to setup the views. Use
the wfdirouv.sql script in the Oracle Workflow sql subdirectory on your
server. This script is automatically run by the Oracle Universal
Installer when you install the standalone version of Oracle Workflow.

�

2 – 28 Oracle Workflow Guide

You can customize and rerun this script if necessary. The script creates
three views.

The WF_USERS view creates a workflow user for each DBA user and
any users stored in WF_LOCAL_USERS. For each DBA user, the
originating system is called ORACLE, and the originating system ID is
the USERNAME column in DBA_USERS. The default notification
preference for each DBA user is MAILHTML.

The WF_ROLES view includes all users in the WF_USERS view, all roles
defined in the WF_LOCAL_ROLES table, and all roles in DBA_ROLES,
where role_name begins with WF. For each DBA role, the originating
system is ORACLE and the originating system ID is the ROLE column in
DBA_ROLES. The default notification preference for each DBA role is
MAILHTML.

The WF_USER_ROLES view consists of the names and originating
system information of both users and roles in WF_USERS and
WF_ROLES.

Note: The wfdirouv.sql script sets each native Oracle user’s
e–mail address to the user’s respective username. As a
minimal setup step, you should edit the wfdirouv.sql script to
either link your native Oracle users to an existing mail
directory store through the WF_ROLES view definition, or, if
the usernames and e–mail account names match, then simply
add the domain for your organization, such as ’@oracle.com’,
to the usernames in the WF_USERS view definition. Typically,
the columns that you change are EMAIL_ADDRESS in
WF_USERS and EMAIL_ADDRESS in WF_ROLES.

� Integrating Oracle Workflow Directory Services with Local Workflow
Users

If you plan to use the standalone version of Oracle Workflow and the
users and roles of your directory repository are not stored in any
existing database tables, you can enter your users and roles information
in the WF_LOCAL tables and map your directory service to these
tables.

Oracle Workflow provides a script you can use to set up the views.
Use the wfdircsv.sql script in the Oracle Workflow sql subdirectory on
your server. This script creates three views. You can customize the
views in this script to incorporate the users and roles from your custom
directory repository.

Attention: If you want to implement Oracle Internet Directory
(OID) integration for the standalone version of Oracle

2 – 29Setting Up Oracle Workflow

Workflow, you must run the wfdircsv.sql script to ensure that
your directory service views are mapped only to the
WF_LOCAL tables, because only the WF_LOCAL_USERS table
will be synchronized with OID. (Only users are maintained
through OID, not Workflow roles.) In this case, you must not
customize the script to incorporate any other tables. After
implementing OID integration, you maintain your user
information only through OID. See: Synchronizing Workflow
Directory Services with Oracle Internet Directory: page 2 – 30.

The originating system in the WF_USERS view is called
WF_LOCAL_USERS, and the originating system ID is 0.

The WF_ROLES view includes all users in WF_LOCAL_USERS and all
roles defined in WF_LOCAL_ROLES. The originating system is
WF_LOCAL_ROLES and the originating system ID is 0.

The WF_USER_ROLES view consists of the names and originating
system information of both users and roles in WF_USERS and
WF_ROLES.

Step 4

2 – 30 Oracle Workflow Guide

Synchronizing Workflow Directory Services with Oracle Internet
Directory

If you are using the standalone version of Oracle Workflow, and you
have installed Oracle9i Release 2 or higher or Oracle9iAS Release 2 or
higher, you can synchronize the user information in your Workflow
directory service with Oracle Internet Directory (OID) using
Lightweight Directory Access Protocol (LDAP). This integration is
recommended because it enables you to manage and publish user
information in a central location which various systems can reference.

Synchronization with OID enables Oracle Workflow to do the
following:

• Assign ownership of work items and send notifications to users
defined in OID.

• Synchronize with other external user directories that are
synchronized with OID.

• Participate in single sign–on through LDAP external
authentication with Oracle Portal and Oracle9iAS Single
Sign–On Server, if you have installed Oracle9iAS Release 2 or
higher. With single sign–on, a user who is logged into any
participating Oracle9iAS component is automatically
authenticated when accessing any other participating component
and does not need to log in again.

Context: You need to perform this step only once.

Oracle Internet Directory

Oracle Internet Directory is a general purpose directory service that
enables fast retrieval and centralized management of information about
dispersed users and network resources. It combines Lightweight
Directory Access Protocol (LDAP) Version 3 with the high
performance, scalability, robustness, and availability of Oracle9i.

LDAP is a standard, extensible directory access protocol. It is a
common language that LDAP clients and servers use to communicate.
LDAP was conceived as an internet–ready, lightweight implementation
of the International Standardization Organization (ISO) X.500 standard
for directory services. It requires a minimal amount of networking
software on the client side, which makes it particularly attractive for
internet–based, thin client applications.

The advantages of OID include:

2 – 31Setting Up Oracle Workflow

• Scalability – Oracle Internet Directory exploits the strengths of
Oracle9i, enabling support for terabytes of directory information.
In addition, such technologies as multithreaded LDAP servers
and database connection pooling allow it to support thousands
of concurrent clients with subsecond search response times.

Oracle Internet Directory also provides data management tools,
such as Oracle Directory Manager and a variety of
command–line tools, for manipulating large volumes of LDAP
data.

• High availability – Oracle Internet Directory is designed to meet
the needs of a variety of important applications. For example, it
supports full, multimaster replication between directory servers:
If one server in a replication community becomes unavailable,
then a user can access the data from another server. Information
about changes made to directory data on a server is stored in
special tables on the Oracle9i database. These are replicated
throughout the directory environment by Oracle9i Replication, a
robust replication mechanism.

Oracle Internet Directory also takes advantage of all the
availability features of Oracle9i. Because directory information is
stored securely in the Oracle9i database, it is protected by
Oracle’s backup capabilities. Additionally, the Oracle9i database,
running with large datastores and heavy loads, can recover from
system failures quickly.

• Security – Oracle Internet Directory offers comprehensive and
flexible access control. An administrator can grant or restrict
access to a specific directory object or to an entire directory
subtree. Moreover, Oracle Internet Directory implements three
levels of user authentication: anonymous, password–based, and
certificate–based using Secure Socket Layer (SSL) Version 3 for
authenticated access and data privacy.

• Synchronization with other directories – Oracle Internet
Directory includes the Oracle Directory Integration platform that
enables you to synchronize with other enterprise repositories,
including third–party LDAP directories.

Oracle9iAS Single Sign–On uses Oracle Internet Directory to store user
entries. It maps users for any partner application to user entries in OID
entries, and authenticates them by using LDAP mechanisms.

2 – 32 Oracle Workflow Guide

See Also

Oracle Internet Directory Administrator’s Guide

Oracle9iAS Single Sign–On

Oracle9iAS Single Sign–On is a component of Oracle9i Application
Server that provides a framework for secure single sign–on, allowing
users to log in to multiple Web–based applications by entering a user
name and password only once.

Oracle9iAS Single Sign–On provides the following benefits:

• Ease of administration and reduced administrative costs,
because user names and passwords can be stored and
maintained outside of any particular application and shared
across the enterprise

• Convenient login experience, because users do not need to
maintain a separate username and password for each application
they access

• Increased security, because when the password is only required
once, users are less likely to use simple, easy–to–remember
passwords or write them down

The core of the Oracle9iAS Single Sign–On technology is the Login
Server. The Login Server authenticates users and passes their identities
to the partner applications that are integrated with it.

Partner applications support a single sign–on mechanism that enables
them to accept a user’s username and password as validated by the
Login Server. A partner application delegates its authentication to the
Login Server. If a partner application is registered with the Login
Server, users can log into it using the single sign–on mechanism.

With mod_osso, an Oracle module that enables single sign–on, Oracle
HTTP Server becomes a partner application of the Login Server. Oracle
Workflow uses Oracle HTTP Server as its Web server. If you implement
Oracle Internet Directory/Single Sign–On integration, Oracle Workflow
participates in single sign–on by using mod_osso to authenticate access
to its secured web pages.

When a user first tries to access a secured Workflow web page, the
Workflow security package WFA_SEC checks the CGI environment
variable REMOTE_USER for user information. If the user is not already
logged in to Oracle Workflow or another Oracle9iAS Single Sign–On
participating application, the user will be prompted to log in before the
page appears.

2 – 33Setting Up Oracle Workflow

Note: The WFA_SEC package must be loaded as a post–install
step if you choose to implement Oracle Internet
Directory/Single Sign–On integration. For more information,
see your installation documentation.

To set the variable REMOTE_USER, Oracle HTTP Server internally
calls to mod_osso. Acting as an Oracle9iAS Single Sign–On partner
application, mod_osso transparently redirects the user to the Login
Server to obtain authentication credentials, if no application cookie is
present.

The Login Server performs the following steps:

• Prompts the user for the user name and password, if no login
cookie is present.

• Authenticates the user by means of the user name and password,
using external repository authentication that relies on an
LDAP–compliant directory, specifically Oracle Internet Directory.
The Login Server binds to OID and then looks up the user
credentials stored in the directory.

• Stores an encrypted login cookie on the authenticated client.

• Transparently redirects the user to the partner application,
mod_osso, by using a URL with an encrypted parameter
containing the user’s identity.

Oracle HTTP Server with mod_osso then performs the following steps:

• Decrypts the parameter.

• Identifies the user.

• Establishes its own session management (for example,
determining what, if any, access privileges to grant to the user).

• Sets a partner application cookie so that subsequent user access
does not require a redirect to the Login Server.

• Presents the requested application page to the user.

If, during the same session, the user again seeks access to the same or
to a different partner application, the Login Server does not prompt the
user for a username and password. Instead, the Login Server obtains
the information from the login cookie that is already on the client
browser. The login cookie provides the Login Server with the user’s
identity and indicates that authentication has already been performed.
If there is no login cookie, the Login Server presents the user with a
login page.

2 – 34 Oracle Workflow Guide

To guard against eavesdropping, the Login Server can send the login
cookie to the client browser over an encrypted SSL channel.

The login cookie expires with the session, either at the end of a time
interval specified by the administrator, or when the user exits the
browser. The login cookie is never written to disk.

Note: To log out of a partner application and log in as another
user, the user must also log out of the Login Server session.
Otherwise, the authentication request returns the partner
application to the logged in state of the previous user.

See Also

Oracle9iAS Single Sign–On Administration Guide

Oracle9iAS Single Sign–On Application Developer’s Guide

Oracle Internet Directory Synchronization

Oracle Workflow provides APIs to synchronize the user information in
your Workflow directory service with OID. These APIs are defined in a
PL/SQL package called WF_LDAP. See: Workflow LDAP APIs: page
8 – 144.

Note: OID integration includes only individual users, not user
groups. Workflow roles are not maintained through OID.

� To Synchronize Workflow Directory Services with OID

1. Ensure that the following PL/SQL packages required for LDAP
synchronization are loaded in your database:

• DBMS_LDAP—This package contains the functions and
procedures which can be used to access data from LDAP servers.

• WFA_SEC—This package contains Workflow security functions
and procedures.

For the standalone version of Oracle Workflow, installation of these
packages is completed as part of the post–installation steps after
you install the Oracle Workflow server.

2. For single sign–on integration, ensure that the Database Access
Descriptor for Oracle Workflow is protected in the mod_osso
configuration file. For the standalone version of Oracle Workflow,

2 – 35Setting Up Oracle Workflow

mod_osso configuration is completed as part of the
post–installation steps after you install the Oracle Workflow server.

3. Ensure that the following global Workflow preferences are set to
the appropriate information for your OID installation. See: To Set
Global User Preferences: page 2 – 14.

• LDAP Host

• LDAP Port

• LDAP User Name

• LDAP Password

• LDAP Changelog Base Directory

• LDAP User Base Directory

4. Run the wfdircsv.sql script to map your directory service views only
to the WF_LOCAL tables. See: Integrating Oracle Workflow
Directory Services with Local Workflow Users: page 2 – 28.

5. Enable the predefined subscription to the
oracle.apps.wf.public.user.change event with the rule function
WF_SSO.user_change. See: User Entry Has Changed Event: page
14 – 15 and To Update or Delete an Event Subscription: page
13 – 52.

6. To begin the synchronization, run the WF_LDAP.Synch_all() API.
This function retrieves all the existing user information from OID,
based on the LDAP directory information specified in the Global
Workflow Preferences, and raises the
oracle.apps.wf.public.user.change event. The predefined
subscription to this event that you enabled loads the user
information into the WF_LOCAL_USERS table.

Because Synch_all() retrieves information for all users stored in
OID, you should use this function only once during setup. If
necessary, however, you can also run Synch_all() as required for
recovery or cleanup.

Use the following commands to run Synch_all():

declare

 res boolean := FALSE;

begin

 wf_log_pkg.WF_DEBUG_FLAG := TRUE;

 res := wf_ldap.synch_all();

 if (res) then

2 – 36 Oracle Workflow Guide

 dbms_output.put_line(’succeeded’);

 else

 dbms_output.put_line(’failed ’);

 end if;

end;

/

7. Subsequently, you must maintain the synchronization between
your Workflow directory service and OID by retrieving and
loading only changed OID user information. It is recommended
that you update the user information every ten minutes.

You can use either WF_LDAP.Synch_changes() or
WF_LDAP.Schedule_changes() to retrieve changed user information
from OID. WF_LDAP.Synch_changes() identifies LDAP user
changes in OID, including creation, modification, and deletion, by
querying the LDAP change log records. The function connects to
OID based on the LDAP directory information specified in the
Global Workflow Preferences. If there is a change, the function
retrieves the user information from OID and raises the
oracle.apps.wf.public.user.change event. The predefined
subscription to this event that you enabled loads the changed user
information into the WF_LOCAL_USERS table. You can use
WF_LDAP.Synch_changes() to perform a single update.

To continue updating user information periodically, use
WF_LDAP.Schedule_changes(). This procedure submits a database
job using the DBMS_JOB utility to run WF_LDAP.Synch_changes()
repeatedly at an interval that you specify. The default interval,
which is also the recommended frequency to check for updates, is
ten minutes.

You can create a script to run WF_LDAP.Schedule_changes(). For
example, to run the API at an interval of ten minutes, create a SQL
file with the following commands:

declare

begin

 wf_log_pkg.WF_DEBUG_FLAG := TRUE;

 wf_ldap.schedule_changes(0,0,10);

end;

/

Then run SQL*Plus and load your new script to the database.

Note: You must terminate the running of any WF_LDAP APIs
before changing your LDAP setup, such as by migrating to a
different LDAP server.

�

2 – 37Setting Up Oracle Workflow

Attention: If you implement OID integration, you must
maintain your users only through OID. You must not create ad
hoc users in the WF_LOCAL_USERS table, because you risk
discrepancies in your user information and unpredictable
results if you use any tool other than OID to maintain users
after integrating with OID. Consequently, if you implement
OID integration, you must not use the CreateAdHocUser(),
SetAdHocUserStatus(), SetAdHocUserExpiration(), or
SetAdHocUserAttr() APIs in the WF_DIRECTORY package.

You can still use ad hoc roles, however, since Workflow roles
are not maintained through OID.

See Also

Setting Global User Preferences: page 2 – 14

Workflow LDAP APIs: page 8 – 144

User Entry Has Changed Event: page 14 – 15

Managing Job Queues, Oracle Administrator’s Guide

Workflow Directory Service APIs: page 8 – 121

Step 5

2 – 38 Oracle Workflow Guide

Creating the WF_LANGUAGES View

The field values in the property pages of Oracle Workflow Builder and
the workflow notifications delivered to your users can be translated to
the languages defined in your Oracle installation. However, in order
for this to be possible, you must create a view called
WF_LANGUAGES that identifies the languages defined in your Oracle
installation. Oracle Workflow uses this view to create in its translatable
tables, a row for each language that maps to a row found in its
non–translated base table.

The WF_LANGUAGES view must include the following columns:

• Code—The language code.

• Display_Name—The display name of the language.

• NLS_Language—The value of the Oracle NLS_LANGUAGE
initialization parameter that specifies the default
language–dependent behavior of a session.

• NLS_Territory—The value of the Oracle NLS_TERRITORY
initialization parameter that specifies the default
territory–dependant date and numeric formatting of a session.

• NLS_Codeset—The character set for the language.

• Installed_Flag—Flag to indicate if the language is installed and
available for use.

A sample WF_LANGUAGES view is included in the script of each of
the predefined directory services that Oracle Workflow provides.

Context: You need to perform this step only once.

See: Oracle Database National Language Support Guide

� To display user defined objects in Oracle Workflow Builder in other
languages (for standalone version only)

1. Install Oracle Workflow.

2. Create the WF_LANGUAGES view in your workflow server.

3. Run the script wfnlena.sql to enable the language of interest. See:
wfnlena.sql: page 16 – 12.

4. Run the script WFNLADD.sql to create rows for the enabled
language in each workflow object translation table. See:
WFNLADD.sql: page 16 – 5.

5. Set the NLS_LANG environment variable for the new language.

2 – 39Setting Up Oracle Workflow

For example, in UNIX, use the command:

setenv NLS_LANG = ’language.territory_characterset’

For Windows NT, run the regedit32 command and locate the
NLS_LANG setting under the
HKEY_LOCAL_MACHINE/SOFTWARE/ORACLE hierarchy. Double
click on NLS_LANG, then set the variable to the new value and
save your edit.

6. Create a translated version of your workflow process definition
and save it as a flat file (.wft).

7. Load the translated .wft file to your workflow database, making
sure that the current NLS_LANG setting is correct.

Note: To determine the language to load, the Workflow
Definitions Loader uses the language specified in the .wft file,
while the Workflow Resource Generator accepts a language
parameter. If you do not specify a language parameter, the
Workflow Resource Generator defaults to the current setting of
NLS_LANG.

� To display an Oracle Workflow web session in other languages (for
standalone version only)

� If you have multiple languages installed for Oracle Workflow, as a
workflow administrator, you can specify the default language that
your users’ web sessions display by setting the Language
parameter in the Global User Preferences web page. Individual
users can override the default language by setting the Language
parameter in the User Preferences web page. See: Setting Global
User Preferences: page 2 – 14 and Setting User Preferences: page
9 – 6.

� To display e–mail notifications in other languages

1. Determine if Oracle has translated the e–mail notification templates
to the language you wish to set by checking for a file called
wfmail.wft in the appropriate language subdirectory
$ORACLE_HOME/wf/res/<lang>. See: Modifying Your Message
Templates: page 2 – 69.

2. If the e–mail templates are available for the language you wish to
display, you can set your users and roles’ default language setting
to that language in the Global Preferences web page. See: Setting
Global User Preferences: page 2 – 14.

Step 6

2 – 40 Oracle Workflow Guide

Setting the Socket Listener Profile Options

The Notification Details web page can display an attached form icon to
support form attributes in a notification message. Oracle Applications
users can launch the Oracle Workflow Notification Worklist from their
Oracle Applications menus.

From the Worklist, users can select a notification link to display the
contents of a notification in the Notification Details page. If the
notification details display an attached form icon, users can choose that
icon to launch an Oracle Applications form.

Before Oracle Workflow can launch the form from the Notification
Details page, it must check for appropriate context information with
Oracle Applications. To accomplish this, the socket listener on the form
side must be active.

You can activate the Oracle Applications socket listener by setting the
Socket Listener Activated profile option to Yes using the System Profile
Values Window.

In addition, the Workflow Administrator needs to specify the following
token values in $FND_TOP/resource/<language>/wfcfg.msg for the
Java plugin:

WF_CLASSID <Class ID for Jinitiator>

(Required if you are using Microsoft Internet Explorer.)

WF_PLUGIN_DOWNLOAD <Plugin location>

(Such as http://<server>/OA_JAVA/.)

WF_PLUGIN_VERSION <Plugin version>

(Such as 1.1.7.27.)

Run the Workflow Resource Generator to load the contents of
wfcfg.msg into the WF_RESOURCES table.

You can also set these three values in the Global Preferences page. See:
To Set Global User Preferences: page 2 – 14.

You must also set the Socket Listener Port profile option to the port at
which Oracle Workflow should launch attached forms. This profile
option can be set to different ports for different users.

If the socket listener port is not set at user level, Oracle Workflow
launches attached forms at the default port set for the site. However, if
users have set different ports, Oracle Workflow launches the forms for
each user at the specified port. By using different socket listener ports,
two different users logged into Oracle Applications on the same
machine can both launch attached forms at the same time without
interference from each other.

2 – 41Setting Up Oracle Workflow

Context: You need to perform this step only once.

See: Overview of Setting User Profiles: Oracle Applications System
Administrator’s Guide

See: To run the Workflow Resource Generator: page 8 – 105.

Step 7

�

2 – 42 Oracle Workflow Guide

Setting the WF_RESOURCES Environment Variable

If you are using the standalone version of Oracle Workflow and your
Workflow server is installed on a UNIX platform, you must set an
environment variable called WF_RESOURCES to point to the
language–dependent Oracle Workflow resource file (wf<language>.res).
The resource file generally resides under the res subdirectory of your
Oracle Workflow server directory structure.

Attention: Do not enclose environment variable values in
double quotes (” ”) as this is not supported.

You do not need to set this environment variable if your Workflow
server is installed on the Windows NT platform. The Workflow server
installation on Windows NT automatically sets a WF_RESOURCES
environment variable that identifies the path of the wf<language>.res
file.

You also do not need to set this environment variable if you are using
the version of Oracle Workflow embedded in Oracle Applications. For
Oracle Applications, the path of the language–dependent Oracle
Workflow resource file is $FND_TOP/$APPLRSC/wf<language>.res.

Context: You need to perform this step only once.

Step 8

2 – 43Setting Up Oracle Workflow

Setting Up Background Workflow Engines

When the Workflow Engine initiates and performs a process, it
completes all necessary activities before continuing to the next eligible
activity. In some cases, an activity can require a large amount of
processing resource or time to complete. Oracle Workflow lets you
manage the load on the Workflow Engine by setting up supplemental
engines to run these costly activities as background tasks. In these
cases, the costly activity is deferred by the Workflow Engine and run
later by a background engine. The main Workflow Engine can then
continue to the next available activity, which may occur on some other
parallel branch of the process.

A background engine must also be set up to handle timed out
notification activities. When the Workflow Engine comes across a
notification activity that requires a response, it calls the Notification
System to send the notification to the appropriate performer, and then
sets the notification activity to a status of ’NOTIFIED’ until the
performer completes the notification activity. Meanwhile, a
background engine set up to handle timed out activities periodically
checks for ’NOTIFIED’ activities and whether these activities have time
out values specified. If a ’NOTIFIED’ activity does have a time out
value, and the current date and time exceeds that time out value, the
background engine marks that activity as timed out and calls the
Workflow Engine. The Workflow Engine then resumes by trying to
execute a <Timeout> transition activity.

Additionally, a background engine must be set up to handle stuck
processes. A process is identified as stuck when it has a status of
ACTIVE, but cannot progress any further. For example, a process could
become stuck in the following situations:

• A thread within a process leads to an activity that is not defined
as an End activity but has no other activity modeled after it, and
no other activity is active.

• A process with only one thread loops back, but the pivot activity
of the loop has the On Revisit property set to Ignore.

• An activity returns a result for which no eligible transition exists.
For instance, if the function for a function activity returns an
unexpected result value, and no default transition is modeled
after that activity, the process cannot continue.

The background engine sets the status of a stuck process to
ERROR:#STUCK and executes the error process defined for it.

You can define and start up as many background engines as you like to
check for deferred and timed out activities.

2 – 44 Oracle Workflow Guide

Background engines can be restricted to handle activities associated
with specific item types, and within specific cost ranges. A background
engine runs until it completes all eligible activities at the time it was
initiated.

Generally, you should set the background engine up to run periodically
by either using a script to restart the background engine periodically
(for the standalone version of Oracle Workflow), or scheduling the
Background Process concurrent program to resubmit periodically (for
the version of Oracle Workflow embedded in Oracle Applications).

Ensure that you have at least one background engine that can check for
timed out activities, one that can process deferred activities, and one
that can handle stuck processes. At a minimum, you need to set up one
background engine that can handle both timed out and deferred
activities as well as stuck processes.

Generally, you should run a separate background engine to check for
stuck processes at less frequent intervals than the background engine
that you run for deferred activities, normally not more often than once
a day. Run the background engine to check for stuck processes when
the load on the system is low.

Context: You need to perform this step only once.

See: Activity Cost: page 4 – 47

See: Timeout Transitions: page 5 – 3

See: Deferring Activities: page C – 7

� To Start a Background Engine

If you are using the standalone version of Oracle Workflow, then use
the WF_ENGINE.BACKGROUND() API to start up a background engine.
Sample scripts that repeatedly run the background engine are provided
with the standalone version of Oracle Workflow. You can use the
procedures in the DBMS_JOB package to schedule and manage the
background engine as a database job. See: Background: page 8 – 41 and
Managing Job Queues, Oracle Administrator’s Guide.

If you are using the version of Oracle Workflow embedded in Oracle
Applications, you can start a background engine by submitting the
Background Process concurrent program using the Submit Requests
form. See: To Schedule Background Engines: page 2 – 45

Note: If you are using the version of Oracle Workflow
embedded in Oracle Applications and you have implemented
Oracle Applications Manager, you can use Oracle Workflow
Manager to submit and manage the Workflow Background

2 – 45Setting Up Oracle Workflow

Process concurrent program. For more information, please refer
to the Oracle Applications Manager online help.

If you are using the standalone version of Oracle Workflow
available with Oracle9i Release 2, you can use the standalone
Oracle Workflow Manager component available through Oracle
Enterprise Manager to submit and manage Workflow
background engine database jobs. For more information, please
refer to the Oracle Workflow Manager online help.

Note: Make sure you have a least one background engine that
can check for timed out activities, one that can process deferred
activities, and one that can handle stuck processes. At a
minimum, you need to set up one background engine that can
handle both timed out and deferred activities as well as stuck
processes.

To Schedule Background Engines

If you are using the version of Oracle Workflow embedded in Oracle
Applications, you can submit the background engine procedure as a
concurrent program to schedule different background engines to run at
different times. Use the Submit Requests window in Oracle
Applications to submit the Workflow Background Process.

Note: If you require a larger rollback segment for the
Workflow Background Process than the default, you can use
the Concurrent Programs window in the System Administrator
responsibility to specify the rollback segment that you want.
This rollback segment will be used instead of the default and
will be used up until the first commit.

Query the Workflow Background Process concurrent program
(FNDWFBG) in the Concurrent Programs window, and choose
the Session Control button. Then in the Session Control
window, enter the rollback segment you want in the Rollback
Segment field, and save your work. See: Concurrent Programs
Window, Oracle Applications System Administrator’s Guide.

� To Run a Workflow Background Process as a Concurrent Program

1. Navigate to the Submit Requests form.

2. Submit the Workflow Background Process concurrent program as a
request. See: Submitting a Request, Oracle Applications User’s Guide.

3. In the Parameters window, enter values for the following
parameters:

2 – 46 Oracle Workflow Guide

Specify an item type to restrict this engine to
activities associated with that item type. If you do
not specify an item type, the engine processes any
deferred activity regardless of its item type.

Specify the minimum cost that an activity must
have for this background engine to execute it, in
hundredths of a second.

Specify the maximum cost that an activity can have
for this background engine to execute it, in
hundredths of a second.

By using Minimum Threshold and Maximum
Threshold you can create multiple background
engines to handle very specific types of activities.
The default values for these arguments are 0 and
100 so that the background engine runs activities
regardless of cost.

Specify whether this background engine checks for
deferred activities. Setting this parameter to
’Yes’ allows the engine to check for deferred
activities.

Specify whether this background engine checks for
activities that have timed out. Setting this
parameter to ’Yes’ allows the engine to check for
timed out activities.

Specify whether this background engine checks for
stuck processes. Setting this parameter to ’Yes’
allows the engine to check for stuck processes.

Note: Make sure you have a least one background engine that
can check for timed out activities, one that can process deferred
activities, and one that can handle stuck processes. At a
minimum, you need to set up one background engine that can
handle both timed out and deferred activities as well as stuck
processes.

4. Choose OK to close the Parameters window.

5. When you finish modifying the run options to define the schedule
for the background engine, choose Submit to submit the request.

Item Type

Minimum
Threshold

Maximum
Threshold

Process Deferred

Process Timeout

Process Stuck

2 – 47Setting Up Oracle Workflow

See Also

See: Overview of Concurrent Programs and Requests, Oracle
Applications System Administrator’s Guide

� To Set Engine Thresholds

To set the thresholds of background engines, specify the minthreshold
and maxthreshold arguments when starting the engine. The
background engine then only processes activities with costs within
your specifications.

The Workflow Engine threshold is set to 50 as a default. Activities with
a cost higher than 50 are deferred for background engines to process.

In some cases, you may want to force the engine to defer an activity
although the activity’s cost is less than fifty. You can do this by altering
the Workflow Engine threshold in the PL/SQL stored procedure for a
function activity.

The engine threshold is set in an externalized constant called
THRESHOLD. Include the following line in your PL/SQL procedure to
set the WF Engine threshold to a different value:

WF_ENGINE.THRESHOLD := n;

You should reset the threshold value afterwards in SQLPLUS or in the
next function activity so that other activities are processed as expected.

Step 9

2 – 48 Oracle Workflow Guide

Implementing the Notification Mailer

The Notification Mailer is a program that performs e–mail send and
response processing for the Oracle Workflow Notification System. You
need to perform this step only if you wish to have your workflow users
receive their notifications via e–mail, as well as from the Notifications
Worklist web page. The Notification Mailer polls the database for
messages that have to be sent, dequeues these messages from the SMTP
advanced queue, and performs the following action for each message:

• Resolves the recipient role to a single e–mail address, which itself
can be a mail list.

• Switches its database session to the role’s preferred language and
territory as defined by the directory service.

• Generates the message and any optional attachments using the
appropriate message template.

• Sends the message via UNIX Sendmail or any MAPI–compliant
mail application on Windows NT.

Note: A standard agent named WF_SMTP_O_1_QUEUE is
defined for the Notification Mailer SMTP queue in the Event
Manager. This agent appears in the Check Setup page and the
Event System Local Queues page of the Event Manager,
enabling you to use these pages to check the number of
notification messages on the Notification Mailer queue. The
WF_SMTP_O_1_QUEUE agent is not used by the Business
Event System, however. See: Standard Agents: page 13 – 25,
Checking the Business Event System Setup: page 13 – 53, and
Reviewing Local Queues: page 13 – 72.

The Notification Mailer also processes responses by interpreting the
text of messages mailed to its response mail account and calling the
appropriate notification response function to complete the notification.

The e–mail notifications are based on standard templates defined in
Oracle Workflow Builder. The templates describe the syntax the reply
should follow and list the information needed to confirm the
notification. The generated e–mail message also includes any custom
site information, the due date, and any information necessary to
process the response. See: Modifying Your Message Templates: page
2 – 69.

Once you set up the Notification Mailer to run, it continually polls the
database for messages to send and checks its response mail account for
responses to process. You do not have to do anything else unless you
have a need to shut it down and restart it again with different
parameters.

�

2 – 49Setting Up Oracle Workflow

Attention: The Notification Mailer will shut itself down if a
database failure is encountered or if the PL/SQL package state
for the session is invalid due to dropping or replacing of
package definitions. If you are using the standalone version of
Oracle Workflow, you can restart the Notification Mailer
manually or run a shell script that restarts the Notification
Mailer if it ever exits with a failure. See: To Run a Perpetual
Shell Script for the Notification Mailer: page 2 – 67. If you are
using the version of Oracle Workflow embedded in Oracle
Applications, you can use the concurrent manager to restart the
Notification Mailer program manually or schedule it to restart
periodically.

Context: You need to perform this step only once.

See: Reviewing Notifications via Electronic Mail: page 10 – 2

Full MIME Support

Oracle Workflow fully supports MIME (Multi–purpose Internet Mail
Extensions) encoded messages. This means that the Notification Mailer
can exchange messages with workflow users containing languages with
different character sets and multi–media encoded content.

Notification Preferences

Oracle Workflow allows you to determine how you view notifications
by setting a notification preference in the User Preferences web page.
See: Setting User Preferences: page 9 – 6.

Often times, the functionality of a user’s mail reader determines what
the user’s notification preference should be. Some mail readers can
only display plain text, others can display HTML formatting, while still
others can only display HTML formatting in an attachment. Five
notification preferences are available:

• Plain text mail (MAILTEXT)—The notification message appears
as plain text, with no attachments. See: Plain Text E–mail: page
2 – 50.

• HTML mail (MAILHTML)—The notification message appears as
HTML–formatted text, with at least one other attachment that is
a link to the notification in the Notifications web page. If the
notification message has ’Content–Attached’ message attributes,
these attributes appear as additional attachments to the message.
See: HTML–Formatted E–mail: page 2 – 51.

�

�

2 – 50 Oracle Workflow Guide

Attention: If you wish to view notifications with HTML
formatting, but your mail reader is not able to interpret HTML
formatting in the mail message body, change your notification
preference to ’Plain text mail with HTML attachments’
(MAILATTH). The MAILATTH preference delivers an
HTML–formatted version of the notification as an attachment
to the plain text notification.

• Plain text mail with HTML attachments (MAILATTH)—The
notification message appears as plain text, with at least two other
attachments. One attachment is an HTML–formatted version of
the message, and the other is a link to the notification in the
Notifications web page. If the notification message has
’Content–Attached’ message attributes, these attributes appear
as additional attachments to the message. See: Plain Text E–mail
with an HTML Attachment: page 2 – 53.

• Plain text summary mail (SUMMARY)—The message is a plain
text summary of all open notifications. To respond to the
individual notifications in the summary, you must access the
notifications from the Notifications web page.

• Do not send me mail (QUERY)—The Notification Mailer does
not send you e–mail notifications. Instead you must query and
respond to your notifications from the Notifications web page.

Attention: You can always query and respond to your
notifications from the Notifications web page, even if you set
your notification preference to send you mail.

See: Reviewing Notifications via Electronic Mail: page 10 – 2

See: Viewing Notifications from a Web Browser: page 10 – 12

See: Reviewing a Summary of Your Notifications via Electronic Mail:
page 10 – 24

Plain Text E–mail

If the performer of a notification has a notification preference of plain
text mail (MAILTEXT), the notification is flagged as such in the
Workflow Notification table. When the Notification Mailer polls the
Notification table and identifies that flag, it generates a plain text
e–mail notification from the information in the table and sends it to the
performer role. The Notification Mailer uses the Text Body defined for
the message in the Oracle Workflow Builder message property page to
generate the plain text e–mail. It token replaces all attribute values
referenced in the message body with plain text values. For example:

�

2 – 51Setting Up Oracle Workflow

• PL/SQL and PL/SQL CLOB document attributes are token
replaced with a plain text version of a PL/SQL document.

• URL attributes are token replaced with the display name of the
URL attribute, followed by a colon and the URL:

<URL_Attribute_Display_Name>:<URL>

Attention: Message attributes that have Attach Content
checked in their Attributes property page, are attached as plain
text to their parent notification. Note that this may render
some attachments unreadable if the attachment includes special
formatting or your plain text e–mail reader does not recognize
attachments. To view these attachments, you should display
your notifications in the Notifications Worklist web page. See:
Viewing Notifications from a Web Browser: page 10 – 12.

A recipient of a plain text e–mail notification responds by manually
replying to the notification and entering response values following the
instructions provided in the notification. See: To Respond to a Plain
Text E–mail Notification Using Templated Response: page 10 – 4 and To
Respond to a Plain Text E–mail Notification Using Direct Response:
page 10 – 6.

HTML–Formatted E–mail

If the performer of a notification has a notification preference of HTML
mail (MAILHTML), the notification is flagged as such in the Workflow
Notification table. When the Notification Mailer polls the Notification
table and identifies that flag, it generates an HTML–formatted e–mail
notification from the information in the table and sends it to the
performer role. The performer role should use an e–mail reader that
can interpret and display HTML content within a message body.

Note: If your e–mail reader cannot interpret HTML formatting
in a message body, you should set your notification preference
to plain text mail with HTML Attachments (MAILATTH).

The Notification Mailer uses the HTML Body defined for the message
in the Message Body property page to generate the HTML e–mail. If
no HTML Body is defined, it uses the Text Body to generate the HTML
mail. The Notification Mailer token replaces all message attributes
referenced in the message body with HTML–formatted values. For
example:

• PL/SQL and PL/SQL CLOB document attributes are token
replaced with HTML text or plain text between <pre>...</pre>
HTML tags.

2 – 52 Oracle Workflow Guide

• URL attributes are token replaced with HTML anchors. When
you select such an anchor, your e–mail reader takes you to the
target URL page.

Note: Message attributes that have Attach Content checked in
their Attributes property page, are appended as
HTML–formatted attachments to their parent message. For
example:

– If the message attribute is a URL attribute, an attachment
called Notification References is appended to the message.
This attachment includes a link to each URL attribute for
the message that has Attach Content checked. You can
navigate to a URL by choosing its link. The Notification
Mailer does not have any special handling of image, video,
or audio URL content.

– If the message attribute is a PL/SQL or PL/SQL CLOB
document attribute, the fully generated PL/SQL document
is fetched and attached to the message.

An HTML–formatted notification always includes at least one
attachment. The attachment is called Notification Detail Link. When
you select this attachment, your e–mail reader opens a browser
window that displays your notification in the Notification Details web
page. You can respond directly to your notification from this web page,
bypassing the need to process your response through the Notification
Mailer.

Note: If the SEND_ACCESS_KEY parameter in the
Notification Mailer configuration file is set to N, and you are
not already logged in, you will be prompted to log in when you
select the Notification Detail Link before you can access the
Notification Details web page.

Note: The file name of the Notification Detail Link attachment
is determined by the text value for the
WF_URL_NOTIFICATION resource token, or by the token
name if no text value is defined. Similarly, the file name of the
Notification References attachment is determined by the text
value for the WF_URLLIST_ATTACHMENT resource token, or
by the token name if no text value is defined. The default file
names are ”Notification Detail Link.html” and
”Notification References.html”, respectively. If you want to
specify different file names for these attachments, you must
first create a .msg source file specifying the new file names as
the text values for the WF_URL_NOTIFICATION and
WF_URLLIST_ATTACHMENT resource tokens. Then use the
Workflow Resource Generator program to generate a new

2 – 53Setting Up Oracle Workflow

Oracle Workflow resource file (wf<language>.res) from the
source file and to upload the new seed data from the source file
to the database table WF_RESOURCES. See: To Run the
Workflow Resource Generator: page 8 – 105 and Setting the
WF_RESOURCES Environment Variable: page 2 – 42.

Alternatively, you can respond to your HTML–formatted notification
by clicking on a link that represents the response in the HTML message
body. The response link generates a plain text e–mail response that
includes a response template modified with the predefined response
value that you select. See: To Respond to an HTML E–mail
Notification: page 10 – 9.

Plain Text E–mail with an HTML Attachment

If the performer of a notification has a notification preference of plain
text mail with HTML attachments (MAILATTH), the notification is
flagged as such in the Workflow Notification table. When the
Notification Mailer polls the Notification table and identifies that flag,
it generates a plain text e–mail notification with HTML attachments
from the information in the table and sends it to the performer role.
The performer role should use an e–mail reader that supports HTML
attachments.

The Notification Mailer uses the Text Body defined for the message in
the Message Body property page to generate the plain text body of the
e–mail. It also generates an HTML version of the notification message
and sends it as an attachment called HTML Message Body to the plain
text e–mail. The Notification Mailer generates the content of the HTML
attachment from the HTML Body defined for the message. If no
HTML Body is defined, it uses the Text Body to generate the HTML
mail. The Notification Mailer token replaces all message attributes
referenced in the plain text message body with plain text values and
token replaces all message attributes referenced in the attached HTML
message with HTML–formatted values. See: Sending Plain Text
E–mail: page 2 – 50 and Sending HTML–Formatted E–mail: page 2 – 51.

If your e–mail reader supports HTML–formatting in the message body,
then the HTML attachment will also appear in line in the message
body.

Note: Message attributes that have Attach Content checked in
their Attributes property page, are appended as
HTML–formatted attachments. For example:

– If the message attribute is a URL attribute, an attachment
called Notification References is appended to the message.
This attachment includes a link to each URL attribute for

2 – 54 Oracle Workflow Guide

the message that has Attach Content checked. You can
navigate to a URL by choosing its link.

– If the message attribute is a PL/SQL or PL/SQL CLOB
document attribute, the fully generated PL/SQL document
is fetched and attached to the message.

The notifications received by a user whose notification preference is
’Plain text with HTML attachments’ always contain at least two
attachments. The first attachment is HTML Message Body and the
other is Notification Detail Link. When you select Notification Detail
Link, your e–mail reader opens a browser window that displays your
notification in the Notification Details web page. You can respond
directly to your notification from this web page, bypassing the need to
process your response through the Notification Mailer. See: To
Respond to a Plain Text E–mail Notification with an HTML
Attachment: page 10 – 11.

Note: If the SEND_ACCESS_KEY parameter in the
Notification Mailer configuration file is set to N, and you are
not already logged in, you will be prompted to log in when you
select the Notification Detail Link before you can access the
Notification Details web page.

Alternatively, a recipient of this type of notification can respond in one
of two other ways:

• Manually reply to the notification and enter response values
following the instructions provided in the notification. See: To
Respond to a Plain Text E–mail Notification Using Templated
Response: page 10 – 4 and To Respond to a Plain Text E–mail
Notification Using Direct Response: page 10 – 6.

• Select the HTML Message Body attachment to display the
HTML–formatted version of the e–mail message, and click on
the HTML link that represents the response. The response link
generates a plain text e–mail response that includes a response
template updated with the predefined response value you select.

Note: The file name of the HTML Message Body attachment is
determined by the text value for the WF_HTML_MESSAGE
resource token, or by the token name if no text value is defined.
Similarly, the file name of the Notification Detail Link
attachment is determined by the text value for the
WF_URL_NOTIFICATION resource token, or by the token
name if no text value is defined; and the file name of the
Notification References attachment is determined by the text
value for the WF_URLLIST_ATTACHMENT resource token, or
by the token name if no text value is defined. The default file

2 – 55Setting Up Oracle Workflow

names are ”HTML Message Body.html”,
”Notification Detail Link.html”, and
”Notification References.html”, respectively. If you want to
specify different file names for these attachments, you must
first create a .msg source file specifying the new file names as
the text values for the WF_HTML_MESSAGE,
WF_URL_NOTIFICATION, and
WF_URLLIST_ATTACHMENT resource tokens. Then use the
Workflow Resource Generator program to generate a new
Oracle Workflow resource file (wf<language>.res) from the
source file and to upload the new seed data from the source file
to the database table WF_RESOURCES. See: To Run the
Workflow Resource Generator: page 8 – 105 and Setting the
WF_RESOURCES Environment Variable: page 2 – 42.

Starting the Notification Mailer

You can install and set up the Notification Mailer to run against UNIX
Sendmail or a MAPI–compliant mail application on Windows NT.
However, before doing so, you must set up a least one mail account
dedicated to the Notification Mailer in one of these mail applications.
You must also define three folders or files in your mail account to use
response processing.

Users can receive e–mail notifications using any e–mail reader that is
MAPI–compliant running on Windows NT or that UNIX Sendmail can
provide a gateway to.

Note: If you are using the standalone version of Oracle
Workflow available with Oracle9i Release 2, you can use the
standalone Oracle Workflow Manager component available
through Oracle Enterprise Manager to monitor the throughput
of the Notification Mailer. For more information, please refer to
the Oracle Workflow Manager online help.

� To Start the Notification Mailer for UNIX Sendmail

For the Standalone Version of Oracle Workflow:

1. The Notification Mailer resides on your server in the
$ORACLE_HOME/bin subdirectory. To run the Notification
Mailer, use the following command syntax:

wfmail.<xxx> –f <config_file>

Replace <xxx> with snd to use the UNIX Sendmail version of the
Notification Mailer. Replace <config_file> with the full path and

2 – 56 Oracle Workflow Guide

name of the configuration file that contains the parameters you
want to run with the Notification Mailer.

2. Alternatively, you can specify the parameters for the Notification
Mailer as arguments on the command line rather than in a
configuration file, by typing the following command:

wfmail.<xxx> <arg1> <arg2> ...

Or, you can specify a configuration file, but override certain
parameter values in the configuration file by specifying command
line values:

wfmail.<xxx> –f <config_file> <arg1> <arg2> ...

Replace <arg1> <arg2> ... with any number of optional
parameters and values, using the format parameter=value.

For the Version of Oracle Workflow Embedded in Oracle
Applications:

1. The Notification Mailer program is registered as a concurrent
program. You can run the Notification Mailer concurrent program
from the Submit Requests form or from the command line.

Note: If you are using the version of Oracle Workflow
embedded in Oracle Applications and you have implemented
Oracle Applications Manager, you can use Oracle Workflow
Manager to configure and run the Notification Mailer. For more
information, please refer to the Oracle Applications Manager
online help.

2. To run the concurrent program from the Submit Requests form,
navigate to the Submit Requests form.

Note: Your system administrator needs to add this concurrent
program to a request security group for the responsibility that
you want to run this program from. See: Overview of
Concurrent Programs and Requests, Oracle Applications System
Administrator’s Guide.

3. Submit the Notification Mailer concurrent program as a request.
See: Submitting a Request, Oracle Applications User’s Guide.

4. In the Parameters window, enter the path and filename of a
configuration file. The configuration file contains the parameters
you want to run with the Notification Mailer.

5. Choose OK to close the Parameters window.

6. When you finish modifying the print and run options for this
request, choose Submit to submit the request.

2 – 57Setting Up Oracle Workflow

7. Rather than use the Submit Requests form, you can also run the
Notification Mailer concurrent program from the command line.
Enter:

WFMAIL apps/pwd 0 Y FILE config_file

Replace apps/pwd with username and password to the APPS
schema, replace config_file with the file specification of the
configuration file that contains the parameters you want to run
with the Notification Mailer.

A file specification for config_file can be:

@<application_short_name>:[<dir>/.../]file.ext

or

<native path>

� To Start the Notification Mailer for MAPI–Compliant Mail
Applications

1. Install the Notification Mailer for MAPI–compliant mail
applications on your Windows NT PC using Oracle Universal
Installer. The Notification Mailer program resides in
<drive>:\<ORACLE_HOME>\bin.

2. Start the Notification Mailer program by entering the following
command in an MS–DOS prompt window:

<drive>:\<ORACLE_HOME>\bin\wfmlr.exe –f <config_file>

Replace <config_file> with the full path and name of the
configuration file that contains the parameters you want to run
with the Notification Mailer.

Note: You can also double–click on the Oracle Workflow
Notification Mailer icon in the Oracle – <SID NAME> program
group to start the program, but you must first edit the
properties of the icon to include the above command as its
target.

3. Alternatively, if you want to specify the parameters for the
Notification Mailer as arguments on the command line rather than
in a configuration file, you can type the following command:

wfmlr.exe <arg1> <arg2> ...

Or, you can specify a configuration file, but override certain
parameter values in the configuration file by specifying command
line values:

wfmlr.exe –f <config_file> <arg1> <arg2> ...

�

2 – 58 Oracle Workflow Guide

Replace <arg1> <arg2> ... with the required and optional
parameters and values, using the format parameter=value.

� To Create a Configuration File for the Notification Mailer

1. Oracle Workflow provides an example configuration file, called
wfmail.cfg. If you are using the standalone version of Oracle
Workflow, the file resides in your Oracle Workflow server directory
structure, under the subdirectory res. For the version of Oracle
Workflow embedded in Oracle Applications, the file resides in the
resource subdirectory under $FND_TOP on your server. The file
also resides on your PC in the <drive>:\<ORACLE_HOME>\wf\data
subdirectory.

Note: If you are using the version of Oracle Workflow
embedded in Oracle Applications and you have implemented
Oracle Applications Manager, you can use Oracle Workflow
Manager to configure and run the Notification Mailer. For more
information, please refer to the Oracle Applications Manager
online help.

2. The content of the configuration file is formatted as follows:

#Description

PARAMETER1=<value1>

#Description

PARAMETER2=<value2>

...

Any text preceded by # is not interpreted and can be used for
including comments. List each parameter name on the left side of
the equal sign (=) and specify a value for each parameter on the
right.

3. The parameters are as follows:

• CONNECT—(Required) The information to connect to the
database account where the Oracle Workflow server is installed,
using the format, username/password@connect_string (or
alias).

Attention: The CONNECT parameter is not required if you
submit the Notification Mailer as a concurrent program from
the version of Oracle Workflow embedded in Oracle
Applications. In this case, the concurrent manager passes in the
database connection information for the Notification Mailer to
use.

�

�

�

2 – 59Setting Up Oracle Workflow

• ACCOUNT—(Required) The information to connect to the mail
account that the program uses to send notification messages. For
MAPI–compliant mail programs, the account information is the
mail account profile name and mail account password. For
Sendmail, the account information would be the full file path of
the mail spool file where incoming messages are stored, such as
/var/mail/applmgr3. Note that this should correspond to the
account from which you start the Notification Mailer, in this
example, applmgr3.

Attention: If you want to start the Sendmail version of the
Notification Mailer, you must also specify the full path of the
Sendmail executable directory in your PATH environment
variable.

Attention: If you are using the version of Oracle Workflow
embedded in Oracle Applications, and want to start the
Sendmail version of the Notification Mailer concurrent
program, then the Account parameter must be set to the
account from which you start the Concurrent Manager.

• NODE—(Required) The node identifier name. The node name is
included with the outgoing notification ID. The default name is
wf.

If you have multiple workflow databases on one server, you
must define a unique node name for each Notification Mailer
configuration file to ensure that the Notification Mailer for each
instance uses a different TMP file for processing. For example, if
you already have a Notification Mailer on the server with the
node name wf, you could assign the node name wf2 to the
Notification Mailer for the next instance you set up.

Note: You can only run one Notification Mailer per instance,
and each Notification Mailer must use a separate e–mail
account to process responses.

• FROM—The value that appears in the From: field of the message
header when a notification message is delivered to a user. The
default is Oracle Workflow.

Attention: The FROM parameter is only used to set the From:
field value by the UNIX Sendmail version of the Notification
Mailer. The MAPI–compliant version of the Notification Mailer
uses the display value that is set up for the mail account
specified in the ACCOUNT parameter.

• SUMMARYONLY—(Required) Indicate whether this
Notification Mailer processes only notifications assigned to
users/roles with a notification preference of ’SUMMARY’ or

�

2 – 60 Oracle Workflow Guide

whether it only processes notifications for users/roles with a
notification preference of ’MAILTEXT’, ’MAILATTH’, or
’MAILHTML’. Valid values are Y or N. The default is N. You
should set up at least two Notification Mailers, one where
SUMMARYONLY=Y and one where SUMMARYONLY=N if any
of your workflow users or roles have a notification preference of
’MAILTEXT’, ’MAILATTH’, ’MAILHTML’, or ’SUMMARY’.
See: Setting Up Users and Roles from a Directory Repository:
2 – 21.

If you set SUMMARYONLY=Y, then the Notification Mailer will
shut itself down after it polls the database and delivers any
appropriate notification summaries. You must therefore
schedule the Notification Mailer to run at the frequency you
want notification summaries to be delivered. We recommend
you run the summary Notification Mailer once a day, since the
summary includes all open notifications. For Oracle Workflow
running in the standalone environment, this would involve
creating an operating system script, such as a cron job in UNIX,
to schedule the Notification Mailer. For the version of Oracle
Workflow embedded in Oracle Applications, this simply
involves scheduling the Notification Mailer concurrent program
in the Submit Request form.

• DIRECT_RESPONSE—Specify N or n to send plain text
notifications requiring a templated response to users with a
notification preference of ’MAILTEXT’ or ’MAILATTH’. Specify
Y or y to send plain text notifications requiring a direct response
to users with these preferences. The default is N.

For the templated response method, users must reply using a
template of response prompts and enter their response values
between the quotes following each prompt. For the direct
response method, users must enter their response values directly
as the first lines of a reply. See: Reviewing Notifications via
Electronic Mail: page 10 – 2.

Attention: If you include the HTML_MAIL_TEMPLATE
parameter in your configuration file, the Notification Mailer
will ignore the DIRECT_RESPONSE parameter when sending
messages to users with a notification preference of
’MAILATTH’. Instead, all users with this notification
preference will receive the plain text message body defined for
the Workflow Open Mail for Outlook Express template, which
uses the templated response method. Consequently, if you do
not need to use the Workflow Open Mail for Outlook Express
template, you should comment out the

2 – 61Setting Up Oracle Workflow

HTML_MAIL_TEMPLATE parameter to let the
DIRECT_RESPONSE parameter take effect.

• AUTOCLOSE_FYI—Indicate whether this Notification Mailer
automatically closes notifications that do not require a response,
such as FYI (For Your Information) notifications, after sending
the notifications by electronic mail. Valid values include Y or N.
The default is Y.

If the value is N, all FYI notifications will remain open in the
Notifications Worklist until users manually close these
notifications.

• ALLOW_FORWARDED_RESPONSE—Indicate whether to
allow a user to respond to an e–mail notification that has been
forwarded from another role. Valid values include Y or N. The
default is Y.

If the value is N, the Notification Mailer will check if the ”From:”
e–mail address of the notification response exactly matches the
e–mail address of the recorded recipient role (or the e–mail
address of a user in that role). If the two e–mail addresses match
exactly, meaning the notification was not forwarded or was
forwarded according to a valid routing rule, the Notification
Mailer treats the response as a valid response. If the two e–mail
addresses do not match exactly, meaning the notification was
simply forwarded using the e–mail Forward command, the
Notification Mailer does not process the response and treats it as
unsolicited mail.

If the value is Y, the Notification Mailer never checks the ”From:”
e–mail address of the notification response and always allows
the response to be processed.

Warning: Note that there are limitations when you set
ALLOW_FORWARDED_RESPONSE to N. For example,
suppose a notification is sent to a distribution list mail alias
that does not have a USER/ROLE relationship in the Oracle
Workflow directory service. If any user from the distribution
list responds to the notification, the Notification Mailer will
always treat their notification response as unsolicited mail,
because the ”From:” e–mail address, which is an individual
user’s e–mail address, will never match the distribution list
mail alias.

• IDLE—The number of seconds to wait before checking for
messages to send. The value must be an integer greater than or
equal to zero. The default is 30.

�

2 – 62 Oracle Workflow Guide

• LOG—The name of a log file to record activity. A valid value
would be a filename. This parameter is valid only for the
standalone version of the Notification Mailer. For the concurrent
program version of the Notification Mailer, the activity output
goes to the concurrent manager log file.

• SHUTDOWN—The name of a file that cues the Notification
Mailer to shut down. This lets you safely shut down the
Notification Mailer without killing the process. The Notification
Mailer always looks for the shutdown file in its current working
directory before looking for notifications to process. If the file
exists, then the Notification Mailer shuts down. You must
remove the shutdown file to restart the Notification Mailer
again. The default filename is shutdown.

For the standalone version of Oracle Workflow, the Notification
Mailer’s current working directory is the directory from which
you start the Notification Mailer. For the version of Oracle
Workflow embedded in Oracle Applications, the current
working directory is the $APPLCSF/$APPLLOG directory. If
you have not set the $APPLCSF environment variable, then place
the shutdown file in the $FND_TOP/$APPLLOG directory.

• FAILCOMMAND—The command to run if the Notification
Mailer encounters a fatal error.

• DEBUG—Indicate whether to print debugging information in
the log. Valid values include Y or N. The default is N.

• TEST_ADDRESS—Indicate a test e–mail address to direct all
outgoing e–mail notifications. The test address overrides each
recipient’s e–mail address so that you can test a workflow
process without having to change each recipient’s e–mail address
to access the test notifications.

• REPLYTO—(Required) A default e–mail address to reply to, if
the e–mail account that processes responses is different from the
e–mail account that sends outgoing notifications.

Attention: The REPLYTO parameter is only used to set the
reply–to address by the UNIX Sendmail version of the
Notification Mailer. The MAPI–compliant version of the
Notification Mailer uses the display value that is set up for the
mail account specified in the ACCOUNT parameter.

• HTMLAGENT—The base URL that identifies the HTML Web
Agent that handles HTML notification responses. This URL is
required to support e–mail notifications with HTML
attachments. The default URL is derived from the Workflow

�

2 – 63Setting Up Oracle Workflow

Web Agent specified in the Global Preferences web page, but you
can override this default by entering a different value for this
parameter. See: Setting Global User Preferences: page 2 – 14.

• DISCARD—The name of the mail folder or full path name of the
mail file to put discarded messages. A ’–’ preceding the name
causes the Notification Mailer to truncate the folder or file on
startup. The default is –discard.

Note: For the UNIX Sendmail version of the Notification
Mailer, the DISCARD value must always be the full path name
of a mail file.

• PROCESS—The name of the mail folder or full path name of the
mail file to put processed notification messages. A ’–’ preceding
the name causes the Notification Mailer to truncate the folder or
file on startup. The default is processed.

Note: For the UNIX Sendmail version of the Notification
Mailer, the PROCESS value must always be the full path name
of a mail file.

• UNPROCESS—The name of the mail folder or the full path
name of the mail file to put unprocessed notification messages.
A ’–’ preceding the name causes the Notification Mailer to
truncate the folder or file on startup. The default is
unprocessed.

Note: For the UNIX Sendmail version of the Notification
Mailer, the UNPROCESS value must always be the full path
name of a mail file.

• TAGFILE—The full path and name of a tag file. The tag file lists
strings of text found in unusual messages and the status you
want to assign to a message response if it contains any of those
strings. Unusual messages include bounced or returned
messages, auto–reply messages such as those sent by vacation
daemons, mass mailing lists, and so on. Since different mail
systems vary in how they identify bounced, undeliverable, or
otherwise invalid messages, you can use a tag file to specify how
your mail system identifies those stray messages and how you
want the Notification Mailer to handle those messages should it
come across them.

Attention: Only a message response that contains a
notification ID is checked by the tag file. If the Notification
Mailer receives a message response that does not contain a
notification ID, it moves the message response to the discard
folder and sends a ’Warning’ message to the sender that it

�

2 – 64 Oracle Workflow Guide

received unsolicited mail. See: Workflow Warning Mail
Message: page 2 – 82.

The format used in the tag file is

Status ”Matching string”

where Status can be the value: ERROR, IGNORE, or
UNAVAIL and ”Matching string” is the text to look for in the
From: line, Subject: line, or body of the message. The
Notification Mailer handles a message assigned one of these
status values as follows:

– IGNORE—moves the message to the discard folder and
continues waiting for a valid reply to the open notification.
The notification’s status is still OPEN and its mail status is
still SENT.

– ERROR—moves the message to the discard folder and
initiates an error process, if one is defined. The
notification’s status is still OPEN, but its mail status and
activity status are updated to ERROR. Ideally, the
workflow administrator corrects the problem and resends
the notification by updating its mail status to MAIL.

– UNAVAIL (or any other user defined tag)—moves
the message to the discard folder and continues waiting for
a reply to the notification since the notification’s status is
still OPEN, but its mail status is updated to UNAVAIL.
This status is purely informative, as no further processing
occurs with this notification.

The Notification Mailer can also assign an INVALID status to a
message response, if the returned response value is not a valid
value in the assigned lookup (result) type. In this case, it moves
the message to the discard folder, and sends an ’Invalid’ message
but does not alter the notification’s status or mail status, so that
it continues to wait for a valid reply. See: Workflow Invalid Mail
Message: page 2 – 79.

Attention: It is important that you uniquely identify bounced
messages and auto–replies from normal responses in the tag
file. If you do not identify bounced and auto–reply messages,
the Notification Mailer can mistake these as invalid responses,
send an ’Invalid’ message and continue to wait for a reply. In
both cases a perpetual loop would occur where the Notification
Mailer keeps sending out an ’Invalid’ message and the ’Invalid’
message bounces back or is auto–replied.

�

2 – 65Setting Up Oracle Workflow

As an example, if you want to mark all message responses that
contain the string ”–– Unsent message follows ––” in the subject
or body of the message as an error, you can include the following
line in your tag file:

ERROR ”–– Unsent message follows ––”

Attention: If a message response matches more than one
string in the tag file, it gets tagged with the status of the first
string it matches in the file. That is, the Notification Mailer
performs a top to bottom comparison against the tag file. Due
to this behavior, you should prioritize your strings listing the
ERROR tags first, followed by the UNAVAIL and then
IGNORE tags.

Oracle Workflow provides an example tag file called wfmail.tag.
For the standalone version of Oracle Workflow, the file resides in
your Oracle Workflow server directory structure in the
subdirectory res. For the version of Oracle Workflow embedded
in Oracle Applications, the file resides on your server in the
resource subdirectory under $FND_TOP.

• RESET_FAILED—Indicate whether this Notification Mailer
should reset all notifications with a mail status of FAILED to a
mail status of MAIL when the Notification Mailer is started.
Valid values include Y or N. The default is N.

If the value is Y, the Notification Mailer will reset all FAILED
notifications to a mail status of MAIL on startup and then
attempt to process these notifications as usual.

• RESET_NLS—Indicate whether the Notification Mailer should
convert the NLS codeset for a notification message according to
the notification recipient’s preferences before composing the
message. Valid values include Y or N. The default is N.

If the value is Y, the Notification Mailer will convert the message
to the codeset listed in the WF_LANGUAGES table for the
language and territory specified in the recipient’s Workflow user
preferences. If no preferred territory is specified, the Notification
Mailer will use the codeset associated with the first entry it
encounters for the user’s preferred language. If neither a
language nor a territory is specified in the user preferences, the
Notification Mailer will use the codeset seeded in
WF_LANGUAGES for the language AMERICAN and territory
AMERICA. See: Setting User Preferences: page 9 – 6.

• HTML_MAIL_TEMPLATE—Specify OPEN_MAIL_OUTLOOK to
use the Workflow Open Mail for Outlook Express message as the

�

2 – 66 Oracle Workflow Guide

template for e–mail notifications that require a response, for
users with a notification preference of ’MAILHTML ’or
’MAILATTH’. You can select this message template if you use
an e–mail application such as Microsoft Outlook Express as your
e–mail client, in order to include a link to the Notification Details
web page which lets users respond to the notification there. This
template is provided to accommodate e–mail applications that
cannot process the response links included in the Workflow
Open Mail (Templated) and Workflow Open Mail (Direct)
templates.

If you want to use the normal Workflow Open Mail (Templated)
and Workflow Open Mail (Direct) templates, you can comment
out this parameter in your configuration file and let the
Notification Mailer use these templates by default.

Attention: If you include the HTML_MAIL_TEMPLATE
parameter in your configuration file, the Notification Mailer
will ignore the DIRECT_RESPONSE parameter when sending
messages to users with a notification preference of
’MAILATTH’. Instead, all users with this notification
preference will receive the plain text message body defined for
the Workflow Open Mail for Outlook Express template, which
uses the templated response method. Consequently, if you do
not need to use the Workflow Open Mail for Outlook Express
template, you should comment out the
HTML_MAIL_TEMPLATE parameter to let the
DIRECT_RESPONSE parameter take effect.

Note: The HTML_MAIL_TEMPLATE parameter does not
apply to users with a notification preference of ’MAILTEXT’.

• SEND_ACCESS_KEY—Specify Y to include an access key in the
Notification Detail Link attachment that is sent with HTML
e–mail notifications and with plain text e–mail notifications with
HTML attachments. The access key allows users to access the
Notification Details web page directly by clicking the
Notification Detail Link, whether they are currently logged in or
not. However, if users are not already logged in, they cannot
access any other notifications except the notification with which
the attachment was sent. Specify N to exclude the access key
from the Notification Detail Link. When users click the link
without the access key, they are prompted to log in, if they have
not already done so, before they can access the Notification
Details web page. The default is Y.

See: Defining Rules for Automatic Notification Processing: page 10 – 25

2 – 67Setting Up Oracle Workflow

� To Run a Perpetual Shell Script for the Notification Mailer

1. If you are running the standalone version of Oracle Workflow, you
need to set up a perpetual shell script that restarts the Notification
Mailer if it shuts down due to failure. Oracle Workflow provides a
sample shell script to restart the UNIX Sendmail Notification
Mailer. The script is called wfmail.csh and it is located in the Oracle
Home bin subdirectory on your server.

Note: Use a similar technique to restart the Window NT
Notification Mailer.

2. Enter the following command at your operating script prompt to
run the shell script:

wfmail.csh –f <config_file>

Replace <config_file> with the full path name of the
configuration file that contains the parameters you want to run
with the Notification Mailer. The shell script passes all command
line arguments directly to the Notification Mailer executable.

Response Processing

You must create three folders or files in your response mail account
before starting the Notification Mailer to process responses. The three
folders or files serve to hold discarded, unprocessed, and processed
messages.

The Notification Mailer does the following to check for response
messages:

• Logs into the response mail account.

• Checks for messages. If a message exists, it reads the message,
checking for the notification ID and node identifier.

• If the message is not a notification, it moves it to the discard
folder.

• If the message is a notification for the current node, it moves the
message to the unprocessed folder.

• If the message is a notification, but for the wrong node, it does
not move the message so that the Notification Mailer for the
correct node can read it later.

The Notification Mailer then opens the unprocessed folder to process
each response. For each message, it:

• Retrieves the notification ID.

2 – 68 Oracle Workflow Guide

• Checks to see if the message bounced by referring to a specified
tag file, if any. If the message bounced, it reroutes it or updates
the notification’s status and stops any further processing
depending on the specifications of the tag file.

• Checks the Oracle Workflow database for this notification.

– If the notification does not exist, it moves it to the discard
folder.

– If the notification exists, but is closed or canceled, it moves
it to the discard folder.

– If the notification exists and is open, it verifies the response
values with the definition of the message’s response
attributes in the database. If a response is invalid, it sends
an Workflow Invalid Mail message to the recipient role. If
the responses are valid, it calls a Respond function to
complete the notification response and saves the change to
the database.

• Moves the message for the completed notification to the
processed folder and closes the unprocessed folder.

The Notification Mailer then truncates the discard and processed
folders, if a ’–’ precedes the discard and process parameters specified
in the configuration file, and logs out of the mail and database
accounts.

Step 10

2 – 69Setting Up Oracle Workflow

Modifying Your Message Templates

Use the System: Mailer item type in Oracle Workflow Builder to
configure the templates that Oracle Workflow uses to send e–mail
notifications. The System: Mailer item type has attributes that
represent every part of the notification message. You can reorganize
the layout of these attributes in each template to customize the e–mail
messages sent by the Notification system.

The messages of the System: Mailer item type are not true messages;
rather they act as templates for any e–mail messages the Notification
system sends. System: Mailer messages determine the basic format of
an e–mail notification, including what header information to include,
or whether and where to include details such as the message due date
and priority.

Warning: Do not add new attributes or delete existing
attributes from the message templates in the System: Mailer
item type.

Context: You need to perform this step only once.

Workflow Open Mail (Templated) Message

If you select the templated response method, the Notification system
uses the Workflow Open Mail (Templated) message as a template for
e–mail notifications that require a response. The notification template
includes generic instructions on how to respond to a notification. It
also includes the following information about a message: message
priority, date that a response is due, and any comments from the
sender of the message or, if the notification is forwarded from another
user, any comments from the forwarder.

Note: To select the templated response method, set
DIRECT_RESPONSE=N in the configuration file for the
Notification Mailer. See: To Create a Configuration File for the
Notification Mailer: page 2 – 58.

The response instructions in the plain text message body describe how
to reply manually using the templated response method. This message
is used for notifications sent to performers with a notification
preference of MAILTEXT or MAILATTH. The response instructions in
the HTML–formatted message body describe how to reply using the
automatically generated response template. This message is used for
notifications sent to performers with a notification preference of
MAILHTML, and is also attached to notifications sent to performers
with a notification preference of MAILATTH.

2 – 70 Oracle Workflow Guide

The Workflow Open Mail (Templated) message has the following
message attributes. The values are drawn from the message definition
associated with a notification activity.

The date the message is sent.

The role the notification is sent to; the performer.

The subject line defined in the message.

The text of the body defined in the message.

Comments added by the sender or the forwarder.

The priority of the notification message.

The date by which a response is required, specified
in the notification activity.

Required notification code used to identify the
information in the notification.

The user response section as defined by the
Respond message attributes in the actual
notification message definition.

The content of the HTML tag that a recipient
would click on to respond to a notification. This
attribute is used only for HTML e–mail
notifications.

The content of the HTML tag that a recipient
would click on to access the Notification Details
page to respond to a notification. This attribute is
not currently used.

You can customize the boilerplate text that appears in the body of the
Workflow Open Mail (Templated) message, where attributes preceded
by an ampersand (&) are token substituted with runtime values when
the notification is sent.

The boilerplate text for a plain text message body is as follows:

Oracle Workflow Notification

&COMMENT

____________Start of Response Template____________

Response Template for &NOTIFICATION

To submit your response, reply to this message, including

this response template with your reply. Copy and paste from

START_DATE

TO

SUBJECT

BODY

COMMENT

PRIORITY

DUE_DATE

NOTIFICATION

RESPONSE

MAILTO

CLICK_HERE_
RESPONSE

2 – 71Setting Up Oracle Workflow

this message if necessary to obtain an editable copy of the

template. Insert your response value between the quotes

following each response prompt.

&RESPONSE

____________End of Response Template_____________

Notification Details:

&BODY

Due Date: &DUE_DATE

The boilerplate text for a HTML–formatted message body is as follows:

<HTML> <HEAD> <TITLE> Oracle Workflow Notification </TITLE>

</HEAD>

<BODY BGCOLOR=”#FFFFFF” >

<P>&COMMENT

<P>&BODY

<P>Please click on one of the following choices to

automatically generate an E–mail response. Before sending

the E–mail response to close this notification, ensure all

response prompts include a desired response value within

quotes.

<P>&MAILTO

</BODY>

</HTML>

Workflow Open Mail (Direct) Message

If you select the direct response method, the Notification system uses
the Workflow Open Mail (Direct) message as a template for e–mail
notifications that require a response. The notification template includes
generic instructions on how to respond to a notification. It also
includes the following information about a message: message priority,
date that a response is due, and any comments from the sender of the
message or, if the notification is forwarded from another user, any
comments from the forwarder.

Note: To select the direct response method, set
DIRECT_RESPONSE=Y in the configuration file for the
Notification Mailer. See: To Create a Configuration File for the
Notification Mailer: page 2 – 58.

2 – 72 Oracle Workflow Guide

The response instructions in the plain text message body describe how
to reply using the direct response method. This message is used for
notifications sent to performers with a notification preference of
MAILTEXT or MAILATTH. The response instructions in the
HTML–formatted message body describe how to reply using the
automatically generated response template. This message is used for
notifications sent to performers with a notification preference of
MAILHTML, and is also attached to notifications sent to performers
with a notification preference of MAILATTH.

Note: Responses that are generated automatically from an
HTML–formatted notification or attachment always use a
response template, regardless of which response method you
select in the DIRECT_RESPONSE parameter.

The Workflow Open Mail (Direct) message has the following message
attributes. The values are drawn from the message definition
associated with a notification activity.

The date the message is sent.

The role the notification is sent to; the performer.

The subject line defined in the message.

The text of the body defined in the message.

Comments added by the sender or the forwarder.

The priority of the notification message.

The date by which a response is required, specified
in the notification activity.

Required notification code used to identify the
information in the notification.

The user response section as defined by the
Respond message attributes in the actual
notification message definition.

The content of the HTML tag that a recipient
would click on to respond to a notification. This
attribute is used only for HTML e–mail
notifications.

The content of the HTML tag that a recipient
would click on to access the Notification Details
page to respond to a notification. This attribute is
not currently used.

START_DATE

TO

SUBJECT

BODY

COMMENT

PRIORITY

DUE_DATE

NOTIFICATION

RESPONSE

MAILTO

CLICK_HERE_
RESPONSE

2 – 73Setting Up Oracle Workflow

You can customize the boilerplate text that appears in the body of the
Workflow Open Mail (Direct) message, where attributes preceded by
an ampersand (&) are token substituted with runtime values when the
notification is sent.

The boilerplate text for a plain text message body is as follows:

Oracle Workflow Notification

&COMMENT

__

Response Instructions for &NOTIFICATION

To submit your response, reply to this message, including

this note with your reply. The first lines of your reply

must be your responses to the notification questions.

Instructions below detail exactly what should be placed on

each line of your reply.

&RESPONSE

__

Notification Details:

&BODY

Due Date: &DUE_DATE

The boilerplate text for a HTML–formatted message body is as follows:

<HTML> <HEAD> <TITLE> Oracle Workflow Notification </TITLE>

</HEAD>

<BODY BGCOLOR=”#FFFFFF” >

<P>&COMMENT

<P>&BODY

<P>Please click on one of the following choices to

automatically generate an E–mail response. Before sending

the E–mail response to close this notification, ensure all

response prompts include a desired response value within

quotes.

<P>&MAILTO

</BODY>

</HTML>

�

2 – 74 Oracle Workflow Guide

Workflow Open Mail for Outlook Express Message

If you use an e–mail application such as Microsoft Outlook Express as
your e–mail client, you should select the Workflow Open Mail for
Outlook Express message as a template for e–mail notifications that
require a response, for users with a notification preference of
MAILHTML or MAILATTH. This message includes a link to the
Notification Details web page to let users respond to the notification
there. This template is provided to accommodate e–mail applications
that cannot process the response links included in the Workflow Open
Mail (Templated) and Workflow Open Mail (Direct) templates.

Note: To select the Workflow Open Mail for Outlook Express
message as the message template for users with a notification
preference of MAILHTML or MAILATTH, set
HTML_MAIL_TEMPLATE=OPEN_MAIL_OUTLOOK in the
configuration file for the Notification Mailer. See: To Create a
Configuration File for the Notification Mailer: page 2 – 58.

Attention: If you include the HTML_MAIL_TEMPLATE
parameter in your configuration file, the Notification Mailer
will ignore the DIRECT_RESPONSE parameter when sending
messages to users with a notification preference of
’MAILATTH’. Instead, all users with this notification
preference will receive the plain text message body defined for
the Workflow Open Mail for Outlook Express template, which
uses the templated response method. Consequently, if you do
not need to use the Workflow Open Mail for Outlook Express
template, you should comment out the
HTML_MAIL_TEMPLATE parameter to let the
DIRECT_RESPONSE parameter take effect.

The response instructions in the plain text message body describe how
to reply manually using the templated response method. This message
is used for notifications sent to performers with a notification
preference of MAILATTH. The HTML–formatted message body
includes a link called ”Click here to respond” which lets users access
the notification in the Notification Details web page to respond to the
notification. This message is used for notifications sent to performers
with a notification preference of MAILHTML, and is also attached to
notifications sent to performers with a notification preference of
MAILATTH.

Note: When users choose the ”Click here to respond” link, it
automatically attempts to establish a web session with the web
server. Users must be able to connect to the web server to use
this link to respond to a notification. See: Reviewing
Notifications via Electronic Mail: page 10 – 2.

2 – 75Setting Up Oracle Workflow

The Workflow Open Mail for Outlook Express message has the
following message attributes. The values are drawn from the message
definition associated with a notification activity.

The date the message is sent.

The role the notification is sent to; the performer.

The subject line defined in the message.

The text of the body defined in the message.

Comments added by the sender or the forwarder.

The priority of the notification message.

The date by which a response is required, specified
in the notification activity.

Required notification code used to identify the
information in the notification.

The user response section as defined by the
Respond message attributes in the actual
notification message definition.

The content of the HTML tag that a recipient
would click on to respond to a notification. This
attribute is not currently used.

The content of the HTML tag that a recipient
would click on to access the Notification Details
page to respond to a notification. This attribute is
used only for HTML e–mail notifications.

You can customize the boilerplate text that appears in the body of the
Workflow Open Mail for Outlook Express message, where attributes
preceded by an ampersand (&) are token substituted with runtime
values when the notification is sent.

The boilerplate text for a plain text message body is as follows:

Oracle Workflow Notification

&COMMENT

____________Start of Response Template____________

Response Template for &NOTIFICATION

To submit your response, reply to this message including

this response template in your reply. Insert your response

value between the quotes following each response prompt.

START_DATE

TO

SUBJECT

BODY

COMMENT

PRIORITY

DUE_DATE

NOTIFICATION

RESPONSE

MAILTO

CLICK_HERE_
RESPONSE

2 – 76 Oracle Workflow Guide

&RESPONSE

____________End of Response Template_____________

Notification Details:

&BODY

Due Date: &DUE_DATE

The boilerplate text for a HTML–formatted message body is as follows:

<HTML> <HEAD> <TITLE> Oracle Workflow Notification </TITLE>

</HEAD>

<BODY BGCOLOR=”#FFFFFF” >

<P>&COMMENT

<P>&BODY

<P>&CLICK_HERE_RESPONSE

</BODY>

</HTML>

Workflow Open FYI Mail Message

The Notification system uses the Workflow Open FYI Mail message as
a template for all e–mail notifications that do not require a response.
The template indicates that the notification is for your information
(FYI) and does not require a response. In addition to the message, the
template also includes any comments from the sender or forwarder of
the message.

The Workflow Open FYI Mail message has the following message
attributes. The values are drawn from the message definition
associated with a notification activity.

The date the message is sent.

The role the notification is sent to; the performer.

The subject line defined in the message.

The text of the body defined in the message.

Comments added by the sender or the forwarder.

The priority of the notification message.

The date by which a response is required, specified
in the notification activity.

START_DATE

TO

SUBJECT

BODY

COMMENT

PRIORITY

DUE_DATE

2 – 77Setting Up Oracle Workflow

Required notification code used to identify the
information in the notification.

You can customize the text that appears in the body of the Workflow
Open FYI Mail template, where attributes preceded by an ampersand
(&) are token substituted with runtime values when the notification is
sent. The boilerplate text for the plain text message body is as follows:

Oracle Workflow Notification (FYI)

&COMMENT

–––

&BODY

The boilerplate text for the HTML–formatted message body is as
follows:

<HTML><HEAD></HEAD>

<BODY BGCOLOR=”#FFFFFF”>Oracle Workflow Notification

(FYI)

&COMMENT

<hr>

<P>&BODY

</BODY>

</HTML>

Workflow URL Attachment Message

The Notification system uses the Workflow URL Attachment message
as a template to create the Notification References attachment for
HTML–formatted notification messages that include URL attributes
with Attach Content checked. The template includes a list with links to
each URL.

The Workflow URL Attachment message has the following message
attribute. The value is drawn from the message definition associated
with a notification activity.

The list of URLs to be included in the attachment.

You can customize the text that appears in the body of the Workflow
URL Attachment template, where an attribute preceded by an
ampersand (&) is token substituted with a runtime value when the
notification is sent. The boilerplate text for the HTML–formatted
message body is as follows:

<HTML> <HEAD> <TITLE> Oracle Workflow Notification

References </TITLE> </HEAD>

<BODY BGCOLOR=”#FFFFFF” >

NOTIFICATION

URLLIST

2 – 78 Oracle Workflow Guide

<P>Notification References

<HR WIDTH=”100%”>

&URLLIST

<HR WIDTH=”100%”>

</BODY>

</HTML>

Workflow Canceled Mail Message

The Workflow Canceled Mail message informs the recipient that a
previously sent notification is canceled. It has the following message
attributes, with values that are drawn from the message definition
associated with the canceled notification activity:

The date the original message was sent.

The role the notification is sent to; the performer.

The subject line of the original message.

The text of the original message.

Comments added by the sender or the forwarder.

The priority of the notification message.

The date by which a response is required, specified
in the notification activity.

Required notification code used to identify the
information in the notification.

The boilerplate text for the plain text message body is as follows:

You earlier received the notification shown below. That

notification is now canceled, and no longer requires your

response. You may simply delete it along with this message.

––

&BODY

The boilerplate text for the HTML–formatted message body is as
follows:

<html><Head></Head><body>You earlier received the

notification shown below. That notification is now

START_DATE

TO

SUBJECT

BODY

COMMENT

PRIORITY

DUE_DATE

NOTIFICATION

2 – 79Setting Up Oracle Workflow

canceled, and no longer requires your response. You may

simply delete it along with this message.

<hr>

&BODY

</body></html>

Workflow Invalid Mail Message

The Workflow Invalid Mail message gets sent to a user when a user
responds incorrectly to a notification. The message describes how to
respond to the notification correctly. The message attributes are as
follows:

The date the original message was sent.

The role the notification is sent to; the performer.

The subject line of the original message.

The text of the original message.

Comments added by the sender or the forwarder.

The priority of the notification message.

The date by which a response is required, specified
by the notification activity.

Required notification code used to identify the
information in the notification.

The user response section as defined by the
Respond message attributes in the original message
definition.

An error message that the mail program generates
if an error occurs upon processing the response.

An error stack of arguments that the mail program
generates if an error occurs upon processing the
response. You can provide this information to your
support representative if the problem cannot be
resolved with a corrected response.

The content of the HTML tag that a recipient
would click on to access the Notification Details
page to respond to a notification. This attribute is
not currently used.

The boilerplate text for the plain text message body is as follows:

START_DATE

TO

SUBJECT

BODY

COMMENT

PRIORITY

DUE_DATE

NOTIFICATION

RESPONSE

MAIL_ERROR_
MESSAGE

MAIL_ERROR_
STACK

CLICK_HERE_
RESPONSE

2 – 80 Oracle Workflow Guide

Oracle Workflow Notification

&COMMENT

WARNING: Your previous response to this message was

invalid (see error message below). Please resubmit your

response.

Error Message: &MAIL_ERROR_MESSAGE

Error Stack: &MAIL_ERROR_STACK

––

Response Instructions for &NOTIFICATION

To submit your response, reply to this message, including

this original with your reply. This note contains a special

’NID’ string that is required to process the response. The

first lines of your reply must be your responses to the

notification questions. You should enter one line for each

response required by the notification; any additional lines

will be ignored. You may leave a line blank to accept the

default value for that specific response. You must supply a

value or a blank line for each question asked. Instructions

below detail exactly what should be placed on each line of

your reply.

&RESPONSE

–––

Notification Details:

&BODY

Due Date: &DUE_DATE

The boilerplate text for the HTML–formatted message body is as
follows:

<html><Head></Head><body>WARNING: Your previous response to

this message was invalid (see error message below). Please

resubmit your response.

<P>Error Message: &MAIL_ERROR_MESSAGE

Error Stack: &MAIL_ERROR_STACK

<HR><P>&COMMENT

<P>&BODY

<P>Please click on one of the following choices to

2 – 81Setting Up Oracle Workflow

automatically generate an E–mail response. Before sending

the E–mail response to close this notification, ensure all

response prompts include a desired response value within

quotes.

<P>&MAILTO

</BODY> </HTML>

Workflow Closed Mail Message

The Workflow Closed Mail message informs the recipient that a
previously sent notification is now closed. It has the following message
attributes, with values that are drawn from the message definition
associated with the closed notification activity:

The date the original message was sent.

The role the notification is sent to; the performer.

The subject line of the original message.

The text of the original message.

Comments added by the sender or the forwarder.

The priority of the notification message.

The date by which a response is required, specified
in the notification activity.

Required notification code used to identify the
information in the notification.

The boilerplate text for the plain text message body is as follows:

You earlier received the notification shown below. That

notification is now closed, and no longer requires your

response. You may simply delete it along with this message.

––

&BODY

The boilerplate text for the HTML–formatted message body is as
follows:

<html><Head></Head><body>You earlier received the

notification shown below. That notification is now closed,

and no longer requires your response. You may simply delete

it along with this message.

<hr>

START_DATE

TO

SUBJECT

BODY

COMMENT

PRIORITY

DUE_DATE

NOTIFICATION

2 – 82 Oracle Workflow Guide

&BODY

</body></html>

Workflow Summary Mail Message

The Notification system uses the Workflow Summary Mail message as
a template to send a summary of workflow notifications to users and
roles that have their notification preference set to ’SUMMARY’ in the
Oracle Workflow directory service. The Workflow Summary Mail
message summarizes all currently open notifications for a given
user/role. It has the following message attributes, with values that are
drawn from the message definition associated with the open
notification activity:

Summary report.

The user/role the notification summary is sent to;
the performer.

The current date.

The boilerplate text for the plain text message body is as follows:

Summary of Notifications for ’&USER_NAME’

(Please use the Notifications web page to see details or

respond.)

––

&SUMMARY

The boilerplate text for the HTML–formatted message body is as
follows:

<HTML><HEAD></HEAD><BODY>

<P>Summary of Notifications for

’&USER_NAME’

<i>Please use the Notifications web page to see details

or respond.</i>

<HR>

&SUMMARY

</BODY>

</HTML>

Workflow Warning Mail Message

The Notification system uses the Workflow Warning Mail message as a
template to send a message to a user if it receives unsolicited mail from

SUMMARY

USER_NAME

SYSDATE

2 – 83Setting Up Oracle Workflow

that user. It has the following message attributes, with values that are
drawn from the unsolicited mail:

The text of the unsolicited mail message body.

The text of the unsolicited mail subject line.

The address of the user that sent the unsolicited
mail.

The boilerplate text for the plain text message body is as follows:

Messages sent to this account are processed automatically by

the Oracle Workflow Notification Mailer. The message you

sent did not appear to be in response to a notification. If

you are responding to a notification, please use the

response template that was included with your notification.

Take care to include the ’NID’ line of the template in your

reply. If you are not responding to a notification, please

do not send mail to this account.

––

From: &UFROM

Subject: &USUBJECT

&UBODY

The boilerplate text for the HTML–formatted message body is as
follows:

<html><head></head><body>

Messages sent to this account are processed automatically

by the Oracle Workflow Notification Mailer. The message you

sent did not appear to be in response to a notification. If

you are responding to a notification, please use the

auto–generated reply created when responding to the original

message. This contains the ’NID’ line which is necessary for

identification. If you are not responding to a

notification, please do not send mail to this account.

<hr>

<P>From: &UFROM

Subject: &USUBJECT

<P>&UBODY

</body></html>

UBODY

USUBJECT

UFROM

Step 11

2 – 84 Oracle Workflow Guide

Customizing the Logo on Oracle Workflow’s Web Pages

To use Oracle Workflow’s web pages and the Workflow Monitor at
your site, you must have Oracle HTTP Server installed. Refer to your
web server documentation for additional information.

Once your web server is installed and set up, you can customize the
company logo that appears on Oracle Workflow’s web pages.

Use a web browser that supports JavaScript to connect to the
Notification Web page or a web browser that supports Java
Development Kit (JDK), Version 1.1.8 or higher and Abstract
Windowing Toolkit (AWT) to connect to the Workflow Monitor.

� To Customize Oracle Workflow’s Web Pages

You can customize the company logo that appears in the upper right
corner of Oracle Workflow’s web pages.

1. Copy or rename your company logo file (in .gif format) to
FNDLOGOS.gif if you are using Oracle Workflow embedded in
Oracle Applications or WFLOGO.gif if you are using the
standalone version of Oracle Workflow.

2. Move the file to the physical directory that your web server’s
/OA_MEDIA/ virtual directory points to.

Note: If you are using Oracle Workflow embedded in Oracle
Applications, the mapping of /OA_MEDIA/ is completed as
part of the Oracle Applications installation and setup steps.

Note: If you are using the standalone version of Oracle
Workflow, the mapping of /OA_MEDIA/ is completed after you
install the Oracle Workflow server and you set up the
Workflow Monitor.

Context: You need to perform this step only once.

Step 12

2 – 85Setting Up Oracle Workflow

Adding Custom Icons to Oracle Workflow

Oracle Workflow Builder looks for icons in the Icon subdirectory of the
Oracle Workflow area on your PC. The Icon subdirectory is defined in
the registry of Oracle Workflow Builder. The Oracle Workflow area is
typically the Wf subdirectory within your ORACLE_HOME directory
structure.

Workflow provides a variety of icons that you can use with your
activities and processes. You can add any icon files to this area as long
as they are Windows icon files with the .ico suffix.

If you want the custom icons that you include in your Oracle Workflow
Builder process definition to appear in the Workflow Monitor when
you view the process, you must do the following:

• Convert the custom icon files (.ico) to gif format (.gif).

• Copy the .gif files to the physical directory that your web
server’s /OA_MEDIA/ virtual directory points to, so that the
Workflow Monitor can access them:

Note: If you are using Oracle Workflow embedded in Oracle
Applications, the mapping of /OA_MEDIA/ is completed as
part of the Oracle Applications installation and setup steps.

Note: If you are using the standalone version of Oracle
Workflow, the mapping of /OA_MEDIA/ is completed after you
install the Oracle Workflow server and you set up the
Workflow Monitor.

Context: You need to perform this step only once.

Step 13

2 – 86 Oracle Workflow Guide

Setting Up the Java Function Activity Agent

To execute external Java function activities, you must set up the Java
Function Activity Agent. This functionality is currently only available
for the standalone version of Oracle Workflow. The Java Function
Activity Agent dequeues the messages related to external Java
activities from the ’Outbound’ queue for external function processing,
calls the appropriate Java functions, and places the results on the
’Inbound’ queue for external function processing.

Note: These ’Outbound’ and ’Inbound’ queues are separate
from the queues used for the Business Event System. See:
Workflow Queue APIs: page 8 – 162.

After a Java function completes, you must run a background engine to
process the ’Inbound’ queue and complete the function activity. See:
Setting Up Background Engines: page 2 – 43.

Some standard Workflow activities are external Java function activities
and require the Java Function Activity Agent. You can also define your
own external Java function activities. See: Standard Activities: page
6 – 2, To Create a Function Activity: page 4 – 50, and Standard API for
Java Procedures Called by Function Activities: page 7 – 8.

To run the Java Function Activity Agent, you must have Java Runtime
Environment (JRE) Version 1.1.8, or a higher 1.1.x version, installed.

Note: The Java Runtime Environment is available for
download from http://www.javasoft.com.

Context: You need to perform this step only once.

Starting the Java Function Activity Agent

If you are using the standalone version of Oracle Workflow, you can
run scripts provided by Oracle Workflow to start the Java Function
Activity agent. You can also start the agent manually.

When you start the Java Function Activity Agent, you must specify the
database connection details. You can also optionally specify the
character set and the JDBC driver type that you want to use.

You use different commands to start the agent depending on whether
you are running it from a script or manually, which platform you are
running it on, and which options you want to specify.

2 – 87Setting Up Oracle Workflow

Starting the Java Function Activity Agent From a Script

If you are using the standalone version of Oracle Workflow, you can
run scripts called wfjvlsnr.csh or wfjvlsnr.bat to start the Java Function
Activity Agent on UNIX or on Windows NT, respectively. These scripts
are located on your server in the Oracle Workflow admin subdirectory.

If you define your own external Java function activities, you must edit
the scripts to include the path to the JAR files containing your custom
Java classes. The custom class files should reside on the same platform
where the Java Function Activity Agent is run. The Java Function
Activity Agent does not need to reside on the same tier as the database,
however.

You can use commands with different syntax to run the scripts,
depending on your platform and the options you want to specify.

Running the wfjvlsnr.csh Script on UNIX

For example, you can use the following command to run the
wfjvlsnr.csh script on UNIX, if you want to use the default JDBC OCI8
driver:

wfjvlsnr.csh <user_name>/<password>@<connect_string>

[<character_set>]

Replace the parameters in the command as follows:

• <user_name>—The user name of your Oracle Workflow database
account.

• <password>—The password for your Oracle Workflow database
account.

• <connect_string>—The connect string for the database. Since
this command uses the default JDBC OCI8 driver, the connect
string should be the database name as specified in its
TNSNAMES entry.

• <character_set>—The character set to use for the database
session. If you do not specify a character set, Oracle Workflow
uses UTF8 by default.

You can also use the following command to run the wfjvlsnr.csh script
on UNIX, if you want to specify the JDBC driver type to use:

wfjvlsnr.csh ”<user_name> <password> <connect_string>

[<JDBC_driver>]” [<character_set>]

Replace the parameters in the command as follows:

2 – 88 Oracle Workflow Guide

• <user_name>—The user name of your Oracle Workflow database
account.

• <password>—The password for your Oracle Workflow database
account.

• <connect_string>—The connect string for the database. The
format of the connect string depends on the JDBC driver type.

– For a JDBC OCI8 driver, the connect string should be the
database name as specified in its TNSNAMES entry, in the
following format:
<database_name>

– For a JDBC THIN driver, you can use two different types of
connect string. For the first type, the connect string should
include the host name, port number, and database system
identifier (SID) in the following format:
<host_name>:<port_number>:<database_SID>

For the second type, the connect string should include an
Oracle Net name–value pair with the host name, protocol,
port number, and SID in the following format:
(description=(address=(host=<host_name>)(protocol=

<protocol>)(port=<port_number>))(connect_data=(sid=

<database_SID>)))

• <JDBC_driver>—The JDBC driver type you want to use to
connect to the database. The JDBC driver type can be either oci8
or thin. If you do not specify a character set, Oracle Workflow
uses the JDBC OCI8 driver by default.

Note: The connection details, including the user name,
password, connect string, and JDBC driver type, must be
enclosed in double quotes to separate them from the character
set parameter.

• <character_set>—The character set to use for the database
session. If you do not specify a character set, Oracle Workflow
uses UTF8 by default.

Running the wfjvlsnr.bat Script on Windows NT

On Windows NT, you can use the following command to run the
wfjvlsnr.bat script, if you want to use the default JDBC OCI8 driver:

wfjvlsnr.bat <user_name>/<password>@<connect_string>

[<character_set>]

Replace the parameters in the command as follows:

2 – 89Setting Up Oracle Workflow

• <user_name>—The user name of your Oracle Workflow database
account.

• <password>—The password for your Oracle Workflow database
account.

• <connect_string>—The connect string for the database. Since
this command uses the default JDBC OCI8 driver, the connect
string should be the database name as specified in its
TNSNAMES entry.

• <character_set>—The character set to use for the database
session. If you do not specify a character set, Oracle Workflow
uses UTF8 by default.

You can also use the following command to run the wfjvlsnr.bat script
on Windows NT, if you want to specify the JDBC driver type to use:

wfjvlsnr.bat ”<user_name> <password> <connect_string>

[<JDBC_driver>]” [<character_set>]

Replace the parameters in the command as follows:

• <user_name>—The user name of your Oracle Workflow database
account.

• <password>—The password for your Oracle Workflow database
account.

• <connect_string>—The connect string for the database. The
format of the connect string depends on the JDBC driver type.

– For a JDBC OCI8 driver, the connect string should be the
database name as specified in its TNSNAMES entry, in the
following format:
<database_name>

– For a JDBC THIN driver, you can use two different types of
connect string. For the first type, the connect string should
include the host name, port number, and database system
identifier (SID) in the following format:
<host_name>:<port_number>:<database_SID>

For the second type, the connect string should include an
Oracle Net name–value pair with the host name, protocol,
port number, and SID in the following format:
(description=(address=(host=<host_name>)(protocol=

<protocol>)(port=<port_number>))(connect_data=(sid=

<database_SID>)))

2 – 90 Oracle Workflow Guide

• <JDBC_driver>—The JDBC driver type you want to use to
connect to the database. The JDBC driver type can be either oci8
or thin. If you do not specify a character set, Oracle Workflow
uses the JDBC OCI8 driver by default.

Note: The connection details, including the user name,
password, connect string, and JDBC driver type, must be
enclosed in double quotes to separate them from the character
set parameter.

• <character_set>—The character set to use for the database
session. If you do not specify a character set, Oracle Workflow
uses UTF8 by default.

Starting the Java Function Activity Agent Manually

To start the Java Function Activity Agent manually, run JRE against
oracle.apps.fnd.wf.WFFALsnr, specifying your CLASSPATH, the user
name and password of your Oracle Workflow database account, and
the database connect string. You can also optionally specify the
character set and the JDBC driver type that you want to use.

The CLASSPATH must point to the Java Runtime Environment, the
directory containing the Workflow JAR files, the Oracle XML parser,
the Oracle JDBC implementation, and the following Workflow JAR
files:

• wfjava.jar—The Java Function Activity Agent.

• wfapi.jar—Workflow Java APIs.

• The Share JAR file—Utilities referenced by the Workflow Java
APIs. In the standalone version of Oracle Workflow with
Oracle9i, this file is named share–<version>.jar, such as
share–1_1_9.jar, or whichever version is current. In the
version of Oracle Workflow embedded in Oracle Applications,
this file is named fndbalishare.jar.

• The Ewt JAR file—Utilities referenced by the Workflow Java
APIs. In the standalone version of Oracle Workflow with
Oracle9i, this file is named ewt–<version>.jar, such as
ewt–3_3_18.jar, or whichever version is current. In the version
of Oracle Workflow embedded in Oracle Applications, this file is
named fndewt.jar.

• The Swing JAR file—Optional additional utilities. In the
standalone version of Oracle Workflow with Oracle9i, this file is
named swingall–<version>.jar, such as swingall–1_1_1.jar,
or whichever version is current. In the version of Oracle

2 – 91Setting Up Oracle Workflow

Workflow embedded in Oracle Applications, this file is named
fndswing.jar.

Note: In the standalone version of Oracle Workflow with
Oracle9i, the Workflow JAR files are located in the
<ORACLE_HOME>/jlib directory. In the version of Oracle
Workflow embedded in Oracle Applications, the Workflow JAR
files are located in the
<ORACLE_HOME>/wf/java/oracle/apps/fnd/wf/jar/
directory.

If you define your own external Java function activities, you must also
include the JAR files containing your custom Java classes in the
CLASSPATH. The custom class files should reside on the same
platform where the Java Function Activity Agent is run. The Java
Function Activity Agent does not need to reside on the same tier as the
database, however.

You can use commands with different syntax to start the Java Function
Activity Agent manually, depending on your platform and the options
you want to specify.

Starting the Java Function Activity Agent on UNIX

For example, you can use the following command to start the Java
Function Activity Agent on UNIX, if you want to use the default JDBC
OCI8 driver:

jre –classpath

”$<JREPATH>/rt.jar:$<Workflow_JAR_file_directory>:

$<Workflow_JAR_file_directory>/wfjava.jar:$<ORACLE_HOME>/wf/

xml/java/lib/xmlparserv2.jar:$<Workflow_JAR_file_directory>/

wfapi.jar:$<ORACLE_HOME>/jdbc/lib/classes111.zip:

$<Workflow_JAR_file_directory>/<Share_JAR_file>:

$<Workflow_JAR_file_directory>/<Ewt_JAR_file>:

$<Workflow_JAR_file_directory>/<Swing_JAR_file>:”

[–DCHARSET=<character_set>] oracle.apps.fnd.wf.WFFALsnr

<user_name>/<password>@<connect_string>

In this command, you can optionally use the –DCHARSET option to
specify the character set that you want to use. If you do not specify a
character set, Oracle Workflow uses UTF8 by default.

Replace the parameters in the command as follows:

• <character_set>—The character set to use for the database
session.

• <user_name>—The user name of your Oracle Workflow database
account.

2 – 92 Oracle Workflow Guide

• <password>—The password for your Oracle Workflow database
account.

• <connect_string>—The connect string for the database. Since
this command uses the default JDBC OCI8 driver, the connect
string should be the database name as specified in its
TNSNAMES entry.

You can also use the following command to start the Java Function
Activity Agent on UNIX, if you want to specify the JDBC driver type to
use:

jre –classpath

”$<JREPATH>/rt.jar:$<Workflow_JAR_file_directory>:

$<Workflow_JAR_file_directory>/wfjava.jar:$<ORACLE_HOME>/wf/

xml/java/lib/xmlparserv2.jar:$<Workflow_JAR_file_directory>/

wfapi.jar:$<ORACLE_HOME>/jdbc/lib/classes111.zip:

$<Workflow_JAR_file_directory>/<Share_JAR_file>:

$<Workflow_JAR_file_directory>/<Ewt_JAR_file>:

$<Workflow_JAR_file_directory>/<Swing_JAR_file>:”

[–DCHARSET=<character_set>] oracle.apps.fnd.wf.WFFALsnr

<user_name> <password> <connect_string> [<JDBC_driver>]

In this command, you can optionally use the –DCHARSET option to
specify the character set that you want to use. If you do not specify a
character set, Oracle Workflow uses UTF8 by default.

Replace the parameters in the command as follows:

• <character_set>—The character set to use for the database
session.

• <user_name>—The user name of your Oracle Workflow database
account.

• <password>—The password for your Oracle Workflow database
account.

• <connect_string>—The connect string for the database. The
format of the connect string depends on the JDBC driver type.

– For a JDBC OCI8 driver, the connect string should be the
database name as specified in its TNSNAMES entry, in the
following format:
<database_name>

– For a JDBC THIN driver, you can use two different types of
connect string. For the first type, the connect string should
include the host name, port number, and database system

2 – 93Setting Up Oracle Workflow

identifier (SID) in the following format:
<host_name>:<port_number>:<database_SID>

For the second type, the connect string should include an
Oracle Net name–value pair with the host name, protocol,
port number, and SID in the following format:
(description=(address=(host=<host_name>)(protocol=

<protocol>)(port=<port_number>))(connect_data=(sid=

<database_SID>)))

• <JDBC_driver>—The JDBC driver type you want to use to
connect to the database. The JDBC driver type can be either oci8
or thin. If you do not specify a character set, Oracle Workflow
uses the JDBC OCI8 driver by default.

Starting the Java Function Activity Agent on Windows NT

On Windows NT, you can use the following command to start the Java
Function Activity Agent, if you want to use the default JDBC OCI8
driver:

jre –classpath

”;<JREPATH>\rt.jar;<Workflow_JAR_file_directory>;

<Workflow_JAR_file_directory>\wfjava.jar;<ORACLE_HOME>\wf\

xml\java\lib\xmlparserv2.jar;<Workflow_JAR_file_directory>\

wfapi.jar;<ORACLE_HOME>\jdbc\lib\classes111.zip;

<Workflow_JAR_file_directory>\<Share_JAR_file>;

<Workflow_JAR_file_directory>\<Ewt_JAR_file>;

<Workflow_JAR_file_directory>\<Swing_JAR_file>;”

–nojit [–DCHARSET=<character_set>]

oracle.apps.fnd.wf.WFFALsnr

<user_name>/<password>@<connect_string>

In this command, you can optionally use the –DCHARSET option to
specify the character set that you want to use. If you do not specify a
character set, Oracle Workflow uses UTF8 by default.

Replace the parameters in the command as follows:

• <character_set>—The character set to use for the database
session.

• <user_name>—The user name of your Oracle Workflow database
account.

• <password>—The password for your Oracle Workflow database
account.

• <connect_string>—The connect string for the database. Since
this command uses the default JDBC OCI8 driver, the connect

2 – 94 Oracle Workflow Guide

string should be the database name as specified in its
TNSNAMES entry.

You can also use the following command to start the Java Function
Activity Agent on Windows NT, if you want to specify the JDBC driver
type to use:

jre –classpath

”;<JREPATH>\rt.jar;<Workflow_JAR_file_directory>;

<Workflow_JAR_file_directory>\wfjava.jar;<ORACLE_HOME>\wf\

xml\java\lib\xmlparserv2.jar;<Workflow_JAR_file_directory>\

wfapi.jar;<ORACLE_HOME>\jdbc\lib\classes111.zip;

<Workflow_JAR_file_directory>\<Share_JAR_file>;

<Workflow_JAR_file_directory>\<Ewt_JAR_file>;

<Workflow_JAR_file_directory>\<Swing_JAR_file>;”

–nojit [–DCHARSET=<character_set>]

oracle.apps.fnd.wf.WFFALsnr <user_name> <password>

<connect_string> [<JDBC_driver>]

In this command, you can optionally use the –DCHARSET option to
specify the character set that you want to use. If you do not specify a
character set, Oracle Workflow uses UTF8 by default.

Replace the parameters in the command as follows:

• <character_set>—The character set to use for the database
session.

• <user_name>—The user name of your Oracle Workflow database
account.

• <password>—The password for your Oracle Workflow database
account.

• <connect_string>—The connect string for the database. The
format of the connect string depends on the JDBC driver type.

– For a JDBC OCI8 driver, the connect string should be the
database name as specified in its TNSNAMES entry, in the
following format:
<database_name>

– For a JDBC THIN driver, you can use two different types of
connect string. For the first type, the connect string should
include the host name, port number, and database system
identifier (SID) in the following format:
<host_name>:<port_number>:<database_SID>

For the second type, the connect string should include an
Oracle Net name–value pair with the host name, protocol,

2 – 95Setting Up Oracle Workflow

port number, and SID in the following format:
(description=(address=(host=<host_name>)(protocol=

<protocol>)(port=<port_number>))(connect_data=(sid=

<database_SID>)))

• <JDBC_driver>—The JDBC driver type you want to use to
connect to the database. The JDBC driver type can be either oci8
or thin. If you do not specify a character set, Oracle Workflow
uses the JDBC OCI8 driver by default.

Stopping the Java Function Activity Agent

Normally, the Java Function Activity Agent runs as a perpetual job.
However, you can stop the agent by running a script called
wfjvstop.sql, located in the admin/sql subdirectory on your Oracle
Workflow server. This script places a stop message on the ’Outbound’
queue. See: wfjvstop.sql: page 16 – 11.

Note: If you are running more than one Java Function Activity
Agent simultaneously, you must run the wfjvstop.sql script
once for each Java Function Activity Agent.

Step 14

2 – 96 Oracle Workflow Guide

Setting Up the Business Event System

The Business Event System is an application service delivered with
Oracle Workflow that uses Oracle Advanced Queuing (AQ) to
communicate business events between systems. You need to perform
this step only if you want to use event processing. See: Overview of the
Oracle Workflow Business Event System: page 8 – 235 and Managing
Business Events: page 13 – 2.

To set up the Business Event System, perform the following steps:

1. If you want to communicate business events between the local
system and external systems, create database links to those external
systems.

2. If you want to use custom queues for propagating events, set up
your queues.

3. Schedule a listener to monitor the standard WF_ERROR queue to
enable error handling for the Business Event System. See: Setting
Up Queues: page 2 – 97 and Scheduling Listeners for Local
Inbound Agents: page 13 – 56.

You can either create database links and set up queues manually, or use
Oracle DBA Studio in the Oracle Enterprise Manager to perform these
steps. Oracle DBA Studio allows workflow administrators to quickly
and easily create and administer database links, queue tables, queues,
and queue propagation without requiring knowledge of the SQL DDL
commands. See: DBA Management Pack, Oracle Enterprise Manager
Administrator’s Guide.

Context: You need to perform this step only once.

Creating Database Links

To propagate event messages between systems, you must create
database links from your local system to the remote systems. You
should fully qualify the database link name with the domain name.

You can use the following syntax to create a database link:

CREATE DATABASE LINK <database link name> CONNECT TO

<user> IDENTIFIED BY <password>

USING ’<connect string>’;

For example:

CREATE DATABASE LINK wf817.us.oracle.com CONNECT TO

wfuser IDENTIFIED BY welcome

USING ’wf817’;

2 – 97Setting Up Oracle Workflow

If you have multiple installations of Oracle Workflow on both the local
database and the remote database, and you want to use the same
username and password to access both systems, you can omit the
<user> IDENTIFIED BY <password> clause. In this case, the database
link uses the username and password of the user who is connected to
the database.

CREATE DATABASE LINK <database link name> CONNECT TO

USING ’<connect string>’;

If you want to create a public database link available to all users,
specify the parameter PUBLIC.

CREATE PUBLIC DATABASE LINK <database link name> CONNECT TO

<user> IDENTIFIED BY <password>

USING ’<connect string>’;

To verify the names of your database links, use the following syntax:

SELECT db_link FROM all_db_links

You can also use the Check Setup web page to verify that your database
links are set up. See: Checking the Business Event System Setup: page
13 – 53.

See Also

CREATE DATABASE LINK, Oracle SQL Reference

Setting Up Queues

The Business Event System uses Oracle Advanced Queuing (AQ) to
communicate event messages between systems. You must associate a
queue with each agent you define in the Event Manager.

When you install Oracle Workflow, four standard queues are created
automatically for the four standard Workflow agents. These queues all
use the standard WF_EVENT_T structure as their payload type. See:
Standard Agents: page 13 – 25 and Event Message Structure: page
8 – 242.

The following table lists the standard queues.

2 – 98 Oracle Workflow Guide

Queue Table Queue Name Description

WF_IN WF_IN Default inbound queue

WF_OUT WF_OUT Default outbound queue

WF_DEFERRED WF_DEFERRED Default queue for deferred subscription
processing

WF_ERROR WF_ERROR Default queue for error handling

Table 2 – 2 (Page 1 of 1)

The default retention time set for consumed messages on the standard
Workflow queues is seven days. You can change the retention time if
necessary using the PL/SQL procedure DBMS_AQADM.Alter_Queue.
You must not change any other part of the setup of these queues.

However, you must schedule listeners for WF_DEFERRED and
WF_ERROR to enable deferred subscription processing and error
handling for the Business Event System, respectively. Also, if you want
to use WF_IN and WF_OUT for event message propagation, schedule a
listener for WF_IN and propagations for WF_OUT as well. See:
Scheduling Listeners for Local Inbound Agents: page 13 – 56 and
Scheduling Propagations for Local Outbound Agents: page 13 – 56.

You can also set up your own queues for event message propagation.
To set up a queue, you must create the queue table, create the queue,
and start the queue.

• To create a queue table, use the PL/SQL procedure
DBMS_AQADM.Create_Queue_Table. Use the following syntax:

DBMS_AQADM.Create_Queue_Table (

queue_table => ’<queue table name>’,

queue_payload_type => ’<queue payload type>’,

sort_list => ’PRIORITY,ENQ_TIME’,

multiple_consumers => TRUE

compatible => ’8.1’);

For queues that you want use the standard Workflow format,
specify the queue payload type as WF_EVENT_T. These queues can
use the standard queue handler provided with Oracle Workflow,
WF_EVENT_QH. If you define a queue with a different payload
type, you must create a queue handler to translate between the
standard Workflow format and the format required by the
queue. See: Standard APIs for a Queue Handler: page 7 – 23.

2 – 99Setting Up Oracle Workflow

You can also use the storage_clause parameter to specify the
tablespace where you want to create the queue table. You may
want to specify a tablespace if you expect a queue to be very
large.

• To create a queue, use the PL/SQL procedure
DBMS_AQADM.Create_Queue. Use the following syntax:

DBMS_AQADM.Create_Queue (

queue_name => ’<queue name>’,

queue_table => ’<queue table name>’);

Note: If you want other database users to enqueue messages
onto or dequeue messages from your queue, you must grant
those users the appropriate privileges using the PL/SQL
procedure DBMS_AQADM.Grant_Queue_Privilege.

• To start a queue, use the PL/SQL procedure
DBMS_AQADM.Start_Queue. Use the following syntax:

DBMS_AQADM.Start_Queue (

queue_name => ’<queue name>’);

Oracle Workflow provides a sample script called wfevquec.sql which
you can modify to set up your queues, as well as a sample script called
wfevqued.sql which you can modify to drop queues. These scripts are
located on your server in the Oracle Workflow sql subdirectory for the
standalone version of Oracle Workflow, or in the sql subdirectory under
$FND_TOP for the version of Oracle Workflow embedded in Oracle
Applications.

You can use the Check Setup web page to verify that your queues are
set up properly. See: Checking the Business Event System Setup: page
13 – 53.

Note: SQL*Plus version 8.1.6 does not allow you to select the
USER_DATA column from queue tables. You must have
SQL*Plus version 8.1.7 or higher, which allows you to select
USER_DATA, if you want to be able to select the event message
payload from your Workflow queues.

See Also

Administrative Interface, Oracle Application Developer’s Guide –
Advanced Queuing

DBMS_AQADM, Oracle Supplied PL/SQL Packages Reference

Step 15

2 – 100 Oracle Workflow Guide

Setting Up the WF_EVENT_OMB_QH Queue Handler

You need to perform this step only if you are using the Business Event
System with Oracle8i and you want to use Oracle Message Broker
(OMB) to propagate event messages between systems. The
WF_EVENT_OMB_QH queue handler translates between the standard
Workflow event message structure, WF_EVENT_T, and the structure
required by OMB queues, OMBAQ_TEXT_MSG.

After you set up WF_EVENT_OMB_QH, you can assign this queue
handler to Business Event System agents that use propagation
protocols you have implemented through OMB. See: Agents: page
13 – 22.

Note: You do not need to perform this step if you are using
Oracle9i. In Oracle9i, you can use the Messaging Gateway and
Internet access features of Oracle Advanced Queuing to
propagate event messages, in place of Oracle Message Broker.

Context: You need to perform this step only once.

� To Set Up WF_EVENT_OMB_QH

1. Use OMB to create the AQ queues that you want to use for event
message propagation. The queues should be single–consumer
queues created in your Oracle Workflow schema. You should create
at least one inbound and one outbound queue. For example, create
queues called WF_OMB_IN and WF_OMB_OUT.

2. Run the script wfquhndos.pls to create the PL/SQL spec for the
WF_EVENT_OMB_QH package. This script is located in the wf/sql
subdirectory in your Oracle Home.

3. Run the script wfquhndob.pls to create the PL/SQL body for the
WF_EVENT_OMB_QH package. This script is located in the wf/sql
subdirectory in your Oracle Home.

See Also

Standard APIs for a Queue Handler: page 7 – 23

Event Message Structure: page 8 – 242

Mapping Between WF_EVENT_T and OMBAQ_TEXT_MSG: page
8 – 257

2 – 101Setting Up Oracle Workflow

Overview of Oracle Workflow Access Protection

Access protection is a feature that prevents workflow seed data created
by a ’seed data provider’ from being modified by a ’seed data
consumer’. Here, a ’seed data provider’ is any organization that
creates ’seed data’ for other organizations (’seed data consumers’) to
use in defining and customizing a workflow process. In Oracle
Workflow, seed data refers to either of the following:

• Workflow object definitions that can and should be customized
to meet a certain consumer’s needs.

• Workflow object definitions protected against customization
because they represent standards that may also be upgraded in
the future by the provider.

For example, the Oracle Workflow development team is a provider of
seed data called the Standard item type. The Standard item type
contains standard activities that can be dropped into any custom
workflow process. The development team at your organization’s
headquarters may create a custom workflow process definition that
references activities from the Standard item type. This makes the
headquarters team a consumer of the Standard item type seed data.

Now suppose the headquarters team wants to deploy the custom
workflow definition that it created to teams at other regional offices.
The headquarters team, as seed data providers, may want to do the
following:

• Identify certain workflow objects in its custom workflow
definition as corporate standards that the regional teams should
adhere to and not modify.

• Designate certain objects in its deployed process as customizable
for the regional offices to alter to their offices’ needs.

The headquarters team can satisfy both requirement using the access
protection feature in Oracle Workflow. Access protection lets seed data
providers protect certain data as ’read–only’, while allowing other data
to be customized. Also during a seed data upgrade, access protection
lets the seed data provider overwrite any existing protected seed data
with new versions of that seed data, while preserving any
customizations made to customizable seed data.

Oracle Workflow assigns a protection and customization level to every
workflow object definition stored in the database and requires every
user of Oracle Workflow to operate at a certain access level. The
combination of protection, customization, and access levels make up
the access protection feature and determines whether a user can

2 – 102 Oracle Workflow Guide

modify a given workflow object. The level in all three cases, is a
numeric value ranging from 0 to 1000 that indicates the relationship
between different organizations as providers and consumers of seed
data.

The following range of levels are presumed by Oracle Workflow:

Oracle Workflow

Oracle Application Object Library

Oracle Applications development

Customer organization. You can determine how
you want this range to be interpreted. For
example, 100 can represent headquarters, while 101
can represent a regional office, and so on.

Public

Access Level

Each user of Oracle Workflow operates the system at a certain access
level according to the range of levels listed above. A ”user of Oracle
Workflow” in this case, represents someone who is operating Oracle
Workflow Builder, or the Workflow Definitions Loader program, which
loads workflow process definitions from a file into a database. As a
seed data provider, you should always operate Oracle Workflow
Builder at the same consistent access level because the level you work
at affects the protection level of the seed data you create.

You can view your access level as follows:

• In Oracle Workflow Builder, select About Workflow from the
Help menu.

• If you are going to run the Workflow Definitions Loader
program to download workflow process definitions from the
database to a file, check the value for the environment variable
WF_ACCESS_LEVEL on your workflow server. See: Using the
Workflow Definitions Loader: page 2 – 107.

Note: The Workflow Definitions Loader program references
the access level stored in the environment variable called
WF_ACCESS_LEVEL, which you must define when you install
Oracle Workflow on your server. If you do not define this
environment variable, the Workflow Definitions Loader simply
assumes a default access level of 100.

Note: When you install the version of Oracle Workflow
embedded in Oracle Applications, you need to define this

0–9

10–19

20–99

100–999

1000

2 – 103Setting Up Oracle Workflow

variable in an environment file. The default environment file is
APPLSYS.env. If you do not define this environment variable,
the Workflow Definitions Loader simply assumes a default
access level of 100. Refer to your Oracle Applications
installation manual for more information about environment
files.

Protection Level

Whenever you create a workflow object in Oracle Workflow Builder,
you have the option of protecting the object at a certain level. An
object’s protection level controls whether other users can modify the
object based on their access levels.

To change the protection level of an object, display the Access tab of the
object’s property page. The protection level that you set for an object is
dependent on your current access level. You can control access to an
object in one of four ways:

• Allow access to everyone—By default, all users are allowed
access to an object if both ”Preserve Customizations’ and ’Lock
at this Access Level’ are unchecked in the Access tab, that is the
protection level is equal to 1000.

• Limit access to users with access levels equal to your own or
higher—If you check ’Preserve Customizations’ in the Options
region of the Access tab, you designate the object as being
customizable by anyone with an access level equal to or higher
than your current access level. You should only mark objects as
customizable if you are sure that you will not be providing
upgraded versions of this object in the future that would
overwrite other user’s customizations to it.

• Limit access to users with access levels equal to your own or
lower—If you check ’Lock at this Access Level’, you protect the
object and ensure that the object may only be modified by users
with an access level equal to or lower than your current access
level. Users operating at a higher access level will see a small
lock on the workflow object’s icon, indicating that the object can
be used but not modified. Protect any objects that you want to
define as standard components that will not change unless you
provide a global upgrade. For this reason, it is important that
you always operate at the same consistent access level.

• Limit access to users with access levels equal to your own—If
you check both ’Lock at this Level’ and ’Preserve
Customizations’ you ensure that the object cannot be modified

�

�

2 – 104 Oracle Workflow Guide

by anyone other than users operating at your current access
level.

The following table shows which access levels can access an object
under different settings of the ’Preserve Customizations’ and ’Lock at
this Access Level’ options.

Preserve
Customizations

Lock at this Access
Level Access Level applied to Object

Cleared Cleared Object may be updated by any access level.

Checked Cleared
Object may only be updated by users with
access levels equal to or higher than your
current access level.

Cleared Checked
Object may only be updated by users with
access levels equal to or lower than your
current access level.

Checked Checked Object cannot be updated by any access
level except for your current access level.

Table 2 – 3 (Page 1 of 1)

Attention: If you have installed the beta version of Microsoft’s
Internet Explorer on your PC, which automatically installs an
early version of a file called comctl32.dll, you may not see the
lock icons appear on the locked objects in Oracle Workflow
Builder. To correct this problem, install the production version
of Microsoft’s Internet Explorer to replace comctl32.dll with the
latest copy.

The protection and access levels in Oracle Workflow are present to
remind you that certain workflow objects should not be modified or
should only be modified by someone accessing the tool at an
authorized access level. It is not intended as a means of securing or
source controlling your workflow objects.

Attention: Most workflow objects provided by Oracle
Workflow have a protection level of 0, which means the objects
can only be modified by the Oracle Workflow team, operating
at an access level of 0. If you attempt to alter your access level
to 0 and modify the data anyway, your customizations will not
be supported, especially if Oracle Workflow provides an
upgrade to the seed data that may overwrite the modifications
you make to the originally protected data.

2 – 105Setting Up Oracle Workflow

Customization Level

Every workflow object, in addition to having a protection level, also
records a customization level equal to your access level when you
modify the object and save it to a database or file. For example, if a
workflow object is customizable (protection level is 1000), and you
customize it at an access level of 100, you now mark the object as
having a customization level of 100. The customization level indicates
that the object can only be further modified by someone operating at an
access level equal to or higher than the customization level. So in this
example, you can only customize the object further if your access level
is 100 or higher. If you are operating at an access level lower than an
object’s customization level, you will see a small lock on that workflow
object’s icon, indicating that the object can be used but not modified.

This ensures that a customizable object that has been customized never
gets overwritten during a seed data upgrade because the upgrade
always occurs with the Workflow Definitions Loader operating at an
access level below the customized object’s customization level.

Setting Up a Default Access Level

When you install Oracle Workflow Builder on a Microsoft Windows 95,
Windows 98, Windows 2000, or Windows NT PC, Oracle Universal
Installer assigns a default access level that is global to the PC and the
operating system you are installing on. After installing Oracle
Workflow Builder, you can have individual users on the PC change
their access level to a new setting which overrides the default access
level set for the PC. If a user does not define an access level, Oracle
Workflow Builder assumes the value of the default access level for the
PC. The access levels are stored in the Microsoft Windows registry.

If you are deploying Oracle Workflow Builder and workflow seed data
to users in other parts of your organization, and you wish to
discourage those users from modifying the seed data that you provide,
you can have them operate Oracle Workflow Builder at an access level
that is higher than the data’s protection level. For example if you, as a
seed data provider, are operating at an access level of 100 and the seed
data you create is protected at a level of 100, then you should require
the access level for your users or seed data consumers to be 101 or
higher.

You can set a user’s access level in Oracle Workflow Builder by having
them choose About Oracle Workflow Builder... from the Help menu. In
the About Oracle Workflow Builder window, change the Access Level

2 – 106 Oracle Workflow Guide

field to a number higher than your seed data protection level, then
choose OK.

You can also set the access level directly in the Microsoft Windows
registry by using a registry editor such as regedit to edit the decimal
value under
HKEY_LOCAL_MACHINE\SOFTWARE\ORACLE\Workflow\Level.

For the Workflow Definitions Loader program, you set the default
access level that the program operates at for downloading process
definitions to a file, by defining an environment variable called
WF_ACCESS_LEVEL and setting its value using the appropriate
operating system command.

Caution: Although you can modify your access level, Oracle
Workflow does not support any customizations to seed data
originally protected at a level 99 or lower. We STRONGLY
RECOMMEND that you not change your access level to an
unauthorized level for modifying protected data.

�

2 – 107Setting Up Oracle Workflow

Using the Workflow Definitions Loader

Rather than use the File Save or File Open menu options in Oracle
Workflow Builder, you can also run a program called Workflow
Definitions Loader to save or load process definitions from a database
or flat file.

When you upgrade your database, use the Workflow Definitions
Loader to preserve and back up your process definitions to a flat file.
When the database upgrade is complete, use the Loader program again
to upload the definitions back into your database. You can also use the
Loader program to upgrade your database with a newer version of a
process definition or to transfer process definitions to other databases.

When you upload or upgrade a process definition, the Workflow
Definitions Loader automatically validates the process definition to
ensure that it conforms to specific process design rules. It performs the
same validation as the Oracle Workflow Builder Verify feature. See: To
Validate a Process Definition: page 5 – 21.

Attention: When you upload or upgrade a workflow
definition onto an existing definition in a database, it is possible
that an object in the upload/upgrade definition has a Display
Name that is already in use by a different object in the target
database. If this occurs, the Workflow Definition Loader
automatically resolves the display name conflict by adding a
’@’ character to the beginning of conflicting display names in
the target database. The upload/upgrade definition is then
applied as is and a warning message is generated.

Note: You can use the Workflow Definitions Loader Release
2.6.1 to upload and download process definitions from all
versions of the Oracle Workflow Server embedded in Oracle
Applications Release 11i, as well as Release 2.6.1, base Release
2.6, and Release 2.5 of the standalone version of the Oracle
Workflow Server. However, when you use the Workflow
Definitions Loader to upload process definitions to an earlier
Oracle Workflow Server version, those processes cannot
include any new features introduced in later releases. For more
details about which features you must not use with earlier
versions, see: Using Oracle Workflow Builder with Different
Server Versions: page 3 – 21.

2 – 108 Oracle Workflow Guide

� To run the Workflow Definitions Loader for the standalone version
of Oracle Workflow

1. The Workflow Definitions Loader program is located on your
server in the bin subdirectory of the Oracle Home directory
structure.

2. Run the program from your operating system prompt as follows
(replacing <username/password@database> with the username,
password and Oracle Net connect string or alias to your database):

• To apply a seed data upgrade to a database from an input file,
type:

wfload <username/password@database> <input_file>

By using the default upgrade behavior, the Workflow Definitions
Loader assumes the access level of the file’s creator (seed data
provider) and overwrites any objects protected at a level equal to
or above the upgrade file’s access level. During an upgrade, the
Loader program preserves any customizations made to
customizable seed data in the database. <input_file>
represents the name and full path of the upgrade file you are
loading.

• To upload process definitions from an input file to a database,
type:

wfload –u <username/password@database> <input_file>

The upload mode is useful to someone who is developing a
workflow process. It allows the developer to save definitions to
the database without concern that accidental customizations to
existing objects might prevent the upload of some process
definition elements. The Workflow Definitions Loader uses the
access level specified in the input file. <input_file> represents
the name and full path of the input file you want to upload from.

• To force an upload of the process definitions from an input file to
a database regardless of an object’s protection level, type:

wfload –f <username/password@database> <input_file>

<input_file> represents the name and full path of the input file
you want to upload from. When using the force option, you
should be certain that the process definition in the file is correct
as it overwrites the entire process stored in the database. The
force option is useful for fixing data integrity problems in a
database with a known, reliable file backup. The force option is

2 – 109Setting Up Oracle Workflow

also useful for loading .wft files from Oracle Workflow Release
1.0 or 1.0.1, which reflect an older data model.

Note: When using the force option to load a .wft file from
Oracle Workflow Release 1.0 or 1.0.1 into a database, you must
also complete a manual step once the .wft file is loaded. You
must associate the lookup types that you load with an item
type. To do this, in the Navigator window of Oracle Workflow
Builder, drag the lookup types from the independent Lookup
Types branch to a Lookup Types branch associated with an
item type.

• To download the process definition of one or more item types
from a database to an output file, type:

wfload [–d <date>] <username/password@database>

<output_file> <item_type1> <item_type2> ...<item_typeN>

<output_file> represents the name and full path of the output
file you want to write to, and <item_typeN> represents the
internal name of each item type you want to download. You can
also replace <item_typeN> with ’*’ to represent all item types
(make sure you enclose the asterisk in single quotes). If you
specify the –d option with a date (omitting the square brackets),
you can download the process definition that was effective at
that date. The date must be supplied in the following format:
YYYY/MM/DD HH24:MI:SS.

Your output file should have the extension .wft. When you
download a process definition, the Loader program sets the
output file’s access level to be the value stored in the
WF_ACCESS_LEVEL environment variable.

� To run the Workflow Definitions Loader for the version of Oracle
Workflow embedded in Oracle Applications

1. Navigate to the Submit Requests form in Oracle Applications to
submit the Workflow Definitions Loader concurrent program.
When you install and set up Oracle Applications and Oracle
Workflow, your system administrator needs to add this concurrent
program to a request security group for the responsibility that you
want to run this program from. See: Overview of Concurrent
Programs and Requests, Oracle Applications System Administrator’s
Guide.

2. Submit the Workflow Definitions Loader concurrent program as a
request. See: Submitting a Request, Oracle Applications User’s Guide.

2 – 110 Oracle Workflow Guide

3. In the Parameters window, enter values for the following
parameters:

Specify ”Download” to download a process
definition from the database to a flat file.

Specify ”Upgrade” to apply a seed data upgrade to
a database from an input file. The Workflow
Definitions Loader assumes the access level of the
file’s creator (seed data provider) and overwrites
any objects protected at a level equal to or above
the upgrade file’s access level. The Loader
program preserves any customizations made to
customizable seed data in the database.

Specify ”Upload” to load a process definition from
a flat file into the database. The upload mode is
useful to someone who is developing a workflow
process. It allows the developer to save definitions
to the database without concern that accidental
customizations to existing objects might prevent
the upload of some process definition elements.
The Workflow Definitions Loader uses the access
level defined by the input file to upload the process
definitions from the file and therefore will
overwrite objects in the database that are protected
at a level equal to or higher than that file’s access
level.

Specify ”Force” to force an upload of the process
definitions from an input file to a database
regardless of an object’s protection level You
should be certain that the process definition in the
file is correct as it overwrites the entire process
stored in the database. The Force mode is useful
for fixing data integrity problems in a database
with a known, reliable file backup.

Specify the full path and name of the file that you
want to download a process definition to, or
upgrade or upload a process definition from.

If you set Mode to ”Download”, use the List button
to choose the item type for the process definition
you want to download.

Note: When you submit the Workflow Definitions Loader
from the Submit Requests form to download process
definitions to a file, you can only specify to download one item

Mode

File

Item Type

2 – 111Setting Up Oracle Workflow

type at a time. If you wish to download multiple or all item
types simultaneously, you should submit the Workflow
Definitions Loader concurrent program from the command
line. See Step 6 below for details.

4. Choose OK to close the Parameters window.

5. When you finish modifying the print and run options for this
request, choose Submit to submit the request.

6. Rather than use the Submit Requests form, you can also run the
Workflow Definitions Loader concurrent program from the
command line by entering the following commands:

To upgrade— WFLOAD apps/pwd 0 Y UPGRADE file.wft

To upload— WFLOAD apps/pwd 0 Y UPLOAD file.wft

To force— WFLOAD apps/pwd 0 Y FORCE file.wft

To download— WFLOAD apps/pwd 0 Y DOWNLOAD file.wft
ITEMTYPE1 [ITEMTYPE2 ...ITEMTYPEN]

Replace apps/pwd with username and password to the APPS
schema, replace file.wft with the file specification of a workflow
process definition file, and replace ITEMTYPE1, ITEMTYPE2,
... ITEMTYPEN with the one or more item type(s) you want to
download. You can also download all item types
simultaneously by replacing ITEMTYPE1 with ’*’ (make sure
you enclose the asterisk in single quotes).

A file specification is specified as:

@<application_short_name>:[<dir>/.../]file.ext

or

<native path>

2 – 112 Oracle Workflow Guide

Using the Workflow XML Loader

The Workflow XML Loader lets you upload and download XML
definitions for Business Event System objects between a database and a
flat file. When you download Business Event System object definitions
from a database, Oracle Workflow saves the definitions as an XML file.
When you upload object definitions to a database, Oracle Workflow
loads the definitions from the source XML file into the Business Event
System tables in the database, creating new definitions or updating
existing definitions as necessary.

The XML definitions for Business Event System objects are structured
according to the following document type definitions (DTDs):

• Events—WF_EVENTS DTD: page 8 – 302

• Event group members—WF_EVENT_GROUPS DTD: page
8 – 305

• Systems—WF_SYSTEMS DTD: page 8 – 308

• Agents—WF_AGENTS DTD: page 8 – 311

• Event subscriptions—WF_EVENT_SUBSCRIPTIONS DTD: page
8 – 314

You can download Business Event System object definitions in either
normal download mode or exact download mode.

• Normal download mode lets you save a generic copy of object
definitions from one system that you can use to create similar
definitions in other systems. In this mode, the Workflow XML
Loader replaces certain system–specific data within the object
definitions with tokens. Choose normal download mode, for
example, when you want to save Business Event System object
definitions from a development system as seed data that can be
uploaded to a production system.

• Exact download mode lets you save object definitions exactly as
they are specified in the database. In this mode, the Workflow
XML Loader does not convert any data to tokens; instead, all
values, including system–specific values, are copied to the XML
file. Choose exact download mode, for example, when you want
to save Business Event System object definitions from one
production system so that you can replicate them to another
production system that communicates with the first.

In normal download mode, the Workflow XML Loader uses the
following tokens to replace system–specific data within Business Event
System object definitions. The tokens are prefixed by #.

2 – 113Setting Up Oracle Workflow

• #NEW—Replaces the global unique identifier for an agent
within an agent definition, or for an event subscription within a
subscription definition.

• #LOCAL—Replaces the global unique identifier for the local
system wherever it appears within an agent or subscription
definition.

• #OWNER—Replaces the name of the schema that owns a queue
when the schema appears as part of the queue name and agent
address within an agent definition.

• #SID—Replaces the database system identifier (SID) when it
appears as part of the agent address within an agent definition.

• #WF_IN—Replaces the global unique identifier for the WF_IN
agent on the local system when it appears as the Source Agent,
Out Agent, or To Agent within an event subscription definition.

• #WF_OUT—Replaces the global unique identifier for the
WF_OUT agent on the local system when it appears as the
Source Agent, Out Agent, or To Agent within an event
subscription definition.

• #WF_ERROR—Replaces the global unique identifier for the
WF_ERROR agent on the local system when it appears as the
Source Agent, Out Agent, or To Agent within an event
subscription definition.

By converting these system–specific values to tokens, the loader
produces template definitions that you can use to create similar objects
in other systems. When you upload object definitions that contain
tokens to a database, Oracle Workflow replaces the tokens with the
appropriate values for that system.

See Also

Managing Business Events: page 13 – 2

� To Download Business Event System XML Definitions from a
Database

To download Business Event System object definitions from a database
to a flat XML file, you can either run the Workflow XML Loader
manually, or, if you are using the standalone version of Oracle
Workflow, you can use a script to run the loader.

2 – 114 Oracle Workflow Guide

To run the Workflow XML Loader manually, run JRE against
oracle.apps.fnd.wf.WFXLoad. You must specify your CLASSPATH
pointing to the Java Runtime Environment, the directory containing the
Workflow JAR files, the Oracle JDBC implementation, and the
following Workflow JAR files:

• wfjava.jar—Workflow Java utilities

• wfapi.jar—Workflow Java APIs

Note: If you are using the standalone version of Oracle
Workflow with Oracle9i, the Workflow JAR files are located in
the <ORACLE_HOME>/jlib directory. If you are using the version
of Oracle Workflow embedded in Oracle Applications, the
Workflow JAR files are located in the
<ORACLE_HOME>/wf/java/oracle/apps/fnd/wf/jar/
directory.

For example, on UNIX, use the following command to run the
Workflow XML Loader:

jre –classpath

”$<JREPATH>/rt.jar:$<Workflow_JAR_file_directory>:

$<Workflow_JAR_file_directory>/wfjava.jar:

$<Workflow_JAR_file_directory>/wfapi.jar:

$<ORACLE_HOME>/jdbc/lib/classes111.zip:”

oracle.apps.fnd.wf.WFXLoad –d[e] <user> <password>

<connect_string> <protocol> <lang> <output_file> <object>

<key>

On Windows NT, use the following command:

jre –classpath

”;<JREPATH>\rt.jar;<Workflow_JAR_file_directory>;

<Workflow_JAR_file_directory>\wfjava.jar;

<Workflow_JAR_file_directory>\wfapi.jar;

<ORACLE_HOME>\jdbc\lib\classes111.zip;”

oracle.apps.fnd.wf.WFXLoad –d[e] <user> <password>

<connect_string> <protocol> <lang> <output_file> <object>

<key>

If you are using the standalone version of Oracle Workflow, you can
use sample scripts called wfxload for UNIX or wfxload.bat for
Windows NT to run the Workflow XML Loader. These scripts are
located on your server in the Oracle Workflow admin subdirectory. For
example, on UNIX, use the following command:

wfxload –d[e] <user> <password> <connect_string> <protocol>

<lang> <output_file> <object> <key>

2 – 115Setting Up Oracle Workflow

On Windows NT, use the following command:

wfxload.bat –d[e] <user> <password>

<connect_string> <protocol> <lang> <output_file> <object>

<key>

When running the Workflow XML Loader, use either the –d option or
the –de option to specify the download mode that you want.

• –d —Normal download mode. The loader converts
system–specific data within the object definitions to tokens
prefixed with #, where appropriate.

• –de —Exact download mode. The loader copies the object
definitions exactly and does not convert any data to tokens.

Additionally, replace the variables in the download command with
your parameters as follows:

• <user>—The user name of your database account.

• <password>—The password for your database account.

• <connect_string>—The connect string for the database. The
format of the connect string depends on the JDBC driver type.

– For a JDBC OCI8 driver, the connect string should be the
database name as specified in its TNSNAMES entry, in the
following format:
<database_name>

– For a JDBC THIN driver, you can use two different types of
connect string. For the first type, the connect string should
include the host name, port number, and database system
identifier (SID) in the following format:
<host_name>:<port_number>:<database_SID>

For the second type, the connect string should include an
Oracle Net name–value pair with the host name, protocol,
port number, and SID in the following format:
(description=(address=(host=<host_name>)(protocol=

<protocol>)(port=<port_number>))(connect_data=(sid=

<database_SID>)))

• <protocol>—The JDBC driver type you want to use to connect
to the database. The JDBC driver type can be either oci8 or thin.

• <lang>—The abbreviation for the language of the XML file. This
parameter is case insensitive. Use the standard language
abbreviations for the Oracle database server, such as US for
American or JA for Japanese. For a list of the standard language

�

2 – 116 Oracle Workflow Guide

abbreviations, see: Locale Data, Oracle National Language Support
Guide.

• <output_file>—The name and full path of the output file to
which you want to save the definitions.

• <object>—The type of object definitions you want to download.

– EVENT—Event, event group member, and event
subscription definitions

– SYSTEMS—System definitions

– AGENTS—Agent definitions

– ALL—All Business Event System object definitions,
including events, event group members, systems, agents,
and event subscriptions

Note: The Workflow XML Loader only downloads system,
agent, and event subscription definitions that belong to the
local system.

• <key>—An optional key to restrict the definitions that are
downloaded. If you specify a key, the loader retrieves definitions
only for those objects whose internal names include that key. The
key value is case sensitive and cannot contain any spaces. To
retrieve all object definitions of the specified type, you can omit
this parameter.

Note: If you specify ALL for the object type, the Workflow
XML Loader ignores the key and downloads all Business Event
System object definitions from the system.

Attention: To use the Workflow XML Loader in download
mode, you must have a version 8.1.7 or higher database. The
download utility is not supported for earlier versions of
Oracle8i. To replicate Business Event System objects from one
system to another for earlier database versions, you should
follow the steps to synchronize systems using predefined
subscriptions provided with the Business Event System. See:
Synchronizing Systems: page 13 – 70.

You can, however, use the Workflow XML Loader in upload
mode with versions of Oracle8i earlier than 8.1.7.

� To Upload Business Event System XML Definitions to a Database

To upload Business Event System object definitions from an XML file to
a database, you can either run the Workflow XML Loader manually, or,

2 – 117Setting Up Oracle Workflow

if you are using the standalone version of Oracle Workflow, you can
use a script to run the loader.

To run the Workflow XML Loader manually, run JRE against
oracle.apps.fnd.wf.WFXLoad. You must specify your CLASSPATH
pointing to the Java Runtime Environment, the directory containing the
Workflow JAR files, the Oracle JDBC implementation, and the
following Workflow JAR files:

• wfjava.jar—Workflow Java utilities

• wfapi.jar—Workflow Java APIs

Note: If you are using the standalone version of Oracle
Workflow with Oracle9i, the Workflow JAR files are located in
the <ORACLE_HOME>/jlib directory. If you are using the version
of Oracle Workflow embedded in Oracle Applications, the
Workflow JAR files are located in the
<ORACLE_HOME>/wf/java/oracle/apps/fnd/wf/jar/
directory.

For example, on UNIX, use the following command to run the
Workflow XML Loader:

jre –classpath

”$<JREPATH>/rt.jar:$<Workflow_JAR_file_directory>:

$<Workflow_JAR_file_directory>/wfjava.jar:

$<Workflow_JAR_file_directory>/wfapi.jar:

$<ORACLE_HOME>/jdbc/lib/classes111.zip:”

oracle.apps.fnd.wf.WFXLoad –u <user> <password>

<connect_string> <protocol> <lang> <source_file>

On Windows NT, use the following command:

jre –classpath

”;<JREPATH>\rt.jar;<Workflow_JAR_file_directory>;

<Workflow_JAR_file_directory>\wfjava.jar;

<Workflow_JAR_file_directory>\wfapi.jar;

<ORACLE_HOME>\jdbc\lib\classes111.zip;”

oracle.apps.fnd.wf.WFXLoad –u <user> <password>

<connect_string> <protocol> <lang> <source_file>

If you are using the standalone version of Oracle Workflow, you can
use sample scripts called wfxload for UNIX or wfxload.bat for
Windows NT to run the Workflow XML Loader. These scripts are
located on your server in the Oracle Workflow admin subdirectory. For
example, on UNIX, use the following command:

wfxload –u <user> <password> <connect_string> <protocol>

<lang> <source_file>

2 – 118 Oracle Workflow Guide

On Windows NT, use the following command:

wfxload.bat –u <user> <password> <connect_string> <protocol>

<lang> <source_file>

When running the Workflow XML Loader, use the –u option to specify
that you want to run the loader in upload mode. Additionally, replace
the variables with your parameters as follows:

• <user>—The user name of your database account.

• <password>—The password for your database account.

• <connect_string>—The connect string for the database. The
format of the connect string depends on the JDBC driver type.

– For a JDBC OCI8 driver, the connect string should be the
database name as specified in its TNSNAMES entry, in the
following format:
<database_name>

– For a JDBC THIN driver, the connect string should include
the host name, port number, and database system identifier
(SID) in the following format:
<host_name>:<port_number>:<database_SID>

• <protocol>—The JDBC driver type you want to use to connect
to the database. The JDBC driver type can be either oci8 or thin.

• <lang>—The abbreviation for the language of the XML file. This
parameter is case insensitive. Use the standard language
abbreviations for the Oracle database server, such as US for
American or JA for Japanese. For a list of the standard language
abbreviations, see: Locale Data, Oracle National Language Support
Guide.

• <source_file>—The name and full path of the source file from
which you want to upload definitions.

C H A P T E R

3
T

3 – 1Defining a Workflow Process

Defining a Workflow
Process

his chapter tells you how to use Oracle Workflow Builder to
define a workflow process definition.

3 – 2 Oracle Workflow Guide

Overview of Oracle Workflow Builder

Oracle Workflow Builder is a graphical tool for creating, viewing, and
modifying workflow process definitions. It contains a Navigator
window that you use to define the activities and components of your
business process. You then assemble the activities in a process window
to create a process diagram. See: Creating Process Definitions in Oracle
Workflow Builder: page 3 – 7.

Note: A workflow process definition can also be stored as a
flat file, which can be opened and edited in a text editor so that
the process definition can be spoken by a screen reader for
greater user accessibility.

Note: If you maximize the Navigator window or any process
window in Oracle Workflow Builder, you will not be able to
access the menu from your keyboard using the Alt key.

3 – 3Defining a Workflow Process

The Navigator Tree Structure

The Navigator window displays a navigator tree hierarchy for each
data store that you open or load into Oracle Workflow Builder. A data
store (primary branch) is a database connection or flat file that holds
your workflow process definition. Within each data store there is at
least one item type heading (secondary branch) that represents the
grouping of a particular set of processes and its component objects.
The following six tertiary branches appear beneath each item type
branch:

• Attributes—lists the attributes for the current item type. Item
type attributes describe features of an item type. For example, if
an item type is a purchase order requisition, then an item type
attribute can be the requisition amount or the requisition ID.
See: Item Type Attributes: page 4 – 2.

• Processes—lists the process activities or workflow process
definitions for the current item type. See: Process Window: page
5 – 2 and Activities: page 4 – 42.

• Notifications—lists the notification activities associated with the
current item type. A notification activity sends a message to a
user or role. The message may prompt for a response or may
simply provide information. See: Activities: page 4 – 42.

• Functions—lists the function activities associated with the
current item type. A function activity represents a PL/SQL
stored procedure that the Workflow Engine executes
automatically. A function activity can also have activity
attributes associated with it. See: Activities: page 4 – 42.

• Events—lists the event activities associated with the current item
type. An event activity represents a business event that the
process receives, raises, or sends. See: Activities: page 4 – 42.

• Messages—lists the messages that a notification activity
associated with the current item type can send to a user or role.
A message can have message attributes associated with it. See:
Messages: page 4 – 23.

• Lookup Types—lists the lookup types associated with the
current item type. A lookup type has one or more values called
lookup codes associated with it. A lookup type is a list of values
that can be referenced by a message, or by a notification,
function, or process as its possible result type. See: Lookup
Types: page 4 – 19.

3 – 4 Oracle Workflow Guide

Note: Each data store also contains a Directory Service branch.
The Directory Service branch lists all the directory service roles
that you load from your Oracle Workflow database. See: Roles:
page 5 – 24.

If the data store is a database connection and the database contains
other item types that you have not loaded into Oracle Workflow
Builder, a branch called Hidden Item Types appears. When you
double–click on Hidden Item Types, you get a Show Item Types
window that lets you load other item types into Oracle Workflow
Builder.

Viewing the Navigator Tree

The navigator tree is organized much like the hierarchy of a file system,
where you can expand branches that begin with a plus sign (+) to
further sub–branches until you find your component of interest.
Sub–branches appear indented below the branches from which they are
expanded. Branches that are expanded are preceded by a minus sign
(–). You can expand no further when a branch displays neither a plus
nor minus sign. You can use either your mouse or the arrow keys on
your keyboard to expand or collapse the navigator tree.

The Navigator window also contains a toolbar that you can use to
perform actions within the Navigator window. See: Navigator Toolbar:
page A – 7.

3 – 5Defining a Workflow Process

3 – 6 Oracle Workflow Guide

� To Find an Object in the Navigator Tree

1. Choose Find... from the Edit menu to display a Search window that
lets you specify search criteria to find an object in the navigator
tree.

2. Enter the text to search for in the Search Text field. The search is
case insensitive and looks for the text pattern that you specify in
the field that you specify.

3. Specify to search for this text in the object’s Display Name or
Internal Name.

4. Specify the object type to restrict this search to or check All Objects
to search for the text within the property pages of all objects.

5. Choose Search.

6. You can choose Find Again from the Edit menu to repeat the search
using the search criteria previously defined in the Search window.

3 – 7Defining a Workflow Process

Creating Process Definitions in Oracle Workflow Builder

Before using Oracle Workflow Builder, you should plan what your
process needs to accomplish. In particular, determine what activities
need to occur, the order of the activities, what results dictate the
different branches of the process, who needs to be informed and what
they need to know. Oracle Workflow provides several demonstration
workflow examples. See: Sample Workflow Processes: page 15 – 2.

There are several ways you can go about creating a workflow process
definition:

• Top–Down Design—If you prefer to approach your design from
a high level, you can first sketching out the process diagram with
activities, then go back later to create the supporting objects for
each activity. See: To Create a Process Definition from
Top–Down: page 3 – 10.

• Bottom–Up Design—If you prefer to take a more programmatic
approach to your design, you can first define each of the
supporting objects of your process before attempting to create a
higher level process diagram. See: To Create a Process Definition
From Bottom–Up: page 3 – 8.

Quick Start Wizard

The Quick Start Wizard helps you build a process definition from
scratch using a process definition template. The Quick Start Wizard
creates a new item type for your process, prompting you for the
minimum required information. It then creates an outline process
diagram from which you can flesh out with more activities. Once the
Quick Start Wizard sets up the template, you can use either the
top–down or bottom–up approach to complete the design. See: To Use
the Quick Start Wizard: page 3 – 18.

Versioning and Dates of Effectivity

Oracle Workflow Builder assigns a version number to each new activity
that you create. It also updates the version number whenever you
make changes to an existing activity. It saves the new version of the
activity to the database without overwriting older versions of the
activity. In Oracle Workflow, activities also have dates of effectivity so
that at any point in time, only one version of the activity is ”in effect”.
If a process is running, Oracle Workflow uses the version of the activity
that was in effect when the process was initiated. It does not switch
versions of the activity mid–way through the process. Note that a

3 – 8 Oracle Workflow Guide

process itself is an activity, so a process definition always remains
constant until the process instance completes.

Oracle Workflow Builder also supports the concept of saving and
loading process definitions according to an effective date. For example,
you can load a definition into Oracle Workflow Builder that was
effective at an earlier point in time. You can also save a definition to
the database to be effective at some future time.

Note that Oracle Workflow Builder does not maintain version
information for objects that are considered constant, such as item types,
item type attributes, messages and lookup types. For these objects,
their latest definition always apply, so you should always consider
whether a change to any of these objects is backwards compatible. If
the modification affects existing processes, you should create a new
object rather than edit the existing object.

See Also

Modifying Objects in Oracle Workflow Builder: page 4 – 69

Using the Edit Button in a Property Page

To create an object in Oracle Workflow Builder, you enter information
in the object’s property page. Some of the information you provide can
be selected from a list of values. If a poplist field yields values that are
themselves defined from some other property pages in Oracle
Workflow Builder, an Edit button appears to the right of that poplist.
When you select a value from a poplist, you can choose the adjacent
Edit button to display and edit the source property page(s) of the value.
When you are done with the source property page(s) and choose OK or
Cancel, you return to the original property page you were working on.

For example, if you create a notification activity, you must specify a
Result Type for the activity. The Result Type poplist field lets you select
the value <None> or some predefined lookup type. If you select a
lookup type, you can then choose the adjacent Edit button to display
the property page for that lookup type. When you finish viewing or
editing the property page for that lookup type, you can choose OK or
Cancel to return to the notification activity property page.

� To Create a Process Definition From Bottom Up

1. To start Oracle Workflow Builder, double–click on the Oracle
Workflow Builder icon located in the Application Development
folder within the Oracle – <SID NAME> program group. If you are

3 – 9Defining a Workflow Process

using Windows 95 or NT 4.0 or higher, you can also select the
Oracle Workflow Builder icon from the appropriate program folder
of the Start menu.

2. Choose New from the File menu to create a workspace for your
new process definition.

Suggestion: Alternatively, you can use the Quick Start Wizard
to first create the framework for your new process definition.
Once the Quick Start Wizard creates your new item type and
new process activity, you can skip to step 4 below to begin
defining the supporting objects for the new item type and
process activity. See: To Use the Quick Start Wizard: page
3 – 18.

3. Create a new item type. The item type classifies the work item to
be managed by the process. See: To Create an Item Type: page
4 – 7.

4. You can define item type attributes to fully describe your item type
and have the activities in your process refer to these attributes for
information. See: To Define an Item Type or Activity Attribute:
page 4 – 8.

5. Create new lookup types. See: To Create Lookup Types: page
4 – 20.

Before defining an activity, you should define the lookup type that
represents your activity’s Result Type. A Result Type is a list of
possible results that an activity can have upon completion. After
defining a lookup type and an activity, you can drag the lookup
onto an activity in the navigator tree to assign that lookup as the
activity’s result type. Lookup types can also be referenced by item
type attributes, activity attributes, messages, or message attributes.

6. Create new messages. See: To Create a Message: page 4 – 29.

If you wish to create a notification activity for your process, you
should first create the message that you want the notification
activity to send. You can drag a new message onto a notification
activity in the navigator tree to assign the message to that activity.

You can also create message attributes for the message. You can
incorporate message attributes of type ’Send’ into a message that
are token substituted at runtime to provide dynamic content. You
can also define message attributes of type ’Respond’ to prompt the
notification recipient for a response. See: To Define a Message
Attribute: page 4 – 34.

3 – 10 Oracle Workflow Guide

7. Create a new process activity, notification activity, function
activity, or event activity. You may also use predefined standard
activities associated with the Standard item type. See: Activities:
page 4 – 42 and Standard Activities: 6 – 2.

You need to define at least one process activity that represents your
high level process diagram. The process diagram establishes the
relationship of all the activities in your process.

8. Diagram the process.

Display the Process window for your process activity to diagram
the activities and transitions that define your workflow process.
You can drag activities from the navigator tree into the Process
window. See: Diagramming a Process: page 5 – 5.

9. Save your work by choosing Save or Save As from the File menu.
See: To Save Your Work: page 3 – 15.

10. In a database accessible by your Oracle Workflow server, create the
PL/SQL stored procedures called by your PL/SQL function
activities. You can do this through SQL*PLUS or the Oracle
Procedure Builder. See: Workflow APIs: page 8 – 3 and Standard
API for PL/SQL Procedures Called by Function Activities: page
7 – 3.

See Also

To Modify a Process Definition: page 3 – 11

Deleting Objects in Oracle Workflow Builder: page 4 – 68

Modifying Objects in Oracle Workflow Builder: page 4 – 69

Item Type Definition Web Page: page 3 – 24

� To Create a Process Definition from Top Down

1. To start Oracle Workflow Builder, double–click on the Oracle
Workflow Builder icon located in the Application Development
folder within the Oracle – <SID NAME> program group. If you are
using Windows 95 or NT 4.0 or higher, you can also select the
Oracle Workflow Builder icon from the appropriate program folder
of the Start menu.

2. Use the Quick Start Wizard to create the framework for your new
process definition. Specify the requested information for the new
item type and new process activity. See: To Use the Quick Start
Wizard: page 3 – 18.

�

3 – 11Defining a Workflow Process

3. A Process window appears, that shows a Start and an End activity
node. Create your process diagram by defining new activity nodes
to place between the Start and End nodes. See: To Define Nodes in
a Process: page 5 – 8.

You may also use predefined standard activities associated with the
Standard item type. See: Standard Activities: 6 – 2.

4. Model your process by drawing transitions between your activities.
See: Diagramming a Process: page 5 – 5.

5. Save your work by choosing Save or Save As from the File menu.
See: To Save Your Work: page 3 – 15.

Attention: When you save your work, Oracle Workflow
automatically validates the process definition for any invalid or
missing information and displays what it finds in a Workflow
Error verification window. The Workflow Error window is
non–modal, so you can keep it up on your screen while you go
back to your process to correct the problems that are identified.
You can also save your work as is, and fix the problems later.
Use the Copy button to copy the information to the clipboard if
you want to paste it into another document for later reference.
If you save your work without correcting the problems, the
Workflow Error window will appear when you open this
process definition later.

See Also

To Modify a Process Definition: page 3 – 11

Deleting Objects in Oracle Workflow Builder: page 4 – 68

Modifying Objects in Oracle Workflow Builder: page 4 – 69

Item Type Definition Web Page: page 3 – 24

� To Modify a Process Definition

1. To start Oracle Workflow Builder, double–click on the Oracle
Workflow Builder icon located in the Application Development
folder within the Oracle – <SID NAME> program group. If you are
using Windows 95 or NT 4.0 or higher, you can also select the
Oracle Workflow Builder icon from the appropriate program folder
of the Start menu.

2. Choose Open from the File menu to open a connection to the
database or file that contains the process definition you want to

�

3 – 12 Oracle Workflow Guide

modify. See: To Access Process Definitions in an Existing Data
Store: page 3 – 13.

3. Select and expand the existing item type associated with the
process definition you want to modify.

4. You can modify an item type, item type attribute, lookup, message,
message attribute, process activity, notification activity, function
activity, or activity attribute. See: To Create an Item Type: page
4 – 7, To Define an Item Type or Activity Attribute: page 4 – 8, To
Create Lookup Types: page 4 – 20, To Create a Message: page
4 – 29, To Define a Message Attribute: page 4 – 34, or Activities:
page 4 – 42.

5. You can also modify the process diagram by displaying the Process
window for your process activity. See: Diagramming a Process:
page 5 – 5.

6. Save your work by choosing Save or Save As from the File menu.
See: To Save Your Work: page 3 – 15.

See Also

Deleting Objects in Oracle Workflow Builder: page 4 – 68

Modifying Objects in Oracle Workflow Builder: page 4 – 69

Item Type Definition Web Page: page 3 – 24

Opening and Saving Item Types

All processes are associated with an item type. An item type can
include one or more processes. You can save an item type to a database
or to a flat file. When you save your work to a database, you actually
save everything in the current data store that has been modified. When
you save your work to a flat file, you actually save everything in the
current data store to the file. You can also load an item type into Oracle
Workflow Builder from a database or flat file. Opening an item type
automatically retrieves all the attributes, messages, lookups,
notifications, functions and processes associated with that item type.

Attention: Always save a copy of your workflow process
definition as a flat file and check that file into a source control
system to maintain a working version of your process
definition. Avoid using the process definition stored in your

3 – 13Defining a Workflow Process

database as your source controlled version, as others with
access to the database can update the definition.

Note: To connect from Oracle Workflow Builder to a database,
the language of your Oracle Workflow Builder installation
must match one of the available languages of the Oracle
Workflow Server installation in the database.

� To Access Process Definitions in an Existing Data Store

1. To start Oracle Workflow Builder, double–click on the Oracle
Workflow Builder icon located in the Application Development
folder within the Oracle – <SID NAME> program group. If you are
using Windows 95 or NT 4.0 or higher, you can also select the
Oracle Workflow Builder icon from the appropriate program folder
from the Start menu. In Oracle Workflow Builder, select Open...
from the File menu.

2. Select database or file to connect to the source containing the item
type to which your process definition is associated.

3. To open a File: Provide the complete file path and choose OK, or
use Browse to locate and open the file (extension .wft).

3 – 14 Oracle Workflow Guide

Note: You can also drag and drop a .wft file from the
Microsoft Windows 95/98/2000/NT 4.0 Explorer or Microsoft
Windows NT File Manager into the navigator tree to open that
file in Oracle Workflow Builder.

Note: When you use Browse to find and open a file, the
current directory that you open the file from becomes the new
default directory from which you open files in the future. This
default directory persists until you use Browse again to locate
another file.

4. To open a Database connection: Enter the username and password
for the database. Enter the name of the database alias or connect
string and choose OK.

Note: If you are using the version of Oracle Workflow
embedded in Oracle Applications, use the APPS schema to
connect to the database.

5. If you wish to retrieve a process definition that was effective at a
particular point in time, you can specify a date and time in the
Effective field and have Oracle Workflow Builder retrieve that data
from the database. The format that you should use to specify the
date and time depends on the date and time preferences defined in
the Regional Settings of your Windows Control Panel.

�

3 – 15Defining a Workflow Process

6. If multiple item types exist in the data store, the Show Item Types
window appears. Select from the Hidden list, the item type(s) you
want to view, and choose << to move it into the Visible list. Choose
OK to load these item types into the navigator tree.

7. If at any time you want to view and modify item types that are
hidden in the current data store, you can double–click on the
Hidden Item Types branch in the navigator tree to display the
Show Item Types window and select the item types you want to
show. You can also choose Show/Hide Item Types from the File
menu to display the Show Item Types window.

Note: You can copy item types from one store to another in
any order even if the item types reference each other.
However, you may get validation errors due to foreign key
references. Pay attention to these errors as they may indicate
that you need to also copy other item types into the new store
to resolve the foreign key references. The final process
definition in the new store will be valid as long as all
referenced item types are copied to the new destination store.

8. When you finish working, choose Save from the File menu to
preserve your changes and make them effective immediately. See:
To Save Your Work: page 3 – 15.

See Also

To Start Oracle Workflow Builder from the MS–DOS Prompt: page
3 – 17

� To Save Your Work

1. Choose Save from the File menu to save your work and make the
changes immediately effective.

When you use the Save command, you save all modified objects in
the currently selected data store (even those that are hidden) back
to that data store. If you want to save only specific item types, then
you must create a new data store, and copy the specific item types
you want to save into the new store and save the new store.

Attention: Oracle Workflow Builder can save your work to
the database using one of two modes. In the ”About Oracle
Workflow Builder” dialog box from the Help menu, there is a
check box called ”Allow modifications of customized objects”.
If you check this check box, Oracle Workflow Builder saves
your edits in ’upload’ mode, overwriting any protected objects

3 – 16 Oracle Workflow Guide

that you have access to modify, as well as any previously
customized objects. If you uncheck this check box, Oracle
Workflow Builder runs in ’upgrade’ mode and will only save
edits to protected objects that you have access to change and
will not overwrite objects that have been previously
customized. These two modes match the upgrade and upload
behavior of the Workflow Definitions Loader program. As the
default, the check box is unchecked. See: To Set the Access
Level for an Object: page 4 – 18 and Using the Workflow
Definitions Loader: page 2 – 107.

2. If you want to save your work to a different data store (database or
flat file), or if you want to save it to a database with an effective
date other than the current system date, then choose Save As...
from the File menu. Use the Save As window to specify the file or
database you want to save your process definition to, and the date
when you want your process definition to take effect in the
database. You can leave the Effective field blank to save and make
the changes effective immediately. See: Version/Effective Date:
page 8 – 11.

Note: If you save your work to a database with a future
effective date, and then in the same Oracle Workflow Builder
session, continue to modify your process and later choose Save

�

3 – 17Defining a Workflow Process

from the File menu, you automatically save the process
definition to the same database using the previously specified
effective date.

3. Note that when you save your work, Oracle Workflow
automatically validates the process definition for any invalid or
missing information and displays what it finds in a Workflow Error
verification window. You can either correct the information before
saving your work, or go ahead and save your work as is, and fix
the problems later. Use the Copy button to copy the information
from the Workflow Error window to the clipboard for later
reference. If you save your work without correcting the problems,
the Workflow Error window will reappear when you reopen your
process definition.

4. Choose Close Store from the File menu to close your connection to
the current database or file data store.

5. Choose Exit from the File menu to exit Oracle Workflow Builder.

Attention: The Close Store and Exit options from the File
menu are enabled only when the Navigator window is the
current window.

� To Start Oracle Workflow Builder from the MS–DOS Prompt:

Rather than starting Oracle Workflow Builder by double–clicking on its
Windows icon, you can also type in a command at the MS–DOS
prompt and specify the file or database to connect to.

1. In an MS–DOS prompt window, type the following command to
start Oracle Workflow Builder with a specific workflow data file,
where <filename.wft> represents the full path and name of the
data file:

wfbldr <filename.wft>

2. To start Oracle Workflow Builder with a specific database
connection, type the following command at the MS–DOS prompt,
where <username/password@connect> represents the database
account information to connect to:

wfbldr –c <username/password@connect>

Note: If you run Oracle Workflow Builder in Microsoft
Windows 95 or Windows NT 4.0 or higher, you can also
double–click on a workflow data file (.wft) from the Windows
Explorer to automatically open that file and start Oracle
Workflow Builder.

3 – 18 Oracle Workflow Guide

Note: If you are using the version of Oracle Workflow
embedded in Oracle Applications, use the APPS schema to
connect to the database.

3. To start Oracle Workflow Builder and open a specified item type in
a data store, append the following to the appropriate command
shown in Step 1 or 2, where <item_type> represents the internal
name of the item type you want to open:

–E <item_type>

For example:

wfbldr wfdemo.wft –E wfdemo

4. To start Oracle Workflow Builder and open a specified process
diagram in a data store, append the following to the appropriate
command shown in Step 1 or 2, where <item_type:process>
represents the internal names of the item type and process you
want to open:

–E <item_type:process>

For example:

wfbldr wfdemo.wft –E WFDEMO:NOTIFYAPPROVER

See Also

Using the Workflow Definitions Loader: page 2 – 107

Creating a Shortcut to a Workflow Process: page 5 – 22

Quick Start Wizard Overview

The Quick Start Wizard lets you begin designing a workflow process
immediately. It first loads a file called wftemplate.wft that is an outline
of all the mandatory objects you need to build a workflow process and
then displays a Process window for you to diagram your process.
Once you initiate the Quick Start Wizard, you can take the bottom–up
or top–down approach to complete your workflow process definition.

� To Use the Quick Start Wizard

1. Select Quick Start Wizard from the File menu.

�

3 – 19Defining a Workflow Process

2. The Workflow Quick Start Wizard window prompts you for the
following mandatory information:

• New Item Type

– Internal Name—Specify an all uppercase internal name with
a maximum of eight characters. All Oracle Workflow APIs,
SQL scripts, and PL/SQL procedures refer to the internal
name when identifying an item type.

Attention: To update the internal name of an item type once it
is defined, you must use a special SQL script called wfchitt.sql.
See: Wfchitt.sql: page 16 – 8.

Caution: Do not include colons ”:” or leading/trailing spaces
in your internal name.

– Display Name—Enter a translatable Display Name for the
item type.

– Persistence Type—Specify Temporary or Permanent
persistence for the status audit trail of the item type.

– Days—If Persistence Type is Temporary, specify the number
of days from the time an item type instance completes

�

3 – 20 Oracle Workflow Guide

before its status audit trail can be purged. See: Persistence
Type: page 4 – 4.

• New Process

– Internal Name—Specify an all uppercase internal name.

Attention: To update the internal name of an activity once it is
defined, you must use a special SQL script called wfchact.sql.
See: Wfchact.sql: page 16 – 7.

Caution: Do not include colons ”:” or leading/trailing spaces
in your internal name.

– Display Name—Enter a translatable Display Name for the
process activity. The Display Name also appears in the title
bar of your Process window.

3. The Quick Start Wizard does the following:

• Creates a new data store called ”Untitled–n” in the Navigator
window.

• Uses the information you entered in the Workflow Quick Start
Wizard window to create a new item type and process activity in
the data store.

• Loads the Standard item type into the new data store so that you
can include standard activities in the process you create.

• Opens the Process window for the new process activity you
defined. The Process window displays a Start and an End
activity.

4. You can now customize your process definition in one of two ways:

• Take a bottom–up design approach by first creating activities and
all their supporting objects before trying to draw a workflow
diagram. See: To Create a Process Definition From Bottom–Up:
page 3 – 8.

• Take a top–down design approach by creating activities that
contain minimum information so you can draw the workflow
diagram first. You can go back later to fill in the details of each
activity and its supporting objects. See: To Create a Process
Definition from Top–Down: page 3 – 10.

�

3 – 21Defining a Workflow Process

Using Oracle Workflow Builder with Different Server Versions

The Oracle Workflow Builder Release 2.6.2 is compatible with all
versions of the Oracle Workflow Server embedded in Oracle
Applications Release 11i, as well as with Release 2.6.2, Release 2.6.1,
base Release 2.6, and Release 2.5 of the standalone version of the Oracle
Workflow Server.

• You can create, view, and modify workflow process definitions
that include new features introduced in Release 2.6, such as
Business Event System components and external Java function
activities. The Oracle Workflow Builder can upload and
download these process definitions to a database with Oracle
Workflow Server Release 2.6 installed.

• Alternatively, if you do not want to take advantage of the
Release 2.6 features, you can create, view, and modify workflow
processes that include only Release 2.5 features. The Oracle
Workflow Builder can upload and download these process
definitions to a database with Oracle Workflow Server Release
2.5 installed.

Attention: The Oracle Workflow Builder is the only Release
2.6.2 client component that is compatible with earlier versions
of the Oracle Workflow Server. The Oracle Workflow Mailer
Release 2.6.2 is not compatible with any earlier versions of the
server; it is only certified with the Oracle Workflow Server
Release 2.6.2.

Using the Release 2.6.2 Oracle Workflow Builder with a Release 2.6
Embedded Server or a Release 2.6.2 or Release 2.6.1 Standalone
Server

If you are using the Oracle Workflow Builder with Oracle Workflow
Server Release 2.6 embedded in Oracle Applications, or with the
standalone version of the Oracle Workflow Server Release 2.6.2 or
Release 2.6.1, you can use all currently available features in your
workflow processes. You can save these process definitions to the
database and open process definitions from the database to view or
modify them.

You can also open existing process definitions that were created with
the Release 2.5 Oracle Workflow Builder or with the base Release 2.6
Oracle Workflow Builder and save these process definitions to a
database with Oracle Workflow Server Release 2.6 embedded in Oracle
Applications, or with standalone Oracle Workflow Server Release 2.6.2
or Release 2.6.1.

3 – 22 Oracle Workflow Guide

Using the Release 2.6.2 Oracle Workflow Builder with a Release 2.6
Standalone Server

If you are using the Oracle Workflow Builder with the base standalone
version of Oracle Workflow Server Release 2.6, you can include most of
the currently available features in your workflow processes. However,
you must not use the Event Parameter lookup code which is now
available in the Event Property lookup type, because this feature was
added in the version of Release 2.6 embedded in Oracle Applications.
Do not use the Event Parameter lookup code in any custom activities,
and do not select the Event Parameter property in any of the following
standard Workflow activities:

• Get Event Property

• Set Event Property

• Compare Event Property

You can open existing process definitions that were created with the
base Release 2.6 Oracle Workflow Builder, view or modify these
process definitions using only the base Release 2.6 components, and
save the definitions to a database with base standalone Oracle
Workflow Server Release 2.6.

You can also create new workflow processes using only base Release
2.6 components. However, the version of the Standard item type used
by the Oracle Workflow Builder Release 2.6.2 contains some later
Release 2.6 components. If you want to save a new process definition to
a database with base standalone Oracle Workflow Server Release 2.6,
perform the following steps:

1. Create a new workflow process definition.

2. Force delete the Standard item type from your data store.

3. Force save the process definition to the database with base
standalone Oracle Workflow Server Release 2.6.

4. Reopen the process definition from the database. The process
definition now includes the base Release 2.6 version of the
Standard item type.

5. Continue defining your workflow process using only base Release
2.6 components.

3 – 23Defining a Workflow Process

Using the Release 2.6.2 Oracle Workflow Builder with a Release 2.5
Standalone or Embedded Server

If you are using the Oracle Workflow Builder with either the standalone
or the embedded version of Oracle Workflow Server Release 2.5, you
must include only Release 2.5 features in your workflow processes. You
must not use any of the following new features introduced in Release
2.6:

• Event activities

• Item attributes of type Event

• External Java function activities

You can open existing process definitions that were created with the
Release 2.5 Oracle Workflow Builder, view or modify these process
definitions using only Release 2.5 components, and save the definitions
to a database with Oracle Workflow Server Release 2.5.

You can also create new workflow processes using only Release 2.5
components. However, the version of the Standard item type used by
the Oracle Workflow Builder Release 2.6.2 contains some Release 2.6
components. If you want to save a new process definition to a database
with Oracle Workflow Server Release 2.5, perform the following steps:

1. Create your workflow process definition.

2. Force delete the Standard item type from your data store.

3. Force save the process definition to the database with Oracle
Workflow Server Release 2.5.

4. Reopen the process definition from the database. The process
definition now includes the Release 2.5 version of the Standard
item type.

�

3 – 24 Oracle Workflow Guide

Item Type Definition Web Page

The Web–based Item Type Definition page provides you with
distributed access to workflow definitions stored in your Oracle
Workflow database. The page provides a detailed view of the
attributes, processes, notifications, functions, events, messages, and
lookup types that are associated with a given item type, allowing you
to present or do a design review of your workflow process.

To display an item type definition, you use the Find Item Type web
page to first query for an item type. You can query for an item type
based on an effective date and time.

The Item Type Definition page then appears. The information is
displayed in two frames, modeled like the Oracle Workflow Builder, so
that you can review the contents easily and effectively. The left frame
lists all the objects in your item type definition in an expandable
navigator tree. The right frame displays the details of the object you
select in the navigator tree. You can also select either frame at any time
and use your web browser to print all the information in that frame.

� To Query an Item Type

1. Enter the following URL in your web browser:

<webagent>/wf_item_definition.find_item_type

Replace <webagent> with the base URL of the web agent
configured for Oracle Workflow in your Web server. See: Setting
Global User Preferences: page 2 – 14.

Attention: This URL accesses a secured page, so if you have
not yet logged on as valid user in the current web session, you
will be prompted to do so before the page appears.

Note: You can also access the Find Item Type web page from
the Oracle Workflow home page. See: Accessing the Oracle
Workflow Home Page: page 9 – 2.

3 – 25Defining a Workflow Process

2. Use the Item Type poplist field to select an item type.

3. Specify the effective date and time of the item type definition you
want to display using the format specified in the Date Format field
of your User Preferences web page. See: Setting User Preferences:
page 9 – 6.

4. Choose Find to display the item type in the Item Type Definition
web page.

3 – 26 Oracle Workflow Guide

� To Review an Item Type Definition

1. The Item Type Definition web page displays two frames. The
frame on the left lists the components of an item type definition in
hierarchical format similar to the navigator tree in Oracle Workflow
Builder. The frame on the right lists the details of each component.

2. Click on any component link in the left hand frame to display the
details of that component in the right hand frame.

C H A P T E R

4
T

4 – 1Defining Workflow Process Components

Defining Workflow
Process Components

his chapter tells you how to use Oracle Workflow Builder to
define the components necessary to compose a workflow process
diagram.

4 – 2 Oracle Workflow Guide

Workflow Process Components

Depending on the workflow process you wish to create, you need to
define all or some of the following types of components to make up the
process:

• Item Types

• Lookup Types

• Messages

• Activities

• Attributes

• Roles

Item Types

An item type is a classification of the components that make up a
workflow process. You must associate any component that you create
for a process, such as a function activity or a message, with a particular
item type. Often it makes sense to define an item type so that it
describes the item being managed by your workflow process. For
example, purchase order requisition can be an item type while a
purchase order requisition identified by a particular ID number is an
item of that item type. See: To Create an Item Type: page 4 – 7.

Item Type Attributes

An item type attribute is a property associated with a given item type.
It acts as a global variable that can be referenced or updated by any
activity within a process. An item type attribute often provides
information about an item that is necessary for the workflow process to
complete. For example, the ”Workflow Demonstration” item type has
an item type attribute called ”Requisition Amount.” An activity in our
example Requisition Approval process requires the value of this item
type attribute to determine if a selected approver has the authority to
approve a requisition of that amount.

Applications as well as function activities can reference and set item
type attributes using the Oracle Workflow Engine APIs. You can define
and maintain as many item type attributes as necessary for an item
type. You should define as an item type attribute, any information that
will be required by an activity in your process, or any information that

4 – 3Defining Workflow Process Components

will need to be sent in a notification message. See: To Define a Message
Attribute: page 4 – 34.

See Also

Item Attributes: page C – 3

Attribute Types

There are ten attribute types, as shown below. The type determines
what values are acceptable and how the attribute is used.

• Text—The attribute value is a string of text.

• Number—The attribute value is a number with the optional
format mask you specify.

• Date—The attribute value is a date with the optional format
mask you specify.

• Lookup—The attribute value is one of the lookup code values in
a specified lookup type.

• Form—The attribute value is an Oracle Applications internal
form function name and its optional form function parameters.
This attribute type is not relevant for the standalone version of
Oracle Workflow.

If you include a form–type attribute in a notification message as
a message attribute, the notification, when viewed from the
Notification Details web page, displays an attached form icon
that lets users drill down to the referenced form. See: Overview
of Menus and Function Security, Oracle Applications Developer’s
Guide.

• URL—The attribute value is a Universal Resource Locator (URL)
to a network location. If you reference a URL attribute in a
notification message as a message attribute, the notification,
when viewed from the Notification Details web page or as an
HTML–formatted e–mail, displays an anchor to the URL
specified by the URL attribute. The user can complete an
activity or see additional information related to the activity by
accessing that URL.

• Document—The attribute value is an attached document. You
can specify the following types of documents in the default value
field:

4 – 4 Oracle Workflow Guide

– PL/SQL document—a document representing data from the
database as a character string, generated from a PL/SQL
procedure.

– PL/SQL CLOB document—a document representing data
from the database as a character large object (CLOB),
generated from a PL/SQL procedure.

See: To Define a Document Attribute: page 4 – 14.

• Role—The attribute value is the internal name of a role. If a
message attribute of type role is included in a notification
message, the attribute automatically resolves to the role’s display
name, eliminating the need for you to maintain separate
attributes for the role’s internal and display names. Also when
you view the notification from a web browser, the role display
name is a hypertext link to the e–mail address for that role. To
set a default value for the attribute, you must initially load roles
from the database. See: Roles: page 5 – 24.

• Attribute—The attribute value is the internal name of another
existing item type attribute that you want to maintain references
to in a process.

• Event—The attribute value is a Business Event System event
message in the standard WF_EVENT_T structure. See: Event
Message Structure: page 8 – 242.

Note: If you store an event message in an item attribute of
type event, you can access the event data within that event
message by creating an item attribute of type URL and setting
the value of the URL attribute to reference the event data. See:
SetItemAttribute: page 8 – 48.

Persistence Type

When you define an item type, you must also specify its persistence
type. The persistence type controls how long a status audit trail is
maintained for each instance of the item type. If you set Persistence to
Permanent, the runtime status information is maintained indefinitely
until you specifically purge the information by calling the procedure
WF_PURGE.TotalPerm().

If you set an item type’s Persistence to Temporary, you must also
specify the number of days of persistence (’n’). The status audit trail
for each instance of a Temporary item type is maintained for at least ’n’
days of persistence after its completion date. After the ’n’ days of
persistence, you can then use any of the WF_PURGE APIs to purge the
item type’s runtime status information. See: WF_PURGE: page 8 – 111.

4 – 5Defining Workflow Process Components

If you set an item type’s Persistence to Synchronous, Oracle Workflow
expects instances of that item type to be run as forced synchronous
processes with an item key of #SYNCH. Forced synchronous processes
complete in a single SQL session from start to finish and never insert
into or update any database tables. Since no runtime status information
is maintained, you do not normally need to perform any purging for a
process with the Synchronous persistence type. However, if you run
the process with a unique item key in asynchronous mode for testing or
debugging purposes, Oracle Workflow does maintain runtime status
information for that process instance. You can purge this information
by changing the item type’s Persistence to Temporary and running any
of the WF_PURGE APIs. Then change the item type’s Persistence back
to Synchronous. See: Synchronous, Asynchronous, and Forced
Synchronous Processes: page 8 – 14, WF_PURGE: page 8 – 111, and
Purging for Performance: page C – 8.

Note: If you are using the version of Oracle Workflow
embedded in Oracle Applications, you may also use the Purge
Obsolete Workflow Runtime Data concurrent program to purge
obsolete item type runtime status information. The executable
name for this concurrent program is ”Oracle Workflow Purge
Obsolete Data” and its short name is FNDWFPR. See: Purge
Obsolete Workflow Runtime Data: page 8 – 119.

Item Type Selector Function

If your item type has or will have more than one runnable process
activity associated with it, define a PL/SQL function that determines
which process activity to run in a particular situation. For example,
you may have two different requisition approval process activities
associated with the same item type. The process that Oracle Workflow
executes may vary depending on how and where the requisition
originates. Your selector function would determine which process
would be appropriate in any given situation.

You can also extend the Selector function to be a general callback
function so that item type context information can be reset as needed if
the SQL session is interrupted during the execution of a process. This
is particularly important in the Oracle Applications scenario when you
view a notification from the Notification Details web page and attempt
to launch another form that is associated with the notification. Oracle
Workflow calls the selector/callback function for your item type in
’TEST_CTX’ mode to test the Oracle Applications context before
turning the form launch over to the Oracle Application Object Library
function security system. In ’TEST_CTX’ mode, the selector/callback
function can perform whatever logic necessary to determine whether it

4 – 6 Oracle Workflow Guide

is appropriate to launch the form. See: Standard API for an Item Type
Selector or Callback Function: page 7 – 13.

External Document Integration

Documents have an enormous impact in the operations of an
organization. With the explosion of digital media and the worldwide
web, electronic documents of a wide variety of formats, including
non–printed media, are forcing organizations to address the
management of these documents. The value of information in these
documents can be maintained only if the documents can be managed
and shared.

In a workflow process, you can attach documents generated by a
PL/SQL procedure, which we call PL/SQL or PL/SQL CLOB
documents. You attach a document to a workflow process by
referencing the document in a predefined item attribute or message
attribute of type Document. See: Attribute Types: page 4 – 3, To
Define an Item Type or Activity Attribute: page 4 – 8 and To Define a
Message Attribute: page 4 – 34.

For PL/SQL documents and PL/SQL CLOB documents, the item or
message attribute’s value would be the name of the PL/SQL package
and procedure used to generate the document. The PL/SQL procedure
must follow an Oracle Workflow standard interface. The document
generated by the PL/SQL procedure is simply displayed within the text
of a notification. See: Standard APIs for ”PL/SQL” and ”PL/SQL
CLOB” Documents: page 7 – 17.

�

4 – 7Defining Workflow Process Components

� To Create an Item Type

1. If you do not already have a data store open, select New from the
File menu to create a new data store to define this new item type.
Then define a new item type in the navigator tree by choosing New
Item Type from the Edit menu. An Item Type property page
appears.

2. Every item type has an all–uppercase internal name, which is a
maximum of eight characters long. All Oracle Workflow APIs, SQL
scripts, and PL/SQL procedures refer to the internal name when
identifying an item type.

Attention: To update the internal name for an item type once
it is defined, you must use a special SQL script called
wfchitt.sql. You should only use this script to correct errors in
an item type’s internal name during design time. Do not use
this script to rename item types that are involved in running
instances of processes. See: Wfchitt.sql: page 16 – 8.

Caution: Do not include colons ”:” or leading/trailing spaces
in your internal name.

3. Enter a translatable Display Name that is longer and more
descriptive. You can also supply a description for the item type.

4. Specify a persistence type of Temporary or Permanent. If you set
the persistence type to Temporary, then specify the number of days

4 – 8 Oracle Workflow Guide

from the time the item instance completes before its status audit
trail can be purged. See: Persistence Type: page 4 – 4.

5. If your item type has or will have more than one workflow process
associated with it, you may specify a selector function using the
syntax <package_name>.<procedure_name>. The selector
function is a PL/SQL stored procedure that automatically identifies
the specific process definition the Workflow Engine should execute
when a workflow is initiated for this item type. You can also
extend the selector function to be a general callback function that
resets context information each time the Workflow Engine
establishes a new database session to execute activities. See:
Standard API for an Item Type Selector or Callback Function: page
7 – 13.

6. Choose Apply to save your changes.

7. Select the Roles tab page to specify the roles that have access to this
item type. (This functionality will be supported in a future release.)

8. Select the Access tab page to set the access and customization
levels for this item type. See: Allowing Access to an Object: page
4 – 17.

9. Choose Apply to save your changes, OK to save your changes and
close the property page or Cancel to cancel your changes and close
the property page.

10. A secondary branch appears in the navigator tree that represents
the item type you just created. You can review or edit the
properties of this item type at any time by double–clicking on the
item type in the navigator tree or by selecting the item type and
choosing Properties from the Edit menu.

11. Define as many item type attributes as necessary to use as global
variables in your process. You use these item type attributes to
pass values to and from your function, notification, and event
activities. See: To Define an Item Type or Activity Attribute: page
4 – 8.

See Also

Using the Edit Button in a Property Page: page 3 – 8

� To Define an Item Type or Activity Attribute

1. To create an item type attribute, select an item type in the navigator
tree, then choose New Attribute from the Edit menu.

4 – 9Defining Workflow Process Components

To create an activity attribute, select an activity in the navigator
tree and choose New Attribute from the Edit menu.

An Attribute property page appears in both cases.

2. Provide an Internal Name in all uppercase with no leading/trailing
spaces. All Oracle Workflow APIs, SQL scripts, and PL/SQL
procedures refer to the internal name when identifying an attribute.

�

4 – 10 Oracle Workflow Guide

Attention: To update the internal name for an attribute once it
is defined, you must use special SQL scripts called wfchita.sql
and wfchacta.sql. You should only use these scripts to correct
errors in an attribute’s internal name during design time. Do
not use these scripts to rename attributes that are involved in
running instances of processes. See: Wfchita.sql: page 16 – 8
and Wfchacta.sql: page 16 – 7.

Caution: Do not include colons ”:” or leading/trailing spaces
in your internal name.

3. Enter a Display Name. This is the name that appears in the
navigator tree.

4. Enter an optional description.

5. Select the data type of the attribute. Form, URL, and document
data types are not relevant if you are defining an activity attribute.

6. Depending on the data type of your attribute, provide the
following default value information:

• Text—Specify the maximum length of the text attribute and an
optional default text string.

• Number—Optionally provide a format mask for your number
and a default value.

• Date—Optionally supply a format mask for the date and a
default value.

• Lookup—Choose a predefined Lookup Type from which to
draw values. Choose a lookup code from that lookup type for
the default value.

• URL—Specify an optional Universal Resource Locator (URL) to
a network location in the Default Value field and specify the
frame target for the URL. See: To Define a URL Attribute: page
4 – 12.

Note: The Frame Target field is applicable only for message
attributes of type URL. It is not used for item type attributes or
activity attributes.

• Form—This attribute is relevant only for the version of Oracle
Workflow embedded in Oracle Applications.

Specify an optional developer form function name and optional
argument strings (form function parameters) in the Default Value
field. See: Overview of Menus and Function Security, Oracle
Applications Developer’s Guide and To Define a Form Attribute:
page 4 – 13.

4 – 11Defining Workflow Process Components

• Document—Enter an optional string that identifies the
document in the default value field. See: To Define a Document
Attribute: page 4 – 14.

Note: The Frame Target field is not applicable for attributes of
type document. For document attributes, this field is reserved
for future use.

• Role—Specify a role name. See: Roles: page 5 – 24.

• Attribute—Specify the name of an item type attribute that you
want to maintain references to in a process by choosing from the
list of existing item type attributes.

• Event—If you are defining an item type attribute, you cannot
specify any default value for an event attribute. If you are
defining an activity attribute, you can only specify an event item
type attribute as the default value.

7. For item type attributes, the optional default value is a constant
that you enter or select from a list of values. The constant,
however, may be a text string that allows for token substitution at
runtime.

For activity attributes, the optional default value may be a constant
or an item type attribute. If you want the default to acquire its
entire value from an item type attribute, choose Item Attribute in
the Default Value region, then use the adjacent poplist field to
choose the item type attribute. The item type attribute you select
must be associated with the same item type that the activity itself is
associated with. The item type attribute you select must also be of
the same data type as the activity attribute.

Note: An activity attribute type of ’Text’ is compatible with
any item attribute type, but all other activity attribute types
must match the item attribute type exactly.

Note: For attributes of type Lookup, the default value must be
a lookup code belonging to that lookup type.

8. Choose Apply to save your changes, OK to save your changes and
close the property page or Cancel to cancel your changes and close
the property page.

9. If you are defining an item type attribute, select the Access tab page
to set the access levels allowed to modify this attribute. Activity
attributes assume the access/protection level of their parent
activity. See: Allowing Access to an Object: page 4 – 17.

10. Choose Apply to save your changes.

�

4 – 12 Oracle Workflow Guide

11. Any item type attribute you create appears beneath the Attributes
branch in the navigator tree. Any function activity attribute you
define appears beneath the activity you defined it for in the
navigator tree. You can review or edit the properties of an attribute
at any time by double–clicking on the attribute in the navigator tree
or by selecting the attribute and choosing Properties from the Edit
menu.

Attention: The order that you list these attributes in the
navigator tree correlate to the order in which they appear in
any list of values that draw upon these attributes. You can use
the drag and drop feature of the navigator tree to reorder a set
of attributes, or select an attribute and choose Move Attribute
Up or Move Attribute Down from the Edit menu.

See Also

Using the Edit Button in a Property Page: page 3 – 8

� To Define a URL Attribute

1. Specify a Universal Resource Locator (URL) to a network location
in the Default Value field of the Attribute property page. The URL
can be a constant or a value returned from another item attribute.

2. You can include argument strings in your URL that are text strings.
Additionally, if you are defining a message attribute of type URL,
you can include argument strings that are token substituted with
other message attributes. The message attributes used for token
substitution can have constant values or can reference the values
returned from item type attributes. See: To Define a Message
Attribute: page 4 – 34 and To Token Substitute an Attribute: page
4 – 41.

To token substitute other message attributes in an argument string,
specify the message attributes as follows:

–&message_attr–

For example, the following string represents a URL with two
arguments called arg1 and arg2 that are token substituted with the
runtime value of message attributes msgattr1 and msgattr2,
respectively:

http://www.oracle.com?arg1=–&msgattr1–&arg2=–&msgattr2–

Note: If you are defining a message attribute of type URL, you
can also include a special token in your argument string called

4 – 13Defining Workflow Process Components

–&#NID– which Oracle Workflow substitutes with the
notification ID of the runtime notification.

3. If your URL attribute contains an argument string, you must
adhere to the following restrictions:

• You cannot token substitute that argument string with another
item attribute of type Document.

• You can token substitute that argument string with another Form
attribute or URL attribute. However, the argument string for the
other attribute is not further token substituted.

4. If you need to pass a date and time as an argument to a URL, you
should use TO_CHAR to format the string as
YYYY/MM/DD+HH24:MI:SS. Similarly, you need to do the
correlating format translation in the function that the URL calls,
using TO_DATE. This formatting is required because in multibyte
databases, the month portion of the DD–MON–YYYY format could
potentially translate to a value that is not acceptable across a URL.

5. Choose OK when you are done.

� To Define a Form Attribute

1. Specify a developer form function name and any optional
argument string (form function parameters) in the Default Value
field of the form Attribute property page.

2. The default value must be entered using the following format:

function_name:arg1=value1 arg2=value2 ...argN=valueN

The value of argN can be a text string, enclosed in quotes (” ”) or
can be token substituted with another item type attribute in any of
the following ways, where &item_attr represents the internal
name of the item type attribute:

• argN=”&item_attr”

• argN=”Value &item_attr”

See: To Token Substitute an Attribute: page 4 – 41.

Note: If you are defining a message attribute of type Form,
you can also include a special token in your argument string
called &#NID which Oracle Workflow substitutes with the
notification ID of the runtime notification.

3. If your form attribute contains an argument string, you must
adhere to the following restrictions:

4 – 14 Oracle Workflow Guide

• You cannot token substitute the value of argN with another item
attribute of type Document.

• You can token substitute the value of that argument string with
another Form attribute or URL attribute, however, the argument
string for the other attribute is not further token substituted.

4. Choose OK when you are done.

� To Define a Document Attribute

1. Enter a string that identifies the document in the default value field
of the Attribute property page.

You can identify the following types of document for a document
attribute:

• A PL/SQL document

• A PL/SQL CLOB document

2. A PL/SQL document represents data from the database as a
character string, generated from a PL/SQL procedure. Specify the
default value of a PL/SQL document as

plsql:<procedure>/<document_identifier>.

Replace <procedure> with the PL/SQL package and procedure
name, separated by a period. Replace <document_identifier>
with the PL/SQL argument string that you want to pass directly to
the procedure. The argument string should identify the document.

Note: The PL/SQL procedure must follow a standard API
format. See: Standard APIs for ”PL/SQL” and ”PL/SQL
CLOB” Documents: page 7 – 17.

For example, the following string represents the PL/SQL
document, po_req:2034, generated by the procedure
po_wf.show_req.

plsql:po_wf.show_req/po_req:2034

Note: The maximum length of the data that a PL/SQL
document can contain is 32 kilobytes. If you expect your
document to exceed 32 Kb, you should use a PL/SQL CLOB
document to hold the data instead.

3. A PL/SQL CLOB document represents data from the database as a
character large object (CLOB), generated from a PL/SQL
procedure. Specify the default value of a PL/SQL CLOB document
as

4 – 15Defining Workflow Process Components

plsqlclob:<procedure>/<document_identifier>.

Replace <procedure> with the PL/SQL package and procedure
name, separated by a period. Replace <document_identifier>
with the PL/SQL argument string that you want to pass directly to
the procedure. The argument string should identify the document.

Note: The PL/SQL procedure must follow a standard API
format. See: Standard APIs for ”PL/SQL” and ”PL/SQL
CLOB” Documents: page 7 – 17.

For example, the following string represents the PL/SQL CLOB
document, po_req:2036, generated by the procedure
po_wf.show_req_clob.

plsqlclob:po_wf.show_req_clob/po_req:2036

PL/SQL CLOB documents do not support further substitution of
message attribute tokens. The contents of the CLOB are printed in
the message body as they are generated by the PL/SQL procedure.

• Do not use tokens within the CLOB.

• Ensure that the PL/SQL procedure performs any formatting you
require.

4. If you wish to generate the document identifier for a PL/SQL or
PL/SQL CLOB document dynamically, you can token substitute
the document identifier with other item type attributes. The item
attribute names must be in uppercase and must be separated by a
colon. See: To Token Substitute an Attribute: page 4 – 41.

For example:

plsql:po_wf.show_req/&ITEM_ATTR1:&ITEM_ATTR2

Note: If you are defining a message attribute of type
Document, you can also include a special token in your
argument string called &#NID which Oracle Workflow
substitutes with the notification ID of the runtime notification.

5. Choose OK when you are done.

� To Copy an Item Type

1. Select the item type to copy in the navigator tree.

2. Drag the item type, holding down your select mouse button, to the
data store or workspace you want to copy it to.

You can also use the Copy and Paste commands in the Edit menu.

�

4 – 16 Oracle Workflow Guide

3. If you copy this item type back to the same data store, you get
prompted to enter a new internal and display name for the item
type in the Item Type property page. This is because every item
type must have a unique internal and display name. When you are
done, choose OK.

Note that when you copy an item type, you also copy all the
components associated with the item type. Since most components
must also have unique internal and display names, you may get
prompted to update those components’ internal and display names
in their property pages as well.

4. If you copy an item type to a data store where a previous version of
the same item type already exists, you update the existing version
of the item type in that target data store with the changes in the
version of the item type you are copying.

Attention: The order in which you drag two or more item
types to a new store is important. For example, suppose an
item type references objects in the Standard item type. If you
plan to copy that item type and the Standard item type to a
new data store, you should first drag the Standard item type to
the new data store before dragging the other item type over,
otherwise the other item type will have unresolved references
to the Standard item type.

� To Copy an Attribute

1. Select the attribute to copy in the navigator tree.

2. Drag the attribute, holding down your select mouse button, to the
component branch you want to copy it to.

3. If you copy an attribute to a component associated with the same
item type, the property page for the attribute appears.

Enter a new unique internal name and display name for the
attribute.

When you are done, choose OK.

Note: You can also use the Copy and Paste options in the Edit
menu.

See Also

Using the Edit Button in a Property Page: page 3 – 8

4 – 17Defining Workflow Process Components

Allowing Access to an Object

In the Access tab page, the ’Range of Editable Access Levels’ indicator
bar provides a relative indication of the range of access levels that can
edit the object. The shaded area represents the access levels that can
edit the object, while the vertical bar represents your current access
level. See: Overview of Oracle Workflow Access Protection: page
2 – 101.

The indicator bar can be shaded solid green, or shaded with any
combination of solid green and crosshatch grey. If the ”Allow
modifications of customized objects” check box in the ”About Oracle
Workflow Builder” dialog box of the Help menu is:

• Checked—The range of editable access levels can appear as a
combination of solid green and crosshatch grey areas. The levels
depicted by grey crosshatches represent levels that usually
cannot modify customized objects, but can now do so because
Oracle Workflow Builder is operating in ’upload’ mode. Upload
mode means that Oracle Workflow Builder can save your edits,
overwriting any protected objects that you have access to modify
as well as any previously customized objects.

• Unchecked—The range of editable access levels appears as a
solid green area. This indicates that when you save your work,
Oracle Workflow Builder is operating in ’upgrade’ mode, only
saving edits to protected objects that you have access to change

4 – 18 Oracle Workflow Guide

and leaving objects that have been previously customized
untouched.

These two modes match the upgrade and upload behavior of the
Workflow Definitions Loader program. See: To Set the Access
Level for an Object: page 4 – 18 and Using the Workflow
Definitions Loader: page 2 – 107.

� To Set the Access Level for an Object

1. Select the Access tab of the property page.

2. In the Options region, use the ’Preserve Customizations’ and ’Lock
at this Access Level’ check boxes to define the access levels that can
modify this object. The options that you check in this region
directly affect the values that appear in the Levels region.

The following table illustrates how the customization and
protection levels of an object are affected when you check different
combinations of these options. This table assumes that the user
setting the options has an access level of 100.

Selected Checkbox Resulting Levels
Levels Allowed to Modify the

Object

NONE—Object can
be updated at any
time, by anyone.

Customization = 0,
Access = 100,

Protection = 1000

Object may be updated by any ac-
cess level (0–1000).

Preserve
Customizations—
Disallow customized
objects from being
overwritten during a
workflow definition
upgrade.

Customization = 100,
Access = 100,

Protection = 1000

Object may only be updated by ac-
cess levels from 100–1000. If the
”Allow modifications of custom-
ized objects” checkbox is checked,
customized objects can also be up-
dated by access levels 0–99, as rep-
resented by grey crosshatches in the
indicator bar.

Table 4 – 1 (Page 1 of 2)

4 – 19Defining Workflow Process Components

Levels Allowed to Modify the
ObjectResulting LevelsSelected Checkbox

Lock at this Access
Level—Protect the
object at the current
access level and do
not allow the object
to be customized.

Customization = 0,
Access = 100,

Protection = 100

Object may only be updated by ac-
cess levels from 0–100.

BOTH—Object can
only be updated by
the access level at
which the object is
protected.

Customization = 100,
Access = 100,

Protection = 100

Object cannot be updated by any
access level other than 100. If the
”Allow modifications of custom-
ized objects” checkbox is checked,
customized objects can also be up-
dated by access levels 0–99, as rep-
resented by grey crosshatches in the
indicator bar.

Table 4 – 1 (Page 2 of 2)

3. Choose the Apply button to save your changes.

Note: An object appears with a small red lock over its icon in
the navigator tree to indicate that it is a read–only if you are
operating at an access level that does not have permission to
edit an object, that is, your access level is in a white area of the
’Range of Editable Access Levels’ indicator bar.

Lookup Types

A lookup type is a static list of values. These lists can be referenced by
activities and by item type, message or activity attributes. For
example, an activity can reference a lookup type for its possible result
values, while a message attribute can reference a lookup type as a
means of providing a list of possible responses to the performer of a
notification.

When you define a lookup type, you associate it with an particular item
type. However, lookup types are not item type specific; when you
create an activity or an attribute, you can reference any lookup type in
your current data store, regardless of the item type that the lookup type
is associated with. See: To Create Lookup Types: page 4 – 20.

�

4 – 20 Oracle Workflow Guide

� To Create Lookup Types

1. Select an item type from the navigator tree and choose New
Lookup Type from the Edit menu. A Lookup Type property page
appears.

2. Lookup types have an all–uppercase Internal Name with no
leading/trailing spaces and a translatable Display Name. All
Oracle Workflow APIs, SQL scripts, and PL/SQL procedures refer
to the internal name when identifying a lookup type.

Attention: To update the internal name for a lookup type once
it is defined, you must use a special SQL script called
wfchlut.sql. You should only use this script to correct errors in
a lookup type’s internal name during design time. Do not use
this script to rename lookup types that are involved in running
instances of processes. See: Wfchlut.sql: page 16 – 9.

Caution: Do not include colons ”:” or leading/trailing spaces
in your internal name.

You can supply an optional description for this lookup type.

3. Select the Access tab page to set the access levels allowed to modify
this lookup type. See: Allowing Access to an Object: page 4 – 17.

4. Choose Apply to save your changes, OK to save your changes and
close the property page or Cancel to cancel your changes and close
the property page.

�

4 – 21Defining Workflow Process Components

5. The lookup type you just defined now appears beneath the Lookup
Types branch in the navigator tree. You can review or edit the
properties of this lookup type at any time by double–clicking on the
lookup type in the navigator tree or by selecting the lookup type
and choosing Properties from the Edit menu.

6. Now define the lookup codes for your lookup type. See: To Create
Lookup Codes for a Lookup Type: page 4 – 21.

� To Create Lookup Codes for a Lookup Type

1. Select a lookup type from the navigator tree and choose New
Lookup Code from the Edit menu. A Lookup Code property page
appears.

2. Enter an Internal Name with no leading/trailing spaces and a
Display Name for the lookup code. You can also enter an optional
description. All Oracle Workflow APIs, SQL scripts, and PL/SQL
procedures refer to the internal name when identifying a lookup
code.

Attention: To update the internal name for a lookup code
once it is defined, you must use a special SQL script called
wfchluc.sql. You should only use this script to correct errors in
a lookup code’s internal name during design time. Do not use
this script to rename lookup codes that are involved in running
instances of processes. See: Wfchluc.sql: page 16 – 8.

4 – 22 Oracle Workflow Guide

Caution: Do not include colons ”:” or leading/trailing spaces
in your internal name.

3. Choose Apply to save your changes, OK to save your changes and
close the property page or Cancel to cancel your changes and close
the property page.

4. The lookup code you just defined now appears beneath the lookup
type you created it for in the navigator tree. You can review or edit
the properties of this lookup code at any time by double–clicking
on the lookup code in the navigator tree or by selecting the lookup
code and choosing Properties from the Edit menu.

5. Repeat step 1 if you wish to create additional lookup codes for a
specific lookup type.

� To Copy a Lookup Type

1. Select the lookup type to copy in the navigator tree.

2. Use the Copy and Paste options in the Edit menu to copy and paste
the lookup type to the item type you want. You can also drag and
drop the lookup type to the item type you want.

• If you copy a lookup type back to the same item type, or if you
copy a lookup type to an item type in a different data store when
the lookup type already exists in any item type in that data store,
then the property page appears for you to enter a unique internal
and display name for the new lookup type. When you are done,
choose OK.

• If you copy a lookup type to an item type in a different data
store, and that lookup type does not yet exist in any item type in
that data store, then the new lookup type is copied with the same
internal and display name as the original. You do not have to
enter new names.

Note: Copying a lookup type also copies any lookup codes
assigned to it.

Note: You cannot use the Copy and Paste options to copy a
lookup type to another item type in the same data store.
However, you can drag and drop a lookup type to another item
type in the same data store; by doing so, you actually move the
lookup type to the new item type.

� To Copy a Lookup Code

1. Select the lookup code to copy in the navigator tree.

4 – 23Defining Workflow Process Components

2. Hold down your mouse select button as you drag the lookup code
to the lookup type you want to copy it to.

3. If you drag the lookup code to the same lookup type or to a lookup
type where this code already exists, then when you release your
mouse button, a properties page appears for you to enter a unique
internal and display name the new lookup code. When you are
done, choose OK.

Note: You can also use the Copy and Paste options in the Edit
menu.

Messages

The Messages branch of the navigator tree lists all available workflow
messages for the current item type.

A message is what a notification activity sends to a role in a workflow
process. A message can prompt a user for a reply or an action to take
that determines what the next activity in the process should be. The
recipient of a workflow message is called the performer.

Each message is associated with a particular item type. This allows the
message to reference the item type’s attributes for token replacement at
runtime when the message is delivered.

When you define a message, you can specify that the message prompts
a recipient for a special response value that the Workflow Engine then
uses to determine how to branch to the next eligible activity in the
process. You can create a message with context–sensitive content by
including message attribute tokens in the message subject and body
that reference item type attributes. A message function lets you include
a formatted table of message attributes or a notification history table in
the message body. You can also attach message attributes that
represent entire documents or URLs to a notification message. In
addition, you can create message attributes that generate a response
section that is unique to the message.

You can drag a message onto the Notifications branch to create a new
notification activity that sends that message. You can also drag a
message directly onto an existing notification activity to update the
message that the activity sends.

4 – 24 Oracle Workflow Guide

Message Result

When you create a message for a notification activity, you should make
note of whether the notification activity has a Result Type specified. If
it does, then the message you create needs to prompt the notification
recipient for a special response that is interpreted as the result of the
notification activity. The Workflow Engine uses that result to
determine how it should branch to the next eligible activity in the
process.

To create a message that prompts for this special response, complete
the Result tab in the message’s property page. The information you
enter creates a special ’Respond’ message attribute for the message that
has an internal name of RESULT. The RESULT message attribute has a
data type of Lookup and must be set to the same lookup type as the
notification activity’s Result Type. This ensures that the performer of
the notification can choose from a list of possible response values that
matches the list of possible results that the notification activity is
expecting. See: Send and Respond Message Attributes: page 4 – 24.

Send and Respond Message Attributes

Once you create a message, you can define as many message attributes
as necessary for that message. Message attributes are listed beneath a
message in the navigator tree.

The source (Send or Respond) of a message attribute determines how
the message attribute is used. When you define a message attribute
with a source of ’Send’, you can embed the message attribute in the
subject and/or body of the message for token substitution. In addition,
you can attach the message attribute to the message when the
notification is sent.

Each message attribute has a specific data type. The value of a ’Send’
message attribute can be a constant or can be a value returned by an
item type attribute of that same data type. To embed a message
attribute in a message’s subject or body for token substitution, specify
the internal name of the message attribute using the format
&MESGATTR within the subject or body text.

Note: You should not embed a message attribute of type
Document in a message’s subject, since Document message
attributes cannot be be token substituted in the subject.
Document message attributes embedded in the subject will be
ignored.

You can, however, embed Document message attributes within
the body of a message for token substitution.

4 – 25Defining Workflow Process Components

A message attribute defined with a source of ’Respond’ constitutes the
response section of a message. A ’Respond’ message attribute provides
instructions that prompts a recipient for a response. When you define a
’Respond’ message attribute, you must specify the data type of the
attribute. You can also provide an optional default value for the
response. The default value can be a constant or a value returned from
an item type attribute of the same data type.

Message Attributes: page C – 5

#HIDE_REASSIGN Attribute

You can use a special message attribute or notification attribute with
the internal name #HIDE_REASSIGN to hide the Reassign button in
the Notification Detail web page. When users view a notification from
their Worklist web page, the response frame in the Notification Detail
page includes the Reassign button by default. If you want to prevent
users from reassigning a notification, you can add the
#HIDE_REASSIGN attribute to control whether the Reassign button is
displayed or hidden.

The #HIDE_REASSIGN attribute must be of type text. To hide the
Reassign button, set the value of this attribute to Y. To display the
Reassign button, set the value to N.

• If you always want to hide the Reassign button for notifications
using a particular message, specify the value Y as a constant.

• If you only want to hide the Reassign button in certain cases,
specify an item type attribute as the value. Then include logic in
your workflow process that dynamically determines at runtime
whether the button should be hidden or displayed and sets the
item type attribute to Y or N, respectively.

See Also

To Reassign a Notification to Another User: page 10 – 22

#FROM_ROLE Attribute

You can use a special message attribute with the internal name
#FROM_ROLE to specify the role that is the source of a notification.
For example, if you have a notification that informs an approver that a
requisition was submitted, you can set the requisition preparer as the
From Role for the message. If a notification with this attribute is

4 – 26 Oracle Workflow Guide

reassigned, Oracle Workflow automatically sets the From Role to the
original recipient when sending the notification to the new recipient.

The From Role for each notification is displayed in the Worklist web
page to give users additional information for reviewing and
responding to the notifications. Additionally, the Find Notifications
page lets you search for notifications based on the From Role.

To specify the From Role for a message, create a message attribute with
the following properties:

• Internal Name—#FROM_ROLE

• Display Name—From Role

• Description—From Role

• Type—Role

• Source—Send

• Default Type—Item Attribute

• Default Value—The item attribute that holds the value you want
to set as the From Role for the message

See Also

To View Notifications from the Worklist: page 10 – 17

To Find Notifications: page 10 – 15

WF_NOTIFICATION() Message Function

In addition to message attribute tokens, you can also use a special
message function called WF_NOTIFICATION() to add
context–sensitive content to a message body. Depending on the
parameters you provide, the WF_NOTIFICATION() function can
produce either a table of message attributes or a notification history
table. The tables are created in a standard Oracle Workflow format.

4 – 27Defining Workflow Process Components

Message Attribute Table

To include a table of message attributes in a message body, call
WF_NOTIFICATION() with the ATTRS option followed by the internal
names of the message attributes, separated by commas. Use the
following format:

WF_NOTIFICATION(ATTRS,<attribute1>,<attribute2>,<attribute3>,...)

Note: You must not include any spaces or carriage returns in
the call to WF_NOTIFICATION(). You only need to use a
comma to delimit the parameters in the list.

The message attribute table contains a row for each message attribute
listed in the WF_NOTIFICATION() call, showing the display name and
the value for each attribute.

Notification History Table

To include a notification history table in a message body, call
WF_NOTIFICATION() with the HISTORY option in the following
format:

WF_NOTIFICATION(HISTORY)

The notification history table contains a row for each previous
execution of the notification activity in the process, as well as a row for
the initial submission of the process. For example, for a requisition
approval notification that is sent to several approvers in turn, the

4 – 28 Oracle Workflow Guide

notification history table would contain a row for each approver to
whom the notification was sent, as well as a row for the process owner.

The notification history table includes the following columns:

• Sequence—The order in which the executions of the notification
activity took place, beginning at zero (0) for the initial
submission of the process by the process owner.

• Who—The notification recipient or process owner.

• Action—The action with which the recipient responded to the
notification.

• Date—The notification date.

• Note—An additional note from the recipient. To allow a recipient
to add a note for the notification history table, you must create a
special ’Respond’ message attribute with the internal name
WF_NOTE.

Define the message attribute with the following properties:

– Internal Name—WF_NOTE

– Display Name—Note

– Description—Note

– Type—Text

– Source—Respond

When the WF_NOTE attribute is defined with a source of
’Respond’, it appears as part of the notification response section,
and the recipient can enter a note there when responding to the
notification. The WF_NOTIFICATION() function retrieves the
note text stored in the WF_NOTE attribute and displays it in the
notification history table.

If the recipient did not enter a note, or if the WF_NOTE message
attribute was not defined for the notification, then the Note
column in the notification history table is left blank.

Note: The process owner cannot add a note for the notification
history table when submitting the process. Only a notification
recipient can add a note when responding to the notification.

�

4 – 29Defining Workflow Process Components

� To Create a Message

1. Select the item type that you want to create a message for in the
navigator tree, and choose New Message from the Edit menu. A
Message property page appears.

2. Provide an internal name for the message that is all uppercase with
no leading/trailing spaces, and provide a display name. You may
also enter an optional description. All Oracle Workflow APIs, SQL
scripts, and PL/SQL procedures refer to the internal name when
identifying a message.

Attention: To update the internal name for a message once it
is defined, you must use a special SQL script called
wfchmsg.sql. You should only use this script to correct errors
in a message’s internal name during design time. Do not use
this script to rename messages that are involved in running
instances of processes. See: Wfchmsg.sql: page 16 – 9.

Caution: Do not include colons ”:” or leading/trailing spaces
in your internal name.

3. Choose High, Normal, or Low for the default priority of the
message. The priority level simply informs the recipient of the
urgency of the message. It does not affect the processing or
delivery of the message.

Note: When you assign this message to a notification activity
and you incorporate the notification activity into a process

4 – 30 Oracle Workflow Guide

diagram as a node, you can override this default message
priority with a new priority that is constant or dynamically
determined at runtime. See: To Define Nodes in a Process:
page 5 – 6.

Note: In earlier versions of Oracle Workflow, the message
priority was represented as a numeric value between 1 (high)
and 99 (low). Oracle Workflow now automatically converts the
priority values of all message definitions defined in earlier
versions as follows: 1–33 = High, 34–66=Normal, and
67–99=Low.

4. Choose Apply to save your changes.

5. Select the Body tab to display the Body property page of the
message.

6. The subject gets its default value from the display name that you
entered in the Message tab. You can choose to keep the default
subject or enter a new subject for the message. The subject can
include message attributes that get token replaced with runtime
values when the message is delivered. To include a message
attribute in the subject, use an ampersand (&) followed by the
message attribute’s internal name. See: Send and Respond
Message Attributes: page 4 – 24 and To Define a Message Attribute:
page 4 – 34.

Suggestion: For clarity, you can assign a message attribute the
same name as the item type attribute it references.

�

�

�

�

4 – 31Defining Workflow Process Components

7. Enter a plain text message body in the Text Body field. You can
select the ellipsis button (...) to expand the view of the Subject and
Text Body fields in another window.

Oracle Workflow uses the content you enter in the Text Body field
to generate a plain text version of the notification message. The
plain text message can be viewed from the from an e–mail reader
that displays plain text messages.

Attention: Make sure you enter a plain text message body in
the Text Body field. If Text Body is null, you get an empty
notification when you view your message from a plain text
e–mail reader.

8. You may enter an optional HTML–formatted message body in the
HTML Body field by selecting the HTML Body tab and typing in
the content, or by selecting Import to import the content from a
.HTM or .HTML file. You can also select the ellipsis button (...) to
expand the view of the Subject and HTML Body fields in another
window.

Attention: When you enter or import the HTML message
body, you do not need to include the <Body>...</Body> HTML
tags. If you do include these tags, Oracle Workflow simply
extracts the content between these tags to use as the HTML
message body. As a result, Oracle Workflow ignores any
HTML tags or content prior to the <Body> tag.

Attention: Oracle Workflow Builder does not verify the
HTML formatting of the message body.

Oracle Workflow uses the content you enter in the HTML Body
field to generate an HTML–formatted version of the notification
message. You can view an HTML–formatted notification message
from the Notification Details web page, or from an e–mail reader
that displays HTML–formatted messages or HTML–formatted
message attachments.

Note: If HTML Body is null, Oracle Workflow uses the
message body entered in Text Body to generate the notification
message. It inserts the plain text between the <pre>...</pre>
HTML tags.

Attention: Oracle Workflow does not fully support references
to icon and image files in the HTML message body. Although
your web server may be able to resolve the location of these
files for proper display in the Notification Details web page,
the Notification Mailer and third party e–mail applications are
not able to identify the location of these files when users view
the HTML version of their notifications in e–mail.

�

4 – 32 Oracle Workflow Guide

9. You can embed message attributes in the text or HTML body.
Oracle Workflow token replaces the message attributes with
runtime values when it delivers the notification. To embed a
message attribute, enter an ”&” followed by the message attribute’s
internal name.

Attention: The text in a message body must be less than 4000
bytes. If you include message attributes in the text for token
substitution, then the final message body can increase up to
32000 bytes.

Note: You can also include a special token in the message
subject or body called &#NID. Oracle Workflow substitutes
this token with the notification ID of the runtime notification.

Additionally, you can use the message function
WF_NOTIFICATION() to include a formatted table of message
attributes or a notification history table in the text or HTML
message body.

10. Choose Apply to save your changes.

11. Select the Roles tab page to specify the roles that have access to this
message. (This functionality will be supported in a future release.)

12. Select the Access tab page to set the access levels allowed to modify
this message. See: Allowing Access to an Object: page 4 – 17.

13. If you want the notification message to prompt the performer for a
response value and you want Oracle Workflow to interpret that
response value as the result of the notification activity, select the
Result tab page and complete the information requested. Oracle
Workflow uses the information you specify in the Result tab page
to create a special ’Respond’ message attribute called RESULT. See:
Message Result: page 4 – 24

4 – 33Defining Workflow Process Components

Specify a display name and description for RESULT. Select a
lookup type from the poplist field. The lookup type you select
should be identical to the lookup type specified for the notification
activity’s result type. Select a lookup code in the Default Value
region. The lookup code you select appears as the default value of
the RESULT message attribute.

Note: To create any other type of message attribute, see: To
Define a Message Attribute: page 4 – 34.

14. Choose Apply to save your changes, OK to save your changes and
close the property page or Cancel to cancel your changes and close
the property page.

15. The message you just defined now appears beneath the Message
branch in the navigator tree. You can review or edit the properties
of this message at any time by double–clicking on the message in
the navigator tree or by selecting the message and choosing
Properties from the Edit menu.

If a message has a Result defined, then its message icon in the
Navigator tree has a red question mark overlay to help you
distinguish it from messages that do not have a Result defined.

16. You must now define all the message attributes that you have
included in the subject and body of this message.

17. To create a message attribute that references an item type attribute,
select the referenced item type attribute in the navigator tree, and

�

4 – 34 Oracle Workflow Guide

hold down your mouse select button as you drag the item type
attribute to your message.

Edit the property page that appears, making sure the message
attribute has the proper Source. The Default Value region is
automatically set to Item Attribute and references the originating
item attribute.

18. You can also create message attributes that are not based on
existing item type attributes. See: To Define a Message Attribute:
page 4 – 34.

� To Define a Message Attribute

1. To create a message attribute that does not reference an existing
item type attribute, select a message in the navigator tree and
choose New Attribute from the Edit menu.

An Attribute property page appears.

2. Provide an Internal Name in all uppercase with no leading/trailing
spaces. All Oracle Workflow APIs, SQL scripts, and PL/SQL
procedures refer to the internal name when identifying an attribute.

Attention: To update the internal name for a message
attribute once it is defined, you must use a special SQL script
called wfchmsga.sql. You should only use this script to correct
errors in a message attribute’s internal name during design
time. Do not use this script to rename message attributes that

�

�

�

4 – 35Defining Workflow Process Components

are involved in running instances of processes. See:
Wfchmsga.sql: page 16 – 9.

Caution: Do not include colons ”:” or leading/trailing spaces
in your internal name.

3. Specify ’Send’ or ’Respond’ in the Source field to indicate whether
this attribute should send information to the notification recipient
or prompt a notification message recipient for a response,
respectively.

4. Enter a Display Name. This is the name that appears in the
navigator tree. If this is a ’Respond’ message attribute, then this
display name is also used as the response prompt.

Attention: For ’Send’ message attributes, the Display Name of
the attribute appears in plain text e–mail notifications only if
the attribute is of type URL to describe what the URL drills
down to.

5. Enter an optional description. If this is a ’Respond’ message
attribute, use this field to elaborate on response instructions.

6. Select the data type of the attribute.

7. Depending on the Type of your attribute, provide the following
default information:

• Text—Specify the maximum length of the text attribute.

• Number—Optionally provide a format mask for your number
and a default number value.

• Date—Optionally supply a format mask for the date and a
default date value.

• Lookup—Choose the name of a predefined Lookup Type from
which to draw values. Choose a lookup code for the default
value.

• URL—Specify a Universal Resource Locator (URL) to a network
location in the Default Value field. See: To Define a URL
Attribute: page 4 – 12.

Attention: ’Respond’ message attributes of type URL do not
appear properly when you view the notification from a plain
text e–mail reader. You should advise your workflow users to
view their notifications from the Notification Details web page
if you plan to create messages with ’Respond’ message
attributes of type URL.

Attention: A single ’Respond’ message attribute of type URL
replaces the Notification Details web page response frame and

�

�

4 – 36 Oracle Workflow Guide

takes the notification recipient to a custom HTML page to
complete the notification response. Your custom HTML
response document must include references to all your
’Respond’ message attributes, including the special RESULT
attribute, if one is defined, and must also include a call to the
Workflow Engine CompleteActivity() API to inform the
Workflow Engine when the notification response is complete.

• Form—This attribute is relevant only with the version of Oracle
Workflow embedded in Oracle Applications.

Specify a developer form function name and any optional
argument string (form function parameters) in the Default Value
field. See: Overview of Menus and Function Security, Oracle
Applications Developer’s Guide and To Define a Form Attribute:
page 4 – 13.

Attention: ’Send’ and ’Respond’ message attributes of type
Form appear only when your Notifications web pages are
launched from Oracle Applications. The attached form icon is
enabled if a notification message includes a ’Send’ message
attribute of type Form. The notification recipient can click on
the attached form icon to drill down to the form function
defined by the message attribute.

Attention: If a message includes a ’Respond’ message
attribute of type Form, the attached form icon that appears in
the notification’s Response section simply drills down directly
to the designated form function. This form function must be
coded with a call to the Workflow Engine CompleteActivity()
API to inform the Workflow Engine that the notification
response is complete. See: Workflow Engine APIs: page 8 – 19.

• Document—Enter a string that identifies the document in the
Default Value field. See: To Define a Document Attribute: page
4 – 14.

• Role—Specify a role name. If a message attribute of type role is
included in a notification message, the attribute automatically
resolves to the role’s display name, eliminating the need for you
to maintain separate attributes for the role’s internal and display
names. Also when you view the notification from a web
browser, the role display name is a hypertext link to the e–mail
address for that role. To set a default value for the attribute, you
must initially load roles from the database. See: Roles: page
5 – 24.

• Event—Specify an event item type attribute as the default value.

�

�

4 – 37Defining Workflow Process Components

Attention: Do not specify a message attribute’s data type as
Attribute, as it serves no purpose in a notification message and
is also not supported by the Workflow Notification System.

Attention: ’Respond’ message attributes of type Date,
Number, Text, Document or Role prompt the notification
recipient to respond with a date, number, text value, document,
role (internal or display name), respectively.

’Respond’ message attributes of type Lookup prompt the
notification recipient to select a response from a list of values.

8. If your message attribute type is URL, specify a Frame Target.
When you reference this message attribute in a message, the URL
opens according to what you specify as the frame target. The
frame target can be:

• New Window—the URL loads in a new, unnamed browser
window.

• Same Frame—the URL loads in the same frame as the element
that references the URL attribute.

• Parent Frameset—the URL loads into the immediate FRAMESET
parent of the current frame. This value is equivalent to Same
Frame if the current frame has no parent.

• Full Window—the URL loads into the full, original window, thus
cancelling all other frames. This value is equivalent to Same
Frame if the current frame has no parent.

9. If your message attribute is a Send attribute and is of type
Document, you can check Attach Content to attach the content of
the attribute to the notification message. When you view your
notification from the Notification web page interface, you see a
document icon following the notification message body that
displays the contents of the attached message attribute when you
click on it. If you view your notification from e–mail, the
presentation of the attachment will vary depending on what your
e–mail notification preference setting is. See: Reviewing
Notifications via Electronic Mail: page 10 – 2.

Note: You can attach, as well as embed (by token substitution)
Document attributes in the notification message and are not
limited to one or the other.

10. If your message attribute is a Send attribute and is of type URL,
you can check Attach Content to append an attachment called
Notification References to the notification message. This
attachment includes a link to each URL attribute for the message

�

4 – 38 Oracle Workflow Guide

that has Attach Content checked. You can navigate to a URL by
choosing its link.

Note: You can attach, as well as embed (by token substitution)
URL attributes in the notification message and are not limited
to one or the other.

11. For message attributes, the default value may be a constant or an
item type attribute. If the default references its entire value directly
from an item type attribute, choose Item Attribute, then use the
poplist field to choose an item type attribute. The item type
attribute you select must be associated with the same item type
that the message itself is associated with. The item type attribute
you select must also be of the same data type as the message
attribute.

Note: A message attribute type of ’Text’ is compatible with
any item attribute type, but all other message attribute types
must match the item attribute type exactly.

12. Choose Apply to save your changes, OK to save your changes and
close the property page or Cancel to cancel your changes and close
the property page.

13. Any message attribute you define appears beneath the respective
message you defined it for in the navigator tree. You can review or
edit the properties of an attribute at any time by double–clicking on
the attribute in the navigator tree or by selecting the attribute and
choosing Properties from the Edit menu. Respond message
attribute icons in the Navigator tree have a red question mark
overlay to help you distinguish them from Send message attribute
icons.

Note: Message attributes assume the access/protection level of
their parent message.

Attention: The order that you list ’Respond’ message
attributes in the navigator tree correlate to the order in which
they appear in the response section of the notification message.
You can use the drag and drop feature of the navigator tree to
reorder a set of attributes, or select an attribute and choose
Move Attribute Up or Move Attribute Down from the Edit
menu.

See Also

Example ’Respond’ Message Attributes: page 4 – 39

Using the Edit Button in a Property Page: page 3 – 8

4 – 39Defining Workflow Process Components

Reviewing Notifications via Electronic Mail: page 10 – 2

Example ’Respond’ Message Attributes

Following are examples of how the Notification System generates the
Response section of an e–mail notification using a sample set of
’Respond’ message attributes that have no default values.

The following table lists some sample ’Respond’ message attributes.

Internal
Name

Type Format/Lookup
Type

Display
Name

Description

RESULT lookup WFSTD_APPROVAL Action Do you approve?

COMMENT text 2000 Review
Comments

REQDATE date DD–MON–YYYY Required
Date

If there is no required
date, leave this blank.

MAXAMT number Maximum
Amount

This is the maximum
approved amount.

Table 4 – 2 (Page 1 of 1)

For the templated response method, the following boilerplate text is
used to generate the Response template section of an e–mail
notification:

<Description>

<Display Name>: ” ”

<list of lookup codes>

4 – 40 Oracle Workflow Guide

Portion of Resulting Response Template as Shown in a Templated
Response E–mail Notification

Do you approve?

Action: ” ”

Approve

Reject

Review Comments: ” ”

If there is no required date, leave this blank.

Required Date: ” ”

This is the maximum approved amount.

Maximum Amount: ” ”

For the direct response method, the following boilerplate text is used to
generate the Response section of an e–mail notification:

Enter the <Display Name> on line <Sequence>. <Description>

<Type_Hint>

<Display Name> is replaced with the Display Name of the message
attribute. <Sequence> is replaced with the relative sequence number
of the ’Respond’ message attribute as it appears in the Navigator tree
among all ’Respond’ message attributes (that is, the presence of ’Send’
message attributes is ignored when determining the sequence).
<Description> is replaced with the Description of the message
attribute. In addition, <Type_Hint> is replaced with one of the
following statements, if the message attribute matches one of these data
types:

Type Type_Hint

Lookup Value must be one of the following:

<list of lookup codes>

Date Value must be a date [in the form ”<format>”].

Number Value must be a number [in the form ”<format>”].

Text Value must be <format> bytes or less.

�

4 – 41Defining Workflow Process Components

Portion of Resulting Response Section as Shown in a Direct
Response E–mail Notification

Enter the Action on line 1. Do you approve? Value must be one of the following:

Approve

Reject

Enter the Review Comments on line 2. Value must be 2000 bytes or less.

Enter the Required Date on line 3. If there is no required date, leave this blank. Value
must be a date in the form ”DD–MON–YYYY”.

Enter the Maximum Amount on line 4. This is the maximum approved amount. Value
must be a number.

� To Token Substitute an Attribute

� Oracle Workflow supports runtime token substitution of attributes.
You can embed attributes within an attribute as well as embed
attributes within a message subject and body. To embed an
attribute, specify the attribute that you want to have token
substituted as &attr_name, where attr_name is the internal name of
the attribute.

When performing token substitution, Oracle Workflow fetches the
internal name of the attribute and its value. If an attribute
requiring token substitution is nested with another attribute, Oracle
Workflow orders the nested list of attributes according to the
length of their internal attribute names and then begins substituting
the attributes with the longest internal names first.

Attention: If you find that you need to nest message attributes
more than two layers deep to display the necessary message
body content, you should investigate creating a PL/SQL
document–type message attribute. See: External Document
Integration: page 4 – 6.

� To Copy a Message

1. Select the message to copy in the navigator tree.

4 – 42 Oracle Workflow Guide

2. Hold down your mouse select button as you drag the message to
the item type branch you want to copy to.

3. When you release your mouse button, a property page appears for
the new message.

Note: You can also use the Copy and Paste options in the Edit
menu.

4. Enter a new internal name and display name.

5. Make any additional modifications to the properties of the
message.

6. When you are done, choose OK.

Note: Copying a message also copies any message attributes
assigned to it.

Activities

An activity is a unit of work that contributes toward the
accomplishment of a process. An activity can be a notification, a
function, an event, or a process. A notification activity sends a message
to a workflow user. The message may simply provide the user with
information or request the user to take some action. A function activity
calls a PL/SQL stored procedure or some external program to perform
an automated function. An event activity receives, raises, or sends a
business event. A process activity is a modelled workflow process,
which can be included as an activity in another process to represent a
sub–process.

Activities are organized beneath their respective Processes,
Notifications, Functions, or Events headings in the navigator tree. You
can create, edit, and delete activity definitions in the navigator tree, and
drag an activity from the tree into a Process window to create a new
usage of that activity in a process diagram. Each activity is depicted as
an icon in a process diagram

Oracle Workflow provides an item type called Standard that includes
generic activities you can use in any process you define. For example,
some of the activities perform standard functions such as comparing
two values. See: Standard Activities: page 6 – 2.

Oracle Workflow also provides an item type called System:Error that
includes a standard error process and activities you can use to create a
custom error process. You can assign an error process to a process

�

4 – 43Defining Workflow Process Components

activity. If an error occurs, the error process informs Oracle Workflow
how to handle the error. See: Default Error Process: page 6 – 26.

Notification Activity

When the workflow engine reaches a notification activity, it issues a
Send() API call to the Notification System to send the message to an
assigned performer. You define the message that the notification sends.
The message can be an informative note or it can prompt the performer
for a response. When a performer responds to a notification activity,
the Notification System processes the response and informs the
workflow engine that the notification activity is complete so that it can
continue processing the next eligible activity. See: To Create a
Notification Activity: page 4 – 48.

You specify the performer of a notification activity when you include
the notification activity as a node in the process. You can either
designate the performer to be a specific role or an item type attribute
that dynamically returns the name of a role. See: To Define Nodes:
page 5 – 8 and Roles: page 5 – 24.

When you define a notification activity, you can also optionally:

• Check Expand Roles to send an individual copy of the
notification message to each user in the role. The notification
remains in a user’s notification queue until the user responds or
closes the notification.

Attention: You should expand roles to send out a
broadcast–type message that you want all users of that role to
see.

If you do not expand the role for a notification activity, Oracle
Workflow sends one copy of the notification message to the
assigned performer role and that notification is visible in the
notification queue of all the users in that role. If one user in that
role responds or closes that notification, the notification is
removed from the notification queue of all other users in that
role.

• Specify a post–notification function that the Workflow Engine
executes in response to an update of the notification’s state after
the notification is delivered. The Workflow Engine runs the
post–notification function in RESPOND, FORWARD,
TRANSFER, or TIMEOUT mode depending on whether the
notification recipient responds to, forwards, or transfers the
notification, or whether the notification times out, respectively.
When the Notification System completes execution of the

4 – 44 Oracle Workflow Guide

post–notification function in RESPOND mode, the Workflow
Engine then runs the post–notification function again in RUN
mode.

For example, if you wish to restrict the roles that a notification
can be forwarded to, you can specify a post–notification function
that the Workflow Engine executes in FORWARD mode when
the notification recipient attempts to forward the notification.
The post–notification function would audit the role and either
allow the forward to occur or reject it with an error. See:
Post–notification Functions: page 8 – 13 and Notification Model:
page 8 – 192.

To create a post–notification function, you should use the same
PL/SQL API required for function activities. See: Standard API
for PL/SQL Procedures Called by Function Activities: page 7 – 3.

By both checking Expand Roles and specifying a post–notification
function, you can create your own custom vote tallying activity. See:
Voting Activity: page 4 – 61.

Function Activity

A function activity is defined by the PL/SQL stored procedure or
external program that it calls. Function activities are typically used to
perform fully automated steps in the process. As a PL/SQL stored
procedure, a function activity accepts standard arguments and can
return a completion result.

If you pass a parameter for the stored procedure, you can expose that
parameter as an activity attribute. The activity attribute’s value can be
set when you define that activity as a node in your process. Note that
these activity attributes are available only to the current activity and
are not global like item type attributes. See: To Define Activity
Attribute Values: page 5 – 17.

As an external program, a function activity is able to enqueue payload
information into an Oracle Advanced Queuing outbound queue for
some external agent to dequeue and consume. The external agent can
similarly enqueue updated attributes and a completion result into an
inbound queue that the Workflow Engine consumes and processes.

As an external Java program, a function activity is able to enqueue
payload information into an Oracle Advanced Queuing outbound
queue for the Java Function Activity Agent to dequeue and consume.
The results of the Java program are enqueued into an inbound queue
that the Workflow Engine consumes and processes. This functionality is

4 – 45Defining Workflow Process Components

currently only available for the standalone version of Oracle Workflow.
See: To Create a Function Activity: page 4 – 50.

Event Activity

An event activity represents a business event from the Business Event
System within a workflow process. Include event activities in workflow
processes to model complex processing or routing logic for business
events beyond the standard event subscription options of running a
function or sending the event to a predefined agent. See: Managing
Business Events: page 13 – 2.

An event activity can either receive, raise, or send a business event.

• A Receive event activity can be marked as a Start activity for a
process, meaning it is always enabled to receive events.
Alternatively, a Receive event activity can be placed within the
process, so that it is only enabled to receive events after the
process transitions to that activity.

When the activity receives an event, the Workflow Engine stores
the event name, event key, and event message in item type
attributes, as specified in the node’s event details; sets any
parameters in the event message parameter list as item type
attributes for the process, creating new item type attributes if a
corresponding attribute does not already exist for any
parameter; and then continues the thread of execution from the
event activity. If that activity has already received an event, then
the On Revisit flag for the activity determines whether the
Workflow Engine reexecutes the activity. See: To Define Optional
Activity Details: page 4 – 59.

If the event was originally raised by a Raise event activity in
another workflow process, the item type and item key for that
process are included in the parameter list within the event
message. In this case, the Workflow Engine automatically sets
the specified process as the parent for the process that receives
the event, overriding any existing parent setting. See:
SetItemParent: page 8 – 79.

• A Raise event activity retrieves information about the event and
raises the event to the Business Event System, which will then
execute subscriptions to the event. The activity retrieves the
event name, event key, and event data as specified in the node’s
event details. The event details can be dynamically determined
at runtime using item type attributes. You can also specify the
event name as a predefined constant for the event activity node.

4 – 46 Oracle Workflow Guide

Additionally, the activity retrieves the names and values of any
activity attributes defined for it and sets these attributes as
parameters in the parameter list for the event message. If the
event message is later received by another process, the Workflow
Engine sets the event parameters as item type attributes for that
process. See: Event Message Structure: page 8 – 242.

The activity also automatically sets the item type and item key
for the current workflow process in the parameter list for the
event message. If the event message is later received by another
process, the Workflow Engine uses that item type and item key
to automatically set the process that raised the event as the
parent for the process that receives the event. See: SetItemParent:
page 8 – 79.

• A Send event activity retrieves the event name, event key, event
message, outbound agent, and inbound agent, as specified in the
node’s event details. If no correlation ID is initially specified in
the event message, the correlation ID is automatically set to the
item key of the process. Then the Send event activity sends the
event directly from the outbound agent to the inbound agent.
The event details can be dynamically determined at runtime
using item type attributes. You can also specify the event name,
outbound agent, and inbound agent as predefined constants for
the event activity node. See: To Create an Event Activity: page
4 – 54 and To Define Event Details for an Event Node: page
5 – 12.

Note: A Send event activity does not raise the event to the
Business Event System, so no subscription processing is
performed.

Process Activity

A process activity represents a collection of activities in a specific
relationship. When a process activity is contained in another process it
is called a subprocess. In other words, activities in a process can also
be processes themselves. There is no restriction on the depth of this
hierarchy. See: To Create a Process Activity: page 4 – 57.

Caution: Oracle Workflow does not support using a
subprocess activity multiple times within a process hierarchy.

See Also

Subprocesses: page C – 5

�

4 – 47Defining Workflow Process Components

Activity Cost

Each function activity and event activity has a cost associated with it.
The cost is a value representing the number of seconds it takes for the
Workflow Engine to execute the activity. If you do not know how long
it takes for the Workflow Engine to perform the activity, you can enter
an estimated cost and update it later as you accumulate more
information about its performance. Generally, you should assign
complex, long running activities a high cost.

The valid range for cost is 0.00 to 1,000,000.00.

Attention: Although the cost is entered and displayed in
seconds in Oracle Workflow Builder, it is actually converted
and stored in the database as hundredths of a second.

In normal processing, the Workflow Engine completes the execution of
a single activity before continuing to a subsequent activity. In some
cases, an activity might take so long to process that background
processing would be more appropriate.

You can define your Workflow Engine to defer activities with a cost
higher than a designated threshold to a background process. The
engine then continues processing the next pending eligible activity that
may occur in another parallel branch of the process.

The default threshold for the Workflow Engine is 50 hundredths of a
second. Activities with a cost higher than this are deferred to
background engines. A background engine can be customized to
execute only certain types of activities. You can set the workflow
engine threshold through SQL*Plus. See: Setting Up Background
Workflow Engines: page 2 – 43, To Set Engine Thresholds: page 2 – 47,
and Deferring Activities: page C – 7.

�

4 – 48 Oracle Workflow Guide

� To Create a Notification Activity

1. Select the item type that you want to create a notification for in the
navigator tree, then choose New Notification from the Edit menu.
Define your notification activity in the Activity property page that
appears.

You can also select a message in the navigator tree and drag and
drop the message into the Notifications branch of the same item
type to create a notification activity that sends that message.

2. A notification activity must have an Internal Name (all uppercase
and no leading/trailing spaces) and a Display Name, which is the
translatable name that appears in your process diagram. Use the
description to provide an explanation about this activity.

Attention: To update the internal name for an activity once it
is defined, you must use a special SQL script called
wfchact.sql. You should only use this script to correct errors in
an activity’s internal name during design time. Do not use this
script to rename activities that are involved in running
instances of processes. See: Wfchact.sql: page 16 – 7.

Caution: Do not include colons ”:” or leading/trailing spaces
in your internal name.

3. Indicate the result type (a predefined Lookup Type) for this activity.
Result types list the possible results returned by this activity. Your
workflow diagram may branch depending on the value returned

4 – 49Defining Workflow Process Components

by your completed activity. See: To Create Lookup Types: page
4 – 20.

You can choose <None> as the result type if your activity does not
return a value, or if your workflow process does not depend on the
value returned.

4. Select the name of the message you want this notification to send.
See: To Create a Message: page 4 – 29.

5. If you plan to assign this notification to a role consisting of multiple
users and you want to send an individual copy of this notification
to each user in the role, then check Expand Roles. If you uncheck
Expand Roles, then only one copy of the notification is delivered to
the role as a whole. See: Notification Activity: page 4 – 43.

6. You can optionally specify a PL/SQL stored procedure in the
Function field. The procedure is known as a post–notification
function and lets you couple processing logic to the notification
activity. The Workflow Engine executes this post–notification
function in RESPOND, FORWARD, TRANSFER or TIMEOUT
mode depending on whether the recipient responds to, forwards,
or transfers the notification or whether the notification times out.
When the Notification System completes execution of the
post–notification function in RESPOND mode, the Workflow
Engine then runs the post–notification function again in RUN
mode. See: Standard API for PL/SQL Procedures Called by
Function Activities: page 7 – 3 and Post–Notification Functions:
page 8 – 13.

If you check Expand Roles and you assign a message that has a
special Result, to this notification activity, then use the Function
field to specify the name of a custom PL/SQL stored procedure
that tallies the responses you get back from each of the recipients of
this notification. Specify the procedure using the format:
<package_name>.<procedure_name>. See: Voting Activity: page
4 – 61.

7. Choose an icon that identifies your activity. You can use any icon,
as long as the icon is stored in a .ico file, to symbolize the action of
an activity. See: Adding Custom Icons to Oracle Workflow: page
2 – 85.

Choose Browse to view the icon files listed in the workflow icons
subdirectory.

You can also drag and drop icon files from the Windows Explorer
or File Manager onto an activity in your navigator tree to assign
that icon to the activity.

4 – 50 Oracle Workflow Guide

8. Choose Apply to save your changes.

9. Select the Details tab to display and modify optional Details of the
activity. See: To Define Optional Activity Details: page 4 – 59.

10. Select the Roles tab page to specify the roles that have access to this
notification activity. (This functionality will be supported in a
future release.)

11. Select the Access tab page to set the access levels allowed to modify
this notification. See: Allowing Access to an Object: page 4 – 17.

12. Choose OK to save your changes and close the property pages.

13. The notification activity now appears beneath Notifications in the
navigator tree. You can review or edit the properties of this activity
at any time by double–clicking on the activity in the navigator tree
or by selecting the activity and choosing Properties from the Edit
menu or by pressing Enter on your keyboard.

See Also

Using the Edit Button in a Property Page: page 3 – 8

� To Create a Function Activity

1. Select the item type that you want to create a function for in the
navigator tree, then choose New Function from the Edit menu.

�

4 – 51Defining Workflow Process Components

Define your function activity in the Activity property page that
appears.

2. A function activity must have an Internal Name (all uppercase and
no leading/trailing spaces) and a Display Name, which is the
translatable name that appears in your process diagram. Use the
description to provide an explanation about this activity.

Attention: To update the internal name for an activity once it
is defined, you must use a special SQL script called
wfchact.sql. You should only use this script to correct errors in
an activity’s internal name during design time. Do not use this
script to rename activities that are involved in running
instances of processes. See: Wfchact.sql: page 16 – 7.

Caution: Do not include colons ”:” or leading/trailing spaces
in your internal name.

3. Enter the name of the function you want this activity to execute. In
the Type field, specify whether the function is a PL/SQL function,
an External function, or an External Java function.

For a PL/SQL function, set the function type to PL/SQL and
specify the function as <package_name>.<procedure_name>. The
function must be defined according to a standard API. See:
Standard API for PL/SQL Procedures Called by Function
Activities: page 7 – 3.

For an external function activity, set the function type to External.
The Workflow Engine enqueues an entry in the ”Outbound” queue
and sets the correlation value of that entry to a value composed of
the Workflow schema name and the item type in the following
format:

<schema_name><item_type>

See: Workflow Queue APIs: page 8 – 162.

You must create your own queue handler to search for this type of
record on the ”Outbound” queue. The queue handler must execute
the action associated with the record and seed the result of the
action onto the ”Inbound” queue. The background engine then
takes care of messages on the inbound queue and restarts your
original workflow process. See: Deferred Processing: page 8 – 9.

For an external Java function activity, set the function type to
External Java and enter the class name of your custom Java class as
the function name. This functionality is currently only available for
the standalone version of Oracle Workflow. If the custom class is

4 – 52 Oracle Workflow Guide

within a package, prefix the class name with the package name in
the following format:

<customPackage>.<customClass>

The Java class must be defined according to a standard API. See:
Standard API for Java Procedures Called by Function Activities:
page 7 – 8.

The Workflow Engine enqueues an entry in the ’Outbound’ queue.
The Java Function Activity Agent dequeues messages of this type,
executes your Java program, and enqueues the results onto the
’Inbound’ queue. The background engine then takes care of
messages on the inbound queue and restarts your original
workflow process. See: Setting Up the Java Function Activity
Agent: page 2 – 86 and Deferred Processing: page 8 – 9.

Note: These ’Outbound’ and ’Inbound’ queues are separate
from the queues used for the Business Event System. See:
Workflow Queue APIs: page 8 – 162.

Note: To execute external Java function activities, you must
include your JAR files in your CLASSPATH.

4. Indicate the result type (a predefined Lookup Type) for this activity.
Result types list the possible results returned by this activity. Your
workflow diagram may branch depending on the value returned
by your completed activity. See: To Create Lookup Types: page
4 – 20.

You can choose <None> as the result type if your activity does not
return a value, or if your workflow process does not depend on the
value returned.

5. Specify the cost of this function activity. See: Activity Cost: page
4 – 47.

6. Choose an icon that identifies your activity. You can use any icon,
as long as the icon is stored in a .ico file, to symbolize the action of
an activity. See: Adding Custom Icons to Oracle Workflow: page
2 – 85.

Choose Browse to view the icon files listed in the workflow icons
subdirectory.

You can also drag and drop icon files from the Windows Explorer
or File Manager onto an activity in your navigator tree to assign
that icon to the activity.

7. Choose Apply to save your changes.

4 – 53Defining Workflow Process Components

8. Select the Details tab to display and modify the optional details of
the activity. See: To Define Optional Activity Details: page 4 – 59.

9. Select the Roles tab page to specify the roles that have access to this
function activity. (This functionality will be supported in a future
release.)

10. Select the Access tab page to set the access levels allowed to modify
this function. See: Allowing Access to an Object: page 4 – 17.

11. The function activity now appears beneath Functions in the
navigator tree. You can review or edit the properties of this activity
at any time by double–clicking on the activity in the navigator tree
or by selecting the activity and choosing Properties from the Edit
menu or by pressing Enter on your keyboard.

12. If your function requires input arguments, you can expose those
arguments in Oracle Workflow Builder as attributes of the function
activity. Function activity attributes behave as parameters whose
values you can modify for each usage of the activity in a process.
Function activity attributes are specific to a function activity and
are not global to a process. See: To Define an Item Type or Activity
Attribute: page 4 – 8.

To create a function activity attribute that references an item type
attribute, select the referenced item type attribute in the navigator
tree, and hold down your mouse select button as you drag the item
type attribute to your function activity. The Default Value region is
automatically set to Item Attribute and references the originating
item attribute.

When you include a function activity as a node in a process, you
can assign a value to the function activity attribute that is specific
to that node. See: To Define Activity Attribute Values: page 5 – 17.

See Also

Using the Edit Button in a Property Page: page 3 – 8

�

4 – 54 Oracle Workflow Guide

� To Create an Event Activity

1. Select the item type that you want to create an event for in the
navigator tree, then choose New Event from the Edit menu. Define
your event activity in the Activity property page that appears.

2. An event activity must have an Internal Name (all uppercase and
no leading/trailing spaces) and a Display Name, which is the
translatable name that appears in your process diagram. Use the
description to provide an explanation about this activity.

Attention: To update the internal name for an activity once it
is defined, you must use a special SQL script called
wfchact.sql. You should only use this script to correct errors in
an activity’s internal name during design time. Do not use this
script to rename activities that are involved in running
instances of processes. See: Wfchact.sql: page 16 – 7.

Caution: Do not include colons ”:” or leading/trailing spaces
in your internal name.

3. Choose an icon that identifies your activity. You can use any icon,
as long as the icon is stored in a .ico file, to symbolize the action of
an activity. See: Adding Custom Icons to Oracle Workflow: page
2 – 85.

Choose Browse to view the icon files listed in the workflow icons
subdirectory.

4 – 55Defining Workflow Process Components

You can also drag and drop icon files from the Windows Explorer
or File Manager onto an activity in your navigator tree to assign
that icon to the activity.

4. Select the Event Action for the activity.

• Receive—Receive an event from the Business Event System.

• Raise—Raise an event to the Business Event System.

• Send—Send an event directly from one Event agent to another
agent without re–raising the event to the Business Event System.

Note: Depending on the event action you select, you may need
to define item type attributes for some or all of the following
event details:

– Event Name

– Event Key

– Event Message

– Event Data

– Out Agent

– To Agent

When you include the event activity as a node in a process, you
can use the item type attributes to specify where to store or
retrieve the required event detail information for that node.
The item type attributes that you use for event details must be
associated with the same item type that the event activity itself
is associated with. See: To Define an Item Type or Activity
Attribute: page 4 – 8 and To Define Event Details for an Event
Node: page 5 – 12.

5. If you are defining a Receive event activity, you can optionally
enter an Event Filter to specify the event that the activity can
receive.

• To allow only a specified event for the activity, enter the full
internal event name.

Note: You can only specify an individual event as the event
filter. The event filter cannot be an event group.

• To allow any event for the activity, leave the Event Filter field
blank.

See: To Define an Event: page 13 – 5.

6. Enter an optional cost for the activity. For event activities with the
event actions Raise or Send, you can use the cost to defer long

4 – 56 Oracle Workflow Guide

running activities to a background engine. See: Activity Cost: page
4 – 47.

7. Choose Apply to save your changes.

8. Select the Details tab to display and modify the optional details of
the activity. See: To Define Optional Activity Details: page 4 – 59.

9. Select the Roles tab page to specify the roles that have access to this
function activity. (This functionality will be supported in a future
release.)

10. Select the Access tab page to set the access levels allowed to modify
this event. See: Allowing Access to an Object: page 4 – 17.

11. The event activity now appears beneath Events in the navigator
tree. You can review or edit the properties of this activity at any
time by double–clicking on the activity in the navigator tree or by
selecting the activity and choosing Properties from the Edit menu
or by pressing Enter on your keyboard.

12. For a Raise event activity, if the event raised by the activity requires
additional parameters to be included in the event message, you can
define those parameters as attributes of the Raise event activity.
When the event is raised, the activity attributes are set as
parameters in the parameter list for the event message. If the event
message is later received by another process, the Workflow Engine
sets the event parameters as item type attributes for that process.
You can modify the values of the attributes for each usage of the
Raise event activity in a process. Event activity attributes are
specific to an event activity and are not global to a process. See: To
Define an Item Type or Activity Attribute: page 4 – 8.

To create an event activity attribute that references an item type
attribute, select the referenced item type attribute in the navigator
tree, and hold down your mouse select button as you drag the item
type attribute to your event activity. The Default Value region is
automatically set to Item Attribute and references the originating
item attribute.

When you include an event activity as a node in a process, you can
assign a value to the event activity attribute that is specific to that
node. See: To Define Activity Attribute Values: page 5 – 17.

Note: A Raise event activity also automatically sets the item
type and item key for the current workflow process in the
parameter list for the event message. If the event message is
later received by another process, the Workflow Engine uses
that item type and item key to automatically set the process

�

4 – 57Defining Workflow Process Components

that raised the event as the parent for the process that receives
the event. See: SetItemParent: page 8 – 79.

� To Create a Process Activity

Before you can draw a workflow process diagram, you must first create
a process activity in the navigator tree to represent the process
diagram.

1. Select the item type that you want to create a process activity for in
the navigator tree, then choose New Process from the Edit menu.
Define your process activity in the Activity property page that
appears.

If a process activity is closed and you want to redisplay it, select
the process activity in the navigator tree and press Enter or select
Properties from the mouse menu button.

2. A process activity must have an Internal Name (all uppercase and
no leading/trailing spaces) and a Display Name, which is the
translatable name that appears in your process diagram. Use the
description to provide an explanation about this activity.

Attention: To update the internal name of an activity once it is
defined, you must use a special SQL script called wfchact.sql.
You should only use this script to correct errors in an activity’s
internal name during design time. Do not use this script to

4 – 58 Oracle Workflow Guide

rename activities that are involved in running instances of
processes. See: Wfchact.sql: page 16 – 7.

Caution: Do not include colons ”:” or leading/trailing spaces
in your internal name.

3. Indicate the result type (a predefined Lookup Type) for this activity.
Result types list the possible results returned by this process. See:
To Create Lookup Types: page 4 – 20.

You can choose <None> as the result type if you do not need to
record any specific result for the completion of your process.

4. Choose an icon that identifies your activity. You can use any icon,
as long as the icon is stored in a .ico file, to symbolize the action of
an activity. See: Adding Custom Icons to Oracle Workflow: page
2 – 85.

Choose Browse to view the icon files listed in the workflow icons
subdirectory.

You can also drag and drop icon files from the Windows Explorer
or File Manager onto an activity in your navigator tree to assign
that icon to the activity.

5. Check Runnable so that the process that this activity represents can
be initiated as a top–level process and run independently. If your
process activity represents a subprocess that should only be
executed if it is called from a higher level process, then uncheck
Runnable. See: CreateProcess: page 8 – 21.

Caution: Oracle Workflow does not support reusing a
subprocess activity multiple times within a process hierarchy.
If you wish to use a subprocess more than once in a process,
you must create a distinct copy of the subprocess for each
instance needed.

6. Choose Apply to save your changes.

7. Select the Details tab to display and modify the optional details of
the activity. See: To Define Optional Activity Details: page 4 – 59.

8. Select the Access tab page to set the access levels allowed to modify
this process. The access you set for a process activity determines
who has access to edit its process diagram. See: Allowing Access
to an Object: page 4 – 17.

9. Choose Apply to save your changes, OK to save your changes and
close the property page or Cancel to cancel your changes and close
the property page.

4 – 59Defining Workflow Process Components

10. The process activity now appears beneath Processes in the
navigator tree. You can review or edit the properties of this activity
at any time by selecting the activity and choosing Properties from
the Edit menu or by pressing Enter on your keyboard.

See Also

Using the Edit Button in a Property Page: page 3 – 8

� To Define Optional Activity Details

1. Select the Details tab of the activity’s property page.

2. If you are creating a process activity, you can specify an error
process to execute in the event that an error occurs in the current
process. Enter the internal name of the item type that owns the
error process and then specify the internal name of the error
process activity to execute. Note that the error process item type
does not need to be open in your current Oracle Workflow Builder
session for you to define it here. See: Default Error Process: page
6 – 26.

3. The effective date tells you when this version of the activity is
available for the Workflow Engine to execute. If the Effective Date
field is blank, the activity is effective immediately.

4 – 60 Oracle Workflow Guide

You set the effective date when you save your changes using the
Save As option in the File menu. All your activity modifications
share the same effective date when you save.

4. Select a value for On Revisit to determine how the Workflow
Engine handles this activity when it is transitioned to more than
once. If this activity is the first activity that is revisited, as in a
loop, you should set On Revisit to specify how you want the
Workflow Engine to process the loop. The first activity in a loop is
also called the pivot activity. For all other activities in a loop, the
value of On Revisit is irrelevant.

If On Revisit is set to Ignore, the Workflow Engine executes the
activity only once, and ignores the activity for all subsequent
revisits.

If On Revisit is set to Reset, the Workflow Engine resets the
completed activities in the loop by traversing through the loop in
reverse order from the pivot activity, executing each activity in
CANCEL mode. You can include special logic in each function’s
CANCEL mode to undo prior operations. The Workflow Engine
then traverses through the loop in forward order, reexecuting each
activity, starting with the pivot activity, in RUN mode.

If On Revisit is set to Loop, the Workflow Engine simply reexecutes
the pivot activity and all activities that follow in the loop, without
resetting, as if they have never been executed before. See: Looping:
page 8 – 10.

5. The version number identifies which revision of the activity you
are examining. The engine ensures that it uses the most recent
updates to an activity by using the latest effective version number
of that activity.

6. Choose Apply to save your changes.

� To Copy an Activity

1. Select the activity to copy in the navigator tree.

2. Hold down your mouse select button as you drag the activity to
the item type branch you want to copy it to.

3. If you copy the activity within the same item type, a property page
will appear prompting you for a new unique internal and display
name for the copied activity.

Note: You can also use the Copy and Paste options in the Edit
menu.

4 – 61Defining Workflow Process Components

4. When you are done, choose OK.

Note: Copying a function, event, or notification activity also
copies any attributes or message associated with it,
respectively.

Voting Activity

You can create a voting activity that lets you send a notification to a
group of users in a role and tally the responses from those users. The
results of the tally determine the activity that the process transitions to
next.

A voting activity is a notification activity that first sends a notification
message to a group of users and then performs a PL/SQL
post–notification function to tally the users’ responses (votes).

The activity attributes you define and the following four fields in the
property pages of the notification activity determine its voting
behavior:

• Message field

• Result Type field

• Expand Roles check box

• Function field

� Creating a Voting Activity

1. Create a voting lookup type that contains the responses you want
to tally in your voting activity. See: To Create Lookup Types: page
4 – 20.

2. Create a voting message that prompts a recipient to respond with
one of the values in the voting lookup type. Complete the Result
tab for the message. Set the lookup type in the Result tab to the
voting lookup type defined in Step 1. See: To Create a Message:
page 4 – 29

3. Select the item type that you want to create a voting activity for in
the navigator tree, then choose New Notification from the Edit
menu.

4. Specify an Internal Name (all uppercase and no leading/trailing
spaces) and a Display Name. Use the description to provide an
explanation about this voting activity.

�

4 – 62 Oracle Workflow Guide

Attention: To update the internal name for an activity once it
is defined, you must use a special SQL script called
wfchact.sql. You should only use this script to correct errors in
an activity’s internal name during design time. Do not use this
script to rename activities that are involved in running
instances of processes. See: Wfchact.sql: page 16 – 7.

Caution: Do not include colons ”:” or leading/trailing spaces
in your internal name.

5. The Result Type field must contain the lookup type that lists the
responses that you want the voting activity to tally. This is the
voting lookup type defined in Step 1.

6. Choose an icon that identifies your voting activity.

7. In the Message field, select the name of the voting message you
created in Step 2. The voting message prompts the recipient for a
response. The response choices are one of the predefined values
specified in your voting lookup type.

8. Check Expand Roles so that the Workflow Engine polls for
responses from the multiple users in the role rather than just from
the first user in the role that replies. See: Notification Activity:
page 4 – 43.

9. In the Function field, specify a function that tallies the responses
from users. You can use the PL/SQL procedure
WF_STANDARD.VOTEFORRESULTTYPE that the Standard Vote
Yes/No activity calls. WF_STANDARD.VOTEFORRESULTTYPE is
a generic tallying function. The Result Type that you specify for the
voting activity defines the possible responses for the function to
tally. The activity attributes that you define for the voting activity
determine how the function tallies the responses. See: Vote Yes/No
Activity: page 6 – 10.

Alternatively, you can specify your own custom tallying function,
but you should make sure it conforms to the standard API for
function activities. Specify the procedure using the format:
<package_name>.<procedure_name>. See: Standard API for PL/SQL
Procedures Called by Function Activities: page 7 – 3.

10. Choose Apply to save your changes.

11. Select the Details tab to display and modify the Details property
page of the activity. See: To Define Optional Activity Details: page
4 – 59.

4 – 63Defining Workflow Process Components

12. Select the Roles tab page to specify the roles that have access to this
notification activity. (This functionality will be supported in a
future release.)

13. Select the Access tab page to set the access levels allowed to modify
this notification. See: Allowing Access to an Object: page 4 – 17.

14. If you use the WF_STANDARD.VOTEFORRESULTTYPE tallying
function, create a custom activity attribute of type Number for each
possible voting response. Remember that each possible voting
response is a lookup code associated with the voting activity’s
result type. Hence, when you define your custom activity
attribute, the internal name of the activity attribute must match the
internal name of the lookup code, that is, the response value.

The value of the activity attribute can either be blank or a number
that represents the percentage of votes required for a particular
result. If you provide a percentage, then the result is matched if the
actual tallied percentage for that response is greater than your
specified percentage. If you leave an activity attribute value blank,
then the Workflow Engine treats the response for that activity
attribute as a default. In other words, if no particular percentage is
satisfied after the votes are tallied, then the response that received
the highest number of votes among those associated with a blank
activity attribute becomes the result.

Note: If the tallied votes do not satisfy any response
percentages and there are no default responses (blank activity
attributes) specified, the result is #NOMATCH. If a <No
Match> transition from the voting activity exists, then the
Workflow Engine takes this transition, otherwise, it takes the
<Default> transition. If no <Default> transition exists, it raises
an error that no transition for the result is available
(ERROR:#NOTRANSITION).

Note: If the tallied votes satisfy more than one response
percentage or if no response percentage is satisfied, but a tie
occurs among the default responses, the result is #TIE. If a
<Tie> transition from the voting activity exists, then the
Workflow Engine takes this transition, otherwise, it takes the
<Default> transition. If no <Default> transition exists, it raises
an error that no transition for the result is available
(ERROR:#NOTRANSITION).

15. If you use the WF_STANDARD.VOTEFORRESULTTYPE tallying
function, then in addition to defining your set of custom activity
attributes, you must also define an activity attribute called Voting
Option, whose internal name must be VOTING_OPTION. You can

4 – 64 Oracle Workflow Guide

also copy the Voting Option activity attribute from the Vote Yes/No
standard activity.

The Voting Option activity attribute specifies how the votes are
tallied. The possible values are:

• ”Wait for All Votes”—the Workflow Engine waits until all votes
are cast before tallying the results as a percentage of all the users
notified. If a timeout condition occurs, the Workflow Engine
calculates the resulting votes as a percentage of the total votes
cast before the timeout occurred.

• ”Tally on Every Vote”—the Workflow Engine keeps a running
tally of the cumulative responses as a percentage of all the users
notified. If a timeout condition occurs, then the responses are
tallied as a percentage of the total number of votes cast. Note
that this option is meaningless if any of the custom response
activity attributes have a blank value.

• ”Require All Votes”—the Workflow Engine evaluates the
responses as a percentage of all users notified only after all votes
are cast. If a timeout condition occurs, the Workflow Engine
progresses along the standard timeout transition, or if none is
available, raises an error, and does not tally any votes.

See Also

Vote Yes/No Activity: page 6 – 10

Example Voting Methods

1. Simple Majority

The following table shows the custom response activity attribute
value assigned to each response for a simple majority voting
method.

Response Custom Response Activity Attribute Value

A 50

B 50

C 50

Table 4 – 3 (Page 1 of 1)

4 – 65Defining Workflow Process Components

The result is any response that gets more than fifty percent of the
votes. If no response gets more than fifty percent, the result is that
no match is found (#NOMATCH).

2. Simple Majority with Default

The following table shows the custom response activity attribute
value assigned to each response for a simple majority with default
voting method.

Response Custom Response Activity Attribute Value

A 50

B 50

C blank

Table 4 – 4 (Page 1 of 1)

If response A gets more than fifty percent of the votes, A is the
result. Similarly if response B gets more than fifty percent of the
votes, B is the result. If neither response A nor B gets more than
fifty percent of the votes, then C is the result.

3. Simple Majority with Multiple Defaults

The following table shows the custom response activity attribute
value assigned to each response for a simple majority with multiple
defaults voting method.

Response Custom Response Activity Attribute Value

A 50

B blank

C blank

Table 4 – 5 (Page 1 of 1)

If response A gets more than fifty percent of the votes, A is the
result. If A gets fifty percent of the votes, or less, then response B
or C is the result depending on which of the two received the
higher number of votes. If A gets fifty percent of the votes, or less,
and both B and C receive the same number of votes, then the result
is a tie (#TIE).

4 – 66 Oracle Workflow Guide

4. Popularity

The following table shows the custom response activity attribute
value assigned to each response for a popularity voting method.

Response Custom Response Activity Attribute Value

A blank

B blank

C blank

Table 4 – 6 (Page 1 of 1)

The result is the response that gets the highest number of votes.

5. Black Ball

The following table shows the custom response activity attribute
value assigned to each response for a black ball voting method.

Response Custom Response Activity Attribute Value

YES 100

NO 0

Table 4 – 7 (Page 1 of 1)

Any vote for response NO makes NO the result.

6. Jury

The following table shows the custom response activity attribute
value assigned to each response for a jury voting method.

Response Custom Response Activity Attribute Value

GUILTY 100

NOT_GUILTY 100

Table 4 – 8 (Page 1 of 1)

A unanimous response is required, otherwise no match is found
(#NOMATCH).

4 – 67Defining Workflow Process Components

See Also

Vote Yes/No Activity: page 6 – 10

4 – 68 Oracle Workflow Guide

Deleting Objects in Oracle Workflow Builder

You can delete an object in Oracle Workflow Builder even if the object
is referenced by other objects, assuming the object is not protected
against customizations. If the object you want to delete is referenced
by other objects, a Workflow Error dialog box appears, warning you
about the foreign key references that will break. You can proceed to
delete the object anyway or cancel the action. If you choose to delete,
then when you save or verify the workflow process definition, a
Workflow Error dialog box appears, reporting all broken foreign key
references that exist in the definition.

As a result of this behavior, you can load workflow definitions with
invalid foreign keys into Oracle Workflow Builder to correct. Oracle
Workflow Builder preserves the original internal name reference for
any missing foreign key, and displays it in a validation error message
when you load the process definition. You can restore a broken foreign
key reference in a process definition by recreating the deleted object
with its original internal name under its original item type.

Note: You can also delete an entire item type definition in
Oracle Workflow Builder.

4 – 69Defining Workflow Process Components

Modifying Objects in Oracle Workflow Builder

Before you modify the definitions of any Workflow objects, you should
ensure that your changes will not adversely affect any active work
items that are based on those definitions. Changes to Oracle Workflow
objects have different effects on active work items depending on
whether or not the objects support versioning.

For a Workflow object, versioning means that either the object itself or
the object that owns it supports multiple occurrences of the same object
in the database, distinguished only by a version number, begin date,
and end date. For example, the following table shows two versions of a
VOTE activity that could exist simultaneously in the WF_ACTIVITIES
table.

Name Version Begin Date End Date Message Lookup Type

Vote 1 01–JAN–1998 31–DEC–1998 Vote Message Yes/No

Vote 2 01–JAN–1999 <blank> New Vote
Message

Approval

Table 4 – 9 (Page 1 of 1)

When you modify a Workflow object that supports versioning, both the
original version and the new version exist in the database. Any active
work items that reference that object will continue to completion still
using the same version that was in effect when the work items were
initiated. Only new work items initiated after the change will use the
new version.

In the above example, work items that are initiated between January 1,
1998 and December 31, 1998 will send the message Vote Message with
result options of Yes or No, whether the work items are completed
before January 1, 1999 or not. Only work items that are initiated on or
after January 1, 1999 will send the message New Vote Message with
result options of Approve or Reject.

Note: All process definition information is versioned.

When you modify a Workflow object that does not support versioning,
however, the previous definition of the object is updated and only the
modified definition exists in the database. Any active work items that
reference that object will use the modified object after the change.

If the modified object is no longer compatible with the rest of the
workflow definition used by the work item, errors may arise. To avoid
such errors, you must take all references to the object into consideration

4 – 70 Oracle Workflow Guide

when planning your changes to ensure that the changes do not cause
any incompatibility.

Note: If your situation allows, you can avoid the risk of
backward incompatibility by aborting and restarting all active
work items after you make your changes. This method forces
the restarted work items to use the modified definitions of all
Workflow objects, including those that support versioning as
well as those that do not.

Workflow Objects That Support Versioning

The following Workflow objects support versioning:

• Notifications

• Functions

• Events

• Processes and subprocesses

• Process activities (nodes)

• Activity attributes

• Activity attribute values

• Activity transitions

When you modify any of these objects in the Workflow Builder and
save them to the database, the Workflow Loader does not update the
existing definition of the object. Instead, a new version of the object or
owning object is created.

As a result, you can modify any of these objects without affecting active
work items that were initiated before the change.

For example:

• If you update a notification activity to reference a new message,
the notification will be versioned.

• If you update a function activity to reference a new lookup type,
the function will be versioned.

• If you update a function activity to reference a new API, the
function will be versioned.

4 – 71Defining Workflow Process Components

• If you remove a process activity, or node, from a process
diagram, the owning process will be versioned, as well as all the
process activities that exist within the process.

• If you add an activity attribute to an activity, the owning activity
will be versioned.

The modifications in all of these examples will affect only work items
that are initiated after the changes are made.

Workflow Objects That Do Not Support Versioning

The following Workflow objects do not support versioning:

• Item attributes

• Messages

• Lookups

• PL/SQL code referenced by function activities

When you modify any item attributes, messages, or lookups in the
Workflow Builder and save them to the database, the Workflow Loader
updates the existing definition of the object. Also, if you modify the
existing PL/SQL API for a function activity, the function activity will
reference the updated API stored in the database.

As a result, if you modify any of these objects, your changes
immediately affect any active work items that reference the object. Plan
your changes carefully to ensure that the changes do not cause any
backward incompatibility.

Note: The Workflow Builder does not support the editing of
PL/SQL code. PL/SQL code is listed as a Workflow object here
solely for the purpose of explaining the consequences of
changing the code referenced by a Workflow function activity.

Item Attributes

When a work item is initiated, Oracle Workflow creates a runtime copy
of each item attribute that is defined for that item type. The Workflow
Engine refers to these runtime copies whenever an item attribute is
referenced in the PL/SQL code for a function activity in the workflow
process.

Adding a new item attribute after work items have been initiated will
not affect the active work items. However, these work items will not

4 – 72 Oracle Workflow Guide

include the new item attribute unless you specifically create the
attribute for them by calling the AddItemAttr() or AddItemAttributeArray
APIs. If you also add references to the new item attribute in the existing
PL/SQL code within the workflow process, those references may cause
errors in active work items that do not include the attribute.

For example, if you change the PL/SQL API for a function activity by
calling a Workflow Engine API to communicate with a new item
attribute, the function activity will fail for active work items that do not
have the new item attribute defined.

You should plan carefully when making any modifications to the
existing PL/SQL code within a workflow process to ensure that you do
not add references to a new item attribute without also creating the
item attribute for active work items that require it. See: PL/SQL Code:
page 4 – 74.

Note: You can, however, add references to new item attributes
in the API that starts a workflow process, without making
special provisions for active work items. For example, you can
call the SetItemAttribute or SetItemAttributeArray APIs to
populate the new item attributes at the start of the process.
Active work items will not be affected by such changes, since
these work items have already passed through this code.

Messages

When the Workflow Engine requests the Notification System to send a
message, the Notification System creates a notification attribute in the
notification tables for every message attribute. The notification
attribute rows contain the variable data that will be token–replaced into
the message body, including the subject line and body text, at runtime.

The message body, however, is not copied into the notification tables.
Instead, the message body is referenced by the various Notification
System APIs at runtime, when the notification is displayed to the user.
As a result, any modifications to a message body will affect
notifications in active work items that were sent before the change, as
well as notifications that are sent after the change.

You can make certain types of modifications to a message body without
risking incompatibility errors. These modifications include:

• Adding static text

• Editing static text

• Removing static text

• Removing message attribute tokens

4 – 73Defining Workflow Process Components

For example, if you add a static sentence such as ”Please approve
within five days” to a message body, all notifications in active work
items will include the additional sentence when you access the
notifications. The Notification System can display the modified
message body without any errors because no further information is
required to resolve the additional sentence.

However, inappropriate modifications, such as adding tokens for
newly created message attributes, may cause notifications in active
work items to be displayed incorrectly. You should plan your changes
carefully to avoid errors.

If you need to add tokens for new message attributes to a message
body, you should implement the change by creating a new message
rather than by modifying the existing message. You can attach the new
message to your existing notification activity without affecting active
work items, since notification activities support versioning.

For example, if you create a new message attribute such as Approver
Name and you add a token for that attribute in the message body, all
notifications in active work items will include the new token when you
access the notifications. However, notifications that were sent before
the change will not include the new message attribute Approver Name as
a notification attribute. The Notification System will not be able to
resolve the reference to the new message attribute and will display the
token ”&APPROVER_NAME” in the notifications instead.

In this example, instead of modifying the original message body, you
should create a new message that includes the new message attribute,
add the token for the new attribute to the body of the new message,
and attach the new message to your notification activity. When you
save your changes, the notification activity will be versioned. Then
active work items will continue to reference the old version of the
notification activity, and the incompatible token will not appear in
those notifications.

Lookup Types and Codes

Lookup types have the following important uses in Oracle Workflow:

• Determining the possible completion statuses (lookup codes) for
workflow activities

• Determining the possible completion statuses (lookup codes) for
’Respond’ message attributes.

Inappropriate modifications to lookup types may cause active work
items that reference those lookup types to fail.

4 – 74 Oracle Workflow Guide

To avoid errors caused by backward incompatibility, follow these
guidelines for lookup types that are referenced by active work items:

• Do not delete lookup types.

• Do not delete lookup codes from existing lookup types.

• Do not add lookup codes to existing lookup types.

If you need to make any of the above changes, you should implement
the change by creating a new lookup type rather than by modifying the
existing lookup type.

You can attach new lookup types to existing activities without affecting
active work items, since activities support versioning. However, you
should not attach new lookup types to existing message attributes,
since Workflow messages do not support versioning.

The following examples show some errors that can be caused by
inappropriate lookup type modifications:

• If you add a lookup code to a lookup type that is referenced by a
’Respond’ message attribute, the new lookup code will be
available for users to select as a response to a notification.
However, previous versions of the notification activity will not
have branching logic modeled for the new lookup code. If a user
selects the new code, the process will enter an ’ERROR’ state.

• If you delete a lookup code from a lookup type that is referenced
by a ’Respond’ message attribute, users will no longer be able to
choose that result code to respond to a notification.

PL/SQL Code

Although function activities support versioning, the underlying
PL/SQL code does not support versioning, unless you implement
versioning for your code yourself. Modifying PL/SQL code without
versioning changes the business flow for active work items that
reference that code. Inappropriate modifications may cause these work
items to fail.

To prevent changes in the PL/SQL API for a function activity from
affecting active work items, you should implement the changes by
creating a new API rather than by modifying the existing API. You can
attach the new API to your existing function activity without affecting
active work items, since function activities support versioning.

If you need to modify an existing API and you cannot create a new API
instead, you should plan your changes carefully to ensure that the
changes do not cause any backward incompatibility.

4 – 75Defining Workflow Process Components

For example, if you plan to add a lookup code to the group of values
that an API can return, you should first ensure that the function activity
node has an outgoing transition, such as ’Default,’ that the Workflow
Engine can follow when the API returns that value. Otherwise, the
process will enter an ’ERROR’ state when that value is returned. If
there is no appropriate outgoing transition, you must implement the
change in a new API and update the process to model branching logic
for the additional return value.

Also, if you change the existing PL/SQL API for a function activity by
calling a Workflow Engine API to communicate with a new item
attribute, you should ensure that you also create the new item attribute
for active work items. Otherwise, the function activity will fail for
active work items which do not have the new item attribute defined.

Calls to any of the following APIs with newly created item attributes as
parameters may cause the function activity to fail if active work items
do not have the item attributes defined:

• wf_engine.SetItemAttrText

• wf_engine.SetItemAttrNumber

• wf_engine.SetItemAttrDate

• wf_engine.SetItemAttrEvent

• wf_engine.SetItemAttrTextArray

• wf_engine.SetItemAttrNumberArray

• wf_engine.SetItemAttrDateArray

• wf_engine.GetItemAttrText

• wf_engine.GetItemAttrNumber

• wf_engine.GetItemAttrDate

• wf_engine.GetItemAttrEvent

To create copies of a new item attribute for active work items, call
AddItemAttr() or one of the AddItemAttributeArray APIs. You can place
this call either in a custom upgrade script or in an exception handler.

• Upgrade script – Before you modify your API, write and execute
a custom upgrade script that creates and populates the new item
attribute for any active work items that reference that API. The
following example shows one way to structure an upgrade
script.

4 – 76 Oracle Workflow Guide

for <each active work item>

 begin

 wf_engine.AddItemAttr(itemtype,

 itemkey,

 ’<new_attribute_name>’);

 wf_engine.SetItemAttrText(itemtype,

 itemkey,

 ’<new_attribute_name>’,

 ’<New attribute value>’);

 end;

end loop;

Note: Active work items are identified as those items for
which WF_ITEMS.END_DATE is null.

• Exception handler – After the reference to the new item attribute
in your modified API, add an exception handler to create and
populate the attribute when the attribute does not already exist.
The following example shows one way to structure such an
exception handler.

procedure <procedure_name>(

 itemtype in varchar2,

 itemkey in varchar2,

 actid in number,

 funcmode in varchar2,

 result in out varchar2)

is

begin

 ––

 –– RUN mode – normal process execution

 ––

 if (funcmode = ’RUN’) then

 –– your run code goes here

 null;

 wf_engine.SetItemAttrText(itemtype,

 itemkey,

 ’<existing_attribute_name>’,

 ’<Existing attribute value>’);

 begin

 wf_engine.SetItemAttrText(itemtype,

 itemkey,

 ’<new_attribute_name>’,

 ’<New attribute value>’);

4 – 77Defining Workflow Process Components

 exception

 when others then

 if (wf_core.error_name = ’WFENG_ITEM_ATTR’) then

 wf_engine.AddItemAttr(itemtype,

 itemkey,

 ’<new_attribute_name>’);

 wf_engine.setitemattrtext(itemtype,

 itemkey,

 ’<new_attribute_name>’,

 ’<New attribute value>’);

 else

 raise;

 end if;

 end;

 –– example completion

 result := ’COMPLETE:’;

 return;

 end if;

 ––

 –– CANCEL mode – activity ’compensation’

 ––

 –– This is in the event that the activity must be undone,

 –– for example when a process is reset to an earlier point

 –– due to a loop back.

 ––

 if (funcmode = ’CANCEL’) then

 –– your cancel code goes here

 null;

 –– no result needed

 result := ’COMPLETE’;

 return;

 end if;

 ––

 –– Other execution modes may be created in the future. Your

 –– activity will indicate that it does not implement a mode

 –– by returning null

 ––

 result := ’’;

 return;

exception

 when others then

4 – 78 Oracle Workflow Guide

 –– The line below records this function call in the error

 –– system in the case of an exception.

 wf_core.context(’<package_name>’,

 ’<procedure_name>’,

 itemtype,

 itemkey,

 to_char(actid),

 funcmode);

 raise;

end <procedure_name>;

See Also

Item Attributes: page 4 – 71

C H A P T E R

5
T

5 – 1Defining a Workflow Process Diagram

Defining a Workflow
Process Diagram

his chapter tells you how to use Oracle Workflow Builder to
define a workflow process diagram and how to load roles from the
database so you can assign notification activities to specific roles.

5 – 2 Oracle Workflow Guide

Process Window

The Process window in Oracle Workflow Builder graphically represents
the activities (icons) and transitions (arrows) for a particular process.
Each activity is a node, a logical step that contributes toward the
completion of a process.

You can drag and drop activities from the navigator tree into the
Process window or create activities directly in the Process window.
The properties for an activity node may be viewed or edited by double
clicking on the node in the Process window with the select mouse
button. You define transitions between activities by drawing arrows
from one node to the next using the secondary mouse button.

Notification, function, event, and process activities make up the nodes
of a process. If a process contains a process activity in its diagram, that
process activity is known as a subprocess. There is no restriction on the
depth of this hierarchy. To display the subprocess diagram in a Process
window, double–click on the subprocess activity node in the parent
Process window.

Transitions

Transitions appear as arrows in your diagram and represent the
completion of one activity and the activation of another. For an activity
that completes with a result type of <None>, any transition that you
draw from it simply appears as an arrow to the next activity, indicating
that as long as the originating activity completes, the process
transitions to the next activity.

For an activity that has a defined result type, you must associate the
transition arrow that you create with one of the activity’s possible
results. The result that the activity returns when it completes then
determines what the next eligible activity is, as defined by the
results–based transitions that originate from the completed activity.
For example, ”Notify Approver” with a result of ’REJECTED’
transitions to ”Reject Requisition.” See: Requisition Process Activities:
page 15 – 15.

You can also create a <Default>, <Any>, or <Timeout> transition for an
activity that has a defined result type. The Workflow Engine follows a
<Default> transition if no other transition matching the completion
result exists. The Workflow Engine follows an <Any> transition
regardless of what completion result the activity returns. This allows
you to include a generic activity in the process that the Workflow
Engine executes in parallel with the result–specific activity. The
Workflow Engine follows a <Timeout> transition if the notification

5 – 3Defining a Workflow Process Diagram

activity times out before completion. See: Setting Up Background
Workflow Engines: page 2 – 43.

Activities can have multiple transitions for a single result to create
parallel branches.

Timeout Transitions

Draw a <Timeout> transition from a notification activity to some other
activity to force the process to perform the other activity if the
notification activity does not complete by a specified period of time.
See: To Define Nodes in a Process: page 5 – 8.

When an activity times out, Oracle Workflow marks the activity as
timed out and then cancels any notification associated with the timed
out activity. The Notification System sends a cancellation message to
the performer only if the cancelled notification was expecting a
response and the performer’s notification preference is to receive
e–mail.

Processing then continues along the <Timeout> transition as indicated
by your process definition. If a timed out activity does not have a
<Timeout> transition originating from it, Oracle Workflow executes the
error process associated with the timed out activity or its parent
process(es). See: To Define Optional Activity Details: page 4 – 59.

Note: You must have a background engine set up to process
timed out activities. See: Setting Up Background Workflow
Engines: page 2 – 43.

Creating Multiple Transitions to a Single Activity

You can create multiple transitions to a single activity in a process
diagram. Sometimes these multiple transitions indicate that there are
multiple ways that the process can transition to this one node and you
may want the node to execute just once.

In other cases, the multiple transitions may indicate that the activity
may be transitioned to multiple times because it is the starting point of
a loop. In these cases, you want the activity to be reexecuted each time
it is revisited.

The On Revisit flag for an activity determines whether the activity
reexecutes when it is revisited more than once. It is an important flag
to set for the pivot activity of a loop. On Revisit is set initially in an
activity’s Details property page. However, for each usage of an activity
in a process, you may change On Revisit for that node in the activity’s
Node property page. You can also use the standard Loop Counter

5 – 4 Oracle Workflow Guide

activity as the initial activity in a loop to control how many times a
process can transition through a loop. See: Looping: page 8 – 10 and
Loop Counter Activity: page 6 – 7.

Suggestion: If you have multiple incoming transitions from
parallel branches, you should always use an AND, OR, or
custom join activity to merge those branches. This is especially
true if after merging the parallel branches, you want to create a
loop in your process. By using a joining activity to merge
parallel branches and designating the following activity as the
start of the loop, you create a less complicated process for the
engine to execute. See: Standard Activities: page 6 – 2.

Designating Start and End Activities

Each process has to have a Start activity that identifies the beginning
point of the process. You may designate any node from which it is
logical to begin the process as a Start activity. When initiating a
process, the Workflow engine begins at the Start activity with no IN
transitions (no arrows pointing to the activity). If more than one Start
activity qualifies, the engine runs each possible Start activity and
transitions through the process until an End result is reached. The
engine may execute acceptable Start activities in any order. Processes
may contain multiple branches that each have an End activity. When
the Workflow Engine reaches an End activity, the entire process ends
even if there are parallel branches still in progress.

An End activity should return a result that represents the completion
result of the process. The result is one of the possible values from that
process activity’s result type.

Start activities are marked with a small green arrow, and End activities
by a red arrow that appear in the lower right corner of the activity
node’s icon in the Process window.

Initiating a Process

A workflow process begins when an application calls the Workflow
Engine CreateProcess() and StartProcess() APIs or when a Business
Event System subscription sends an event to launch the process. A
subprocess is started when the Workflow Engine transitions to a
process activity that represents the subprocess.

To launch a workflow process using the Business Event System, follow
these steps:

1. Define a business event.

5 – 5Defining a Workflow Process Diagram

2. Define a subscription to this business event. In the subscription
properties, specify the workflow item type and process that you
want to launch.

By default, Oracle Workflow uses the event key as the item key for
the workflow process that is launched. If you want to generate the
item key based on a custom rule, create a function that populates
the correlation ID in the event message with the item key you want,
and assign that function as the subscription’s rule function.

3. Add the Raise() API to your custom application code at the point
where you want to launch the workflow process.

See Also

Workflow Engine APIs: page 8 – 19

Raise: page 8 – 261

Managing Business Events: page 13 – 2

Diagramming a Process

This section discusses how to draw and define a workflow process in
the Process window:

• To Add Nodes to a Workflow Process: page 5 – 6

• To Define Nodes: page 5 – 8

• To Define Event Details for an Event Node: page 5 – 12

• To Define Activity Attribute Values: page 5 – 17

• To Create and Edit a Transition: page 5 – 18

• To Display a Process Overview: page 5 – 19

• To Print a Process: page 5 – 20

• To Copy a Process Diagram to the Clipboard: page 5 – 20

• To Validate a Process Definition: page 5 – 21

5 – 6 Oracle Workflow Guide

� To Add Nodes to a Workflow Process

1. To begin drawing a process diagram, you must first display the
Process window for your process activity. To display a process
window, you can do one of several things:

• Double–click on a predefined process activity on the navigator
tree.

• Select a predefined process activity and press Ctrl + E.

• Select a predefined process activity and choose Process Details
from the Edit menu.

• Use the Quick Start Wizard to create a new process activity. See:
To Use the Quick Start Wizard: page 3 – 18.

A Process window opens with the name of your process in the
window title.

2. Create a new node in a process by using one of the following
methods:

• Drag and drop a notification, function, event, or process activity
from the navigator tree into the Process window. The activity
you drag must belong to the same data store as the process you
are dragging it to.

5 – 7Defining a Workflow Process Diagram

Note: If you want to drag an activity into a process, where the
activity is in a different data store than the process you are
dragging it to, then you must first copy the item type that the
activity belongs to into the same data store as the process.

• Choose the New Function, New Process, New Event, or New
Notification toolbar button to create a new activity.

• Choose Create Activity from the right mouse button menu while
your cursor is in the Process window to create a new activity
node.

3. You can also create a new node using the right mouse button menu.
You can create a new function, notification, event, or process. An
Activities property page appears for you to select the activity for
this node. See: To Define Nodes in a Process: page 5 – 8.

4. In the Process window, you can display information about an
activity by moving your mouse over the activity. The Label Name,
Internal Name, Display Name, Comment and Performer, appears
in a ”tool–tip”–style display.

5. If you single click on an activity node in the Process window,
Oracle Workflow Builder expands the navigator tree and highlights
the master activity of the node you select.

6. Create an arrow (transition) between two activity nodes by holding
down your right mouse button and dragging your mouse from a
source activity to destination activity.

7. If the source activity has no result code associated with it, then by
default, no label appears on the transition. If you specifically
choose to show the label for such a transition, the label <Default>
appears. See: To Create and Edit a Transition: page 5 – 18.

If the source activity has a result code associated with it, then a list
of lookup values appears when you attempt to create a transition to
the destination activity. Select a value to assign to the transition.
You can also select the values <Default>, <Any>, or <Timeout> to
define a transition to take if the activity returns a result that does
not match the result of any other transition, if the activity returns
any result, or if the activity times out, respectively.

You can also drag and drop a lookup code from the navigator tree
onto an existing transition in the Process window to change the
result of that transition. The lookup code you drag and drop must
belong to the same data store and same lookup type as the lookup
code you replace.

5 – 8 Oracle Workflow Guide

8. You can select an entire region of a process diagram, containing
multiple activity nodes and transitions, and make a copy of the
selection by holding down the Control or Shift key as you drag the
selection to a new position in the Process window.

Caution: Oracle Workflow does not support reusing a
subprocess activity multiple times within a process hierarchy.
If you wish to use a subprocess more than once in a process,
you must create a distinct copy of the subprocess for each
instance needed.

9. You should turn on grid snap from the View menu to snap your
activity icons to the grid when you complete your diagram. Grid
snap is initially turned on by default until you change the setting,
at which point the latest setting becomes your default.

See Also

Process Window Toolbar: page A – 8

� To Define Nodes in a Process

1. Open the Process window for your process activity.

2. To create a new function, notification, event, or process node, first
select the New Function, New Notification, New Event, or New
Process icon from the Process window toolbar. Next, click on the
position within the Process window where you want to place this
new node. The property page for the new node appears.

Note: You can also create a new node by dragging and
dropping a predefined activity from the navigator tree into the
process window. This automatically populates the node’s
property page with predefined information. Double–click on
the node and skip to Step 5 to further edit its property page.

3. In the Item Type field, select the item type that you want this
activity node to be associated with.

4. Choose one of the following methods to define the remaining
information for the node.

• Select either the internal name or display name of a predefined
activity. Oracle Workflow Builder then populates all the fields
with predefined information from the master activity as shown
in the Navigator window.

5 – 9Defining a Workflow Process Diagram

• Alternatively, choose the New button to define a new activity. To
complete the following tabs of the property page, refer to the
sections listed:

– Process—To Create a Process Activity: page 4 – 57

– Function—To Create a Function Activity: page 4 – 50

– Notification—To Create a Notification Activity: page 4 – 48

– Event—To Create an Event Activity: page 4 – 54

– Details—To Define Optional Activity Details: page 4 – 59

– Roles—The information in this tab is currently not
supported.

– Access—To Set the Access Level for an Object: page 4 – 18

Caution: Any changes that you make to the any of the above
tabs automatically propagate to the master activity and affect
all other instances of that activity. Only changes that you make
to the Node and Node Attributes tabs, and to the Event Details
tab for an event activity, are local and specific to the current
node activity.

5. Select the Node tab to specify information that is specific to this
node. Specify a Label for the node. Since an activity can be used
more than once in any given process, the Label field lets you give a
unique name to the instance of this particular activity in the
process. By default, the label name is the activity name, but if the

�

�

5 – 10 Oracle Workflow Guide

activity is used more than once in the process, –N is appended to
the activity name, where N represents the ’Nth’ instance of the
activity in use.

Attention: When you call most Oracle Workflow APIs, you
must pass the activity’s label name and not its activity name.
See: Workflow Engine APIs: page 8 – 19.

6. Indicate if the current node is a start or end activity in your
process, by choosing ’START’ or ’End’, respectively. ’NORMAL’ is
the default if it is neither. You may have multiple START and END
nodes in your process.

A Start activity is marked (Start) and has a small green arrow in its
activity icon, and an End activity is marked (End) and has a red
arrow in its activity icon.

Attention: The Start/End field is always set to Normal by
default for all activity nodes. Even if you use the Standard
Start or Standard End activity, you must manually edit the
Start/End field to be either Start or End, respectively.

7. For an END node, you must also select a value for the final process
result if the overall process activity has a result type associated
with it. The list of values for the final process result is derived
from the lookup type specified as the process activity’s result type.

8. You can provide a comment to yourself about this node.

9. For a notification that requires a response, a process activity that is
a subprocess within another process, an event activity with an
event action of Receive, or a blocking function activity, specify
whether the activity must be completed by some specified time. If
the activity is not completed by a given time, you can redirect the
parent process to transition to a different activity. See: Timeout
Transitions: page 5 – 3.

Choose ’No Timeout’ if the activity does not have to be completed
by a given time.

Choose ’Relative Time’ if you want the activity to be completed by
some constant relative time. You can enter any combination of
days, hours and minutes to specify when the activity times out.
The value you enter is interpreted as a relative offset from the begin
date of the activity, in the unit of MINUTES. A relative timeout
value of zero means no timeout.

Choose ’Item Attribute’ if you want the activity to be completed by
some relative time that is computed dynamically at runtime. Note
that you must first create an item attribute of type number to store

�

5 – 11Defining a Workflow Process Diagram

the computed timeout value and reference that predefined item
attribute here. See: Item Type Attributes: page 4 – 2 and To Define
an Item Type or Activity Attribute: page 4 – 8.

Attention: The dynamic timeout value stored in this attribute
is interpreted as a relative offset from the begin date of the
activity, in the unit of MINUTES. A null timeout value or a
value of zero means no timeout.

10. For a notification activity node, or for an event activity node with
an event action of Send, you can override the priority assigned to
the activity’s message. Choose ’Default’ to keep the default
priority of the message.

Choose ’Constant’ to override the default priority with the new
specified priority level.

Choose ’Item Attribute’ to override the default priority with a new
priority level that is dynamically determined at runtime. Note that
you must first create an item attribute of type number to store the
computed priority value and reference that predefined item
attribute here. See: Item Type Attributes: page 4 – 2 and To Define
an Item Type or Activity Attribute: page 4 – 8.

Note: The computed priority value can be any number
between 1–99. Oracle Workflow automatically converts the
number to a priority level as follows: 1–33 = High,
34–66=Normal, and 67–99=Low.

11. For a notification activity node, specify the performer of the
activity. The performer is the role to whom the notification is sent.
You may either select a constant role name or an item type attribute
that dynamically determines the role at runtime. Note that you
must first create an item attribute of type role to store the
computed role name and reference that predefined item attribute
here. See: Item Type Attributes: page 4 – 2, To Define an Item Type
or Activity Attribute: page 4 – 8, and Roles: page 5 – 24.

Note: If you set the Performer Type to Constant and you are
connected to the database and have loaded roles from the
database, you can select a constant role name from the
Performer poplist. If you are working in a .wft file data store
without any open connection to the database, you can directly
type in a valid role display name in the Performer field. When
you upload the file to a database, the role will be resolved to
the appropriate role data stored in the database based on the
role display name you entered.

Note: When you assign a notification to a multi–user role, the
Workflow Engine keeps track of the individual from that role

5 – 12 Oracle Workflow Guide

that actually responds to the notification. See: Respond API:
page 8 – 211.

Note: Although Oracle Workflow Builder allows you to
specify a performer for any type of node activity, Oracle
Workflow only considers the value of Performer for notification
activity nodes.

12. Choose Apply to save your changes, OK to save your changes and
close the property page or Cancel to cancel your changes and close
the property page.

When you save and close your property page, the activity node
appears in the position you specified in the Process window. If this
is a new activity you created, a corresponding master activity is
also created under the appropriate branch in the navigator tree.

13. If the node is an event activity, you can specify additional required
event information by choosing the Event Details tab. See: To Define
Event Details for an Event Node: page 5 – 12.

14. If the node is a function, notification, or event activity and the
activity has activity attributes, you can assign values to those
activity attributes by choosing the Node Attributes tab. See: To
Define Activity Attribute Values: page 5 – 17.

15. If the node is a process activity, then a small subprocess overlay
icon appears over the upper right corner of process activity icon.
The subprocess overlay icon identifies the node as a subprocess
within the process diagram.

See Also

To Find an Object in the Navigator Tree: page 3 – 6

Using the Edit Button in a Property Page: page 3 – 8

� To Define Event Details for an Event Node

The event action defined for the event activity determines which event
details you must define for an event node. For each event detail, it is
either required or optional to use an item type attribute to store or
retrieve the detail information. Note that you must first create item
type attributes of the appropriate types before you can reference those
predefined item attributes here. The item type attributes you use for
event details must be associated with the same item type that the event
activity itself is associated with. See: Item Type Attributes: page 4 – 2
and To Define an Item Type or Activity Attribute: page 4 – 8.

5 – 13Defining a Workflow Process Diagram

1. Display the property pages of an event activity node. Select the
Event Details tab.

2. For an activity with the event action Receive, enter the following
event details:

• Event Name—Optionally select an item type attribute of type
text where you want to store the event name that the node
receives.

Note: The event activity can only receive events that match the
event name specified as the event filter. See: To Create an Event
Activity: page 4 – 54.

• Event Key—Optionally select an item type attribute of type text
where you want to store the event key that the node receives.

• Event Message—Optionally select an item type attribute of type
event where you want to store the event message that the node
receives.

Note: When the activity receives an event, the Workflow
Engine stores the event name, event key, and event message in
the item type attributes you specify, and also sets any
parameters in the event message parameter list as item type
attributes for the process, creating new item type attributes if a
corresponding attribute does not already exist for any
parameter. See: To Define Optional Activity Details: page
4 – 59.

5 – 14 Oracle Workflow Guide

Additionally, if the event was originally raised by a Raise event
activity in another workflow process, the item type and item
key for that process are included in the parameter list within
the event message. In this case, the Workflow Engine
automatically sets the specified process as the parent for the
process that receives the event, overriding any existing parent
setting. See: SetItemParent: page 8 – 79.

3. For an activity with the event action Raise, enter the following
event details:

• Event Name—Enter the name of the event that the node raises.
You can either specify a constant event name or select an item
type attribute of type text that dynamically determines the event
name at runtime.

Note: You can only raise an individual event. You cannot raise
event groups.

• Event Key—Select the item type attribute of type text that
contains the event key for the event that the node raises.

• Event Data—Optionally select an item type attribute of type text
that contains the event data for the event that the node raises.

The maximum length of the data you can enter in a text attribute
is 4000 bytes. If the event data exceeds 4000 bytes, you should
assign a Generate function in the event definition to generate the

5 – 15Defining a Workflow Process Diagram

event data, rather than providing the event data through a text
attribute. See: To Define an Event: page 13 – 5.

Note: The Event Name and Event Key are required for a Raise
event activity.

Note: In addition to these event details, you can use the
activity attributes for a Raise event activity node to specify
parameters that you want to include in the parameter list for
the event message. If the event message is later received by
another process, the Workflow Engine sets the event
parameters as item type attributes for that process. See: To
Define Activity Attribute Values: page 5 – 17.

Also, a Raise event activity automatically sets the item type
and item key for the current workflow process in the parameter
list for the event message. If the event message is later received
by another process, the Workflow Engine uses that item type
and item key to automatically set the process that raised the
event as the parent for the process that receives the event. See:
SetItemParent: page 8 – 79.

4. For an activity with the event action Send, enter the following
event details:

• Event Message—Select the item type attribute of type event that
contains the event message that the node sends.

5 – 16 Oracle Workflow Guide

• Event Name—Optionally enter the name of the event that the
node sends. You can either specify a constant event name or
select an item type attribute of type text that dynamically
determines the event name at runtime. The event name that you
enter here overrides the previous event name value in the event
message.

• Event Key—Optionally select an item type attribute of type text
that contains the event key of the event that the node sends. The
event key that you enter here overrides the previous event key
value in the event message.

• Out Agent—Optionally enter the outbound agent from which the
node sends the event. Specify both the agent name and the
system name for the agent using the following format:

<agent_name>@<system_name>

You can either specify a constant Out Agent name or select an
item type attribute of type text that dynamically determines the
Out Agent name at runtime. The Out Agent that you enter here
overrides the previous outbound agent value in the event
message.

• To Agent—Optionally enter the inbound agent to which the node
sends the event. Specify both the agent name and the system
name for the agent using the following format:

<agent_name>@<system_name>

You can either specify a constant To Agent name or select an
item type attribute of type text that dynamically determines the
To Agent name at runtime. The To Agent that you enter here
overrides the previous inbound agent value in the event
message.

Note: The Event Message is required for a Send event activity.
Additionally, you must either include a To Agent or a From
Agent within the event message, or specify a To Agent or an
Out Agent in the event details for this node. If you neither
specify an inbound agent nor an outbound agent, the event
cannot be sent.

Note: If no correlation ID is initially specified in the event
message, Oracle Workflow automatically sets the correlation ID
to the item key of the process.

5. Choose Apply to save your changes, OK to save your changes and
close the property page or Cancel to cancel your changes and close
the property page.

5 – 17Defining a Workflow Process Diagram

See Also

Using the Edit Button in a Property Page: page 3 – 8

Event Activity: page 4 – 45

To Create an Event Activity: page 4 – 54

� To Define Activity Attribute Values

Activity attribute values for a function or notification activity are used
by the PL/SQL stored procedure that the activity calls. Activity
attribute values for a Raise event activity are set as parameters in the
parameter list for the event message. See: To Define an Item Type or
Activity Attribute: page 4 – 8.

1. Display the property pages of an activity node. Select the Node
Attributes tab.

2. Select an attribute.

3. In the Value region, enter the value for this attribute. The value can
be a constant or a value stored in an item type attribute.

The value you enter must match the data type of the activity
attribute, and of the actual activity parameter itself as it is defined
in the PL/SQL function associated with the activity. The attribute
type is displayed along with the name, description, value type, and
value of each attribute in the attributes summary region.

5 – 18 Oracle Workflow Guide

4. Choose Apply to save your changes, OK to save your changes and
close the property page or Cancel to cancel your changes and close
the property page.

� To Create and Edit a Transition

1. To create a transition between two activities, hold down your right
mouse button and drag your mouse from a source activity to a
destination activity.

Note: Overlapping transitions appear in a different color than
single, non–overlapping transitions.

2. To edit a transition, select the transition.

3. To reposition a transition label, simply select the label with your
mouse and drag it to its new position. The label snaps onto the
transition.

4. You can bring up the following menu of editing options at any time
by selecting a transition with your mouse and clicking on the right
mouse button:

• Delete Transition—deletes the selected transition.

• Locked—toggles between locking and unlocking the transition
from further edits. If a transition is locked, you cannot add or
delete vertex points along the transition, but you can delete the
transition.

• Hidden Label—toggles between displaying and hiding the
transition label.

• Straighten—straightens the transition by removing the extra
vertex points that can cause bends in the transition.

• Results...—if the transition has a result assigned to it, use this
option to change the result label on the transition. An additional
menu appears that lists the possible result labels you can choose.

5. To bend a transition, create a vertex point by selecting the
transition and dragging the transition as you hold down your left
mouse button. You can reposition any vertex point to create a bend
in the transition.

6. You can create a transition that loops back to its source activity
node in one of two ways:

• Hold down your right mouse button and drag your mouse from
a source activity back to itself to create a self loop.

5 – 19Defining a Workflow Process Diagram

• From a source activity node, create a transition to another
arbitrary activity node. Add a vertex point to create a bend in
the transition. Then select and drag the arrowhead of the
transition back to the source activity node. Create additional
vertex points as necessary to improve the visual display of the
looping transition.

7. To remove a single vertex point from a transition, select the vertex
and drag it over another vertex to combine the two points.

� To Display a Process Overview

1. Place your cursor in the Process window and choose Overview
from the right mouse button menu.

2. An Overview dialog window of your process appears.

The upper pane of the window shows a size–reduced sketch of
your entire process, while the bottom pane is a list of the activities
in your process.

3. You can resize the Overview dialog window to get a better view of
the process sketch.

5 – 20 Oracle Workflow Guide

4. A cross hairs cursor that you can drag appears in the process
sketch pane. Use the cross hairs cursor to pinpoint an area in your
process that you want the Process window to display.

5. Single click on an activity in the lower pane to move the cross hairs
cursor to that activity within the sketch. Choose OK to close the
dialog window and to jump to that activity in the Process window.

You can also drag and double–click on the cross hairs cursor in the
upper pane to close the dialog window and to jump to the resulting
region in the Process window.

� To Print a Process

1. Display the Process window containing the process you wish to
print.

2. With the Process window selected as the active window, choose
Print Diagram from the File menu or from the right mouse button
menu.

The Print Diagram option captures your process diagram as a
picture (metafile), enlarges it to the correct size to print and sends it
to a printer. If your diagram is large, it may span more that one
page when printed. However, depending on the printer driver you
use, you may get a Print dialog box that lets you scale your image
down to one page for printing.

Note: If your process diagram uses a font that the printer
cannot find, your printer driver may either substitute a similar
font or not print any text.

� To Copy a Process Diagram to the Clipboard

1. Display and make the Process window containing the process you
wish to copy active.

2. Choose Copy Design from the Edit menu or from the right mouse
button menu.

This copies the process to the clipboard in the form of a metafile
and a bitmap diagram.

3. To paste the metafile–version or bitmap–version of the process
diagram into another application window, you should consult the
other application’s documentation on how to paste metafiles or
bitmaps.

To edit a bitmap image, you must paste the image into an
application that can edit bitmaps.

�

5 – 21Defining a Workflow Process Diagram

� To Validate a Process Definition

1. Choose Verify from the File menu to validate all process definitions
for the currently selected data store.

2. The following list is an example of some of the validation that the
Verify command performs:

• Checks that a process has at least one Start and one End activity.

• Verifies that a process does not contain itself as a process activity.

• Restricts the same subprocess from being used twice in a
process.

• Validates that all possible activity results are modelled as
outgoing transitions. If an activity completes with a result that is
not associated with an outgoing transition, and a <Default>
transition doesn’t exist for that activity, the activity enters an
’ERROR’ state.

• Validates that activity nodes marked as END nodes do not have
any outgoing transitions.

• Validates that a notification activity’s result type matches the
lookup type defined for the message’s ’RESULT’ message
attribute.

• Verifies that message attributes referenced in a message body for
token substitution exist in the message definition.

• For processes that reference objects from another item type,
verifies that the requisite item attributes associated with the
referenced item type exists.

Attention: You should always validate any new process
definition you create as it helps you to identify any potential
problems with the definition that might prevent it from
executing successfully.

Modifying Fonts in Oracle Workflow Builder

You can modify the font that is used by the windows in Oracle
Workflow Builder. Any change you make applies to all windows
within the program.

5 – 22 Oracle Workflow Guide

� To Modify Fonts

1. Choose Font from the View menu to display the Fonts properties
page.

2. Select the font to use as the label for your icons. This font is used
for all icons in Workflow Builder. The Sample region shows the
appearance of the font you select.

3. Choose the font style: Regular, Bold, Italic or Bold Italic. Some
fonts have a limited selection of font styles.

4. Indicate the font size to use. Some fonts have a limited selection of
font sizes.

5. Select the Underline or Strikeout check boxes to apply that effect.

6. Choose OK when you are done. These font settings take effect
immediately and are also used the next time you start Oracle
Workflow Builder.

Creating a Shortcut Icon for a Workflow Process

You can create a shortcut to Oracle Workflow Builder on your
Windows desktop. The shortcut can start Oracle Workflow Builder by

5 – 23Defining a Workflow Process Diagram

automatically connecting to a designated data store and opening
specific Process windows from that data store.

� To Create an Oracle Workflow Builder Shortcut

1. Start Oracle Workflow Builder.

2. Choose Open from the File menu to open a data store.

3. Optionally expand the Process branch and double–click on one or
more process activities to open the Process windows for those
processes.

4. Choose Create Shortcut from the File menu.

5. Enter a name for the shortcut, as you want it to appear on your
desktop.

6. When you double–click on the new shortcut icon on your desktop,
it automatically starts Oracle Workflow Builder opening the data
store that was selected and any process windows that were open
when you created the shortcut.

If the data store for the shortcut is a database, the shortcut will
prompt you for the password to the database.

5 – 24 Oracle Workflow Guide

Roles

Oracle Workflow roles are stored in the database, in the Oracle
Workflow directory service. Currently, new workflow roles cannot be
created in Oracle Workflow Builder, but Oracle Workflow Builder can
display and reference the roles stored in a database.

Referencing Roles in a Workflow Process

One example of how roles are referenced in a workflow process is
when you include a notification activity in a process as a node. You
must assign that node to a performer. The performer can be a
designated role or an item type attribute that dynamically returns a
role. To assign a performer to a role, you must initially load the roles
from your Oracle Workflow database into your Oracle Workflow
Builder session. See: Setting Up an Oracle Workflow Directory Service:
page 2 – 21 and To Define Nodes in a Process: page 5 – 8.

Note: Referencing roles in a workflow process is currently
supported in Oracle Workflow Builder, although the Roles tab
page seen in the property pages of certain workflow objects
will not be supported until a future release. The purpose of the
Roles tab page is to give a role access to a certain object.

Ad Hoc Users and Roles

Oracle Workflow allows you to create new ad hoc users and roles
within a workflow process, to add to your directory service. To do so,
you define a function activity that makes a server–side call to the
appropriate WF_DIRECTORY API and include that function activity in
your process diagram. See: Standard API for PL/SQL Procedures
Called by Function Activities: page 7 – 3 and Workflow Directory
Service APIs: page 8 – 121.

See Also

To Load Roles: page 5 – 25

To Display the Directory Service in Oracle Workflow Builder: page
5 – 26

5 – 25Defining a Workflow Process Diagram

� To Load Roles

1. If you are not connected to an Oracle Workflow database, choose
Open from the File menu to connect to the database and open your
item type.

2. Choose from the File menu, Load Roles from Database. A Role
Selection window appears. You can enter search criteria using SQL
query syntax in the Find Roles field to find a subset of roles, or just
choose Find without specifying any search criteria to identify all
roles. The Role Selection window finds the roles you specify and
displays them in the Query Results list box.

3. Select the roles you want to load from the Query Results list and
choose Add to add them to the Loaded Roles list. Alternatively,
just choose Add All to add all the roles in the Query Results list to
the Loaded Roles list. Choose OK to load the selected roles into
Oracle Workflow Builder and make them available to the workflow
objects in your open item type.

The workflow objects that need to reference role information
contain specific fields in their property pages. These fields are
poplist fields that display the list of roles you loaded from the
database, as shown in the following Node property page example.

5 – 26 Oracle Workflow Guide

4. When you select a role from one of these poplist fields, you can also
choose the Edit button to the right of the field to display the
property sheet of the selected role.

5. The Role property page that appears lists read–only information
about that role.

Note: When you reopen a saved process definition in Oracle
Workflow Builder, any role information that the process
references automatically gets loaded even if you open the
process definition from a file and are not connected to the
database.

� To Display the Directory Service in Oracle Workflow Builder

1. Once you load your roles from the database in Oracle Workflow
Builder, you can display your directory service information in the
navigator tree. See: To Load Roles: page 5 – 25.

2. Expand the Directory Service branch in the navigator tree. All the
roles that you loaded from the database appear.

3. Double–click on a role to display read–only information about that
role as shown below. Note that the Directory Service branch does
not currently allow you to view the participant users of a role.

5 – 27Defining a Workflow Process Diagram

5 – 28 Oracle Workflow Guide

C H A P T E R

6
T

6 – 1Predefined Workflow Activities

Predefined Workflow
Activities

his chapter tells you how to use Oracle Workflow’s predefined
activities.

6 – 2 Oracle Workflow Guide

Standard Activities

Oracle Workflow provides some generic activities you can use to
control your process. The activities are associated with the Standard
item type but can be used within any process you define. The Standard
item type is automatically installed on your Oracle Workflow server.
You can also access the Standard item type from the file wfstd.wft
located on your PC in the \<ORACLE_HOME>\Wf\data\<language>\
subdirectory.

Note: Predefined activities are also available for the
predefined workflows shipped with Oracle Applications and
Oracle Self–Service Web Applications. For more information
on Oracle Applications–specific workflow activities, consult the
documentation or help for that specific Oracle Application
product.

Note: If you want to drag an activity into a process, where the
activity is in a different data store than the process you are
dragging it to, then you must first copy the item type that the
activity belongs to into the same data store as the process.
Suppose you are modifying a process that is stored in
wfexample.wft and you want to add some standard activities
into the process that are stored in wfstd.wft. First you need to
open both files as data stores in Oracle Workflow Builder, then
you need to copy the Standard item type in wfstd and paste it
into the wfexample data store. Now you can drag any
standard activity in the wfexample data store into your
process.

And/Or Activities

In cases where multiple parallel branches transition to a single node,
you can decide whether that node should transition forward when any
of those parallel branches complete or when all of the parallel branches
complete. Use the And activity as the node for several converging
branches to ensure that all branches complete before continuing. Use
the Or activity as the node for several converging branches to allow the
process to continue whenever any one of the branches completes.

Completes when the activities from all converging
branches complete. Calls a PL/SQL procedure
named WF_STANDARD.ANDJOIN.

And

6 – 3Predefined Workflow Activities

Completes when the activities from at least one
converging branch complete. Calls a PL/SQL
procedure named WF_STANDARD.ORJOIN.

Comparison Activities

The comparison activities provide a standard way to compare two
numbers, dates, or text strings.

Use to compare the value of an item type attribute
of type Date with a constant date.

Use to compare the value of an item type attribute
of type Number with a constant number.

Use to compare the value of two item type
attributes of type Text.

All the Comparison activities call a PL/SQL procedure named
WF_STANDARD.COMPARE.

Activity Attributes

Each comparison activity has two activity attributes:

• Test Value—a constant number, date, or text string which to
compare to a reference value.

• Reference Value—an item type attribute of type Number, Date,
or Text.

The comparison activities use the Comparison lookup type for a result
code. Possible values are ”Greater Than,” ”Less Than,” ”Equal,” or
”Null,” if the item type attribute is null. You can guide your workflow
process based on how the value of an item type attribute compares to a
given value that you set. See: To Define Activity Attribute Values: page
5 – 17.

Compare Execution Time Activity

The Compare Execution Time activity provides a standard way to
compare the elapsed execution time of a process with a constant test
time.

Or

Compare Date

Compare
Number

Compare Text

6 – 4 Oracle Workflow Guide

The Compare Execution Time activity calls a PL/SQL procedure
named WF_STANDARD.COMPAREEXECUTIONTIME.

Activity Attributes

The Compare Execution Time activity has two activity attributes:

• Test Execution Time—the time, in seconds with which to
compare the elapsed execution time.

• Parent Type—takes as its value, the lookup codes, ”Root” or
”Parent”. A value of ”Root” compares the test time with the
elapsed execution time of the current root process. A value of
”Parent” compares the test time with the elapsed execution time
of just the immediate parent process, which can be a subprocess.

The activity uses the Comparison lookup type for a result code.
Possible values are ”Greater Than,” ”Less Than,” ”Equal,” or ”Null,” if
the test time is null. See: To Define Activity Attribute Values: page
5 – 17.

Wait Activity

The Wait activity pauses the process for the time you specify. You can
either wait until:

• a specific date

• a given day of the month

• a given day of the week

• a period of time after this activity is encountered

This activity calls the PL/SQL procedure named
WF_STANDARD.WAIT.

Activity Attributes

The Wait activity has six activity attributes:

• Wait Mode—use this attribute to specify how to calculate the
wait. You can choose one of the following wait modes:

– Absolute Date—to pause the activity until the date specified
in the Absolute Date activity attribute is reached.

– Relative Time—to pause the activity until the number of
days specified in the Relative Time activity attribute passes.

6 – 5Predefined Workflow Activities

– Day of Month—to pause the activity until a specified day of
the month, as indicated in the Day of Month activity
attribute.

– Day of Week—to pause the activity until a specified day of
the week, as indicated in the Day of Week activity attribute.

• Absolute Date—If Wait Mode is set to Absolute Date, enter an
absolute date.

• Relative Time—If Wait Mode is set to Relative Time, enter a
relative time expressed in <days>.<fraction of days>. For example,
enter 0.5 for a wait time of half a day (12 hours).

• Day of Month—If Wait Mode is set to Day of Month, choose a
day of the month from the list. If the day you choose has already
passed in the current month, then the activity waits until that
day in the following month.

• Day of Week—If Wait Mode is set to Day of Week, choose a day
of the week from the list. If the day you choose has already
passed in the current week, then the activity waits until that day
in the following week.

• Time of Day—The Wait activity always pauses until midnight of
the time specified, unless you use this Time of Day activity
attribute to specify a time other than midnight that the Wait
activity should pause until.

See: To Define Activity Attribute Values: page 5 – 17.

Block Activity

The Block activity lets you pause a process until some external program
or manual step completes and makes a call to the CompleteActivity
Workflow Engine API. Use the Block activity to delay a process until
some condition is met, such as the completion of a concurrent program.
Make sure your program issues a CompleteActivity call when it
completes to resume the process at the Block activity. See:
CompleteActivity: page 8 – 69

This activity calls the PL/SQL procedure named
WF_STANDARD.BLOCK.

6 – 6 Oracle Workflow Guide

Defer Thread Activity

The Defer Thread activity defers the subsequent process thread to the
background queue without requiring you to change the cost of each
activity in that thread to a value above the Workflow Engine threshold.
This activity always interrupts the process thread by causing a
disconnect to occur in the current database session, even if the thread is
already deferred.

This activity calls the PL/SQL procedure named
WF_STANDARD.DEFER.

Launch Process Activity

The Launch Process activity lets you launch another workflow process
from the current process. This activity calls the PL/SQL procedure
named WF_STANDARD.LAUNCHPROCESS.

Activity Attributes

The Launch Process activity has six activity attributes:

• Item Type—the item type of the process to launch. Specify the
item type’s internal name. This activity attribute requires a
value.

• Item Key—an item key for the process to launch. If you do not
specify a value, the item key defaults to
<current_item_type>:<current_item_key>–<n>, where
current_item_type and current_item_key identify the current
process instance, and n is the number of processes launched by
the current process instance, starting at 1.

• Process name—the internal name of the process to launch. If a
process name is not specified, the activity will check the item
type selector function of the process to launch for a process
name.

• User Key—a user defined key for the process to launch.

• Owner—a role designated as the owner of the process to launch.

• Defer immediate—choose between YES or NO to determine
whether the process to launch should be immediately deferred to
the background engine. The default is NO, so once the process is
launched, it continues to execute until completion or until one of

6 – 7Predefined Workflow Activities

its activities is deferred. See: To Define Activity Attribute
Values: page 5 – 17.

Noop Activity

The Noop activity acts as a place holder activity that performs no
action. You can use this activity anywhere you want to place a node
without performing an action. You can change the display name of this
activity to something meaningful when you include it in a process, so
that it reminds you of what you want this activity to do in the future.
This activity calls the PL/SQL procedure named
WF_STANDARD.NOOP.

Loop Counter Activity

Use the Loop Counter activity to limit the number of times the
Workflow Engine transitions through a particular path in a process.
The Loop Counter activity can have a result of Loop or Exit.

This Loop Counter activity calls the PL/SQL procedure named
WF_STANDARD.LOOPCOUNTER.

Activity Attribute

The Loop Counter activity has an activity attribute called Loop Limit.
If the number of times that the Workflow Engine transitions to the
Loop Counter activity is less than the value specified in Loop Limit, the
Loop Counter activity will complete with a result of Loop and the
engine will take the ’Loop’ transition to the next activity. If the number
of times that the Workflow Engine transitions to the Loop Counter
activity exceeds the value of Loop Limit, the activity will complete with
a result of Exit and the engine will take the ’Exit’ transition to an
alternative activity.

For example, as shown in the diagram below, you can include a Loop
Counter activity as the initial activity in a loop. The value you specify
for the Loop Limit activity attribute will designate the number of times
the engine is allowed to traverse through the loop. If the number of
visits to the Loop Counter activity exceeds the value set in Loop Limit,
then the process moves along the ’Exit’ transition to the designated
activity. See: To Define Activity Attribute Values: page 5 – 17.

6 – 8 Oracle Workflow Guide

In this example, the engine moves from the Loop Counter activity
through Activities 1, 2, 3, and 4 in the loop. If the result of Activity 4 is
’Accepted,’ the process moves along the ’Accepted’ transition.
Otherwise, if the result is ’Rejected,’ the process moves along the
’Rejected’ transition to return to the Loop Counter activity. If the item is
rejected multiple times, once the number of visits to the Loop Counter
activity exceeds the Loop Limit value, the process moves along the
’Exit’ transition and ends.

Start Activity

The Start activity marks the start of a process and does not perform any
action. Although it is not necessary, you may include it in your process
diagram to visually mark the start of a process as a separate node. This
activity calls the PL/SQL procedure named WF_STANDARD.NOOP.

End Activity

The End activity marks the end of a process and does not perform any
action. You can use it to return a result for a completed process by
specifying a Result Type for the activity. Although it is not necessary,
you may include it in your process diagram to visually mark the end of

�

�

6 – 9Predefined Workflow Activities

your process as a separate node. This activity calls the PL/SQL
procedure named WF_STANDARD.NOOP.

Role Resolution Activity

The Role Resolution activity lets you identify a single user from a role
comprised of multiple users. In a process diagram, place the Role
Resolution activity in front of a notification activity and specify the
performer of that notification activity to be a role consisting of several
users. The Role Resolution activity selects a single user from that role
and assigns the notification activity to that user.

This activity calls the PL/SQL procedure named
WF_STANDARD.ROLERESOLUTION.

Activity Attributes

Use the Method activity attribute in the Role Resolution activity to
specify how you want to resolve the role. A value of ”Load Balance”
compares how many open notifications from that activity each
qualified user has and selects the user with the fewest open
notifications from that activity. A value of ”Sequential” selects a user
from the role sequentially by determining the user that experienced the
longest interval of time since last receiving a notification from that
activity. See: To Define Activity Attribute Values: page 5 – 17.

Notify Activity

The Notify function activity lets you send a notification, where the
message being sent is determined dynamically at runtime by a prior
function activity. To use the Notify activity, you must model a
prerequisite function activity into the process that selects one of several
predefined messages for the Notify activity to send.

Attention: Since the Notify activity is locked against
modifications at access level 0, you cannot change the result
type from its value of <None>. Therefore, the message that the
function activity dynamically selects must not have a result
type, that is, it can only be an informative message that does
not illicit a response.

Attention: If you want the Notify activity to send a message
that requires a response, then you must copy and create your

6 – 10 Oracle Workflow Guide

own version of the Notify activity. Since any one of several
messages (with response attributes) can be sent by your version
of the Notify activity, you must model into your process all the
possible notification results that can be returned.

Note: If you want to define an activity that always sends the
same message, you should define a notification activity and not
use this Notify function activity.

The Notify activity calls a PL/SQL procedure named
WF_STANDARD.NOTIFY.

Activity Attributes

The Notify activity has two activity attributes:

• Message Name—the name of the predefined message to send.
The prerequisite function activity that determines which message
to send should store the name of that message in an item
attribute. The Message Name activity attribute should reference
that item attribute to determine the name of the message to send.

• Performer—the name of the role to which to send the notification
message. If you load the roles from your database, you can
select a constant role as the performer. Alternatively, you can set
the performer to an item attribute that returns the name of a role
at runtime.

• Expand Roles—takes as its value, the lookup codes ”Yes” or
”No”. Set Expand Roles to Yes if you wish to send an individual
copy of the notification message to every user in the role. See: To
Define Activity Attribute Values: page 5 – 17.

Vote Yes/No Activity

The Vote Yes/No activity lets you send a notification to a group of
users in a role and tally the Yes/No responses from those users. The
results of the tally determine the activity that the process transitions to
next.

The Vote Yes/No activity, classified as a notification activity, first sends
a notification message to a group of users and then performs a PL/SQL
post–notification function to tally the users’ responses (votes).

6 – 11Predefined Workflow Activities

Activity Attributes

The Vote Yes/No activity has three activity attributes:

• Percent Yes—The percentage of Yes votes cast in order for the
activity to complete with a result of Yes.

• Percent No—The percentage of No votes cast in order for the
activity to complete with a result of No

Note: The values for the Percent Yes and Percent No attributes
are both defined as null in order to use a Popularity voting
method, in which the result is the response with the highest
number of votes. See: Example Voting Methods: page 4 – 64

• Voting Option—specify how the votes are tallied by selecting one
of three values:

– ”Wait for All Votes”—the Workflow Engine waits until all
votes are cast before tallying the results as a percentage of
all the users notified. If a timeout condition occurs, the
Workflow Engine calculates the resulting votes as a
percentage of the total votes cast before the timeout
occurred.

– ”Tally on Every Vote”—the Workflow Engine keeps a
running tally of the cumulative responses as a percentage of
all the users notified. If a timeout condition occurs, then the
responses are tallied as a percentage of the total number of
votes cast. Note that this option is meaningless if any of the
custom response activity attributes have a blank value.

– ”Require All Votes”—the Workflow Engine evaluates the
responses as a percentage of all users notified only after all
votes are cast. If a timeout condition occurs, the Workflow
Engine progresses along the standard timeout transition, or
if none is available, raises an error, and does not tally any
votes. See: To Define Activity Attribute Values: page 5 – 17.

See Also

Voting Activity: page 4 – 61

Master/Detail Coordination Activities

The Master/Detail coordination activities let you coordinate the flow of
master and detail processes. For example, a master process may spawn

6 – 12 Oracle Workflow Guide

detail processes that need to be coordinated such that the master
process continues only when every detail process has reached a certain
point in its flow or vice versa.

When you spawn a detail process from a master process in Oracle
Workflow, you are in effect creating a separate process with its own
unique item type and item key. You define the master/detail
relationship between the two processes by making a call to the
Workflow Engine SetItemParent API after you call the CreateProcess API
and before you call the StartProcess API when you create the detail
process. See: SetItemParent: page 8 – 79.

You can then use the two activities described below to coordinate the
flow in the master and detail processes. One activity lets you pause a
process and the other signals the halted process to continue. To use
these activities, you place one activity in the master process and the
other in each detail process.

Both activities contain two activity attributes that you use to identify
the coordinating activity in the other process(es).

Wait for Flow Activity

Place this activity in a master or detail process to pause the flow until
the other corresponding detail or master process completes a specified
activity. This activity calls a PL/SQL procedure named
WF_STANDARD.WAITFORFLOW.

Activity Attributes

The Wait for Flow activity contains two activity attributes:

• Continuation Flow—specify whether this activity is waiting for a
corresponding ”Master” or ”Detail” process to complete.

• Continuation Activity—specify the label of the activity node that
must complete in the corresponding process before the current
process continues. The default value is CONTINUEFLOW. See:
To Define Activity Attribute Values: page 5 – 17.

Continue Flow Activity

Use this activity to mark the position in the corresponding detail or
master process where, upon completion, you want the halted process to
continue. This activity calls a PL/SQL procedure named
WF_STANDARD.CONTINUEFLOW.

6 – 13Predefined Workflow Activities

Activity Attributes

The Continue Flow activity contains two activity attributes:

• Waiting Flow—specify whether the halted process that is waiting
for this activity to complete is a ”Master” or ”Detail” flow.

• Waiting Activity—specify the label of the activity node in the
halted process that is waiting for this activity to complete. See:
To Define Activity Attribute Values: page 5 – 17.

Example

The following figures show an example of how these coordination
activities can be used. In the master process example, after the process
begins with the Start activity, the Start Detail Flows activity initiates
several detail processes. The master process then completes Activity 1
before it pauses at the Wait For Flow activity. Wait For Flow is defined
to wait for all its detail processes to complete a Continue Flow activity
before allowing the master process to transition to Activity 2 and
finally end. An example of one of the detail processes below shows
that after the detail process begins with the Start activity, it completes
Activity A. When it reaches the Continue Flow activity, it signals to the
Workflow Engine that the master process can now continue from the
Wait For Flow activity. The detail process itself then transitions to
Activity B and finally ends.

Master Process

Detail Process

Note: You can include a Wait for Flow activity in a master
process without using a Continue Flow activity in one or more
of its corresponding detail process. The Workflow Engine

�

6 – 14 Oracle Workflow Guide

simply continues the master process as soon as all the other
detail processes that do contain a Continue Flow activity
complete the Continue Flow activity.

If it does not matter when any of the detail processes complete
before a master process continues (or when a master process
completes before all the detail processes continue), then you
simply omit both of the coordination activities from your
master/detail processes.

Attention: If you include a Continue Flow activity in a
process, you must also include a Wait for Flow activity in its
corresponding master or detail process as defined by the
activity attributes in the Continue Flow activity.

Assign Activity

The Assign activity lets you assign a value to an item attribute. This
activity calls the PL/SQL procedure named WF_STANDARD.ASSIGN.

Activity Attributes

The Assign activity has an activity attribute called Item Attribute. Use
Item Attribute to choose the item attribute that you want to assign a
value to. Depending on the item attribute’s format type, use the Date
Value, Numeric Value, or Text Value activity attribute to specify the
value that you want to assign to the item attribute.

Get Monitor URL Activity

The Get Monitor URL activity generates the URL for the Workflow
Monitor diagram window and stores it in an item attribute that you
specify. This activity calls the PL/SQL procedure named
WF_STANDARD.GETURL.

Activity Attributes

The Get Monitor URL activity has two activity attributes:

• Item Attribute—choose the name of the item attribute that you
want to use to store the URL for the Workflow Monitor window.

• Administration Mode—determine how the URL displays the
Workflow Monitor window. If you set Administration Mode to

6 – 15Predefined Workflow Activities

”Yes”, the URL displays the Workflow Monitor in ’ADMIN’
mode, otherwise it displays the Workflow Monitor in ’USER’
mode. See: To Define Activity Attribute Values: page 5 – 17.

Get Event Property Activity

The Get Event Property activity lets you retrieve a property of an event
message from the Business Event System and store the property value
in an item attribute. This activity calls the PL/SQL procedure named
WF_STANDARD.GETEVENTPROPERTY.

Activity Attributes

The Get Event Property activity has four activity attributes:

• Event—choose the item attribute of type event that contains the
event message from which you want to retrieve a property.

• Property—the event property whose value you want to retrieve.
This attribute takes as its value a lookup code from the Event
Property lookup type. Possible values are ”Priority,” ”Send
Date,” ”Receive Date,” ”Correlation ID,” ”Event Parameter,”
”Event Name,” ”Event Key,” ”From Agent,” ”From Agent
Name,” ”From Agent System,” ”To Agent,” ”To Agent Name,”
and ”To Agent System.” See: Event Message Structure: page
8 – 242.

• Event Parameter—if you choose the Event Parameter property in
the Property attribute, enter the name of the parameter whose
value you want to retrieve. Oracle Workflow uses this name to
identify the parameter within the event message’s parameter list.
If you choose any property other than Event Parameter, leave
this attribute blank.

• Item Attribute—the item attribute where you want to store the
event property value. See: To Define Activity Attribute Values:
page 5 – 17.

Set Event Property Activity

The Set Event Property activity lets you set the value of a property in
an event message from the Business Event System. This activity calls

6 – 16 Oracle Workflow Guide

the PL/SQL procedure named
WF_STANDARD.SETEVENTPROPERTY.

Activity Attributes

The Set Event Property activity has six activity attributes:

• Event—choose the item attribute of type event that contains the
event message whose property you want to set.

• Property—the event property whose value you want to set. This
attribute takes as its value a lookup code from the Event
Property lookup type. Possible values are ”Priority,” ”Send
Date,” ”Receive Date,” ”Correlation ID,” ”Event Parameter,”
”Event Name,” ”Event Key,” ”From Agent,” ”From Agent
Name,” ”From Agent System,” ”To Agent,” ”To Agent Name,”
and ”To Agent System.” See: Event Message Structure: page
8 – 242.

• Event Parameter—if you choose the Event Parameter property in
the Property attribute, enter the name of the parameter whose
value you want to set. Oracle Workflow uses this name to
identify the parameter within the event message’s parameter list.
If you choose any property other than Event Parameter, leave
this attribute blank.

• Date Value—the value of type date that you want to set for the
event property, if you choose the Send Date or Receive Date
property.

• Numeric Value—the value of type number that you want to set
for the event property, if you choose the Priority property.

• Text Value—the value of type text that you want to set for the
event property, if you choose the Correlation ID, Event
Parameter, Event Name, Event Key, From Agent Name, From
Agent System, To Agent Name, or To Agent System property.
See: To Define Activity Attribute Values: page 5 – 17.

Note: You must enter the value to set in the activity attribute
that matches the data type of the event property you choose.

Compare Event Property Activity

The Compare Event Property activity lets you compare a property of an
event message from the Business Event System with a test value that

6 – 17Predefined Workflow Activities

you specify. This activity calls the PL/SQL procedure named
WF_STANDARD.COMPAREEVENTPROPERTY.

Activity Attributes

The Compare Event Property activity has six activity attributes:

• Event—choose the item attribute of type event that contains the
event message whose property you want to compare to a test
value.

• Property—the event property whose value you want to compare
to a test value. This attribute takes as its value a lookup code
from the Event Property lookup type. Possible values are
”Priority,” ”Send Date,” ”Receive Date,” ”Correlation ID,”
”Event Parameter,” ”Event Name,” ”Event Key,” ”From Agent,”
”From Agent Name,” ”From Agent System,” ”To Agent,” ”To
Agent Name,” and ”To Agent System.” See: Event Message
Structure: page 8 – 242.

• Event Parameter—if you choose the Event Parameter property in
the Property attribute, enter the name of the parameter whose
value you want to compare to a test value. Oracle Workflow uses
this name to identify the parameter within the event message’s
parameter list. If you choose any property other than Event
Parameter, leave this attribute blank.

• Date Value—the test value of type date with which to compare
the event property value, if you choose the Send Date or Receive
Date property.

• Numeric Value—the test value of type number with which to
compare the event property value, if you choose the Priority
property.

• Text Value—the test value of type text with which to compare the
event property value, if you choose the Correlation ID, Event
Parameter, Event Name, Event Key, From Agent Name, From
Agent System, To Agent Name, or To Agent System property.

The Compare Event Property activity uses the Comparison lookup type
for a result code. Possible values are ”Greater Than,” ”Less Than,”
”Equal,” or ”Null,” if the test activity attribute value is null. You can
guide your workflow process based on how the event property value
compares to the test value. See: To Define Activity Attribute Values:
page 5 – 17.

Note: You must enter the test value in the activity attribute
that matches the data type of the event property you choose. If

6 – 18 Oracle Workflow Guide

you enter the test value in an inappropriate activity attribute,
the Compare Event Property activity returns the ”Null” result
code.

XML Get Tag Value Activity

Use the XML Get Tag Value activity to retrieve data from the contents
of an event message from the Business Event System. This functionality
is currently only available for the standalone version of Oracle
Workflow. This activity retrieves the data contained within a particular
XML tag set in the event message and stores the data in an item
attribute that you specify. The XML Get Tag Value activity calls the
external Java function named oracle.apps.fnd.wf.XMLGetTagValue.

Note: When the Workflow Engine encounters an external Java
function activity, it places an entry on the ’Outbound’ queue.
To continue executing the activity, you must run the Java
Function Activity Agent, which calls the appropriate Java
function and places the result on the ’Inbound’ queue. You
must then run a background engine to process the ’Inbound’
queue and complete the function activity. See: Setting Up the
Java Function Activity Agent: page 2 – 86 and Setting Up
Background Engines: page 2 – 43.

Activity Attributes

The XML Get Tag Value activity has three activity attributes:

• Event—choose the item attribute of type event that contains the
event message from which you want to retrieve data.

• Tag—the tag set within the event message from which you want
to retrieve data. Specify the tag set in XPath notation. For
example, for an XML document containing a purchase order, the
XML path for the order number tag could be specified in the
following format:

/order/header/ordernumber

The following example path locates the ITEMNO node on the
third line of the purchase order document:

/order/orderlines/line[3]/itemno

The following example path locates the COST node on the
second line of the purchase order document whose currency
attribute is set to ”AUD.” The notation // indicates that the

6 – 19Predefined Workflow Activities

specified node is located among the descendants of the root
node.

//line[2]/cost[@currency=”AUD”]

For more information, see the W3C Recommendation XML Path
Language (XPath).

• Item Attribute—choose the item attribute of type date, number,
or text where you want to store the data. The type of the item
attribute must match the type of the data that you want to
retrieve.

See: To Define Activity Attribute Values: page 5 – 17.

XML Compare Tag Value Activities

Use the XML Compare Tag Value activities to compare data from an
event message received through the Business Event System with a test
value. This functionality is currently only available for the standalone
version of Oracle Workflow. These activities compare the data
contained within a particular XML tag set in the event message with
the test value that you specify.

Use this activity to compare date values.

Use this activity to compare number values.

Use this activity to compare text values.

All the XML Compare Tag Value activities call the external Java
function named oracle.apps.fnd.wf.XMLCompareTag.

Note: When the Workflow Engine encounters an external Java
function activity, it places an entry on the ’Outbound’ queue.
To continue executing the activity, you must run the Java
Function Activity Agent, which calls the appropriate Java
function and places the result on the ’Inbound’ queue. You
must then run a background engine to process the ’Inbound’
queue and complete the function activity. See: Setting Up the
Java Function Activity Agent: page 2 – 86 and Setting Up
Background Engines: page 2 – 43.

XML Compare
Tag Value (Date)

XML Compare
Tag Value
(Number)

XML Compare
Tag Value (Text)

6 – 20 Oracle Workflow Guide

Activity Attributes

Each XML Compare Tag Value activity has three activity attributes:

• Event—choose the item attribute of type event that contains the
event message whose data you want to compare.

• Tag—the tag set within the event message that contains the data
you want to compare to a test value. Specify the tag set in XPath
notation. For example, for an XML document containing an
order, the XML path for the order number tag could be specified
in the following format:

/order/header/ordernumber

The following example path locates the ITEMNO node on the
third line of the purchase order document:

/order/orderlines/line[3]/itemno

The following example path locates the COST node on the
second line of the purchase order document whose currency
attribute is set to ”AUD.” The notation // indicates that the
specified node is located among the descendants of the root
node.

//line[2]/cost[@currency=”AUD”]

For more information, see the W3C Recommendation XML Path
Language (XPath).

• Value—the test value of type date, number, or text with which to
compare the event message data.

The XML Compare Tag Value activities use the Comparison lookup
type for a result code. Possible values are ”Greater Than,” ”Less
Than,” ”Equal,” or ”Null,” if the test activity attribute value is null.
You can guide your workflow process based on how the event message
data compares to the test value. See: To Define Activity Attribute
Values: page 5 – 17.

XML Transform Activity

The XML Transform activity lets you apply an XML style sheet to the
payload of an event message from the Business Event System. This
functionality is currently only available for the standalone version of
Oracle Workflow. The resulting document is stored in an item attribute
of type event. This activity calls the external Java function named
oracle.apps.fnd.wf.XSLTTransform.

6 – 21Predefined Workflow Activities

Note: When the Workflow Engine encounters an external Java
function activity, it places an entry on the ’Outbound’ queue.
To continue executing the activity, you must run the Java
Function Activity Agent, which calls the appropriate Java
function and places the result on the ’Inbound’ queue. You
must then run a background engine to process the ’Inbound’
queue and complete the function activity. See: Setting Up the
Java Function Activity Agent: page 2 – 86 and Setting Up
Background Engines: page 2 – 43.

Activity Attributes

The XML Transform activity has three activity attributes:

• Event—choose the item attribute of type event that contains the
event message you want to transform.

• Stylesheet—a reference to the location of the style sheet that you
want to apply. Specify this reference as a URL.

• New Document—choose the item attribute of type event where
you want to store the new document produced by applying the
style sheet. See: To Define Activity Attribute Values: page 5 – 17.

�
�

6 – 22 Oracle Workflow Guide

Concurrent Manager Standard Activities

Oracle Applications provides some generic activities you can use to
control your process if you are using the version of Oracle Workflow
embedded in Oracle Applications. These activities are associated with
the Concurrent Manager Functions item type but can be used within
any process you define:

• Execute Concurrent Program Activity

• Submit Concurrent Program Activity

• Wait for Concurrent Program Activity

The Concurrent Manager Functions item type is automatically installed
on your Oracle Applications workflow server. You can also access this
item type from the file fndwfaol.wft located in the
$FND_TOP/admin/import subdirectory.

Execute Concurrent Program Activity

The Execute Concurrent Program activity is available only in the
version of Oracle Workflow embedded in Oracle Applications. It
submits an Oracle Applications concurrent program from your
workflow process and waits for it to complete, at which point it
updates the status of the activity and returns execution of the workflow
process to the background engine. The concurrent program can
complete with any of the following results, as defined by the
Concurrent Program Status lookup type: NORMAL, ERROR,
WARNING, CANCELLED, or TERMINATED. You should make sure
all of these results are modelled into your process diagram.

Attention: To use the Execute Concurrent Program activity,
you must ensure that the background engine is set up to run.

Attention: Generally, the context for your process’ item type
is always set if your session is initiated from an Oracle
Applications form. However, if an interrupt occurs in your
session, for example, due to a notification or blocking activity,
you must ensure that the context is set by calling
FND_GLOBAL.APPS_INITIALIZE(user_id, resp_id,
resp_appl_id) in SET_CTX mode in your Selector/Callback
function. See: Standard API for an Item Type Selector or
Callback Function: page 7 – 13 and FNDSQF Routine APIs,
Oracle Applications Developer’s Guide.

�

6 – 23Predefined Workflow Activities

The Execute Concurrent Program activity calls the standard Oracle
Application Object Library API
FND_WF_STANDARD.EXECUTECONCPROGRAM.

Activity Attributes

The Execute Concurrent Program activity has the following activity
attributes:

• Application Short Name—Short name of the application to
which the concurrent program is registered.

• Program Short Name—Short name of the concurrent program to
run.

• Number of Arguments—Number of arguments required for the
concurrent program.

• Item Attribute Name—Optional name of the item attribute to
store the concurrent program request ID.

• Argument1, Argument2,...Argument100—Value of each
concurrent program argument, ordered to match the correct
syntax of the concurrent program. Up to 100 arguments are
allowed, but you should only specify as many argument values
as you define in the Number of Arguments activity attribute.
See: To Define Activity Attribute Values: page 5 – 17.

Submit Concurrent Program Activity

The Submit Concurrent Program activity is available only in the
version of Oracle Workflow embedded in Oracle Applications. It
submits an Oracle Applications concurrent program from your
workflow process, but does not wait for it to execute or complete.
Once this activity submits a concurrent request, the Workflow Engine
continues with the next activity in the process.

Attention: Generally, the context for your process’ item type
is always set if your session is initiated from an Oracle
Applications form. However, if an interrupt occurs in your
session, for example, due to a notification or blocking activity,
you must ensure that the context is set by calling
FND_GLOBAL.APPS_INITIALIZE(user_id, resp_id,
resp_appl_id) in SET_CTX mode in your Selector/Callback
function. See: Standard API for an Item Type Selector or
Callback Function: page 7 – 13.

�

6 – 24 Oracle Workflow Guide

The Submit Concurrent Program activity calls the standard Oracle
Application Object Library API
FND_WF_STANDARD.SUBMITCONCPROGRAM.

Activity Attributes

The Submit Concurrent Program activity has the following activity
attributes:

• Application Short Name—Short name of the application to
which the concurrent program is registered.

• Program Short Name—Short name of the concurrent program to
run.

• Number of Arguments—Number of arguments required for the
concurrent program.

• Item Attribute Name—Name of the item attribute to store the
concurrent program request ID.

• Argument1, Argument2,...Argument100—Value of each
concurrent program argument, ordered to match the correct
syntax of the concurrent program. Up to 100 arguments are
allowed, but you should only specify as many argument values
as you define in the Number of Arguments activity attribute.
See: To Define Activity Attribute Values: page 5 – 17.

Wait for Concurrent Program Activity

The Wait for Concurrent Program activity is available only in the
version of Oracle Workflow embedded in Oracle Applications. If you
submit a concurrent program from your workflow process, you can use
the Wait for Concurrent Program activity as a means of blocking the
process from further execution until the concurrent program completes.
When the concurrent program completes, this activity clears the block
by updating the status of the activity and returning execution of the
workflow process to the background engine. The concurrent program
can complete with any of the following results, as defined by the
Concurrent Program Status lookup type: NORMAL, ERROR,
WARNING, CANCELLED, or TERMINATED. You should make sure
all of these results are modelled into your process diagram.

Attention: To use the Wait for Concurrent Program activity,
you must ensure that the background engine is set up to run.

6 – 25Predefined Workflow Activities

The Wait for Concurrent Program activity calls the standard Oracle
Application Object Library API
FND_WF_STANDARD.WAITFORCONCPROGRAM.

Activity Attributes

The Wait for Concurrent Program activity has one activity attribute
called Request ID, which should be set to the concurrent program
request ID that you are waiting for to complete. See: To Define Activity
Attribute Values: page 5 – 17.

6 – 26 Oracle Workflow Guide

Default Error Process

At design time, Oracle Workflow permits you to specify an error
handling process to execute if an error is detected in your current
process. You indicate the error handling process in your process,
function, or event activity’s Details property page. You specify the
internal names of both the item type that owns the error handling
process and the error handling process.

Oracle Workflow provides a special item type called System: Error,
which contains three error processes that you can use for generic error
handling in any of your processes. Note however, that you cannot
customize the error processes in the System: Error item type. If you
want to incorporate functionality that is not available in these error
processes, you should create your own custom error handling process
in your own item type.

Note: Rather than relying on an error process to handle errors
due to specific business rule incompatibilities, you should try
to model those situations into your workflow process
definition. For example, if a function activity can potentially
encounter an error because a business prerequisite is not met,
you might model your process to send a notification to an
appropriate role to correct that situation if it occurs, so that the
workflow process can progress forward. If you do not model
this situation into your workflow process, and instead rely on
the error to activate an error process, the entire workflow

6 – 27Predefined Workflow Activities

process will have an ’Error’ status and will halt until a
workflow administrator handles the error.

System: Error Item Type and Item Attributes

To view the details of the System: Error item type, choose Open from
the File menu, then connect to the database and select the System: Error
item type or connect to a file called wferror.wft in the
<drive>:\<ORACLE_HOME>\wf\Data\<Language> subdirectory.

The System: Error item type contains the following item attributes:

• Error Activity ID

• Error Activity Label

• Error Assigned User

• Error Item Type

• Error Item Key

• Error User Key

• Error Message

• Error Name

• Error Notification ID

• Error Result Code

• Error Stack

• Error Monitor URL

• Timeout Value

• Event Name

• Event Details

• Event Message

• Event Key

• Event Data URL

• Event Subscription

• Error Type

�

6 – 28 Oracle Workflow Guide

These item attributes are referenced by the function, notification, and
event activities that make up the error processes called Default Error
Process, Retry–only, and Default Event Error Process.

Attention: If you create a custom error handling process in
your own item type, Oracle Workflow automatically sets the
above item attributes when it calls your error handling process.
If these item attributes do not already exist in your process,
Oracle Workflow creates them. However, if you want to
reference these item attributes in your error handling process,
such as in a message, you must first create them as item
attributes in your process’s item type using Oracle Workflow
Builder.

Default Error Process

DEFAULT_ERROR is the internal name of the Default Error Process.
The purpose of this error handling process is to:

• send an administrator a notification when an error occurs in a
process

• provide information to the administrator about the error

• allow the administrator to abort the process, retry the errored
activity, or resolve the problem that caused the error to occur

Although you cannot customize the Default Error Process, the process
is flexible enough for you to customize its behavior. By defining two
item type attributes called WF_ADMINISTRATOR and
ERROR_TIMEOUT in your item type that calls the Default Error
Process, you can define who the error process sends the notification to
and whether the error notification times out, respectively.

6 – 29Predefined Workflow Activities

’Initialize Error’ Function Activity

The Initialize Error activity calls a PL/SQL procedure named
WF_STANDARD.INITIALIZEERRORS. This procedure determines if
the item type of the errored process has an item type attribute defined
with an internal name of WF_ADMINISTRATOR. If it does, it sets the
performer of the subsequent notification activity, Notify Administrator,
to the role stored in WF_ADMINISTRATOR. If it does not, the
subsequent notification activity remains set to the default performer,
System Administrator.

By checking for an item attribute called WF_ADMINISTRATOR in your
errored process’s item type, the Initialize Error activity lets you specify
who you want a notification to be sent to in the case of an error in your
specific process without modifying the error process.

For example, suppose you have a requisition approval workflow and
you want the purchasing administrator, not the system administrator,
to resolve any problems that arise from this workflow. You can define
an item attribute called WF_ADMINISTRATOR in the item type that
owns your requisition approval workflow and set
WF_ADMINISTRATOR to the purchasing administrator’s role, which
may be PO_ADMIN.

’Notify Administrator’ Notification Activity

The Notify Administrator activity sends the Default Retry Error
message to a performer (the System Administrator or whatever role is

6 – 30 Oracle Workflow Guide

stored in your item type’s WF_ADMINISTRATOR item attribute). The
message indicates that an error has occurred in the specified process
and that a response is needed. The response options and their resulting
actions are:

• Abort the process—executes the Error Still Active activity to
verify if the error is still present and if it is, calls the Abort
function activity and ends the default error process.

• Retry the process—executes the Error Still Active activity to
verify if the error is still present and if it is, calls the Retry
function activity and ends the default error process.

• Resolved the process—ends the default error process because
you addressed the errored process directly through some
external means or using the embedded URL link to the
Workflow Monitor.

Note: The notification message’s embedded monitor URL
displays the process in error in the Workflow Monitor with full
administrator privileges. You can perform actions such as
retrying, skipping or rolling back part of your process to
resolve the error.

The subject and body of the Default Retry Error message are as follows:

Subject: Error in Workflow &ERROR_ITEM_TYPE/&ERROR_ITEM_KEY

&ERROR_MESSAGE

Body: An Error occurred in the following Workflow.

Item Type = &ERROR_ITEM_TYPE

Item Key = &ERROR_ITEM_KEY

User Key =&ERROR_USER_KEY

Error Name = &ERROR_NAME

Error Message = &ERROR_MESSAGE

Error Stack = &ERROR_STACK

Activity Id = &ERROR_ACTIVITY_ID

Activity Label = &ERROR_ACTIVITY_LABEL

Result Code = &ERROR_RESULT_CODE

Notification Id = &ERROR_NOTIFICATION_ID

Assigned User = &ERROR_ASSIGNED_USER

&MONITOR

The Notify Administrator notification activity has a dynamic timeout
value assigned to it. It checks the item type of the errored process for

6 – 31Predefined Workflow Activities

an item type attribute whose internal name is ERROR_TIMEOUT.
ERROR_TIMEOUT must be an attribute of type NUMBER. The
Workflow Engine interprets the value of this attribute as a relative
offset from the begin date of the activity, in the unit of MINUTES to
determine the timeout value of Notify Administrator. If
ERROR_TIMEOUT contains a null value, a value of zero, or is not
defined at all, then Notify Administrator has no timeout.

’Error Still Active’ Function Activity

The Workflow Engine initiates the Error Still Active function activity if
the Notify Administrator activity times out or returns Abort or Retry as
a result.

The Error Still Active activity calls a PL/SQL procedure called
WF_STANDARD.CHECKERRORACTIVE. The purpose of the Error
Still Active activity is to determine whether the errored process is still
in error before continuing with the error handling. If it is, Error Still
Active returns TRUE and the Workflow Engine takes the appropriate
transition to either send another notification or abort or retry the
errored process. If the errored process is no longer in error, this activity
returns False and the error handling process ends, as modelled in the
process diagram.

’Retry’ Function Activity

The Retry function activity executes the PL/SQL procedure
WF_STANDARD.RESETERROR to clear the activity that was in error
and run it again. This procedure calls the WF_ENGINE.HandleError
API to rerun the activity.

’Abort’ Function Activity

The Abort function activity executes the PL/SQL procedure
WF_STANDARD.ABORTPROCESS, which in turn calls the
WF_ENGINE.AbortProcess API to abort the process that encountered the
error.

See Also

Workflow Core APIs: page 8 – 101

6 – 32 Oracle Workflow Guide

Retry–only Process

RETRY_ONLY is the internal name of the Retry–only error process.
The purpose of this error handling process is to alert an administrator
when an error occurs in a process and prompt the administrator to
retry the process in error.

’Initialize Error’ Function Activity

The Initialize Error activity calls a PL/SQL procedure named
WF_STANDARD.INITIALIZEERRORS. This procedure determines if
the item type of the errored process has an item type attribute defined
with an internal name of WF_ADMINISTRATOR. If it does, it sets the
performer of the subsequent notification activity, NTF with RETRY
Only, to the role stored in WF_ADMINISTRATOR. If it does not, the
subsequent notification activity remains set to the default performer,
System Administrator.

By checking for an item attribute called WF_ADMINISTRATOR in your
errored process’ item type, the Initialize Error activity lets you specify
who you want a notification to be sent to in the case of an error in your
specific process without modifying the error process.

For example, suppose you have a requisition approval workflow and
you want the purchasing administrator, not the system administrator,
to resolve any problems that arise from this workflow. You can define
an item attribute called WF_ADMINISTRATOR in the item type that
owns your requisition approval workflow and set

6 – 33Predefined Workflow Activities

WF_ADMINISTRATOR to the purchasing administrator’s role, which
may be PO_ADMIN.

’NTF with RETRY Only’ Notification Activity

The NTF with RETRY Only activity sends the Retry As Only Option
message to a performer (the System Administrator or whatever role is
stored in your item type’s WF_ADMINISTRATOR item attribute). The
message indicates that an error has occurred in the specified process
and prompts the administrator to retry the activity that errored. The
error process then transitions to the Retry function activity and ends
the Retry–only error process.

Note: The notification message’s embedded URL link displays
the process in error in the Workflow Monitor with full
administrator privileges. You can perform actions such as
retrying, skipping or rolling back part of your process within
the Workflow Monitor to resolve the error.

The subject and body of the Retry As Only Option message are as
follows:

Subject: Error in Workflow &ERROR_ITEM_TYPE/&ERROR_ITEM_KEY

&ERROR_MESSAGE

Body: An Error occurred in the following Workflow.

Item Type = &ERROR_ITEM_TYPE

Item Key = &ERROR_ITEM_KEY

User Key =&ERROR_USER_KEY

Error Name = &ERROR_NAME

Error Message = &ERROR_MESSAGE

Error Stack = &ERROR_STACK

Activity Id = &ERROR_ACTIVITY_ID

Activity Label = &ERROR_ACTIVITY_LABEL

Result Code = &ERROR_RESULT_CODE

Notification Id = &ERROR_NOTIFICATION_ID

Assigned User = &ERROR_ASSIGNED_USER

&MONITOR

The NTF with RETRY Only notification activity has a dynamic timeout
value assigned to it. It checks the item type of the process in error for
an item attribute that has an internal name called ERROR_TIMEOUT.
ERROR_TIMEOUT must be an attribute of type NUMBER. The

6 – 34 Oracle Workflow Guide

Workflow Engine interprets the timeout value of this attribute as a
relative offset from the begin date of the activity, in the unit of
MINUTES. If ERROR_TIMEOUT contains a null value, a value of zero,
or is not defined at all, then NTF with RETRY Only has no timeout.

’Error Still Active’ Function Activity

The Workflow Engine initiates the Error Still Active function activity if
the NTF with RETRY Only activity times out.

The Error Still Active activity calls a PL/SQL procedure called
WF_STANDARD.CHECKERRORACTIVE. The purpose of the Error
Still Active activity is to determine whether the errored process is still
in error before continuing with the error handling. If it is, Error Still
Active returns TRUE and the Workflow Engine transitions back to the
NTF with RETRY Only notification activity to send another notification
to the administrator. If the errored process is no longer in error, this
activity returns False and the error handling process ends, as modelled
in the process diagram.

’Retry’ Function Activity

The Retry function activity executes the PL/SQL procedure
WF_STANDARD.RESETERROR to clear the activity that was in error
and run it again. This procedure calls the WF_ENGINE.HandleError
API to rerun the activity.

See Also

Workflow Core APIs: page 8 – 101

Default Event Error Process

DEFAULT_EVENT_ERROR is the internal name of the Default Event
Error Process for the Business Event System. The purpose of this error
handling process is to:

• send an administrator a notification when an error or warning
condition occurs during event subscription processing

• provide information to the administrator about the error

• allow the administrator to abort or retry the event subscription
processing

6 – 35Predefined Workflow Activities

’Receive Errored Queue Message’ Event Activity

The Receive Errored Queue Message activity receives an event message
that has encountered an error or warning condition during subscription
processing. For instance, if a subscription rule function returns an
ERROR or WARNING status code, or if an unexpected event is
received, the Event Manager executes default subscriptions that send
the event message to the Default Event Error process. See: Predefined
Workflow Events: page 14 – 2.

The Receive Errored Queue Message activity stores the event name,
event key, and the complete event message in item type attributes.

’Initialize Event Error’ Function Activity

The Initialize Error activity calls a PL/SQL procedure named
WF_STANDARD.INITIALIZEEVENTERROR. This procedure
determines the error type.

• Event Warning—A warning condition occurred, but subscription
processing continued. For this error type, the Workflow Engine
sends the Event Warning Notification.

• External Event Error—An error occurred to halt subscription
processing for an event received from an external source. For this

6 – 36 Oracle Workflow Guide

error type, the Workflow Engine sends the External Event Error
Notification.

• Local Event Error—An error occurred to halt subscription
processing for an event raised on the local system. For this error
type, the Workflow Engine sends the Local Event Error
Notification.

’Event Warning Notification’ Activity

The Workflow Engine initiates the Event Warning Notification activity
when the errored event has an error type of Event Warning. The
activity sends the Default Event Warning message to the system
administrator to indicate that a warning condition has occurred during
subscription processing. This message is an FYI message and does not
require a response.

The subject and body of the Default Event Warning message are as
follows:

Subject: Event WARNING : &EVENT_NAME / &EVENT_KEY

Body: A Warning occurred in the following Event

Subscription: &EVENT_SUBSCRIPTION

Event Error Name: &ERROR_NAME

Event Error Message: &ERROR_MESSAGE

Event Error Stack: &ERROR_STACK

Event Data: &EVENT_DATA_URL

Other Event Details: &EVENT_DETAILS

’External Event Error Notification’ Activity

The Workflow Engine initiates the External Event Error Notification
activity when the errored event has an error type of External Event
Error. The activity sends the Default External Event Error message to
the system administrator. This message indicates that an error has
occurred during subscription processing for an event received from an
external source, and that a response is needed. The response options
and their resulting actions are:

• Abort—aborts subscription processing and ends the Default
Event Error process. For example, if the event data contained in
an event message is corrupted, the system administrator can
abort subscription processing on that event message.

6 – 37Predefined Workflow Activities

• Enqueue Event—executes the Retry Process Event activity to
enqueue the event message back onto the queue where it was
originally received, and ends the Default Event Error process.
The event message is enqueued with a priority of –1 so that it
will be the first message to be dequeued the next time the
listener runs.

The system administrator can attempt to correct the error before
re–enqueuing the event. For example, the system administrator
can create a subscription to handle an unexpected event and then
re–enqueue the event message to trigger the new subscription.

The subject and body of the Default External Event Error message are
as follows:

Subject: External Event &ERROR_TYPE : &EVENT_NAME /

&EVENT_KEY

Body: An Error occurred in the following Event

Subscription: &EVENT_SUBSCRIPTION

Event Error Name: &ERROR_NAME

Event Error Message: &ERROR_MESSAGE

Event Error Stack: &ERROR_STACK

Event Data: &EVENT_DATA_URL

Other Event Details: &EVENT_DETAILS

’Local Event Error Notification’ Activity

The Workflow Engine initiates the Local Event Error Notification
activity when the errored event has an error type of Local Event Error.
The activity sends the Default Local Event Error message to the system
administrator. This message indicates that an error has occurred during
subscription processing for an event raised on the local system, and
that a response is needed. The response options and their resulting
actions are:

• Abort—aborts subscription processing and ends the Default
Event Error process.

• Raise Event with Event Key—executes the Retry Process Event
activity to reraise the event with only the event name and event
key, and ends the Default Event Error process.

• Raise Event with Event Key and Event Data—executes the Retry
Process Event activity to reraise the event with only the event

6 – 38 Oracle Workflow Guide

name, event key, and event data, and ends the Default Event
Error process.

• Raise Event with Event Key, Event Data and Parameters—
executes the Retry Process Event activity to reraise the event
with the event name, event key, event data, and parameters, and
ends the Default Event Error process.

The system administrator can choose the level of information to
provide to the Event Manager when reraising the event. For example, if
an error exists in the event data that was originally provided, the event
can be reraised with only the event name and the event key, forcing the
Event Manager to regenerate the event data using the event’s Generate
function.

The system administrator can also attempt to correct the error before
reraising the event.

The subject and body of the Default Local Event Error message are as
follows:

Subject: Local Event &ERROR_TYPE : &EVENT_NAME / &EVENT_KEY

Body: An Error occurred in the following Event

Subscription: &EVENT_SUBSCRIPTION

Event Error Name: &ERROR_NAME

Event Error Message: &ERROR_MESSAGE

Event Error Stack: &ERROR_STACK

Event Data: &EVENT_DATA_URL

Other Event Details: &EVENT_DETAILS

’Retry Process Event’ Function Activity

The Retry Process Event activity executes the PL/SQL procedure
WF_STANDARD.RETRYRAISE. Depending on the notification
response selected by the system administrator, this procedure either
re–enqueues or reraises an errored event. The responses that can
initiate the Retry Process Event activity and their resulting actions are:

• Enqueue Event—enqueues an errored external event message
back onto the queue where it was originally received. The event
message is enqueued with a priority of –1 so that it will be the
first message to be dequeued the next time the listener runs.

• Raise Event with Event Key—reraises a local errored event with
only the event name and event key.

6 – 39Predefined Workflow Activities

• Raise Event with Event Key and Event Data—reraises a local
errored event with only the event name, event key, and event
data.

• Raise Event with Event Key, Event Data and Parameters—
reraises a local errored event with the event name, event key,
event data, and parameters.

See Also

Workflow Core APIs: page 8 – 101

Managing Business Events: page 13 – 2

6 – 40 Oracle Workflow Guide

C H A P T E R

7

T

7 – 1Defining Procedures and Functions for Oracle Workflow

Defining Procedures
and Functions for
Oracle Workflow

his chapter describes the standard APIs to use for Oracle
Workflow PL/SQL and Java procedures and functions.

7 – 2 Oracle Workflow Guide

Defining Procedures and Functions for Oracle Workflow

Oracle Workflow lets you integrate your own custom PL/SQL and Java
procedures and functions at certain points in your workflow processes
and in the Business Event System. To ensure that Oracle Workflow can
properly execute your custom code, follow these standard APIs when
developing your procedures and functions.

• Standard API for PL/SQL Procedures Called by Function
Activities: page 7 – 3

• Standard API for Java Procedures Called by Function Activities:
page 7 – 8

• Standard API for an Item Type Selector or Callback Function:
page 7 – 13

• Standard APIs for ”PL/SQL” and ”PL/SQL CLOB” Document:
page 7 – 17

• Standard API for an Event Data Generate Function: page 7 – 21

• Standard APIs for a Queue Handler: page 7 – 23

• Standard API for an Event Subscription Rule Function: page
7 – 25

�

7 – 3Defining Procedures and Functions for Oracle Workflow

Standard API for PL/SQL Procedures Called by Function Activities

All PL/SQL stored procedures that are called by function or
notification activities in an Oracle Workflow process should follow this
standard API format so that the Workflow Engine can properly execute
the activity.

Attention: The Workflow Engine traps errors produced by
function activities by setting a savepoint before each function
activity. If an activity produces an unhandled exception, the
engine performs a rollback to the savepoint, and sets the
activity to the ERROR status. For this reason, you should
never commit within the PL/SQL procedure of a function
activity. The Workflow Engine never issues a commit as it is
the responsibility of the calling application to commit.

For environments such as database triggers or distributed
transactions that do not allow savepoints, the Workflow Engine
automatically traps ”Savepoint not allowed” errors and defers
the execution of the activity to the background engine.

The example in this section is numbered with the notation 1⇒ for easy
referencing. The numbers and arrows themselves are not part of the
procedure.

1⇒ procedure <procedure name> (itemtype in varchar2,

 itemkey in varchar2,

 actid in number,

 funcmode in varchar2,

 resultout out varchar2) is

2⇒ <local declarations>

3⇒ begin

 if (funcmode = ’RUN’) then

 <your RUN executable statements>

 resultout := ’COMPLETE:<result>’;

 return;

 end if;

4⇒ if (funcmode = ’CANCEL’) then

 <your CANCEL executable statements>

 resultout := ’COMPLETE’;

 return;

 end if;

5⇒ if (funcmode = ’RESPOND’) then

 <your RESPOND executable statements>

 resultout := ’COMPLETE’;

7 – 4 Oracle Workflow Guide

 return;

 end if;

6⇒ if (funcmode = ’FORWARD’) then

 <your FORWARD executable statements>

 resultout := ’COMPLETE’;

 return;

 end if;

7⇒ if (funcmode = ’TRANSFER’) then

 <your TRANSFER executable statements>

 resultout := ’COMPLETE’;

 return;

 end if;

8⇒ if (funcmode = ’TIMEOUT’) then

 <your TIMEOUT executable statements>

 if (<condition_ok_to_proceed>) then

 resultout := ’COMPLETE’;

 else

 resultout := wf_engine.eng_timedout;

 end if;

 return;

 end if;

9⇒ if (funcmode = ’<other funcmode>’) then

 resultout := ’ ’;

 return;

 end if;

10⇒ exception

 when others then

 WF_CORE.CONTEXT (’<package name>’, ’<procedure name>’, <itemtype>,

 <itemkey>, to_char(<actid>), <funcmode>);

 raise;

11⇒ end <procedure name>;

1⇒ When the Workflow Engine calls a stored procedure for a function
activity, it passes four parameters to the procedure and may expect a
result when the procedure completes. The parameters are defined here:

The internal name for the item type. Item types are
defined in the Oracle Workflow Builder.

A string that represents a primary key generated
by the workflow–enabled application for the item
type. The string uniquely identifies the item within
an item type.

itemtype

itemkey

7 – 5Defining Procedures and Functions for Oracle Workflow

The ID number of the activity from which this
procedure is called.

The execution mode of the activity. If the activity is
a function activity, the mode is either ’RUN’ or
’CANCEL’. If the activity is a notification activity,
with a post–notification function, then the mode
can be ’RESPOND’, ’FORWARD’, ’TRANSFER’,
’TIMEOUT’, or ’RUN’. Other execution modes
may be added in the future.

If a result type is specified in the Activities
properties page for the activity in the Oracle
Workflow Builder, this parameter represents the
expected result that is returned when the
procedure completes. The possible results are:

COMPLETE:<result_code>—activity completes
with the indicated result code. The result code
must match one of the result codes specified in the
result type of the function activity.

WAITING—activity is pending, waiting on
another activity to complete before it completes.
An example is the Standard ’AND’ activity.

DEFERRED:<date>—activity is deferred to a
background engine for execution until a given date.
<date> must be of the format:
to_char(<date_string>, wf_engine.date_format)

NOTIFIED:<notification_id>:<assigned_user>—a
n external entity is notified that an action must be
performed. A notification ID and an assigned user
can optionally be returned with this result. Note
that the external entity must call CompleteActivity()
to inform the Workflow Engine when the action
completes.

ERROR:<error_code>—activity encounters an
error and returns the indicated error code.

2⇒ This section declares any local arguments that are used within the
procedure.

3⇒ The procedure body begins in this section with an IF statement.
This section contains one or more executable statements that run if the
value of funcmode is ’RUN’. One of the executable statements can

actid

funcmode

resultout

7 – 6 Oracle Workflow Guide

return a result for the procedure. For example, a result can be
’COMPLETE:APPROVED’.

Note: The Workflow Engine automatically runs a
post–notification function in RUN mode after the Notification
System completes execution of the post–notification function in
RESPOND mode. The RUN mode executable statements can
perform processing such as vote tallying and determine what
result to return for the notification activity.

4⇒ This section clears the activity and can contain executable
statements that run if the value of funcmode is ’CANCEL’. Often, this
section contains no executable statements to simply return a null value,
but this section also provides you with the chance to ’undo’ something
if necessary. An activity can have a funcmode of ’CANCEL’ in the
special case where the activity is part of a loop that is being revisited.

The first activity in a loop must always have the Loop Reset flag
checked in the Activities properties Detail page. When the Workflow
Engine encounters an activity that has already run, it verifies whether
the activity’s Loop Reset flag is set. If the flag is set, the engine then
identifies the activities that belong in that loop and sets funcmode to
’CANCEL’ for those activities. Next, the engine transitions through the
loop in reverse order and executes each activity in ’CANCEL’ mode to
clear all prior results for the activities so they can run again. See:
Looping: page 8 – 10 and Loop Counter Activity: page 6 – 7.

5⇒ This section is needed only for post–notification functions. Use this
section to include execution statements that run if the value of
funcmode is ’RESPOND’, that is, when a RESPOND operation is
performed. For example, include execution statements that validate
the response of the notification. After the Notification System
completes execution of the post–notification function in RESPOND
mode, the Workflow Engine then runs the post–notification function
again in RUN mode. See: Post–notification functions: page 8 – 13.

6⇒ This section is needed only for post–notification functions. Use this
section to include execution statements that run if the value of
funcmode is ’FORWARD’, that is, when a notification’s state changes to
’FORWARD’. For example, include execution statements that validate
the role to which the notification is being forwarded.

7⇒ This section is needed only for post–notification functions. Use this
section to include execution statements that run if the value of
funcmode is ’TRANSFER’, that is, when a notification’s state changes to
’TRANSFER’. For example, include execution statements that validate
the role to which the notification is being transferred.

7 – 7Defining Procedures and Functions for Oracle Workflow

Note: For ’RESPOND’, ’FORWARD’, and ’TRANSFER’
funcmodes, the resultout parameter is ignored, except if the
returned value looks something like ’ERROR%’. Therefore, if
you do not want the Respond, Forward or Transfer operation
to occur after having executed your post–notification function,
you can do one of two things:

– Return ’ERROR:<errcode>’ in the resultout parameter to
convert it to a generic exception with the errcode mentioned
in the message.

– Raise an exception directly in your procedure with a more
informative error message. See: Post–notification Functions:
page 8 – 13 and Notification Model: 8 – 192

8⇒ This section is needed only for post–notification functions. Use this
section to include execution statements that run if a notification activity
times out. You can include logic to test whether the workflow can
proceed normally, and if so, to complete the activity so that the
workflow can continue to the next activity. For example, if a Voting
activity times out before all recipients respond, you can include logic
that determines how to interpret the responses based on the current
response pool and completes the activity with the appropriate result.

You should also include logic to return a result of
wf_engine.eng_timedout if the workflow cannot proceed normally.
Model any subsequent behavior in your process diagram using a
<Timeout> transition to another activity. The Workflow Engine will
follow the <Timeout> transition when the result
wf_engine.eng_timedout is returned.

9⇒ This section handles execution modes other than ’RUN’,
’CANCEL’, ’RESPOND’, ’FORWARD’, ’TRANSFER’, or ’TIMEOUT’.
Other execution modes may be added in the future. Since your activity
does not need to implement any of these other possible modes, it
should simply return null.

10⇒ This section calls WF_CORE.CONTEXT() if an exception occurs,
so that you can include context information in the error stack to help
you locate the source of an error. See: CONTEXT: page 8 – 108.

�

7 – 8 Oracle Workflow Guide

Standard API for Java Procedures Called by Function Activities

You can create custom Java classes to be called by external Java
function activities in an Oracle Workflow process. This functionality is
currently only available for the standalone version of Oracle Workflow.
Java procedures that are called by function activities are implemented
as classes that extend the WFFunctionAPI class. The custom Java
classes should follow a standard API format so that they can be
properly executed by the Oracle Workflow Java Function Activity
Agent.

Attention: The Workflow Engine traps errors produced by
function activities by setting a savepoint before each function
activity. If an activity produces an unhandled exception, the
engine performs a rollback to the savepoint, and sets the
activity to the ERROR status. For this reason, just as with
PL/SQL procedures, you should never commit within the Java
procedure of a function activity. The Workflow Engine never
issues a commit as it is the responsibility of the calling
application to commit.

Many Workflow Engine and Notification APIs have corresponding Java
methods that your Java program can call to communicate with Oracle
Workflow. The WFFunctionAPI and WFAttribute classes also contain
methods that your Java program can call to access item type and
activity attributes. See: Oracle Workflow Java Interface: page 8 – 5,
Workflow Function APIs: page 8 – 82, and Workflow Attribute APIs:
page 8 – 90.

To invoke a custom Java class from within a workflow process, create
an external Java function activity that calls the class. See: To Create a
Function Activity: page 4 – 50.

Java function activities are implemented as external procedures. When
the Workflow Engine reaches an external Java function activity, the
Workflow Engine places a message on the Workflow ’Outbound’
queue. The Java Function Activity Agent monitors this queue and calls
the class indicated in the Function Name property for the function
activity. When the Java procedure is complete, the Java Function
Activity Agent enqueues the results onto the ’Inbound’ queue. See:
Setting Up the Java Function Activity Agent: page 2 – 86.

Note: These ’Outbound’ and ’Inbound’ queues are separate
from the queues used for the Business Event System. In a
future release, this function processing will be implemented
within the Business Event System using a specialized queue
handler to handle dequeue and enqueue operations. See:
Workflow Queue APIs: page 8 – 162.

7 – 9Defining Procedures and Functions for Oracle Workflow

After a Java procedure completes, you must run a background engine
to process the ’Inbound’ queue and complete the function activity.
Otherwise, the activity will remain in the DEFERRED status. See:
Setting Up Background Engines: page 2 – 43.

You must include the JAR files containing your custom classes in your
CLASSPATH to make the classes accessible to the Java Function
Activity Agent. The custom class files should reside on the same
platform where the Java Function Activity Agent is run. The Java
Function Activity Agent does not need to reside on the same tier as the
database, however.

The example in this section is numbered with the notation 1⇒ for easy
referencing. The numbers and arrows themselves are not part of the
procedure.

1⇒ package oracle.apps.fnd.wf;

2⇒ import java.io.*;

 import java.sql.*;

 import java.math.BigDecimal;

 import oracle.sql.*;

 import oracle.jdbc.driver.*;

 import oracle.apps.fnd.common.*;

 import oracle.apps.fnd.wf.engine.*;

 import oracle.apps.fnd.wf.*;

3⇒ public class className extends WFFunctionAPI {

4⇒ public boolean execute(WFContext pWCtx){

5⇒ ErrorStack es = pWCtx.getWFErrorStack();

 try

 {

6⇒ WFAttribute lAAttr = new WFAttribute();

 WFAttribute lIAttr = new WFAttribute();

7⇒ loadActivityAttributes(pWCtx, itemType, itemKey, actID);

 loadItemAttributes(pWCtx);

8⇒ lAAttr = getActivityAttr(”AATTR”);

 lIAttr = getItemAttr(”IATTR”);

9⇒ <your executable statements>

7 – 10 Oracle Workflow Guide

10⇒ lIAttr.value((Object)”NEWVALUE”);

 setItemAttrValue(pWCtx, lIAttr);

11⇒ }

 catch (Exception e)

 {

 es.addMessage(”WF”,”WF_FN_ERROR”);

 es.addToken(”MODULE”,this.getClass().getName());

 es.addToken(”ITEMTYPE”,itemType);

 es.addToken(”ITEMKEY”,itemKey);

 es.addToken(”ACTID”,actID.toString());

 es.addToken(”FUNCMODE”,funcMode);

 es.addToken(”ERRMESSAGE”,e.getMessage());

 return false;

 }

12⇒ return true;

 }

 }

1⇒ By default, Java classes supplied by Oracle Workflow will be in the
oracle.apps.fnd.wf package. This section is optional.

2⇒ For correct operation, you must include the listed packages.

3⇒ The custom Java class must extend the WFFunctionAPI class. This
class provides class variables and methods that are essential to the
operation of your function activity.

The parameters that are normally supplied to a PL/SQL function
activity are available to the custom class as class variables. They are
initialized prior to the call of the boolean execute() method. The
resultOut and the errorStack are then passed back to the Oracle
Workflow Engine.

The status of the completed activity will be set to COMPLETE unless a
value is present in the errorStack variable. If there is a value in this
variable, then the activity status will be set to ERROR. The contents of
the errorStack variable can be set by using the ErrorStack class within
the WFContext class. Refer also to sections 5 and 11 of this API for
catching exceptions.

The predefined class variables include:

The internal name for the item type. Item types are
defined in the Oracle Workflow Builder.

itemType

7 – 11Defining Procedures and Functions for Oracle Workflow

A string that represents a primary key generated
by the workflow–enabled application for the item
type. The string uniquely identifies the item within
an item type.

The ID number of the activity from which this
procedure is called.

The execution mode of the activity. Currently the
only supported mode for external Java function
activities is the ’RUN’ mode.

If a result type is specified in the Activities
properties page for the activity in the Oracle
Workflow Builder, this parameter represents the
expected result that is returned when the
procedure completes.

Note: Unlike the resultout for a PL/SQL procedure called by a
function activity, the resultOut for a Java procedure does not
include a status code. In the Java API, only the result type
value is required. The status of the activity will be set
automatically by the Workflow Engine depending on whether
there is a value in the errorStack variable.

4⇒ The custom Java class must implement the boolean execute()
method. This will be the main entry point for your Java class. On
successful completion, this method should return true.

5⇒ It is important to catch exceptions with your custom Java class and
pass them back to the engine via the ErrorStack class. Refer also to
section 11 of this API for catching exceptions.

6⇒ To access item and activity attributes, a WFAttribute class is
provided.

7⇒ The values of the item attributes are not automatically available to
the Java class. They are loaded on demand. The values can be loaded
explicitly with the void loadItemAttributes(WFContext) or the void
loadActivityAttributes(WFContext) methods. The values are also
loaded implicitly when you call the WFAttribute
getItemAttr(String) or WFAttribute getActivityAttr(String)
methods. This section is optional.

8⇒ The actual values of the item and activity attributes are accessed via
the WFAttribute getItemAttr(String) and WFAttribute
getActivityAttr(String) methods. If you have not explicitly loaded
the values of the attributes, they will be automatically loaded at this
point.

itemKey

ActID

funcMode

resultOut

7 – 12 Oracle Workflow Guide

9⇒ This section contains your own executable statements. Usually, you
add these executable statements after retrieving the required item and
activity attribute details (section 8) and before setting item attribute
values (section 10).

10⇒ Setting the value of an item attribute with the void
setItemAttrValue(WFContext, WFAttribute) method writes the
value of your local WFAttribute to the database. You need to set the
values of the WFAttribute class with the WFAttribute.value(Object)
method.

11⇒ It is important to catch exceptions within your custom Java class
and pass them back to the engine via the ErrorStack class.

An unsuccessful execution of the external Java function activity will
return false.

Note that any message in the WFContext.wErrorStack class variable
will be passed back to the Workflow Engine and will cause the activity
to be assigned a completion status of ERROR.

12⇒ A successfully executed external Java function activity will return
true.

7 – 13Defining Procedures and Functions for Oracle Workflow

Standard API for an Item Type Selector or Callback Function

For any given item type, you can define a single function that operates
as both a selector and a callback function. A selector function is a
PL/SQL procedure that automatically identifies the specific process
definition to execute when a workflow is initiated for a particular item
type but no process name is provided. Oracle Workflow also supports
using a callback function to reset or test item type context information.
You can define one PL/SQL procedure that includes both selector and
callback functionality by following a standard API.

Oracle Workflow can call the selector/callback function with the
following commands:

• RUN—to select the appropriate process to start when either of
the following two conditions occur:

– A process is not explicitly passed to
WF_ENGINE.CreateProcess.

– A process is implicitly started by
WF_ENGINE.CompleteActivity with no prior call to
WF_ENGINE.CreateProcess.

• SET_CTX—to establish any context information for an item type
and item key combination that a function activity in the item
type needs in order to execute. The Workflow Engine calls the
selector/callback function with this command each time it
encounters a new item type and item key combination, to ensure
that the correct context information is always set.

• TEST_CTX—to determine if the current item type context
information is correct before executing a function. For example,
the selector/callback function in TEST_CTX mode lets you check
if a form can be launched with the current context information
just before the Notification Details web page launches a reference
form. If the context is incorrect, the form cannot be launched
and a message is displayed to that effect. See: To View the
Details of a Notification: page 10 – 19.

The standard API for the selector/callback function is as follows. This
section is numbered with the notation 1⇒ for easy referencing. The
numbers and arrows themselves are not part of the procedure.

1⇒ procedure <procedure name> (item_type in varchar2,

 item_key in varchar2,

 activity_id in number,

 command in varchar2,

 resultout in out varchar2) is

7 – 14 Oracle Workflow Guide

2⇒ <local declarations>

3⇒ begin

 if (command = ’RUN’) then

 <your RUN executable statements>

 resultout := ’<Name of process to run>’;

 return;

 end if;

4⇒ if (command = ’SET_CTX’) then

 <your executable statements for establishing context information>

 return;

 end if;

5⇒ if (command = ’TEST_CTX’) then

 <your executable statements for testing the validity of the current

 context information>

 resultout := ’<TRUE or FALSE> ’;

 return;

 end if;

6⇒ if (command = ’<other command>’) then

 resultout := ’ ’;

 return;

 end if;

7⇒ exception

 when others then

 WF_CORE.CONTEXT (’<package name>’, ’<procedure name>’, <itemtype>,

 <itemkey>, to_char(<actid>), <command>);

 raise;

8⇒ end <procedure name>;

1⇒ When the Workflow Engine calls the selector/callback function, it
passes four parameters to the procedure and may expect a result when
the procedure completes. The parameters are defined here:

The internal name for the item type. Item types are
defined in the Oracle Workflow Builder.

A string that represents a primary key generated
by the workflow–enabled application for the item
type. The string uniquely identifies the item within
an item type.

The ID number of the activity that this procedure is
called from. Note that this parameter is always
null if the procedure is called with the ’RUN’
command to execute the selector functionality.

itemtype

itemkey

actid

7 – 15Defining Procedures and Functions for Oracle Workflow

The command that determines how to execute the
selector/callback function. Either ’RUN’,
’SET_CTX’, or ’TEST_CTX’. Other
commands may be added in the future.

A result may be returned depending on the
command that is used to call the selector/callback
function.

If the function is called with ’RUN’, the name of
the process to run must be returned through the
resultout parameter. If the function is called with
’SET_CTX’, then no return value is expected. If
the function is called with ’TEST_CTX’, then the
code must return ’TRUE’ if the context is correct or
’FALSE’ if the context is incorrect. If any other
value is returned, Oracle Workflow assumes that
this command is not implemented by the callback.

2⇒ This section declares any local arguments that are used within the
procedure.

3⇒ The procedure body begins in this section with an IF statement.
This section contains one or more executable statements that make up
your selector function. It executes if the value of command is ’RUN’.
One of the executable statements should return a result for the
procedure that reflects the process to run. For example, a result can be
’REQUISITION_APPROVAL’, which is the name of a process activity.

4⇒ This section contains one or more executable statements that set
item type context information if the value of command is ’SET_CTX’.
The Workflow Engine calls the selector/callback function with this
command each time it encounters a new item type and item key
combination, before executing any function activities for that
combination. This command is useful when you need to set item type
context information in a database session before the activities in that
session can execute as intended. For example, you might need to set
up the responsibility and organization context for function activities
that are sensitive to multi–organization data.

5⇒ This section contains one or more executable statements that
validate item type context information if the value of command is
’TEST_CTX’. The Workflow Engine calls the selector/callback
function with this command to validate that the current database
session context is acceptable before the Workflow Engine executes an
activity. For example, this callback functionality executes when the
Notification Details web page is just about to launch a reference form.
The code in this section should return ’TRUE’ if the context is correct,

command

resultout

7 – 16 Oracle Workflow Guide

and ’FALSE’ if the context is incorrect. If the context is incorrect, you
can raise an exception and place a message in the WF_CORE error
system to indicate the reason the context is invalid. The raised
exception is also printed in an error message in the form.

6⇒ This section handles execution modes other than ’RUN’,
’SET_CTX’ or ’TEST_CTX’ as others may be added in the future.
Since your function does not need to implement any of these other
possible commands, it should simply return null.

7⇒ This section calls WF_CORE.CONTEXT() if an exception occurs, so
that you can include context information in the error stack to help you
locate the source of an error. See: CONTEXT: page 8 – 108.

7 – 17Defining Procedures and Functions for Oracle Workflow

Standard APIs for ”PL/SQL” and ”PL/SQL CLOB” Documents

You can integrate a document into a workflow process by defining an
attribute of type document for an item type, message, or activity.
Oracle Workflow supports document types called ”PL/SQL”
documents and ”PL/SQL CLOB” documents. A PL/SQL document
represents data as a character string, while a PL/SQL CLOB document
represents data as a character large object (CLOB).

The document–type attribute that you create tells Oracle Workflow
how to construct a dynamic call to a PL/SQL procedure that generates
the document. You can embed a PL/SQL document–type message
attribute in a message body to display the document in a notification.

The PL/SQL procedures that generate PL/SQL and PL/SQL CLOB
documents must follow standard API formats.

”PL/SQL” Documents

The PL/SQL procedure that generates a PL/SQL document must have
the following standard API:

procedure <procedure name> (document_id in varchar2,

 display_type in varchar2,

 document in out varchar2,

 document_type in out varchar2)

The arguments for the procedure are as follows:

A string that uniquely identifies a document. This
is the same string as the value that you specify in
the default value field of the Attribute property
page for a ”PL/SQL” document
(plsql:<procedure>/<document_identifier>).
<procedure> should be replaced with the PL/SQL
package and procedure name in the form of
package.procedure. The phrase
<document_identifier> should be replaced with the
PL/SQL argument string that you want to pass
directly to the procedure. The argument string
should identify the document. For example:
plsql:po_wf.show_req/2034. If you wish to
generate the PL/SQL argument string value
dynamically, create another item attribute, and

document_id

7 – 18 Oracle Workflow Guide

reference that item attribute as
”&ITEM_ATTRIBUTE” in place of the PL/SQL
argument string. Then before any activity that
references this other item attribute gets executed,
call the WF_ENGINE.SetItemAttribute API to
dynamically set the PL/SQL argument string
value. For example:
plsql:po_wf.show_req/&POREQ_NUMBER.

One of three values that represents the content type
used for the notification presentation, also referred
to as the requested type:

text/plain—the document is embedded inside a
plain text representation of the notification as
viewed from an e–mail message. The entire e–mail
message must be less than or equal to 32K, so
depending on how large your e–mail template is,
some of the plain text document that the procedure
generates may get truncated. See: Modifying Your
Message Templates: page 2 – 69.

text/html—the document is embedded inside an
HTML representation of the notification as viewed
from the Notification Web page, or the HTML
attachment to an e–mail message. The procedure
must generate a HTML representation of the
document of up to 32K, but should not include top
level HTML tags like <HTML> or <BODY> since
the HTML page that the document is being
inserted into already contains these tags. If you
include top level HTML tags accidentally, Oracle
Workflow removes the tags for you when the
document attribute is referenced in a message
body. Note that the procedure can alternatively
generate a plain text document, as the notification
system can automatically surround plain text with
the appropriate HTML tags to preserve formatting.

’ ’—the document is presented as a separate
attachment to the notification. Any content type
may be returned.

The outbound text buffer where up to 32K of
document text is returned.

The outbound text buffer where the document
content type is returned. Also referred to as the

display_type

document

document_type

7 – 19Defining Procedures and Functions for Oracle Workflow

returned type. If no type is supplied, then
’text/plain’ is assumed.

See Also

To Define a Document Attribute: page 4 – 14

”PL/SQL CLOB” Documents

The PL/SQL procedure that generates a PL/SQL CLOB document
must have the following standard API:

procedure <procedure name> (document_id in varchar2,

 display_type in varchar2,

 document in out clob,

 document_type in out varchar2)

The arguments for the procedure are as follows:

A string that uniquely identifies a document. This
is the same string as the value that you specify in
the default value field of the Attribute property
page for a ”PL/SQL CLOB” document
(plsqlclob:<procedure>/<document_identifier>).
<procedure> should be replaced with the PL/SQL
package and procedure name in the form of
package.procedure. The phrase
<document_identifier> should be replaced with the
PL/SQL argument string that you want to pass
directly to the procedure. The argument string
should identify the document. For example:
plsqlclob:po_wf.show_req_clob/2036. If you wish
to generate the PL/SQL argument string value
dynamically, create another item attribute, and
reference that item attribute as
”&ITEM_ATTRIBUTE” in place of the PL/SQL
argument string. Then before any activity that
references this other item attribute gets executed,
call the WF_ENGINE.SetItemAttribute API to
dynamically set the PL/SQL argument string
value. For example:
plsqlclob:po_wf.show_req_clob/&POREQ_NUMBER.

document_id

7 – 20 Oracle Workflow Guide

One of three values that represents the content type
used for the notification presentation, also referred
to as the requested type:

text/plain—the document is embedded inside a
plain text representation of the notification.

text/html—the document is embedded inside an
HTML representation of the notification as viewed
from the Notification Web page. The procedure
must generate a HTML representation of the
document, but should not include top level HTML
tags like <HTML> or <BODY> since the HTML
page that the document is being inserted into
already contains these tags. If you include top
level HTML tags accidentally, Oracle Workflow
removes the tags for you when the document
attribute is referenced in a message body. Note
that the procedure can alternatively generate a
plain text document, as the notification system can
automatically surround plain text with the
appropriate HTML tags to preserve formatting.

’ ’—the document is presented as a separate
attachment to the notification. Any content type
may be returned.

The outbound text buffer where the document text
is returned.

The outbound text buffer where the document
content type is returned. Also referred to as the
returned type. If no type is supplied, then
’text/plain’ is assumed.

Note: You can call WF_NOTIFICATION.WriteToClob() to help
build the CLOB by appending a string of character data to it.
See: WriteToClob: page 8 – 234.

See Also

To Define a Document Attribute: page 4 – 14

display_type

document

document_type

7 – 21Defining Procedures and Functions for Oracle Workflow

Standard API for an Event Data Generate Function

When you define an event in the Business Event System, you can assign
the event a Generate function that can produce the complete event data
from the event name, event key, and an optional parameter list. The
event data gives additional details to describe what occurred and can
be structured as an XML document. You should specify a Generate
function if the application that raises the event will not produce the
event data itself.

When an event is raised locally, the Event Manager checks each
subscription before executing it to determine whether the subscription
requires the event data. If the event data is required but is not already
provided, the Event Manager calls the Generate function for the event
to produce the event data. The Generate function returns the event data
in character large object (CLOB) format.

Note: If the event data is required but no Generate function is
defined for the event, Oracle Workflow creates a default set of
event data using the event name and event key.

Note: If the Generate function is costly, and you want to return
control to the calling application more quickly after raising the
event, you can defer all the subscriptions that require the
complete event data. Then the Event Manager will not run the
Generate function until those subscriptions are executed at a
later time. See: Deferred Subscription Processing: page 13 – 41.

The PL/SQL function that generates the event data must have the
following standard API:

function <function_name> (p_event_name in varchar2,

 p_event_key in varchar2

 p_parameter_list in wf_parameter_list_t

 default null)

 return clob;

The arguments for the function are as follows:

The internal name of the event.

A string generated when the event occurs within a
program or application. The event key uniquely
identifies a specific instance of the event.

An optional list of additional parameter name and
value pairs for the event.

p_event_name

p_event_key

p_parameter_list

7 – 22 Oracle Workflow Guide

See Also

To Define an Event: page 13 – 5

To Define an Event Subscription: page 13 – 45

Parameter List Structure: page 8 – 241

7 – 23Defining Procedures and Functions for Oracle Workflow

Standard APIs for a Queue Handler

When you define an agent in the Business Event System, you must
assign the agent a queue handler. The queue handler is a package that
translates between the standard Workflow event message format
defined by the WF_EVENT_T datatype and the message format
required by the queue associated with the agent.

Oracle Workflow provides two standard queue handlers for queues
that use the WF_EVENT_T format, WF_EVENT_QH for normal
processing and WF_ERROR_QH for error queues. Oracle Workflow
also provides a standard queue handler named WF_EVENT_OMB_QH
which you can set up and use if you implement Oracle Message Broker
in Oracle8i to propagate event messages between systems.

Additionally, you can create your own custom queue handlers for
queues that use other formats. If you create a custom queue handler,
you must provide the following standard APIs in your package:

• Enqueue()

• Dequeue()

See Also

Event Message Structure: page 8 – 242

Agents: page 13 – 22

Setting Up the WF_EVENT_OMB_QH Queue Handler: page 2 – 100

Enqueue

The Enqueue procedure in a queue handler package must enqueue an
event message onto a queue associated with an outbound agent. You
can optionally specify an override agent where you want to enqueue
the event message. Otherwise, the event message is enqueued on the
From Agent specified within the message. The Enqueue procedure
transforms the event message’s header information if necessary to
enqueue the message in the format required by the queue.

When an event message is being sent, the generic WF_EVENT.Enqueue
procedure determines which queue handler is associated with the
specified outbound agent and calls the Enqueue procedure in that
queue handler to enqueue the message.

7 – 24 Oracle Workflow Guide

The PL/SQL Enqueue procedure must have the following standard
API:

procedure enqueue (p_event in WF_EVENT_T,

 p_out_agent_override in WF_AGENT_T);

The arguments for the procedure are as follows:

The event message.

The outbound agent on whose queue the event
message should be enqueued.

Dequeue

The Dequeue procedure in a queue handler package must dequeue an
event message from the queue associated with the specified inbound
agent, selecting the message to dequeue by the message priority. The
procedure transforms the event message’s header information if
necessary and returns the event message in the standard
WF_EVENT_T structure. Additionally, the Dequeue procedure can set
the date and time when the message is dequeued into the
RECEIVE_DATE attribute of the event message.

When an event message is being received, the WF_EVENT.Listen
procedure determines which queue handler to use with the specified
inbound agent and calls the Dequeue procedure in that queue handler
to dequeue the message.

The PL/SQL Dequeue procedure must have the following standard
API:

procedure dequeue (p_agent_guid in raw,

 p_event out WF_EVENT_T);

The arguments for the procedure are as follows:

The globally unique identifier of the inbound agent
from whose queue the event message should be
dequeued.

The event message.

p_event

p_out_agent_
override

p_agent_guid

p_event

7 – 25Defining Procedures and Functions for Oracle Workflow

Standard API for an Event Subscription Rule Function

When you define an event subscription, you can choose to run a
PL/SQL function called a rule function on the event message. Oracle
Workflow provides a standard default rule function to perform basic
subscription processing. This function is executed by default if no other
rule function is specified for the subscription. The default rule function
includes the following actions:

• Sending the event message to a workflow process, if specified in
the subscription definition

• Sending the event message to an agent, if specified in the
subscription definition

See: Default_Rule: page 8 – 281.

Oracle Workflow also provides some standard rule functions that you
can use for testing and debugging or other purposes. See: Event
Subscription Rule APIs: page 8 – 279.

You can extend your subscription processing by creating custom rule
functions. Custom rule functions must be defined according to a
standard API.

A rule function may read from or write to the event message or
perform any other database action. However, you should never commit
within a rule function. The Event Manager never issues a commit as it
is the responsibility of the calling application to commit. Additionally,
the rule function must not change the connection context in any way,
including security and NLS settings.

Note: If your rule function writes to the event message, any
subsequent subscriptions executed on the event will access the
changed message.

If the subscription processing that you want to perform for an event
includes several successive steps, you may find it advantageous to
define multiple subscriptions to the event with simple rule functions
that you can reuse, rather than creating complex specialized rule
functions that cannot be reused. You can enter phase values for the
subscriptions to specify the order in which they should be executed.

By default, the Event Manager uses the event key as the correlation ID
for the event message when no other correlation ID is specified. If you
want to specify a different correlation ID, you can use
WF_EVENT_FUNCTIONS_PKG.AddCorrelation to add a correlation ID
to the event message, either by calling this function within your custom
rule function or by defining another subscription that uses

7 – 26 Oracle Workflow Guide

WF_EVENT_FUNCTIONS_PKG.AddCorrelation as its rule function. See:
AddCorrelation: page 8 – 294.

If you want to send the event message to a workflow process or to an
agent after running custom code on the message, you must either
include the send processing in your rule function, or define a separate
subscription that uses the default rule function to perform the send
processing.

• Call WF_ENGINE.Event() to send the event message to a
workflow process.

• Call WF_EVENT.Send() to send the event message to an agent.

• Call WF_RULE.Default_Rule() to include the default subscription
processing that can send the event message both to a workflow
process and to an agent.

Note: When you define a subscription in the Event Manager,
you can define the workflow item type, workflow process
name, out agent, to agent, priority, and parameters for your
send processing, as well as defining the rule function. Any rule
function can access these send attributes, but if you do not use
the default rule function, you must explicitly include the send
processing in your custom rule function if you want to send the
event from the same subscription.

The standard API for a rule function is as follows. This section is
numbered with the notation 1⇒ for easy referencing. The numbers and
arrows themselves are not part of the procedure.

1⇒ function <function_name> (p_subscription_guid in raw,

 p_event in out WF_EVENT_T) return varchar2 is

2⇒ <local declarations>

3⇒ begin

 <your executable statements>

4⇒ <optional code for WARNING>

 WF_CORE.CONTEXT(’<package name>’, ’<function name>’,

 p_event.getEventName(), p_subscription_guid);

 WF_EVENT.setErrorInfo(p_event, ’WARNING’);

 return ’WARNING’;

5⇒ return ’SUCCESS’;

6⇒ exception

 when others then

 WF_CORE.CONTEXT(’<package name>’, ’<function name>’,

 p_event.getEventName(), p_subscription_guid);

 WF_EVENT.setErrorInfo(p_event, ’ERROR’);

 return ’ERROR’;

7 – 27Defining Procedures and Functions for Oracle Workflow

7⇒ end;

1⇒ When the Event Manager calls the rule function, it passes two
parameters to the function and expects a return code when the function
completes. The parameters are defined here:

The globally unique identifier for the subscription.

The event message.

The function must return one of the following status codes:

• SUCCESS—The rule function completed successfully.

• WARNING—A warning condition occurred. The rule function
reports a warning message using the Workflow Core error APIs
and sets the warning information into the event message. The
Event Manager places a copy of the event message on the
WF_ERROR queue, but subscription processing continues.

• ERROR—An error occurred. The rule function reports an error
message using the Workflow Core error APIs and sets the error
information into the event message. The Event Manager halts
subscription processing for this event, rolls back any
subscriptions already executed for the event, and places the
event message on the WF_ERROR queue.

2⇒ This section declares any local arguments that are used within the
function.

3⇒ The procedure body begins in this section with one or more
executable statements that make up your rule function.

4⇒ This optional section calls WF_CORE.CONTEXT() if a warning
condition occurs, so that you can include context information in the
error stack to help you locate the source of an error. It also sets the
warning information into the event message and returns the status
code ’WARNING’. See: CONTEXT: page 8 – 108.

5⇒ This section returns the status code ’SUCCESS’ when the rule
function’s normal processing completes successfully.

6⇒ This section calls WF_CORE.CONTEXT() if an exception occurs, so
that you can include context information in the error stack to help you
locate the source of an error. It also sets the error information into the
event message and returns the status code ’ERROR’. See: CONTEXT:
page 8 – 108.

p_subscription_
guid

p_event

7 – 28 Oracle Workflow Guide

Note: If you raise an exception in the rule function, the Event
Manager rolls back all subscription processing for the event
and raises the error to the calling application. In this case the
event message is not placed on the WF_ERROR queue.

See Also

To Define an Event Subscription: page 13 – 45

Event Message Structure: page 8 – 242

Workflow Core APIs: page 8 – 101

Event Subscription Rule APIs: page 8 – 279

Event(): page 8 – 75

Send(): page 8 – 265

Default_Rule(): page 8 – 281

SetErrorInfo(): page 8 – 273

C H A P T E R

8
T

8 – 1Oracle Workflow APIs

Oracle Workflow APIs

his chapter describes the APIs for Oracle Workflow. The APIs
consist of views and PL/SQL and Java functions and procedures that
you can use to access the Workflow Engine, the Notification System,
the Business Event System, and workflow data.

8 – 2 Oracle Workflow Guide

Oracle Workflow Procedures and Functions

Oracle Workflow supplies a list of public PL/SQL and Java procedures
and functions that you can use to set up a workflow process. They are
grouped within the following packages and classes:

• WF_ENGINE: page 8 – 19

• WFFunctionAPI: page 8 – 82

• WFAttribute: page 8 – 90

• WF_CORE: page 8 – 101

• WF_PURGE: page 8 – 111

• WF_DIRECTORY: page 8 – 121

• WF_LDAP: page 8 – 144

• WF_PREF: page 8 – 148

• WF_MONITOR: page 8 – 149

• Oracle Workflow Views: page 8 – 157

• WF_QUEUE: page 8 – 162

• FND_DOCUMENT_MANAGEMENT: page 8 – 185

• WF_NOTIFICATIONS: page 8 – 197

• WF_EVENT: page 8 – 260

• WF_RULE: page 8 – 279

• WF_EVENT_FUNCTIONS_PKG: page 8 – 290

• WF_EVENTS_PKG: page 8 – 300

• WF_EVENT_GROUPS_PKG: page 8 – 300

• WF_SYSTEMS_PKG: page 8 – 300

• WF_AGENTS_PKG: page 8 – 300

• WF_EVENT_SUBSCRIPTIONS_PKG: page 8 – 300

8 – 3Oracle Workflow APIs

Overview of the Workflow Engine

The Workflow Engine manages all automated aspects of a workflow
process for each item. The engine is implemented in server–side
PL/SQL and is activated whenever a call to a workflow procedure or
function is made. Since the engine is embedded inside the Oracle
database server, if the Workflow server goes down for any reason, the
Oracle database server is able to manage the recovery and transactional
integrity of any workflow transactions that were running at the time of
the failure.

Additionally, Workflow Engines can be set up as background tasks to
perform activities that are too costly to execute in real time.

The Workflow Engine performs the following services for a client
application:

• It manages the state of all activities for an item, and in particular,
determines which new activity to transition to whenever a
prerequisite activity completes.

• It automatically executes function activities (execution is either
immediate or deferred to a background engine) and sends
notifications.

• It maintains a history of an activity’s status.

• It detects error conditions and executes error processes.

The state of a workflow item is defined by the various states of all
activities that are part of the process for that item. The engine changes
activity states in response to an API call to update the activity. The API
calls that update activity states are:

• CreateProcess: page 8 – 21

• StartProcess: page 8 – 28

• CompleteActivity: page 8 – 69

• CompleteActivityInternalName: page 8 – 72

• AssignActivity: page 8 – 74

• HandleError: page 8 – 77

• SuspendProcess: page 8 – 32

• ResumeProcess: page 8 – 34

• AbortProcess: page 8 – 36

�

8 – 4 Oracle Workflow Guide

Based on the result of a previous activity, the engine attempts to
execute the next activity directly. An activity may have the following
status:

• Active—activity is running.

• Complete—activity completed normally.

• Waiting—activity is waiting to run.

• Notified—notification activity is delivered and open.

• Deferred—activity is deferred.

• Error—activity completed with error.

• Suspended—activity is suspended.

Attention: The Workflow Engine traps errors produced by
function activities by setting a savepoint before each function
activity. If an activity produces an unhandled exception, the
engine performs a rollback to the savepoint, and sets the
activity to the ERROR status. For this reason, you should
never commit within the PL/SQL procedure of a function
activity. The Workflow Engine never issues a commit as it is
the responsibility of the calling application to commit.

For environments such as database triggers or distributed
transactions that do not allow savepoints, the Workflow Engine
automatically traps ”Savepoint not allowed” errors and defers
the execution of the activity to the background engine.

Note: The Oracle database server release 8i and higher offers
autonomous transactions. By embedding the pragma
AUTONOMOUS_TRANSACTION in your procedure, you can
perform commits and rollbacks independently of the main
transaction. Oracle treats this as a separate session; as such,
you will not have access to any database changes that were
made in the main session but are not yet committed.
Consequently, you are restricted from updating
workflow–specific data in an autonomous transaction; for
instance, you cannot set item attributes. You cannot access this
data because the item itself has not yet been committed, and
because you may have lock contentions with the main session.

Oracle Workflow will not support autonomous commits in any
procedure it calls directly. If you need to perform commits,
then embed your SQL in a subprocedure and declare it as an
autonomous block. This subprocedure must be capable of being
rerun. Additionally, note that Oracle Workflow handles errors
by rolling back the entire procedure and setting its status to
ERROR. Database updates performed by autonomous commits

8 – 5Oracle Workflow APIs

cannot be rolled back, so you will need to write your own
compensatory logic for error handling. For more information,
see: Autonomous Transactions, Oracle Database Concepts.

Oracle Workflow Java Interface

The Oracle Workflow Java interface provides a means for any Java
program to integrate with Oracle Workflow. The Oracle Workflow
Engine and Notification APIs are accessible through public server
PL/SQL packages and published views. The Oracle Workflow Java
interface exposes those APIs as Java methods that can be called by any
Java program to communicate with Oracle Workflow. The Java
methods directly reference the WF_ENGINE and WF_NOTIFICATION
PL/SQL package procedures and views and communicate with the
Oracle Workflow database through JDBC.

The methods are defined within the EngineAPI class and the
NotificationAPI class, in the Java package ’oracle.apps.fnd.wf.engine’.
If a Workflow Engine or Notification API has a corresponding Java
method, its Java method syntax is displayed immediately after its
PL/SQL syntax in the documentation. See: Workflow Engine APIs:
page 8 – 19 and Notification APIs: page 8 – 197.

Additionally, Java functions can be incorporated within Workflow
processes as external Java function activities. This functionality is
currently only available for the standalone version of Oracle Workflow.
The custom Java classes for these activities are implemented as classes
that extend the WFFunctionAPI class. The custom classes must follow a
standard API format so that they can be properly executed by the
Oracle Workflow Java Function Activity Agent. See: Standard API for
Java Procedures Called by Function Activities: page 7 – 8 and Function
Activity: page 4 – 44.

The WFFunctionAPI class and the WFAttribute class also contain
methods that can be called to communicate with Oracle Workflow.
These classes are defined in the Java package ’oracle.apps.fnd.wf’. See:
Workflow Function APIs: page 8 – 82 and Workflow Attribute APIs:
page 8 – 90.

Java programs that integrate with Oracle Workflow should include the
following import statements to provide access to classes required by
Oracle Workflow:

import java.io.*;

import java.sql.*;

import java.math.BigDecimal;

8 – 6 Oracle Workflow Guide

import oracle.sql.*;

import oracle.jdbc.driver.*;

import oracle.apps.fnd.common.*;

import oracle.apps.fnd.wf.engine.*;

import oracle.apps.fnd.wf.*;

Oracle Workflow Context

Each Oracle Workflow Java method that accesses the database requires
an input of a WFContext object. The WFContext object consists of
database connectivity information which you instantiate and resource
context information that the WFContext class instantiates. To call one
of these Workflow Java APIs in your Java program, you must first
instantiate a database variable of class WFDB with your database
username, password and alias. You can also optionally supply a JDBC
string. Then you must instantiate the WFContext object with the
database variable. You can retrieve the system property CHARSET to
specify the character set for the database session. The following code
excerpt shows an example of how to instantiate these objects.

WFDB myDB;

WFContext ctx;

myDB = new WFDB(m_user, m_pwd, m_jdbcStr, m_conStr);

m_charSet = System.getProperty(”CHARSET”);

if (m_charSet == null) { // cannot be null

 m_charSet = ”UTF8”;

}

try {

 ctx = new WFContext(myDB, m_charSet);

 // m_charSet is ’UTF8’ by default

 if (ctx.getDB().getConnection() == null) {

 // connection failed

 return;

 }

 // We now have a connection to the database.

}

catch (Exception e) {

8 – 7Oracle Workflow APIs

// exit Message for this exception

}

If you have already established a JDBC connection, you can simply set
that connection into the WFContext object, as shown in the following
example:

WFContext ctx;

m_charSet = System.getProperty(”CHARSET”);

if (m_charSet == null) { // cannot be null

 m_charSet = ”UTF8”;

}

ctx = new WFContext(m_charSet);

// m_charSet is ’UTF8’ by default

ctx.setJDBCConnection(m_conn);

// m_conn is a pre–established JDBC connection

Sample Java Program

Oracle Workflow provides an example Java program that illustrates
how to call most of the Workflow Engine and Notification Java APIs.
The Java program is named WFTest. It calls the various Java APIs to
launch the WFDEMO process, set and get attributes and suspend,
resume and abort the process, as well as the APIs to send a notification,
set and get notification attributes, and delegate and transfer the
notification. Before running the WFTest Java program, make sure you
define CLASSPATH and LD_LIBRARY_PATH for the Oracle JDBC
implementation and a supported version of Oracle. For example, on
UNIX, use the following commands:

setenv CLASSPATH

<Workflow_JAR_file_directory>/wfapi.jar:${ORACLE_HOME}/jdbc/

lib/classes111.zip

setenv LD_LIBRARY_PATH ${ORACLE_HOME}/lib:${LD_LIBRARY_PATH}

Note: If you are using the standalone version of Oracle
Workflow with Oracle9i, the Workflow JAR files are located in
the <ORACLE_HOME>/jlib directory. If you are using the version
of Oracle Workflow embedded in Oracle Applications, the
Workflow JAR files are located in the

8 – 8 Oracle Workflow Guide

<ORACLE_HOME>/wf/java/oracle/apps/fnd/wf/jar/
directory.

To initiate the WFTest program, run Java against
oracle.apps.fnd.wf.WFTest. For example, on UNIX, enter the
following statement on the command line:

$java oracle.apps.fnd.wf.WFTest

The source file for this program is also included in your Oracle
Workflow installation so that you can view the sample code. The source
file is named WFTest.java and is located in the
<ORACLE_HOME>/wf/java/oracle/apps/fnd/wf/ directory.

Additional Workflow Engine Features

In addition to managing a process, the Workflow Engine also supports
the following features:

• Completion Processing: page 8 – 8

• Deferred Processing: page 8 – 9

• Error Processing: page 8 – 10

• Looping: page 8 – 10

• Version/Effective Date: page 8 – 11

• Item Type Attributes: page 8 – 12

• Post–notification functions: page 8 – 13

• Synchronous, Asynchronous, and Forced Synchronous Processes:
page 8 – 14

• Business Events: page 8 – 17

Completion Processing

Engine processing is triggered whenever a process activity completes
and calls the Workflow Engine API. The engine then attempts to
execute (or mark for deferred execution) all activities that are
dependent on the completed activity.

Note: A process as a whole can complete but still contain
activities that were visited but not yet completed. For example,
a completed process may contain a standard Wait activity that
is not complete because the designated length of time to wait
has not yet elapsed. When the process as a whole completes,

8 – 9Oracle Workflow APIs

the Workflow Engine marks these incomplete activities as
having a status of COMPLETE and a result of #FORCE. This
distinction is important when you review your process status
through the Workflow Monitor.

Deferred Processing

The engine has a deferred processing feature that allows long–running
tasks to be handled by background engines instead of in real time.
Deferring the execution of activity functions to background engines
allows the Workflow Engine to move forward to process other
activities that are currently active. The engine can be set up to operate
anywhere on a continuum between processing all eligible work
immediately, to processing nothing and marking all transitions as
deferred.

Each activity has a user–defined processing cost. You can set this cost
to be small if the activity merely sets an item attribute, or you may set it
to be very high if the activity performs a resource–intensive operation.
If the result of a completed activity triggers the execution of a costly
function, you might want to defer the execution of that costly function
to a background engine.

The Workflow Engine integrates with Oracle Advanced Queues to
carry out deferred processing. If a function activity has a cost that
exceeds the main threshold cost, the Workflow Engine marks that
activity with a status of ’DEFERRED’ in the workflow status tables and
enqueues the deferred activity to a special queue for deferred activities.
A special queue processor called the background engine checks and
processes the activities in the ’deferred’ queue. The order in which the
deferred activities are processed are based on the first in, first out
ordering of an activity’s enqueue time. At least one background engine
must be set up to run at all times. Some sites may have multiple
background engines operating at different thresholds or item type
specifications, to avoid tying up all background processing with
long–running operations.

See Also

Activity Cost: page 4 – 47

Deferring Activities: page C – 7

8 – 10 Oracle Workflow Guide

Error Processing

Errors that occur during workflow execution cannot be directly
returned to the caller, since the caller generally does not know how to
respond to the error (in fact, the caller may be a background engine
with no human operator). You can use Oracle Workflow Builder to
define the processing you want to occur in case of an error. Use Oracle
Workflow Builder to modify the Default Error Process associated with
the System:Error item type or create your own custom error process.
See: Default Error Process: page 6 – 26.

The error process can include branches based on error codes, send
notifications, and attempt to deal with the error using automated rules
for resetting, retrying, or skipping the failed activity. Once you define
an error process, you can associate it with any activity. The error
process is then initiated whenever an error occurs for that activity. See:
To Define Optional Activity Details: page 4 – 59.

The Workflow Engine traps errors produced by function activities by
setting a savepoint before each function activity. If an activity produces
an unhandled exception, the engine performs a rollback to the
savepoint, and sets the activity to the ERROR status.

Note: For this reason, you should never commit within the
PL/SQL procedure of a function activity. The Workflow
Engine never issues a commit as it is the responsibility of the
calling application to commit.

The Workflow Engine then attempts to locate an error process to run by
starting with the activity which caused the error, and then checking
each parent process activity until an associated error process is located.

Looping

Looping occurs when the completion of an activity causes a transition
to another activity that has already been completed. The first activity
that gets detected as a revisited activity is also called a loop point or
pivot activity. The Workflow Engine can handle a revisited activity in
one of three ways:

• Ignore the activity, and stop further processing of the thread, so
in effect, the activity can only run once.

• Reset the loop to the loop point before reexecuting by first
running logic to undo the activities within the loop.

• Reexecute the loop point and all activities within the loop
without running any logic.

8 – 11Oracle Workflow APIs

Every activity has an On Revisit poplist field in its Oracle Workflow
Builder Details property page. The On Revisit poplist lets you specify
the behavior of the Workflow Engine when it revisits the activity in a
workflow process. You can set the field to Ignore, Reset, or Loop.

Setting On Revisit to Ignore is useful for implementing activities that
should only run once, even though they can be transitioned to from
multiple sources. For example, this mode allows you to implement a
”logical OR”–type of activity which is transitioned to multiple times,
but completes after the first transition only.

Setting On Revisit to Reset for an activity is useful when you want to
reexecute activities in a loop, but you want to first reset the status of
the activities in the loop. Reset causes the Workflow Engine to do the
following:

• Build a list of all activities visited following the pivot activity.

• Traverse the list of activities, cancelling each activity and
resetting its status.

Cancelling an activity is similar to executing the activity, except that
the activity is executed in ”CANCEL” mode rather than ”RUN” mode.
You can include compensatory logic in ”CANCEL” mode that reverses
any operation performed earlier in ”RUN” mode.

If you set On Revisit to Reset for the pivot activity of a loop that
includes an FYI notification activity, the Workflow Engine cancels the
previous notification before reexecuting the loop and sending a new
notification to the current performer of the notification activity.

Setting On Revisit to Loop for an activity is useful when you want to
simply reexecute activities in a loop without resetting the status of the
activities in the loop. Loop causes the Workflow Engine to reexecute
the activity in ”RUN” mode without executing any ”CANCEL” mode
logic for the activity.

If you set On Revisit to Loop for the pivot activity of a loop that
includes an FYI notification activity, previous notifications remain open
when the Workflow Engine reexecutes the loop and sends a new
notification to the current performer of the notification activity.

Version / Effective Date

Certain workflow objects in a process definition are marked with a
version number so that more than one version of the object can be in
use at any one time. These objects are:

• Activities—notifications, functions, and processes

8 – 12 Oracle Workflow Guide

Note: Although function activities support versioning, the
underlying PL/SQL code does not, unless implemented by
your developer. You should avoid adding references to new
activity attributes or returning result lookup codes not
modelled by existing activities in your PL/SQL code.

• Activity attributes

• Process activity nodes

• Activity attribute values

• Activity transitions

If you edit and save any of the above objects in Oracle Workflow
Builder to the database, Oracle Workflow automatically creates a new
version of that object or the owning object by incrementing the version
number by one. If you save edits to any of the above objects to an
existing file, then the original objects are overwritten. If you have a
process instance that is still running and you upgrade the underlying
workflow definition in your Workflow server, the process instance
continues to run using the version of the workflow object definitions
with which it was originally initiated.

An effective date controls which version of a definition the engine uses
when executing a process. When you edit a process, you can save it
with an immediate or future effective date. Any new process instance
that is initiated always uses the version that is specified to be effective
at that point in time. See: Opening and Saving Item Types: page 3 – 12.

Note that Oracle Workflow does not maintain versions for other
workflow objects. Any modifications that you save to the following
objects overwrites the existing definition of the object:

• Item attributes

• Messages

• Lookup types

Item Type Attributes

A set of item type attributes is defined at both design–time and runtime
for each item. These attributes provide information to the function and
notification activities used in the processes associated with the item
type.

When you define item type attributes at runtime, you can add either
individual attributes or arrays containing several attributes of the same
type, using the appropriate Workflow Engine APIs. Similarly, you can

8 – 13Oracle Workflow APIs

set the values of existing attributes either individually or in arrays
containing several attributes of the same type.

Use the array APIs whenever you need to add or set the values of large
numbers of item type attributes at once. These APIs improve
performance by using the bulk binding feature in Oracle8i and higher
to reduce the number of database operations. See:
AddItemAttributeArray: page 8 – 46 and SetItemAttributeArray: page
8 – 53.

Note: These array APIs handle arrays that are composed of
multiple item type attributes grouped together by type. Oracle
Workflow does not support individual item type attributes that
consist of arrays themselves.

Post–Notification Functions

You can associate a post–notification function with a notification
activity. The Workflow Engine executes the post–notification function
in response to an update of the notification’s state after the notification
is delivered. For example, you can specify a post–notification function
that executes when the notification recipient forwards or transfers the
notification. The post–notification function could perform back–end
logic to either validate the legitimacy of the forward/transfer or
execute some other supporting logic.

The post–notification function should be a PL/SQL procedure written
to the same API standards required for function activities. See:
Standard API for PL/SQL Procedures Called by Function Activities:
page 7 – 3.

When you specify a post–notification function, the Workflow Engine
first sets the context information to use with the function via the
following two global engine variables:

• WF_ENGINE.context_nid = notification_ID.

• WF_ENGINE.context_text = new recipient_role, if the
post–notification function gets called in FORWARD or
TRANSFER mode. This variable is the new role to which the
notification gets forwarded/transferred;

or

WF_ENGINE.context_text = responder, if the post–notification
function gets called in RESPOND mode.

Note: The value of responder varies depending on the
notification interface the recipient uses to respond. If the
recipient responds using the Notification web page, responder is

�

8 – 14 Oracle Workflow Guide

set to the role name of the responder. If the recipient responds
via e–mail, responder is set to ”email:responder_email_address”.

You may reference these global engine variables in your PL/SQL
function.

Then when the notification’s state changes, a notification callback
function executes the post–notification function in the mode that
matches the notification’s state: RESPOND, FORWARD, or
TRANSFER.

When the Notification System completes execution of the
post–notification function in RESPOND mode, the Workflow Engine
automatically runs the post–notification function again in RUN mode.
In this mode, the post–notification function can perform additional
processing such as vote tallying.

If a notification activity times out, the Workflow Engine runs the
post–notification function for the activity in TIMEOUT mode. For a
Voting activity, the TIMEOUT mode logic should identify how to tally
the votes received up until the timeout.

When the post–notification function completes, the Workflow Engine
erases the two global engine variables.

As a final step, if the post–notification function is run in TRANSFER
mode and Expand Roles is not checked for the notification activity, the
Workflow Engine sets the assigned user for the notification to the new
role name specified.

Attention: If the post–notification function returns
ERROR:<errcode> as a result or raises an exception, the
Workflow Engine aborts the respond, forward, or transfer
operation. For example, if the post–notification function is
executed in FORWARD mode and it raises an exception
because the role being forwarded to is invalid, an error is
displayed to the user and the Forward operation does not get
executed. The notification recipient is then prompted again to
take some type of action.

See Also

Notification Model: page 8 – 192

Synchronous, Asynchronous, and Forced Synchronous Processes

A workflow process can be either synchronous or asynchronous. A
synchronous process is a process that can be executed without

8 – 15Oracle Workflow APIs

interruption from start to finish. The Workflow Engine executes a
process synchronously when the process includes activities that can be
completed immediately, such as function activities that are not deferred
to the background engine. The Workflow Engine does not return
control to the calling application that initiated the workflow until it
completes the process. With a synchronous process, you can
immediately check for process results that were written to item
attributes or directly to the database. However, the user must wait for
the process to complete.

An asynchronous process is a process that the Workflow Engine cannot
complete immediately because it contains activities that interrupt the
flow. Examples of activities that force an asynchronous process include
deferred activities, notifications with responses, blocking activities, and
wait activities. Rather than waiting indefinitely when it encounters one
of these activities, the Workflow Engine sets the audit tables
appropriately and returns control to the calling application. The
workflow process is left in an unfinished state until it is started again.
The process can be restarted by the Notification System, such as when a
user responds to a notification; by the background engine, such as
when a deferred activity is executed; or by the Business Event System,
such as when an event message is dequeued from an inbound queue
and sent to the workflow process. With an asynchronous process, the
user does not have to wait for the process to complete to continue
using the application. However, the results of the process are not
available until the process is completed at a later time.

In addition to regular synchronous and asynchronous processes, the
Workflow Engine also supports a special class of synchronous
processes called forced synchronous processes. A forced synchronous
process completes in a single SQL session from start to finish and never
inserts into or updates any database tables. As a result, the execution
speed of a forced synchronous process is significantly faster than a
typical synchronous process. The process results are available
immediately upon completion. However, no audit trail is recorded.

There may be cases when your application requires a forced
synchronous process to generate a specific result quickly when
recording an audit trail is not a concern. For example, in Oracle
Applications, several products require Account Generator workflows
to generate a meaningful flexfield code derived from a series of
concatenated segments pulled from various tables. The Account
Generator workflows are forced synchronous processes that compute
and pass back completed flexfield codes to the calling applications
instantaneously.

8 – 16 Oracle Workflow Guide

To create a forced synchronous process, you need to set the itemkey of
your process to #SYNCH or to wf_engine.eng_synch, which returns the
#SYNCH constant, when you call the necessary WF_ENGINE APIs.
Since a forced synchronous process never writes to the database, using
a non–unique itemkey such as #SYNCH is not an issue. Your process
definition, however, must adhere to the following set of restrictions:

• No notification activities are allowed.

• Limited blocking–type activities are allowed. A process can
block and restart with a call to WF_ENGINE.CompleteActivity
only if the blocking and restarting activities:

– Occur in the same database session.

– Contain no intervening calls to Oracle Workflow.

– Contain no intervening commits.

• No Error Processes can be assigned to the process or the process’
activities.

• Each function activity behaves as if On Revisit is set to Loop, and
is run in non–cancelling mode, regardless of its actual On Revisit
setting. Loops are allowed in the process.

• No Master/Detail coordination activities are allowed.

• No parallel flows are allowed in the process, as transitions from
each activity must have a distinct result. This also means that no
<Any> transitions are allowed since they cause parallel flows.

• None of the following Standard activities are allowed:

– And

– Block (restricted by the conditions stated in the Limited
Blocking bullet point above.)

– Defer Thread

– Wait

– Continue Flow/Wait for Flow

– Role Resolution

– Voting

– Compare Execution Time

– Notify

• No use of the background engine, that is, activities are never
deferred.

�

8 – 17Oracle Workflow APIs

• No data is ever written to the Oracle Workflow tables and as a
result:

– The process cannot be viewed from the Workflow Monitor.

– No auditing is available for the process.

• Only the following WF_ENGINE API calls are allowed to be
made, and in all cases, the itemkey supplied to these APIs must
be specified as #SYNCH or wf_engine.eng_synch:

– WF_ENGINE.CreateProcess

– WF_ENGINE.StartProcess

– WF_ENGINE.GetItemAttribute

– WF_ENGINE.SetItemAttribute

– WF_ENGINE.GetActivityAttribute

– WF_ENGINE.CompleteActivity (for the limited usage of
blocking–type activities)

• WF_ENGINE API calls for any item besides the item for the
current synchronous item are not allowed.

Attention: If you encounter an error from a forced
synchronous process, you should rerun the process with a
unique item key in asynchronous mode and check the error
stack using the Workflow Monitor or the script wfstat.sql. If
the synchronous process completes successfully, the error you
encountered in the forced synchronous process is probably due
to a violation of one of the above listed restrictions. See:
Wfstat.sql: page 16 – 16.

See Also

Synchronous, Asynchronous, and Forced Synchronous Workflows:
page C – 2

Business Events

Events from the Business Event System are represented within
workflow processes as event activities. An event activity can either
raise, send, or receive a business event.

A Raise event activity raises an event to the Event Manager, triggering
any subscriptions to that event. The Workflow Engine calls the
WF_EVENT.Raise API to raise the event. See: Raise: page 8 – 261.

8 – 18 Oracle Workflow Guide

A Send event activity sends an event directly to a Business Event
System agent without raising the event to the Event Manager. The
Workflow Engine calls the WF_EVENT.Send API to send the event. See:
Send: page 8 – 265.

A Receive event activity receives an event from the Event Manager into
a workflow process, which then continues the thread of execution from
that activity. The Workflow Engine can receive an event into an activity
in an existing process instance that is waiting for the event, using the
correlation ID in the event message to match the event with the process
to which it belongs. The Workflow Engine can also receive an event
into a Receive event activity that is marked as a Start activity to launch
a new workflow process. The WF_ENGINE.Event API is used to
receive an event into a workflow process. See: Event: page 8 – 75.

Note: If the event received by a Receive event activity was
originally raised by a Raise event activity in another workflow
process, the item type and item key for that process are
included in the parameter list within the event message. In this
case, the Workflow Engine automatically sets the specified
process as the parent for the process that receives the event,
overriding any existing parent setting. See: SetItemParent: page
8 – 79.

See Also

 Managing Business Events: page 13 – 2

 Event Activities: page 4 – 54

�

8 – 19Oracle Workflow APIs

Workflow Engine APIs

The Workflow Engine APIs can be called by an application program or
a workflow function in the runtime phase to communicate with the
engine and to change the status of each of the activities. These APIs are
defined in a PL/SQL package called WF_ENGINE.

Many of these Workflow Engine APIs also have corresponding Java
methods that you can call from any Java program to integrate with
Oracle Workflow. The following list indicates whether the Workflow
Engine APIs are available as PL/SQL functions/procedures, as Java
methods, or both.

Attention: Java is case–sensitive and all Java method names
begin with a lower case letter to follow Java naming
conventions.

• CreateProcess: page 8 – 21—PL/SQL and Java

• SetItemUserKey: page 8 – 23—PL/SQL

• GetItemUserKey: page 8 – 24—PL/SQL

• GetActivityLabel: page 8 – 25—PL/SQL

• SetItemOwner: page 8 – 26—PL/SQL and Java

• StartProcess: page 8 – 28—PL/SQL and Java

• LaunchProcess: page 8 – 30—PL/SQL and Java

• SuspendProcess: page 8 – 32—PL/SQL and Java

• ResumeProcess: page 8 – 34—PL/SQL and Java

• AbortProcess: page 8 – 36—PL/SQL and Java

• CreateForkProcess: page 8 – 38—PL/SQL

• StartForkProcess: page 8 – 40—PL/SQL

• Background: page 8 – 41—PL/SQL

• AddItemAttribute: page 8 – 43—PL/SQL and Java

• AddItemAttributeArray: page 8 – 46—PL/SQL

• SetItemAttribute: page 8 – 48—PL/SQL and Java

• SetItemAttrDocument: page 8 – 51—PL/SQL and Java

• SetItemAttributeArray: page 8 – 53—PL/SQL

• getItemTypes: page 8 – 56—Java

• GetItemAttribute: page 8 – 57—PL/SQL

8 – 20 Oracle Workflow Guide

• GetItemAttrDocument: page 8 – 59—PL/SQL

• GetItemAttrClob: page 8 – 60—PL/SQL

• getItemAttributes: page 8 – 61—Java

• GetItemAttrInfo: page 8 – 62—PL/SQL

• GetActivityAttrInfo: page 8 – 63—PL/SQL

• GetActivityAttribute: page 8 – 64—PL/SQL

• GetActivityAttrClob: page 8 – 66—PL/SQL

• BeginActivity: page 8 – 67—PL/SQL

• CompleteActivity: page 8 – 69—PL/SQL

• CompleteActivityInternalName: page 8 – 72—PL/SQL

• AssignActivity: page 8 – 74—PL/SQL

• Event: page 8 – 75—PL/SQL

• HandleError: page 8 – 77—PL/SQL

• SetItemParent: page 8 – 79—PL/SQL

• ItemStatus: page 8 – 80—PL/SQL and Java

• getProcessStatus: page 8 – 81—Java

See Also

Standard API for PL/SQL Procedures Called by a Function Activities:
page 7 – 3

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

8 – 21Oracle Workflow APIs

CreateProcess

procedure CreateProcess

 (itemtype in varchar2,

 itemkey in varchar2,

 process in varchar2 default ’’,

 user_key in varchar2 default null,

 owner_role in varchar2 default null);

public static boolean createProcess

 (WFContext wCtx,

 String itemType,

 String itemKey,

 String process)

Creates a new runtime process for an application item.

For example, a Requisition item type may have a Requisition Approval
Process as a top level process. When a particular requisition is created,
an application calls CreateProcess to set up the information needed to
start the defined process.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 8 – 6.

A valid item type. Item types are defined in the
Workflow Builder.

A string derived usually from the application
object’s primary key. The string uniquely identifies
the item within an item type. The item type and
key together identify the new process and must be
passed to all subsequent API calls for that process.

Note: You can pass #SYNCH as the itemkey to create a forced
synchronous process. See: Synchronous, Asynchronous, and
Forced Synchronous Processes: page 8 – 14.

An optional argument that allows the selection of a
particular process for that item. Provide the
process internal name. If process is null, the item
type’s selector function is used to determine the
top level process to run. If you do not specify a

wCtx

itemtype

itemkey

process

�

Example

8 – 22 Oracle Workflow Guide

selector function and this argument is null, an error
will be raised.

A user–friendly key to assign to the item identified
by the specified item type and item key. This
argument is optional.

A valid role to set as the owner of the item. This
argument is optional.

Caution: Although you can make a call to CreateProcess() and
StartProcess() from a database trigger to initiate a workflow
process, you should avoid doing so in certain circumstances.
For example, if a database entity has headers, lines and details,
and you initiate a workflow process from an AFTER INSERT
trigger at the header–level of that entity, your workflow
process may fail because some subsequent activity in the
process may require information from the entity’s lines or
details level that is not yet populated.

Attention: The Workflow Engine always issues a savepoint
before executing each activity in a process so that it can
rollback to the previous activity in case an error occurs. For
environments such as database triggers or distributed
transactions that do not allow savepoints, the Workflow Engine
automatically traps ”Savepoint not allowed” errors and defers
the execution of the activity. If you initiate a workflow process
from a database trigger, the Workflow Engine immediately
defers the initial start activities to a background engine, so that
they are no longer executing from a database trigger.

The following code excerpt shows an example of how to call
createProcess() in a Java program. The example code is from the
WFTest.java program.

// create an item

if (WFEngineAPI.createProcess(ctx, iType, iKey, pr))

 System.out.println(”Created Item”);

 else

{

 System.out.println(”createProcess failed”);

 WFEngineAPI.showError(ctx);

}

user_key

owner_role

PL/SQL Syntax

Description

Arguments (input)

8 – 23Oracle Workflow APIs

SetItemUserKey

procedure SetItemUserKey

 (itemtype in varchar2,

 itemkey in varchar2,

 userkey in varchar2);

Lets you set a user–friendly identifier for an item in a process, which is
initially identified by an item type and item key. The user key is
intended to be a user–friendly identifier to locate items in the Workflow
Monitor and other user interface components of Oracle Workflow.

A valid item type.

A string generated usually from the application
object’s primary key. The string uniquely identifies
the item within an item type. The item type and
key together identify the item in a process. See:
CreateProcess: page 8 – 21.

The user key to assign to the item identified by the
specified item type and item key.

itemtype

itemkey

userkey

PL/SQL Syntax

Description

Arguments (input)

8 – 24 Oracle Workflow Guide

GetItemUserKey

function GetItemUserKey

 (itemtype in varchar2,

 itemkey in varchar2)

 return varchar2;

Returns the user–friendly key assigned to an item in a process,
identified by an item type and item key. The user key is a user–friendly
identifier to locate items in the Workflow Monitor and other user
interface components of Oracle Workflow.

A valid item type.

A string generated usually from the application
object’s primary key. The string uniquely identifies
the item within an item type. The item type and
key together identify the item in a process. See:
CreateProcess: page 8 – 21.

itemtype

itemkey

PL/SQL Syntax

Description

Arguments (input)

8 – 25Oracle Workflow APIs

GetActivityLabel

function GetActivityLabel

 (actid in number)

return varchar2;

Returns the instance label of an activity, given the internal activity
instance ID. The label returned has the following format, which is
suitable for passing to other Workflow Engine APIs, such as
CompleteActivity and HandleError, that accept activity labels as
arguments:

<process_name>:<instance_label>

An activity instance ID.actid

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

Example

8 – 26 Oracle Workflow Guide

SetItemOwner

procedure SetItemOwner

 (itemtype in varchar2,

 itemkey in varchar2,

 owner in varchar2);

public static boolean setItemOwner

 (WFContext wCtx,

 String itemType,

 String itemKey,

 String owner)

A procedure to set the owner of existing items. The owner must be a
valid role. Typically, the role that initiates a transaction is assigned as
the process owner, so that any participant in that role can find and view
the status of that process instance in the Workflow Monitor.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 8 – 6.

A valid item type. Item types are defined in the
Workflow Builder.

A string derived from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the new process and must be
passed to all subsequent API calls for that process.

A valid role.

The following code excerpt shows an example of how to call
setItemOwner() in a Java program. The example code is from the
WFTest.java program.

// set item owner

if (WFEngineAPI.setItemOwner(ctx, iType, iKey, owner))

 System.out.println(”Set Item Owner: ”+owner);

else

{

 System.out.println(”Cannot set owner.”);

wCtx

itemtype

itemkey

owner

8 – 27Oracle Workflow APIs

 WFEngineAPI.showError(ctx);

}

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

8 – 28 Oracle Workflow Guide

StartProcess

procedure StartProcess

 (itemtype in varchar2,

 itemkey in varchar2);

public static boolean startProcess

 (WFContext wCtx,

 String itemType,

 String itemKey)

Begins execution of the specified process. The engine locates the
activity marked as START and then executes it. CreateProcess() must
first be called to define the itemtype and itemkey before calling
StartProcess().

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 8 – 6.

A valid item type.

A string derived from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process. See: CreateProcess:
page 8 – 21.

Caution: Although you can make a call to CreateProcess() and
StartProcess() from a trigger to initiate a workflow process, you
should avoid doing so in certain circumstances. For example,
if a database entity has headers, lines and details, and you
initiate a workflow process from an AFTER INSERT trigger at
the header–level of that entity, your workflow process may fail
because some subsequent activity in the process may require
information from the entity’s lines or details level that is not yet
populated.

Caution: The Workflow Engine always issues a savepoint
before executing each activity so that it can rollback to the
previous activity in case an error occurs. Because of this
feature, you should avoid initiating a workflow process from a
database trigger because savepoints and rollbacks are not
allowed in a database trigger.

wCtx

itemtype

itemkey

Example

8 – 29Oracle Workflow APIs

If you must initiate a workflow process from a database trigger,
you must immediately defer the initial start activities to a
background engine, so that they are no longer executing from a
database trigger. To accomplish this:

– Set the cost of the process start activities to a value greater
than the Workflow Engine threshold (default value is 0.5).

or

– Set the Workflow Engine threshold to be less than 0 before
initiating the process:

begin

save_threshold := WF_ENGINE.threshold;

WF_ENGINE.threshold := –1;

WF_ENGINE.CreateProcess(...);

WF_ENGINE.StartProcess(...);

––Always reset threshold or all activities in this

––session will be deferred.

WF_ENGINE.threshold := save_threshold;

end

(This method has the same effect as the previous method,
but is more secure as the initial start activities are always
deferred even if the activities’ costs change.

Note: You can pass #SYNCH as the itemkey to create a forced
synchronous process. See: Synchronous, Asynchronous, and
Forced Synchronous Processes: page 8 – 14.

The following code excerpt shows an example of how to call
startProcess() in a Java program. The example code is from the
WFTest.java program.

// start a process

if (WFEngineAPI.startProcess(ctx, iType, iKey))

 System.out.println(”Process Started successfully”);

 else

{

 System.out.println(”launch failed”);

 WFEngineAPI.showError(ctx);

}

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

8 – 30 Oracle Workflow Guide

LaunchProcess

procedure LaunchProcess

 (itemtype in varchar2,

 itemkey in varchar2,

 process in varchar2 default ’’,

 userkey in varchar2 default ’’,

 owner in varchar2 default ’’);

public static boolean LaunchProcess

 (WFContext wCtx,

 String itemType,

 String itemKey,

 String process,

 String userKey,

 String owner)

Launches a specified process by creating the new runtime process and
beginning its execution. This is a wrapper that combines CreateProcess
and StartProcess.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 8 – 6.

A valid item type.

A string derived from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the new process and must be
passed to all subsequent API calls for that process.

Note: You can pass #SYNCH as the itemkey to create a forced
synchronous process. See: Synchronous, Asynchronous, and
Forced Synchronous Processes: page 8 – 14.

An optional argument that allows the selection of a
particular process for that item. Provide the
process internal name. If process is null, the item
type’s selector function is used to determine the
top level process to run. This argument defaults to
null.

wCtx

itemtype

itemkey

process

�

8 – 31Oracle Workflow APIs

The user key to assign to the item identified by the
specified item type and item key. If userkey is null,
then no userkey is assigned to the item instance.

A valid role designated as the owner of the item. If
owner is null, then no owner is assigned to the
process and only the workflow administrator role
can monitor the process.

Caution: Although you can make a call to CreateProcess() and
StartProcess() from a database trigger to initiate a workflow
process, you should avoid doing so in certain circumstances.
For example, if a database entity has headers, lines and details,
and you initiate a workflow process from an AFTER INSERT
trigger at the header–level of that entity, your workflow
process may fail because some subsequent activity in the
process may require information from the entity’s lines or
details level that is not yet populated.

Attention: The Workflow Engine always issues a savepoint
before executing each activity in a process so that it can
rollback to the previous activity in case an error occurs. For
environments such as database triggers or distributed
transactions that do not allow savepoints, the Workflow Engine
automatically traps ”Savepoint not allowed” errors and defers
the execution of the activity. If you initiate a workflow process
from a database trigger, the Workflow Engine immediately
defers the initial start activities to a background engine, so that
they are no longer executing from a database trigger.

userkey

owner

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

Example

8 – 32 Oracle Workflow Guide

SuspendProcess

procedure SuspendProcess

 (itemtype in varchar2,

 itemkey in varchar2,

 process in varchar2 default ’’);

public static boolean suspendProcess

 (WFContext wCtx,

 String itemType,

 String itemKey,

 String process)

Suspends process execution so that no new transitions occur.
Outstanding notifications can complete by calling CompleteActivity(),
but the workflow does not transition to the next activity. Restart
suspended processes by calling ResumeProcess().

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 8 – 6.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process. See: CreateProcess:
page 8 – 21.

An optional argument that allows the selection of a
particular subprocess for that item. Provide the
process activity’s label name. If the process
activity label name does not uniquely identify the
subprocess you can precede the label name with
the internal name of its parent process. For
example,
<parent_process_internal_name>:<label_name>. If this
argument is null, the top level process for the item
is suspended. This argument defaults to null.

The following code excerpt shows an example of how to call
suspendProcess() in a Java program. The example code is from the
WFTest.java program.

wCtx

itemtype

itemkey

process

8 – 33Oracle Workflow APIs

// suspend, status should become SUSPEND

System.out.println(”Suspend Process ” + iType +”/”+ iKey +

 ” ...”);

if (WFEngineAPI.suspendProcess(ctx, iType, iKey, null))

 System.out.println(”Seems to suspend successfully”);

else

{

 System.out.println(”suspend failed”);

 WFEngineAPI.showError(ctx);

}

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

Example

8 – 34 Oracle Workflow Guide

ResumeProcess

procedure ResumeProcess

 (itemtype in varchar2,

 itemkey in varchar2,

 process in varchar2 default ’’);

public static boolean resumeProcess

 (WFContext wCtx,

 String itemType,

 String itemKey,

 String process)

Returns a suspended process to normal execution status. Any activities
that were transitioned to while the process was suspended are now
executed.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 8 – 6.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process. See: CreateProcess:
page 8 – 21.

An optional argument that allows the selection of a
particular subprocess for that item type. Provide
the process activity’s label name. If the process
activity label name does not uniquely identify the
subprocess you can precede the label name with
the internal name of its parent process. For
example,
<parent_process_internal_name>:<label_name>. If this
argument is null, the top level process for the item
is resumed. This argument defaults to null.

The following code excerpt shows an example of how to call
resumeProcess() in a Java program. The example code is from the
WFTest.java program.

wCtx

itemtype

itemkey

process

8 – 35Oracle Workflow APIs

// resume process and status should be ACTIVE

System.out.println(”Resume Process ” + iType +”/”+ iKey +

 ” ...”);

if (WFEngineAPI.resumeProcess(ctx, iType, iKey, null))

 System.out.println(”Seems to resume successfully”);

else

{

 System.out.println(”resume failed”);

 WFEngineAPI.showError(ctx);

}

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

8 – 36 Oracle Workflow Guide

AbortProcess

procedure AbortProcess

 (itemtype in varchar2,

 itemkey in varchar2,

 process in varchar2 default ’’,

 result in varchar2 default eng_force);

public static boolean abortProcess

 (WFContext wCtx,

 String itemType,

 String itemKey,

 String process,

 String result)

Aborts process execution and cancels outstanding notifications. The
process status is considered COMPLETE, with a result specified by the
result argument. Also, any outstanding notifications or subprocesses
are set to a status of COMPLETE with a result of force, regardless of
the result argument.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 8 – 6.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process. See: CreateProcess:
page 8 – 21.

An optional argument that allows the selection of a
particular subprocess for that item type. Provide
the process activity’s label name. If the process
activity label name does not uniquely identify the
subprocess you can precede the label name with
the internal name of its parent process. For
example,
<parent_process_internal_name>:<label_name>. If this
argument is null, the top level process for the item
is aborted. This argument defaults to null.

wCtx

itemtype

itemkey

process

Example

8 – 37Oracle Workflow APIs

A status assigned to the aborted process. The
result must be one of the values defined in the
process Result Type, or one of the following
standard engine values:

eng_exception

eng_timeout

eng_force

eng_mail

eng_null

This argument defaults to ”eng_force”.

The following code excerpt shows an example of how to call
abortProcess() in a Java program. The example code is from the
WFTest.java program.

// abort process, should see status COMPLETE with result

// code force

System.out.println(”Abort Process ...” + iType + ”/” +

 iKey);

if (!WFEngineAPI.abortProcess(ctx, iType, iKey, pr, null))

{

 System.out.println(”Seemed to have problem aborting...”);

 WFEngineAPI.showError(ctx);

}

result

PL/SQL Syntax

Description

Arguments (input)

8 – 38 Oracle Workflow Guide

CreateForkProcess

procedure CreateForkProcess

 (copy_itemtype in varchar2,

 copy_itemkey in varchar2,

 new_itemkey in varchar2,

 same_version in boolean default TRUE);

Forks a runtime process by creating a new process that is a copy of the
original. After calling CreateForkProcess(), you can call APIs such as
SetItemOwner(), SetItemUserKey(), or the SetItemAttribute APIs to reset
any item properties or modify any item attributes that you want for the
new process. Then you must call StartForkProcess() to start the new
process.

Use CreateForkProcess() when you need to change item specific
attributes during the course of a process. For example, if an order
cannot be met due to insufficient inventory stock, you can use
CreateForkProcess() to fork a new transaction for the backorder quantity.
Note that any approval notification will be copied. The result is as if
two items were created for this transaction.

A valid item type for the original process to be
copied. The new process will have the same item
type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The copy item type and
key together identify the original process to be
copied.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and new
item key together identify the new process.

Specify TRUE or FALSE to indicate whether the
new runtime process uses the same version as the
original or the latest version. If you specify TRUE,
CreateForkProcess() copies the item attributes and
status of the original process to the new process. If
you specify FALSE, CreateForkProcess() copies the
item attributes of the original process to the new

copy_itemtype

copy_itemkey

new_itemkey

same_version

8 – 39Oracle Workflow APIs

process but does not not copy the status. Defaults
to TRUE.

Caution: Do not call CreateForkProcess() and StartForkProcess()
from within a parallel branch in a process. These APIs do not
copy any branches parallel to their own branch that are not
active.

Note: When you fork an item, Oracle Workflow automatically
creates an item attribute called #FORKED_FROM for the new
item and sets the attribute to the item key of the original item.
This attribute provides an audit trail for the forked item.

PL/SQL Syntax

Description

Arguments (input)

8 – 40 Oracle Workflow Guide

StartForkProcess

procedure StartForkProcess

 (itemtype in varchar2,

 itemkey in varchar2);

Begins execution of the new forked process that you specify. Before
you call StartForkProcess(), you must first call CreateForkProcess() to
create the new process. You can modify the item attributes of the new
process before calling StartForkProcess().

If the new process uses the same version as the original,
StartForkProcess() copies the status and history of each activity in the
forked process, activity by activity. If the new process uses the latest
version, then StartForkProcess() executes StartProcess().

If you call StartForkProcess() from within a process, any function
activity in the process that had a status of ’Active’ is updated to have a
status of ’Notified.’ You must call CompleteActivity() afterwards to
continue the process.

StartForkProcess() automatically refreshes any notification attributes that
are based on item attributes. Any open notifications in the original
process are copied and sent again in the new process. Closed
notifications are copied but not resent; their status remains remains
’Complete.’

Any Wait activities in the new process are activated at the same time as
the original activities. For example, if a 24 hour Wait activity in the
original process is due to be eligible in two hours, the new Wait activity
is also eligible in two hours.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process.

Caution: Do not call CreateForkProcess() and StartForkProcess()
from within a parallel branch in a process. These APIs do not
copy any branches parallel to their own branch that are not
active.

itemtype

itemkey

PL/SQL Syntax

Description

Arguments (input)

8 – 41Oracle Workflow APIs

Background

procedure Background

 (itemtype in varchar2,

 minthreshold in number default null,

 maxthreshold in number default null,

 process_deferred in boolean default TRUE,

 process_timeout in boolean default FALSE,

 process_stuck in boolean default FALSE);

Runs a background engine for processing deferred activities, timed out
activities, and stuck processes using the parameters specified. The
background engine executes all activities that satisfy the given
arguments at the time that the background engine is invoked. This
procedure does not remain running long term, so you must restart this
procedure periodically. Any activities that are newly deferred or timed
out or processes that become stuck after the current background engine
starts are processed by the next background engine that is invoked.
You may run a script called wfbkgchk.sql to get a list of the activities
waiting to be processed by the next background engine run. See:
Wfbkgchk.sql: page 16 – 7.

If you are using the standalone version of Oracle Workflow, you can
use one of the sample background engine looping scripts described
below or create your own script to make the background engine
procedure loop indefinitely. If you are using the version of Oracle
Workflow embedded in Oracle Applications, you can use the
concurrent program version of this procedure and take advantage of
the concurrent manager to schedule the background engine to run
periodically. To Schedule Background Engines: page 2 – 45

A valid item type. If the item type is null the
Workflow engine will run for all item types.

Optional minimum cost threshold for an activity
that this background engine processes, in
hundredths of a second. There is no minimum cost
threshold if this parameter is null.

Optional maximum cost threshold for an activity
that this background engine processes in
hundredths of a second. There is no maximum
cost threshold if this parameter is null.

itemtype

minthreshold

maxthreshold

Example Background
Engine Looping

Scripts

8 – 42 Oracle Workflow Guide

Specify TRUE or FALSE to indicate whether to run
deferred processes. Defaults to TRUE.

Specify TRUE or FALSE to indicate whether to run
timed out processes. Defaults to FALSE.

Specify TRUE or FALSE to indicate whether to run
stuck processes. Defaults to FALSE.

For the standalone version of Oracle Workflow you can use one of two
example scripts to repeatedly run the background engine regularly.

The first example is a sql script stored in a file called wfbkg.sql and is
available on your server in the Oracle Workflow admin/sql subdirectory.
To run this script, go to the directory where the file is located and type
the following command at your operating system prompt:

sqlplus <username/password> @wfbkg <min> <sec>

Replace <username/password> with the Oracle database account
username and password where you want to run the background
engine. Replace <min> with the number of minutes you want the
background engine to run and replace <sec> with the number of
seconds you want the background engine to sleep between calls.

The second example is a shell script stored in a file called wfbkg.csh and
is available on your server in the Oracle Home bin subdirectory. To run
this script, go to the directory where the file is located and type the
following command at your operating system prompt:

wfbkg.csh <username/password>

Replace <username/password> with the Oracle database account
username and password where you want to run the background
engine.

process_deferred

process_timeout

process_stuck

PL/SQL Syntax

Java Syntax

Description

8 – 43Oracle Workflow APIs

AddItemAttribute

procedure AddItemAttr

 (itemtype in varchar2,

 itemkey in varchar2,

 aname in varchar2,

 text_value in varchar2 default null,

 number_value in number default null,

 date_value in date default null);

public static boolean addItemAttr

 (WFContext wCtx,

 String itemType,

 String itemKey,

 String aName)

public static boolean addItemAttrText

 (WFContext wCtx,

 String itemType,

 String itemKey,

 String aName,

 String aValue)

public static boolean addItemAttrNumber

 (WFContext wCtx,

 String itemType,

 String itemKey,

 String aName,

 BigDecimal aValue)

public static boolean addItemAttrDate

 (WFContext wCtx,

 String itemType,

 String itemKey,

 String aName,

 String aValue)

Adds a new item type attribute variable to the process. Although most
item type attributes are defined at design time, you can create new
attributes at runtime for a specific process. You can optionally set a
default text, number, or date value for a new item type attribute when
the attribute is created.

�

Arguments (input)

Example

8 – 44 Oracle Workflow Guide

Note: If you are using Java, choose the correct method for
your attribute type. To add an empty item type attribute, use
addItemAttr(). When adding an item type attribute with a
default value, use addItemAttrText() for all attribute types
except number and date.

Attention: If you need to add large numbers of item type
attributes at once, use the AddItemAttributeArray APIs rather
than the AddItemAttribute APIs for improved performance. See:
AddItemAttributeArray: page 8 – 46

Workflow context information. Required for the
Java methods only. See: Oracle Workflow Context:
page 8 – 6.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process. See: CreateProcess:
page 8 – 21.

The internal name of the item type attribute.

The default text value for the item type attribute.
Required for the PL/SQL procedure only. Defaults
to null.

The default number value for the item type
attribute. Required for the PL/SQL procedure only.
Defaults to null.

The default date value for the item type attribute.
Required for the PL/SQL procedure only. Defaults
to null.

The default value for the item type attribute.
Required for the addItemAttrText(),
addItemAttrNumber(), and addItemAttrDate() Java
methods only.

The following example shows how API calls can be simplified by using
AddItemAttr() to set the default value of a new item type attribute at the
time of creation.

Using AddItemAttr() to create the new attribute and SetItemAttrText() to
set the value of the attribute, the following calls are required:

wCtx

itemtype

itemkey

aname

text_value

number_value

date_value

aValue

8 – 45Oracle Workflow APIs

AddItemAttr(’ITYPE’, ’IKEY’, ’NEWCHAR_VAR’);

SetItemAttrText(’ITYPE’, ’IKEY’, ’NEWCHAR_VAR’,

 ’new text values’);

Using AddItemAttr() both to create the new attribute and to set its
value, only the following call is required:

AddItemAttr(’ITYPE’, ’IKEY’, ’NEWCHAR_VAR’,

 ’new text values’);

PL/SQL Syntax

Description

8 – 46 Oracle Workflow Guide

AddItemAttributeArray

procedure AddItemAttrTextArray

 (itemtype in varchar2,

 itemkey in varchar2,

 aname in Wf_Engine.NameTabTyp,

 avalue in Wf_Engine.TextTabTyp);

procedure AddItemAttrNumberArray

 (itemtype in varchar2,

 itemkey in varchar2,

 aname in Wf_Engine.NameTabTyp,

 avalue in Wf_Engine.NumTabTyp);

procedure AddItemAttrDateArray

 (itemtype in varchar2,

 itemkey in varchar2,

 aname in Wf_Engine.NameTabTyp,

 avalue in Wf_Engine.DateTabTyp);

Adds an array of new item type attributes to the process. Although
most item type attributes are defined at design time, you can create
new attributes at runtime for a specific process. Use the
AddItemAttributeArray APIs rather than the AddItemAttribute APIs for
improved performance when you need to add large numbers of item
type attributes at once.

Use the correct procedure for your attribute type. All attribute types
except number and date use AddItemAttrTextArray.

Note: The AddItemAttributeArray APIs use PL/SQL table
composite datatypes defined in the WF_ENGINE package. The
following table shows the column datatype definition for each
PL/SQL table type.

PL/SQL Table Type Column Datatype Definition

NameTabTyp Wf_Item_Attribute_Values.NAME%TYPE

TextTabTyp Wf_Item_Attribute_Values.TEXT_VALUE%TYPE

Table 8 – 1 (Page 1 of 2)

Arguments (input)

8 – 47Oracle Workflow APIs

Column Datatype DefinitionPL/SQL Table Type

NumTabTyp Wf_Item_Attribute_Values.NUMBER_VALUE%TYPE

DateTabTyp Wf_Item_Attribute_Values.DATE_VALUE%TYPE

Table 8 – 1 (Page 2 of 2)

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process. See: CreateProcess:
page 8 – 21.

An array of the internal names of the new item
type attributes.

An array of the values for the new item type
attributes.

itemtype

itemkey

aname

avalue

PL/SQL Syntax

Java Syntax

8 – 48 Oracle Workflow Guide

SetItemAttribute

procedure SetItemAttrText

 (itemtype in varchar2,

 itemkey in varchar2,

 aname in varchar2,

 avalue in varchar2);

procedure SetItemAttrNumber

 (itemtype in varchar2,

 itemkey in varchar2,

 aname in varchar2,

 avalue in number);

procedure SetItemAttrDate

 (itemtype in varchar2,

 itemkey in varchar2,

 aname in varchar2,

 avalue in date);

procedure SetItemAttrEvent

 (itemtype in varchar2,

 itemkey in varchar2,

 name in varchar2,

 event in wf_event_t);

public static boolean setItemAttrText

 (WFContext wCtx,

 String itemType,

 String itemKey,

 String aName,

 String aValue)

public static boolean setItemAttrNumber

 (WFContext wCtx,

 String itemType,

 String itemKey,

 String aName,

 BigDecimal aValue)

public static boolean setItemAttrDate

Description

�

Arguments (input)

Example 1

8 – 49Oracle Workflow APIs

 (WFContext wCtx,

 String itemType,

 String itemKey,

 String aName,

 String aValue)

Sets the value of an item type attribute in a process. Use the correct
procedure for your attribute type. All attribute types except number,
date, and event use SetItemAttrText.

Attention: If you need to set the values of large numbers of
item type attributes at once, use the SetItemAttributeArray APIs
rather than the SetItemAttribute APIs for improved
performance. See: SetItemAttributeArray: page 8 – 53

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 8 – 6.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process. See: CreateProcess:
page 8 – 21.

Note: You can pass #SYNCH as the itemkey to create a forced
synchronous process. See: Synchronous, Asynchronous, and
Forced Synchronous Processes: page 8 – 14.

The internal name of the item type attribute.

The value for the item type attribute.

The following code excerpt shows an example of how to call
setItemAttrText() in a Java program. The example code is from the
WFTest.java program.

if (WFEngineAPI.setItemAttrText(ctx, iType, iKey,

 ”REQUESTOR_USERNAME”, owner))

 System.out.println(”Requestor: ”+owner);

 else

{

 WFEngineAPI.showError(ctx);

}

wCtx

itemtype

itemkey

aname or name

avalue or event

Example 2

8 – 50 Oracle Workflow Guide

If an event message is stored within an item attribute of type event, you
can access the event data CLOB within that event message by creating
an item attribute of type URL for the event data. The following sample
PL/SQL code shows how to set the value of the URL attribute to
reference the event data.

l_eventdataurl := Wfa_html.base_url||’Wf_Event_Html.

EventDataContents?P_EventAttribute=EVENT_MESSAGE’||’&’||

’P_ItemType=’||itemtype||’&’||’P_ItemKey=’||itemkey||’&’||

’p_mime_type=text/xml’;

WF_ENGINE.SetItemAttrText(’<item_type>’, ’<item_key>’,

 ’EVENTDATAURL’, l_eventdataurl);

If you have applied a stylesheet to the event data XML document to
create HTML, set the p_mime_type parameter in the URL to text/html
instead.

If you omit the p_mime_type parameter from the URL, the MIME type
defaults to text/xml.

See Also

Event Message Structure: page 8 – 242

�

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

8 – 51Oracle Workflow APIs

SetItemAttrDocument

Attention: Document management functionality is reserved
for future use. This description of the SetItemAttrDocument
API is provided for reference only.

procedure SetItemAttrDocument

 (itemtype in varchar2,

 itemkey in varchar2,

 aname in varchar2,

 documentid in varchar2);

public static boolean setItemAttrDocument

 (WFContext wCtx,

 String itemType,

 String itemKey,

 String aName,

 String documentId)

Sets the value of an item attribute of type document, to a document
identifier.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 8 – 6.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process. See: CreateProcess:
page 8 – 21.

Note: You can pass #SYNCH as the itemkey to create a forced
synchronous process. See: Synchronous, Asynchronous, and
Forced Synchronous Processes: page 8 – 14.

The internal name of the item type attribute.

The value for the item type attribute as a fully
concatenated string of the following values:

DM:<node_id>:<doc_id>:<version>

wCtx

itemtype

itemkey

aname

documentid

8 – 52 Oracle Workflow Guide

<node_id> is the node ID assigned to the document
management system node as defined in the
Document Management Nodes web page.

<doc_id> is the document ID of the document, as
assigned by the document management system
where the document resides.

<version> is the version of the document. If a
version is not specified, the latest version is
assumed.

PL/SQL Syntax

Description

8 – 53Oracle Workflow APIs

SetItemAttributeArray

procedure SetItemAttrTextArray

 (itemtype in varchar2,

 itemkey in varchar2,

 aname in Wf_Engine.NameTabTyp,

 avalue in Wf_Engine.TextTabTyp);

procedure SetItemAttrNumberArray

 (itemtype in varchar2,

 itemkey in varchar2,

 aname in Wf_Engine.NameTabTyp,

 avalue in Wf_Engine.NumTabTyp);

procedure SetItemAttrDateArray

 (itemtype in varchar2,

 itemkey in varchar2,

 aname in Wf_Engine.NameTabTyp,

 avalue in Wf_Engine.DateTabTyp);

Sets the values of an array of item type attributes in a process. Use the
SetItemAttributeArray APIs rather than the SetItemAttribute APIs for
improved performance when you need to set the values of large
numbers of item type attributes at once.

Use the correct procedure for your attribute type. All attribute types
except number and date use SetItemAttrTextArray.

Note: The SetItemAttributeArray APIs use PL/SQL table
composite datatypes defined in the WF_ENGINE package. The
following table shows the column datatype definition for each
PL/SQL table type.

PL/SQL Table Type Column Datatype Definition

NameTabTyp Wf_Item_Attribute_Values.NAME%TYPE

TextTabTyp Wf_Item_Attribute_Values.TEXT_VALUE%TYPE

NumTabTyp Wf_Item_Attribute_Values.NUMBER_VALUE%TYPE

DateTabTyp Wf_Item_Attribute_Values.DATE_VALUE%TYPE

Table 8 – 2 (Page 1 of 1)

Arguments (input)

Example

8 – 54 Oracle Workflow Guide

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process. See: CreateProcess:
page 8 – 21.

An array of the internal names of the item type
attributes.

An array of the values for the item type attributes.

The following example shows how using the SetItemAttributeArray APIs
rather than the SetItemAttribute APIs can help reduce the number of
calls to the database.

Using SetItemAttrText():

SetItemAttrText(’ITYPE’, ’IKEY’, ’VAR1’, ’value1’);

SetItemAttrText(’ITYPE’, ’IKEY’, ’VAR2’, ’value2’);

SetItemAttrText(’ITYPE’, ’IKEY’, ’VAR3’, ’value3’);

// Multiple calls to update the database.

Using SetItemAttrTextArray():

declare

 varname Wf_Engine.NameTabTyp;

 varval Wf_Engine.TextTabTyp;

begin

 varname(1) := ’VAR1’;

 varval(1) := ’value1’;

 varname(2) := ’VAR2’;

 varval(2) := ’value2’;

 varname(3) := ’VAR3’;

 varval(3) := ’value3’;

Wf_Engine.SetItemAttrTextArray(’ITYPE’, ’IKEY’, varname,

 varval);

exception

 when OTHERS then

 // handle your errors here

 raise;

end;

itemtype

itemkey

aname

avalue

8 – 55Oracle Workflow APIs

// Only one call to update the database.

Java Syntax

Description

Arguments (input)

8 – 56 Oracle Workflow Guide

getItemTypes

public static WFTwoDDataSource getItemTypes

 (WFContext wCtx)

Returns a list of all the item types defined in the Oracle Workflow
database as a two dimensional data object.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 8 – 6.

wCtx

PL/SQL Syntax

Description

Arguments (input)

8 – 57Oracle Workflow APIs

GetItemAttribute

function GetItemAttrText

 (itemtype in varchar2,

 itemkey in varchar2,

 aname in varchar2) return varchar2;

function GetItemAttrNumber

 (itemtype in varchar2,

 itemkey in varchar2,

 aname in varchar2) return number;

function GetItemAttrDate

 (itemtype in varchar2,

 itemkey in varchar2,

 aname in varchar2) return date;

function GetItemAttrEvent

 (itemtype in varchar2,

 itemkey in varchar2,

 name in varchar2) return wf_event_t;

Returns the value of an item type attribute in a process. Use the correct
function for your attribute type. All attribute types except number,
date, and event use GetItemAttrText.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process. See: CreateProcess:
page 8 – 21.

Note: Pass #SYNCH as the itemkey to create a forced
synchronous process. See: Synchronous, Asynchronous, and
Forced Synchronous Processes: page 8 – 14.

The internal name of an item type attribute, for
GetItemAttrText(), GetItemAttrNumber(), and
GetItemAttrDate().

The internal name of an item type attribute, for
GetItemAttrEvent().

itemtype

itemkey

aname

name

8 – 58 Oracle Workflow Guide

See Also

Event Message Structure: page 8 – 242

�

PL/SQL Syntax

Description

Arguments (input)

8 – 59Oracle Workflow APIs

GetItemAttrDocument

Attention: Document management functionality is reserved
for future use. This description of the GetItemAttrDocument
API is provided for reference only.

function GetItemAttrDocument

 (itemtype in varchar2,

 itemkey in varchar2,

 aname in varchar2) return varchar2;

Returns the document identifier for a DM document–type item
attribute. The document identifier is a concatenated string of the
following values:

DM:<nodeid>:<documentid>:<version>

<nodeid> is the node ID assigned to the document management system
node as defined in the Document Management Nodes web page.

<documentid> is the document ID of the document, as assigned by the
document management system where the document resides.

<version> is the version of the document. If a version is not specified,
the latest version is assumed.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process. See: CreateProcess:
page 8 – 21.

Note: Pass #SYNCH as the itemkey to create a forced
synchronous process. See: Synchronous, Asynchronous, and
Forced Synchronous Processes: page 8 – 14.

The internal name of the item type attribute.

itemtype

itemkey

aname

PL/SQL Syntax

Description

Arguments (input)

8 – 60 Oracle Workflow Guide

GetItemAttrClob

function GetItemAttrClob

 (itemtype in varchar2,

 itemkey in varchar2,

 aname in varchar2) return clob;

Returns the value of an item type attribute in a process as a character
large object (CLOB).

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process. See: CreateProcess:
page 8 – 21.

The internal name of an item type attribute.

itemtype

itemkey

aname

Java Syntax

Description

Arguments (input)

8 – 61Oracle Workflow APIs

getItemAttributes

public static WFTwoDDataSource getItemAttributes

 (WFContext wCtx,

 String itemType,

 String itemKey)

Returns a list of all the item attributes, their types, and their values for
the specified item type instance as a two dimensional data object.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 8 – 6.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process. See: CreateProcess:
page 8 – 21.

wCtx

itemtype

itemkey

PL/SQL Syntax

Description

Arguments (input)

8 – 62 Oracle Workflow Guide

GetItemAttrInfo

procedure GetItemAttrInfo

 (itemtype in varchar2,

 aname in varchar2,

 atype out varchar2,

 subtype out varchar2,

 format out varchar2);

Returns information about an item type attribute, such as its type and
format, if any is specified. Currently, subtype information is not
available for item type attributes

A valid item type.

The internal name of a item type attribute.

itemtype

aname

PL/SQL Syntax

Description

Arguments (input)

8 – 63Oracle Workflow APIs

GetActivityAttrInfo

procedure GetActivityAttrInfo

 (itemtype in varchar2,

 itemkey in varchar2,

 actid in number,

 aname in varchar2,

 atype out varchar2,

 subtype out varchar2,

 format out varchar2);

Returns information about an activity attribute, such as its type and
format, if any is specified. This procedure currently does not return
any subtype information for activity attributes.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process. See: CreateProcess:
page 8 – 21.

The activity ID for a particular usage of an activity
in a process definition. Also referred to as the
activity ID of the node

The internal name of an activity attribute.

itemtype

itemkey

actid

aname

PL/SQL Syntax

Description

Arguments (input)

8 – 64 Oracle Workflow Guide

GetActivityAttribute

function GetActivityAttrText

 (itemtype in varchar2,

 itemkey in varchar2,

 actid in number,

 aname in varchar2) return varchar2;

function GetActivityAttrNumber

 (itemtype in varchar2,

 itemkey in varchar2,

 actid in number,

 aname in varchar2) return number;

function GetActivityAttrDate

 (itemtype in varchar2,

 itemkey in varchar2,

 actid in number,

 aname in varchar2) return date;

function GetActivityAttrEvent

 (itemtype in varchar2,

 itemkey in varchar2,

 actid in number,

 name in varchar2) return wf_event_t;

Returns the value of an activity attribute in a process. Use the correct
function for your attribute type. If the attribute is a Number or Date
type, then the appropriate function translates the number/date value to
a text–string representation using the attribute format.

Note: Use GetActivityAttrText() for Form, URLs, lookups and
document attribute types.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process. See: CreateProcess:
page 8 – 21.

itemtype

itemkey

8 – 65Oracle Workflow APIs

Note: Pass #SYNCH as the itemkey to create a forced
synchronous process. See: Synchronous, Asynchronous, and
Forced Synchronous Processes: page 8 – 14.

The activity ID for a particular usage of an activity
in a process definition. Also referred to as the
activity ID of the node.

The internal name of an activity attribute, for
GetActivityAttrText(), GetActivityAttrNumber(), and
GetActivityAttrDate().

The internal name of an activity attribute, for
GetActivityAttrEvent().

See Also

Event Message Structure: page 8 – 242

actid

aname

name

PL/SQL Syntax

Description

Arguments (input)

8 – 66 Oracle Workflow Guide

GetActivityAttrClob

function GetActivityAttrClob

 (itemtype in varchar2,

 itemkey in varchar2,

 actid in number,

 aname in varchar2) return clob;

Returns the value of an activity attribute in a process as a character
large object (CLOB).

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process. See: CreateProcess:
page 8 – 21.

The activity ID for a particular usage of an activity
in a process definition. Also referred to as the
activity ID of the node.

The internal name of an activity attribute.

itemtype

itemkey

actid

aname

PL/SQL Syntax

Description

Arguments (input)

Example

8 – 67Oracle Workflow APIs

BeginActivity

procedure BeginActivity

 (itemtype in varchar2,

 itemkey in varchar2,

 activity in varchar2);

Determines if the specified activity can currently be performed on the
process item and raises an exception if it cannot.

The CompleteActivity() procedure automatically performs this function
as part of its validation. However, you can use BeginActivity to verify
that the activity you intend to perform is currently allowed before
actually calling it. See: CompleteActivity: page 8 – 69.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process.

The activity node to perform on the process.
Provide the activity node’s label name. If the
activity node label name does not uniquely identify
the activity node you can precede the label name
with the internal name of its parent process. For
example,
<parent_process_internal_name>:<label_name>.

/*Verify that a credit check can be performed on an order.

If it is allowed, perform the credit check, then notify the

Workflow Engine when the credit check completes.*/

begin

wf_engine.BeginActivity(’ORDER’,

to_char(order_id),’CREDIT_CHECK’);

OK := TRUE;

exception

when others then

WF_CORE.Clear;

OK := FALSE;

end;

if OK then

–– perform activity ––

itemtype

itemkey

activity

8 – 68 Oracle Workflow Guide

 wf_engine.CompleteActivity(’ORDER’, to_char(order_id),

’CREDIT_CHECK’ :result_code);

end if;

PL/SQL Syntax

Description

8 – 69Oracle Workflow APIs

CompleteActivity

procedure CompleteActivity

 (itemtype in varchar2,

 itemkey in varchar2,

 activity in varchar2,

 result_code in varchar2);

Notifies the Workflow Engine that the specified activity has been
completed for a particular item. This procedure can be called for the
following situations:

• To indicate a completed activity with an optional result—This
signals the Workflow Engine that an asynchronous activity has
been completed. This procedure requires that the activity
currently has a status of ’Notified’. An optional activity
completion result can also be passed. The result can determine
what transition the process takes next.

• To create and start an item—You can call CompleteActivity() for a
’Start’ activity to implicitly create and start a new item. ’Start’
activities are designated as the beginning of a process in the
Workflow Builder. The item type and key specified in this call
must be passed to all subsequent calls that operate on this item.

Use CompleteActivity() if you cannot use CreateProcess() and
StartProcess() to start your process. For example, call
CompleteActivity() if you need to start a process with an activity
node that is mid–stream in a process thread and not at the
beginning of a process thread. The activity node you specify as
the beginning of the process must be set to ’Start’ in the Node tab
of its property page or else an error will be raised.

Note: Starting a process using CompleteActivity() differs from
starting a process using CreateProcess() and StartProcess() in
these ways:

– The ’Start’ activity called with CompleteActivity() may or
may not have incoming transitions. StartProcess() executes
only ’Start’ activities that do not have any incoming
transitions.

– CompleteActivity() only completes the single ’Start’ activity
with which it is called. Other ’Start’ activities in the process
are not completed. StartProcess(), however, executes every
activity in the process that is marked as a ’Start’ activity and
does not have any incoming transitions.

Arguments (input)

8 – 70 Oracle Workflow Guide

– CompleteActivity() does not execute the activity with which
it is called; it simply marks the activity as complete.
StartProcess() does execute the ’Start’ activities with which it
starts a process.

– When you use CompleteActivity() to start a new process, the
item type of the activity being completed must either have a
selector function defined to choose a root process, or have
exactly one runnable process with the activity being
completed marked as a ’Start’ activity. You cannot explicitly
specify a root process as you can with StartProcess().

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process.

The name of the activity node that is completed.
Provide the activity node’s label name. If the
activity node label name does not uniquely identify
the subprocess you can precede the label name
with the internal name of its parent process. For
example,
<parent_process_internal_name>:<label_name>. This
activity node must be marked as a ’Start’ activity.

An optional activity completion result. Possible
values are determined by the process activity’s
Result Type, or one of the engine standard results.
See: AbortProcess: page 8 – 36.

itemtype

itemkey

activity

result_code

Example 1

Example 2

Example 3

8 – 71Oracle Workflow APIs

/*Complete the ’ENTER ORDER’ activity for the ’ORDER’ item

type. The ’ENTER ORDER’ activity allows creation of new

items since it is the start of a workflow, so the item is

created by this call as well.*/

wf_engine.CompleteActivity(’ORDER’, to_char(order.order_id),

 ’ENTER_ORDER’, NULL);

/*Complete the ’LEGAL REVIEW’ activity with status

’APPROVED’. The item must already exist.*/

wf_engine.CompleteActivity(’ORDER’, ’1003’, ’LEGAL_REVIEW’,

 ’APPROVED’);

/*Complete the BLOCK activity which is used in multiple

subprocesses in parallel splits.*/

wf_engine.CompleteActivity(’ORDER’, ’1003’,

’ORDER_PROCESS:BLOCK–3’,

 ’null’);

PL/SQL Syntax

Description

Arguments (input)

8 – 72 Oracle Workflow Guide

CompleteActivityInternalName

procedure CompleteActivityInternalName

 (itemtype in varchar2,

 itemkey in varchar2,

 activity in varchar2,

 result in varchar2);

Notifies the Workflow Engine that the specified activity has been
completed for a particular item. This procedure requires that the
activity currently has a status of ’Notified’. An optional activity
completion result can also be passed. The result can determine what
transition the process takes next.

CompleteActivityInternalName() is similar to CompleteActivity() except
that CompleteActivityInternalName() identifies the activity to be
completed by the activity’s internal name, while CompleteActivity()
identifies the activity by the activity node label name. You should only
use CompleteActivityInternalName() when you do not know the activity
node label name. If you do know the activity node label name, use
CompleteActivity() instead. See: CompleteActivity: page 8 – 69.

Note: Unlike CompleteActivity(), you cannot use
CompleteActivityInternalName() to start a process. Also, you
cannot use CompleteActivityInternalName() with a synchronous
process.

When CompleteActivityInternalName() is executed, there must be exactly
one instance of the specified activity with a status of ’Notified’. If there
are multiple instances of the activity with ’Notified’ statuses, the
process enters an ’ERROR’ state.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process.

The internal name of the activity that is completed.
If the activity internal name does not uniquely
identify the subprocess you can precede the
activity internal name with the internal name of its
parent process. For example,
<parent_process_internal_name>:<activity_internal_
name>.

itemtype

itemkey

activity

8 – 73Oracle Workflow APIs

An optional activity completion result. Possible
values are determined by the process activity’s
Result Type, or one of the engine standard results.
See: AbortProcess: page 8 – 36.

result

PL/SQL Syntax

Description

Arguments (input)

8 – 74 Oracle Workflow Guide

AssignActivity

procedure AssignActivity

 (itemtype in varchar2,

 itemkey in varchar2,

 activity in varchar2,

 performer in varchar2);

Assigns or reassigns an activity to another performer. This procedure
may be called before the activity is transitioned to. For example, a
function activity earlier in the process may determine the performer of
a later activity.

If a new user is assigned to a notification activity that already has an
outstanding notification, the outstanding notification is canceled and a
new notification is generated for the new user by calling
WF_Notification.Transfer.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process.

The label name of the activity node. If the activity
node label name does not uniquely identify the
activity node you can precede the label name with
the internal name of its parent process. For
example,
<parent_process_internal_name>:<label_name>.

The name of the user who will perform the activity
(the user who receives the notification). The name
should be a role name from the Oracle Workflow
directory services.

itemtype

itemkey

activity

performer

PL/SQL Syntax

Description

8 – 75Oracle Workflow APIs

Event

procedure Event

 (itemtype in varchar2,

 itemkey in varchar2,

 process_name in varchar2 default null,

 event_message in wf_event_t);

Receives an event from the Business Event System into a workflow
process.

If the specified item key already exists, the event is received into that
item. If the item key does not already exist, but the specified process
includes an eligible Receive event activity marked as a Start activity, the
Workflow Engine creates a new item running that process.

Within the workflow process that receives the event, the procedure
searches for eligible Receive event activities. An activity is only eligible
to receive an event if its event filter is either blank or set to that
particular event. Additionally, the activity must have an appropriate
status.

• An activity marked as a Start activity can only receive an event if
it has never been executed.

• A normal activity can only receive an event if its activity status is
NOTIFIED, meaning the process has transitioned to that activity
and is waiting to receive the event.

For each eligible Receive event activity, Event() stores the event name,
event key, and event message in the item type attributes specified in the
event activity node, if they have been defined. Additionally, the
procedure sets any parameters in the event message parameter list as
item type attributes for the process, creating new item type attributes if
a corresponding attribute does not already exist for any parameter.
Then the Workflow Engine begins a thread of execution from the event
activity.

If no eligible Receive event activity exists for a received event, the
procedure returns an exception and an error message.

Note: If the event received by a Receive event activity was
originally raised by a Raise event activity in another workflow
process, the item type and item key for that process are
included in the parameter list within the event message. In this
case, the Workflow Engine automatically sets the specified
process as the parent for the process that receives the event,

Arguments (input)

8 – 76 Oracle Workflow Guide

overriding any existing parent setting. See: SetItemParent: page
8 – 79.

A valid item type.

A string that uniquely identifies the item within an
item type. The item type and key together identify
the process.

An optional argument that allows the selection of a
particular subprocess for that item type. Provide
the process activity’s label name. If the process
activity label name does not uniquely identify the
subprocess you can precede the label name with
the internal name of its parent process. For
example,
<parent_process_internal_name>:<label_name>. If this
argument is null, the top level process for the item
is started. This argument defaults to null.

The event message containing the details of the
event.

itemtype

itemkey

process_name

event_message

PL/SQL Syntax

Description

Arguments (input)

8 – 77Oracle Workflow APIs

HandleError

procedure HandleError

 (itemtype in varchar2,

 itemkey in varchar2,

 activity in varchar2,

 command in varchar2,

 result in varchar2);

This procedure is generally called from an activity in an ERROR
process to handle any process activity that has encountered an error.

You can also call this procedure for any arbitrary activity in a process,
to rollback part of your process to that activity. The activity that you
call this procedure with can have any status and does not have to have
been executed. The activity can also be in a subprocess, if the activity
node label is not unique within the process you may precede the
activity node label name with the internal name of its parent process.
For example, <parent_process_internal_name>:<label_name>.

If the On_Revisit flag is set to Reset, this procedure clears the activity
specified and all activities following it that have already been
transitioned to by reexecuting each activity in ’Cancel’ mode. See:
Looping: page 8 – 10. For an activity in the ’Error’ state, there are no
other executed activities following it, so the procedure simply clears
the errored activity.

Once the activities are cleared, this procedure resets any parent
processes of the specified activity to a status of ’Active’, if they are not
already active.

The procedure then handles the specified activity based on the
command you provide: SKIP or RETRY.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process.

The activity node that encountered the error or that
you want to undo. Provide the label name of the
activity node. If the activity node label name does
not uniquely identify the subprocess you can

item_type

item_key

activity

8 – 78 Oracle Workflow Guide

precede the label name with the internal name of
its parent process. For example,
<parent_process_internal_name>:<label_name>.

One of two commands that determine how to
handle the process activity:

SKIP—do not reexecute the activity, but mark the
activity as complete with the supplied result and
continue execution of the process from that activity.

RETRY—reexecute the activity and continue
execution of the process from that activity.

The result you wish to supply if the command is
SKIP.

Note: An item’s active date and the version number of the
process that the item is transitioning through can never change
once an item is created. Occasionally, however, you may want
to use HandleError to manually make changes to your process
for an existing item.

If the changes you make to a process are minor, you can use
HandleError to manually push an item through activities that
will error or redirect the item to take different transitions in the
process.

If the changes you want to make to a process are extensive,
then you need to perform at least the following steps:

– Abort the process by calling WF_ENGINEAbortProcess().

– Purge the existing item by calling WF_ENGINE.Items().

– Revise the process.

– Recreate the item by calling WF_ENGINE.CreateProcess().

– Restart the revised process at the appropriate activity by
calling WF_ENGINE.HandleError().

command

result

PL/SQL Syntax

Description

Arguments (input)

8 – 79Oracle Workflow APIs

SetItemParent

procedure SetItemParent

 (itemtype in varchar2,

 itemkey in varchar2,

 parent_itemtype in varchar2,

 parent_itemkey in varchar2,

 parent_context in varchar2);

Defines the parent/child relationship for a master process and a detail
process. This API must be called by any detail process spawned from a
master process to define the parent/child relationship between the two
processes. You make a call to this API after you call the CreateProcess
API, but before you call the StartProcess API for the detail process.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the child process.

A valid item type for the parent process.

A string generated from the application object’s
primary key to uniquely identify the item within
the parent item type. The parent item type and key
together identify the parent process.

Context information about the parent.

itemtype

itemkey

parent_itemtype

parent_itemkey

parent_context

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

Example

8 – 80 Oracle Workflow Guide

ItemStatus

procedure ItemStatus

 (itemtype in varchar2,

 itemkey in varchar2,

 status out varchar2,

 result out varchar2);

public static WFTwoDDataSource itemStatus

 (WFContext wCtx,

 String itemType,

 String itemKey)

Returns the status and result for the root process of the specified item
instance. Possible values returned for the status are: ACTIVE,
COMPLETE, ERROR, or SUSPENDED. If the root process does not
exist, then the item key does not exist and will thus cause the
procedure to raise an exception.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 8 – 6.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the item instance.

The following code excerpt shows an example of how to call
itemStatus() in a Java program. The example code is from the
WFTest.java program.

// get status and result for this item

dataSource = WFEngineAPI.itemStatus(ctx, iType, iKey);

System.out.print(”Status and result for ” + iType + ”/” +

 iKey + ” = ”);

displayDataSource(ctx, dataSource);

wCtx

itemtype

itemkey

Java Syntax

Description

Arguments (input)

8 – 81Oracle Workflow APIs

getProcessStatus

public static WFTwoDDataSource getProcessStatus

 (WFContext wCtx,

 String itemType,

 String itemKey,

 BigDecimal process)

Returns the process status for the given item type instance as a two
dimensional data object.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 8 – 6.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process. See: CreateProcess:
page 8 – 21.

A process instance ID for the item type. If the
instance ID is unknown, you can simply provide
any negative number and the method will return
the process status for the root process.

wCtx

itemType

itemKey

process

�

8 – 82 Oracle Workflow Guide

Workflow Function APIs

The WFFunctionAPI Java class is the abstract class from which the Java
procedures for all external Java function activities are derived. This
class contains methods for accessing item type and activity attributes,
as well as the execute() method which forms the main entry point
function of the external Java function activity being implemented.

The WFFunctionAPI class is stored in the oracle.apps.fnd.wf Java
package. The following list shows the APIs available in this class.

Attention: Java is case–sensitive and all Java method names
begin with a lower case letter to follow Java naming
conventions.

• loadItemAttributes: page 8 – 83

• loadActivityAttributes: page 8 – 84

• getActivityAttr: page 8 – 85

• getItemAttr: page 8 – 87

• setItemAttrValue: page 8 – 88

• execute: page 8 – 89

See Also

Standard API for Java Procedures Called by Function Activities: page
7 – 8

Function Activity: page 4 – 44

Java Syntax

Description

Arguments (input)

8 – 83Oracle Workflow APIs

loadItemAttributes

public void loadItemAttributes

 (WFContext pWCtx) throws SQLException

Retrieves the item attributes from the database for the item type from
which the external Java function was called. The item attributes are not
loaded by default due to the performance impact that could occur if the
item type contains a large number of item attributes. You can use this
method to load the item attributes explicitly before accessing them in
your function.

If a database access error occurs, this method throws a SQLException.

Workflow context information. See: Oracle
Workflow Context: page 8 – 6.

pWCtx

Java Syntax

Description

Arguments (input)

8 – 84 Oracle Workflow Guide

loadActivityAttributes

public void loadActivityAttributes

 (WFContext pWCtx,

 String iType,

 String iKey,

 BigDecimal actid) throws SQLException

Retrieves the activity attributes from the database for the specified
activity. This method is called by default when the function activity is
instantiated and before the execute() function is called.

If a database access error occurs, this method throws a SQLException.

Workflow context information. See: Oracle
Workflow Context: page 8 – 6.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process. See: CreateProcess:
page 8 – 21.

An activity instance ID.

pWCtx

iType

iKey

actid

Java Syntax

Java Syntax

Description

8 – 85Oracle Workflow APIs

getActivityAttr

public WFAttribute getActivityAttr

 (String aName)

public WFAttribute getActivityAttr

 (WFContext pWCtx,

 String aName) throws SQLException

There are two implementations of getActivityAttr(). These methods
return the activity attribute information for the specified activity
attribute.

• If you call getActivityAttr(String aName) with only the activity
attribute name, this method returns the activity attribute value
but does not attempt to resolve any reference to an item
attribute. If an activity attribute does point to an item attribute,
this method returns the internal name of the item attribute. With
the item attribute name, you can then perform additional
processing based on the item attribute.

For example, if you want to write information back to the item
attribute, you can first use getActivityAttr(String aName) to
retrieve the item attribute name. Then use
setItemAttrValue(WFContext pWCtx, WFAttribute pAttr) to set the
item attribute value, which also becomes the activity attribute
value. See: setItemAttrValue: page 8 – 88.

• If you call getActivityAttr(WFContext pWCtx, String aName) with
both the Workflow context and the activity attribute name, this
method returns the activity attribute, and if the activity attribute
points to an item attribute, the method attempts to resolve the
reference by retrieving the value of that item attribute. You can
use getActivityAttr(WFContext pWCtx, String aName) when you
want to obtain the actual activity attribute value, and you do not
need to know which item attribute it references. This method
attempts to resolve the reference within the previously loaded
item attributes, or if the item attributes have not been loaded, the
method calls loadItemAttributes(WFContext pWCtx) to load them.
See: loadItemAttributes: page 8 – 83.

If a database access error occurs, this method throws a
SQLException.

Arguments (input)

8 – 86 Oracle Workflow Guide

Workflow context information. Required for the
second method only. See: Oracle Workflow
Context: page 8 – 6.

The internal name of an activity attribute.

pWCtx

aName

Java Syntax

Description

Arguments (input)

8 – 87Oracle Workflow APIs

getItemAttr

public WFAttribute getItemAttr

 (String aName)

Returns the item attribute information for the specified item attribute.

The internal name of an item attribute.aName

Java Syntax

Description

Arguments (input)

8 – 88 Oracle Workflow Guide

setItemAttrValue

public void setItemAttrValue

 (WFContext pWCtx,

 WFAttribute pAttr)

 throws NumberFormatException, WFException

Sets the value of the specified item attribute in the database.

This method throws a NumberFormatException if it cannot convert the
value to the appropriate format for an attribute of type number or date.
The method throws a WFException if it encounters an error while
setting an attribute of type document or text.

Workflow context information. See: Oracle
Workflow Context: page 8 – 6.

The attribute information for an item attribute.

pWCtx

pAttr

Java Syntax

Description

Arguments (input)

8 – 89Oracle Workflow APIs

execute

public abstract boolean execute

 (WFContext pWCtx)

This abstract method is implemented by the extending class and forms
the main entry point function of the external Java function activity
being implemented. See: Standard API for Java Procedures Called by
Function Activities: page 7 – 8.

Workflow context information. See: Oracle
Workflow Context: page 8 – 6.

pWCtx

�

8 – 90 Oracle Workflow Guide

Workflow Attribute APIs

The WFAttribute Java class contains descriptive information for an
item or activity attribute, including the internal name of the attribute,
attribute value, attribute data type, format information, and default
value type. The attribute value is stored as an Object type. This class
also contains methods for accessing the attribute information, which
can be called by a Java application or the Java procedure for an external
Java function activity.

The WFAttribute class is stored in the oracle.apps.fnd.wf Java package.
The following list shows the APIs available in this class.

Attention: Java is case–sensitive and all Java method names,
except the constructor method names, begin with a lower case
letter to follow Java naming conventions.

• WFAttribute: page 8 – 92

• value: page 8 – 93

• getName: page 8 – 94

• getValue: page 8 – 95

• getType: page 8 – 96

• getFormat: page 8 – 97

• getValueType: page 8 – 98

• toString: page 8 – 99

• compareTo: page 8 – 100

See Also

Standard API for Java Procedures Called by Function Activities: page
7 – 8

WFAttribute Class Constants

The WFAttribute class contains several constants. The following table
shows the constants that can be used to represent the data type of an
attribute.

8 – 91Oracle Workflow APIs

Constant Variable Declaration Constant Value

public static final String TEXT ”TEXT”

public static final String NUMBER ”NUMBER”

public static final String DATE ”DATE”

public static final String LOOKUP ”LOOKUP”

public static final String FORM ”FORM”

public static final String URL ”URL”

public static final String DOCUMENT ”DOCUMENT”

public static final String ROLE ”ROLE”

public static final String EVENT ”EVENT”

Table 8 – 3 (Page 1 of 1)

The following table shows the constants that can be used to represent
the type of the default value for an attribute. The default value can be
either a constant or, for an activity attribute, a reference to an item type
attribute.

Constant Variable Declaration Constant Value

public static final String CONSTANT ”CONSTANT”

public static final String ITEMATTR ”ITEMATTR”

Table 8 – 4 (Page 1 of 1)

Java Syntax

Java Syntax

Description

Arguments (input)

8 – 92 Oracle Workflow Guide

WFAttribute

public WFAttribute()

public WFAttribute

 (String pName

 String pType,

 Object pValue,

 String pValueType)

There are two constructor methods for the WFAttribute class. The first
constructor creates a new WFAttribute object. The second constructor
creates a new WFAttribute object and initializes it with the specified
attribute name, attribute type, value, and value type.

The internal name of an item or activity attribute.
Required for the second method only.

The data type of the attribute. Required for the
second method only.

The attribute value. Required for the second
method only.

The type of the default value for the attribute. The
default value can be either a constant or, for an
activity attribute, a reference to an item type
attribute. Required for the second method only.

pName

pType

pValue

pValueType

Java Syntax

Description

�

Arguments (input)

8 – 93Oracle Workflow APIs

value

public void value

 (Object pValue)

Sets the value of the item or activity attribute within a WFAttribute
object. The value must be cast to the Object type.

Attention: Using value() to set the attribute value within a
WFAttribute object does not set the attribute value in the
database. To set the value of an item attribute in the database,
use WFFunctionAPI.setItemAttrValue(). See: setItemAttrValue:
page 8 – 88.

The attribute value.pValue

Java Syntax

Description

8 – 94 Oracle Workflow Guide

getName

public String getName()

Returns the internal name of the item or activity attribute.

Java Syntax

Description

8 – 95Oracle Workflow APIs

getValue

public Object getValue()

Returns the value of the item or activity attribute as type Object.

Java Syntax

Description

8 – 96 Oracle Workflow Guide

getType

public String getType()

Returns the data type of the item or activity attribute. See: Attribute
Types: page 4 – 3.

Java Syntax

Description

8 – 97Oracle Workflow APIs

getFormat

public String getFormat()

Returns the format string for the item or activity attribute, such as the
length for an attribute of type text or the format mask for an attribute
of type number or date. See: To Define an Item Type or Activity
Attribute: page 4 – 8.

Java Syntax

Description

8 – 98 Oracle Workflow Guide

getValueType

public String getValueType()

Returns the type of the default value for the item or activity attribute.
The default value can be either a constant or, for an activity attribute, a
reference to an item type attribute. See: To Define an Item Type or
Activity Attribute: page 4 – 8.

Java Syntax

Description

8 – 99Oracle Workflow APIs

toString

public String toString()

Returns the internal name and the value of the item or activity attribute
as a string in the following format:

<name>=<value>

This method overrides the toString() method in the Object class.

Java Syntax

Description

Arguments (input)

8 – 100 Oracle Workflow Guide

compareTo

public int compareTo

 (String pValue) throws Exception

Compares the value of the item or activity attribute with the specified
value. compareTo() returns 0 if the two values are equal, –1 if the
attribute value is less than the specified value, or 1 if the attribute value
is greater than the specified value.

This method throws an Exception if it cannot convert the specified
value to the appropriate format for an attribute of type number or date.

The test value to compare to the attribute value.pValue

8 – 101Oracle Workflow APIs

Workflow Core APIs

PL/SQL procedures called by function activities can use a set of core
Oracle Workflow APIs to raise and catch errors.

When a PL/SQL procedure called by a function activity either raises an
unhandled exception, or returns a result beginning with ’ERROR:’, the
Workflow Engine sets the function activity’s status to ERROR and sets
the columns ERROR_NAME, ERROR_MESSAGE, and ERROR_STACK
in the table WF_ITEM_ACTIVITY_STATUSES to reflect the error.

The columns ERROR_NAME and ERROR_MESSAGE get set to either
the values returned by a call to WF_CORE.RAISE(), or to the SQL error
name and message if no call to RAISE() is found. The column
ERROR_STACK gets set to the contents set by a call to
WF_CORE.CONTEXT(), regardless of the error source.

Note: The columns ERROR_NAME, ERROR_MESSAGE, and
ERROR_STACK are also defined as item type attributes for the
System: Error predefined item type. You can reference from
the error process that you associate with an activity, the
information in these columns. See: Default Error Process: page
6 – 26.

The following APIs can be called by an application program or
workflow function in the runtime phase to handle error processing.
These APIs are stored in the PL/SQL package called WF_CORE.

• CLEAR: page 8 – 102

• GET_ERROR: page 8 – 103

• TOKEN: page 8 – 104

• RAISE: page 8 – 105

• CONTEXT: page 8 – 108

• TRANSLATE: page 8 – 110

See Also

Standard API for PL/SQL Procedures Called by Function Activities:
page 7 – 3

Syntax

Description

8 – 102 Oracle Workflow Guide

CLEAR

procedure CLEAR;

Clears the error buffers.

See Also

GET_ERROR: page 8 – 103

Syntax

Description

Example 1

8 – 103Oracle Workflow APIs

GET_ERROR

procedure GET_ERROR

 (err_name out varchar2,

 err_message out varchar2

 err_stack out varchar2);

Returns the name of a current error message and the token substituted
error message. Also clears the error stack. Returns null if there is no
current error.

/*Handle unexpected errors in your workflow code by raising

WF_CORE exceptions. When calling any public Workflow API,

include an exception handler to deal with unexpected

errors.*/

declare

 errname varchar2(30);

 errmsg varchar2(2000);

 errstack varchar2(32000);

begin

 ...

 Wf_Engine.CompleteActivity(itemtype, itemkey, activity,

result_code);

 ...

exception

 when others then

 wf_core.get_error(err_name, err_msg, err_stack);

 if (err_name is not null) then

 wf_core.clear;

 –– Wf error occurred. Signal error as appropriate.

 else

 –– Not a wf error. Handle otherwise.

 end if;

end;

See Also

CLEAR: page 8 – 102

Syntax

Description

Arguments (input)

8 – 104 Oracle Workflow Guide

TOKEN

procedure TOKEN

 (token_name in varchar2,

 token_value in varchar2);

Defines an error token and substitutes it with a value. Calls to
TOKEN() and RAISE() raise predefined errors for Oracle Workflow
that are stored in the WF_RESOURCES table. The error messages
contain tokens that need to be replaced with relevant values when the
error message is raised. This is an alternative to raising PL/SQL
standard exceptions or custom–defined exceptions.

Name of the token.

Value to substitute for the token.

See Also

RAISE: page 8 – 105

CONTEXT: page 8 – 108

token_name

token_value

Syntax

Description

Arguments (input)

8 – 105Oracle Workflow APIs

RAISE

procedure RAISE

 (name in varchar2);

Raises an exception to the caller by supplying a correct error number
and token substituted message for the name of the error message
provided.

Calls to TOKEN() and RAISE() raise predefined errors for Oracle
Workflow that are stored in the WF_RESOURCES table. The error
messages contain tokens that need to be replaced with relevant values
when the error message is raised. This is an alternative to raising
PL/SQL standard exceptions or custom–defined exceptions.

Error messages for Oracle Workflow are initially defined in message
files (.msg). The message files are located in the res/<language>
subdirectory of the Oracle Workflow server directory structure for the
standalone version of Oracle Workflow or on your server in the
resource/<language> subdirectory under $FND_TOP for the Oracle
Applications–embedded version of Oracle Workflow. During the
installation of the Oracle Workflow server, a program called Workflow
Resource Generator takes the designated message files and imports the
messages into the WF_RESOURCES table.

Internal name of the error message as stored in the
table WF_RESOURCES.

See Also

TOKEN: page 8 – 104

CONTEXT: page 8 – 108

� To run the Workflow Resource Generator

For the standalone version of Oracle Workflow:

1. The Workflow Resource Generator program is located in the bin
subdirectory of the Oracle Home directory structure.

2. Run the program from your operating system prompt as follows:

• To generate a binary resource file from a source file (.msg), type:

wfresgen [–v] –f <resourcefile> <source_file>

name

8 – 106 Oracle Workflow Guide

Replace <resourcefile> with the full path and name of the
resource file you want to generate, and <source_file> with the
full path and name of your source file. The optional –v flag
causes the program to validate the source file against the binary
resource file.

• To upload seed data from a source file (.msg) to the database
table WF_RESOURCES, type:

wfresgen [–v] –u <username/password@database>

<lang> <source_file>

Replace <username/password@database> with the username,
password and Oracle Net connect string or alias to your
database and <source_file> with the full path and name of the
source file you want to upload. The optional –v flag causes the
program to validate the source file against the database.

For Oracle Workflow embedded in Oracle Applications:

1. The Workflow Resource Generator program is registered as a
concurrent program. You can run the Workflow Resource
Generator concurrent program from the Submit Requests form or
from the command line.

2. To run the concurrent program from the Submit Requests form,
navigate to the Submit Requests form.

Note: Your system administrator needs to add this concurrent
program to a request security group for the responsibility that
you want to run this program from. See: Overview of
Concurrent Programs and Requests, Oracle Applications System
Administrator’s Guide.

3. Submit the Workflow Resource Generator concurrent program as a
request. See: Submitting a Request, Oracle Applications User’s Guide.

4. In the Parameters window, enter values for the following
parameters:

Specify ”Database”, to upload seed data to the
database table WF_RESOURCES from a source file
(.msg), or ”File”, to generate a resource file from a
source file.

If you specify ”File” for Destination Type, then
enter the full path and name of the resource file
you wish to generate. If you specify ”Database”
for Destination Type, then the program
automatically uses the current database account as
its destination.

Destination Type

Destination

8 – 107Oracle Workflow APIs

Specify the full path and name of your source file.

5. Choose OK to close the Parameters window.

6. When you finish modifying the print and run options for this
request, choose Submit to submit the request.

7. Rather than use the Submit Requests form, you can also run the
Workflow Resource Generator concurrent program from the
command line using one of two commands. To generate a resource
file from a source file, type:

WFRESGEN apps/pwd 0 Y FILE res_file source_file

To upload seed data to the database table WF_RESOURCES from a
source file, type:

WFRESGEN apps/pwd 0 Y DATABASE source_file

Replace apps/pwd with the username and password to the APPS
schema, replace res_file with the file specification of a
resource file, and replace source_file with the file specification
of a source file (.msg). A file specification is specified as:

@<application_short_name>:[<dir>/.../]file.ext

or

<native path>

Source

Syntax

Description

Arguments (input)

Example 1

8 – 108 Oracle Workflow Guide

CONTEXT

procedure CONTEXT

 (pkg_name IN VARCHAR2,

 proc_name IN VARCHAR2,

 arg1 IN VARCHAR2 DEFAULT ’*none*’,

 arg2 IN VARCHAR2 DEFAULT ’*none*’,

 arg3 IN VARCHAR2 DEFAULT ’*none*’,

 arg4 IN VARCHAR2 DEFAULT ’*none*’,

 arg5 IN VARCHAR2 DEFAULT ’*none*’);

Adds an entry to the error stack to provide context information that
helps locate the source of an error. Use this procedure with predefined
errors raised by calls to TOKEN() and RAISE(), with custom–defined
exceptions, or even without exceptions whenever an error condition is
detected.

Name of the procedure package.

Procedure or function name.

First IN argument.

nth IN argument.

/*PL/SQL procedures called by function activities can use

the WF_CORE APIs to raise and catch errors the same way the

Workflow Engine does.*/

package My_Package is

procedure MySubFunction(

 arg1 in varchar2,

 arg2 in varchar2)

is

...

begin

 if (<error condition>) then

 Wf_Core.Token(’ARG1’, arg1);

 Wf_Core.Token(’ARG2’, arg2);

 Wf_Core.Raise(’ERROR_NAME’);

 end if;

 ...

exception

 when others then

pkg_name

proc_name

arg1

argn

8 – 109Oracle Workflow APIs

 Wf_Core.Context(’My_Package’, ’MySubFunction’, arg1,

arg2);

 raise;

end MySubFunction;

procedure MyFunction(

 itemtype in varchar2,

 itemkey in varchar2,

 actid in number,

 funcmode in varchar2,

 result out varchar2)

is

...

begin

 ...

 begin

 MySubFunction(arg1, arg2);

 exception

 when others then

 if (Wf_Core.Error_Name = ’ERROR_NAME’) then

 –– This is an error I wish to ignore.

 Wf_Core.Clear;

 else

 raise;

 end if;

 end;

 ...

exception

 when others then

 Wf_Core.Context(’My_Package’, ’MyFunction’, itemtype,

itemkey, to_char(actid), funmode);

 raise;

end MyFunction;

See Also

TOKEN: page 8 – 104

RAISE: page 8 – 105

Syntax

Description

Arguments (input)

8 – 110 Oracle Workflow Guide

TRANSLATE

function TRANSLATE

 (tkn_name IN VARCHAR2)

 return VARCHAR2;

Translates the string value of a token by returning the value for the
token as defined in WF_RESOURCES for your language setting.

Token name.tkn_name

�

8 – 111Oracle Workflow APIs

Workflow Purge APIs

The following APIs can be called by an application program or
workflow function in the runtime phase to purge obsolete runtime
data. These APIs are defined in the PL/SQL package called
WF_PURGE.

WF_PURGE can be used to purge obsolete runtime data for completed
items and processes, and to purge information for obsolete activity
versions that are no longer in use. You may want to periodically purge
this obsolete data from your system to increase performance.

A PL/SQL variable called ”persistence_type”in the WF_PURGE
package defines how all the WF_PURGE APIs behave, with the
exception of TotalPerm(). When the variable is set to TEMP, the
WF_Purge APIs only purge data associated with Temporary item types,
whose persistence, in days, has expired. Persistence_type is set to
TEMP by default and should not be changed. If you need to purge
runtime data for item types with Permanent persistence, you should
use the procedure TotalPerm(). See: Persistence Type: page 4 – 4.

Attention: You cannot run any WF_PURGE API for a future
end date. By entering a future end date, you may
inadvertently violate the persistence period for Temporary item
types. The WF_PURGE APIs will display an error message if
you enter a future end date.

The three most commonly used procedures are:

WF_PURGE.ITEMS – purge all runtime data associated with
completed items, their processes, and notifications sent by them

WF_PURGE.ACTIVITIES – purge obsolete versions of activities that
are no longer in use by any item.

WF_PURGE.TOTAL – purge both item data and activity data

The other auxiliary routines purge only certain tables or classes of data,
and can be used in circumstances where a full purge is not desired.

The complete list of purge APIs are as follows:

• Items: page 8 – 113

• Activities: page 8 – 114

• Notifications: page 8 – 115

• Total: page 8 – 116

• TotalPERM: page 8 – 117

8 – 112 Oracle Workflow Guide

• AdHocDirectory: page 8 – 118

Note: If you are using the version of Oracle Workflow
embedded in Oracle Applications, you can also use the ”Purge
Obsolete Workflow Runtime Data” concurrent program to
purge obsolete item type runtime status information. See:
Purge Obsolete Workflow Runtime Data: page 8 – 119.

Note: If you are using the standalone version of Oracle
Workflow available with Oracle9i Release 2, you can use the
standalone Oracle Workflow Manager component available
through Oracle Enterprise Manager to submit and manage
Workflow purge database jobs. For more information, please
refer to the Oracle Workflow Manager online help.

See Also

Standard API for PL/SQL Procedures Called by Function Activities:
page 7 – 3

Purging for Performance: page C – 8

Syntax

Description

Arguments (input)

8 – 113Oracle Workflow APIs

Items

procedure Items

 (itemtype in varchar2 default null,

 itemkey in varchar2 default null,

 enddate in date default sysdate,

 docommit in boolean default TRUE);

Deletes all items for the specified item type, and/or item key, and end
date, including process status and notification information. Deletes
from the tables WF_NOTIFICATIONS,
WF_ITEM_ACTIVITY_STATUSES, WF_ITEM_ATTRIBUTE_VALUES
and WF_ITEMS.

Item type to delete. Leave this argument null to
delete all item types.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. If null, the procedure
purges all items in the specified itemtype.

Specified date to delete up to.

Specify TRUE or FALSE to indicate whether to
commit data while purging. If you want Items() to
commit data as it purges to reduce rollback
segments and improve performance, specify TRUE.
If you do not want to perform automatic commits,
specify FALSE. Defaults to TRUE.

itemtype

itemkey

enddate

docommit

Syntax

Description

Arguments (input)

8 – 114 Oracle Workflow Guide

Activities

procedure Activities

 (itemtype in varchar2 default null,

 name in varchar2 default null,

 enddate in date default sysdate);

Deletes old versions of eligible activities from the tables
WF_ACTIVITY_ATTR_VALUES, WF_ACTIVITY_TRANSITIONS,
WF_PROCESS_ACTIVITIES, WF_ACTIVITY_ATTRIBUTES_TL,
WF_ACTIVITY_ATTRIBUTES, WF_ACTIVITIES_TL, and
WF_ACTIVITIES that are associated with the specified item type, have
an END_DATE less than or equal to the specified end date and are not
referenced by an existing item as either a process or activity.

Note: You should call Items() before calling Activities() to
avoid having obsolete item references prevent obsolete
activities from being deleted.

Item type associated with the activities you want to
delete. Leave this argument null to delete activities
for all item types.

Internal name of activity to delete. Leave this
argument null to delete all activities for the
specified item type.

Specified date to delete up to.

itemtype

name

enddate

Syntax

Description

Arguments (input)

8 – 115Oracle Workflow APIs

Notifications

procedure Notifications

 (itemtype in varchar2 default null,

 enddate in date default sysdate);

Deletes old eligible notifications from the tables
WF_NOTIFICATION_ATTRIBUTES and WF_NOTIFICATIONS that
are associated with the specified item type, have an END_DATE less
than or equal to the specified end date and are not referenced by an
existing item.

Note: You should call Items() before calling Notifications() to
avoid having obsolete item references prevent obsolete
notifications from being deleted.

Item type associated with the notifications you
want to delete. Leave this argument null to delete
notifications for all item types.

Specified date to delete up to.

itemtype

enddate

Syntax

Description

Arguments (input)

8 – 116 Oracle Workflow Guide

Total

procedure Total

 (itemtype in varchar2 default null,

 itemkey in varchar2 default null,

 enddate in date default sysdate,

 docommit in boolean default TRUE);

Deletes all eligible obsolete runtime item type and activity data that is
associated with the specified item type and has an END_DATE less
than or equal to the specified end date. Total() also deletes ad hoc roles
and users that are no longer in use by calling AdHocDirectory(). See:
AdHocDirectory: page 8 – 118.

Because Total() purges all activities and ad hoc role information, it is
more costly in performance than Items(). If you want to purge a specific
item key, use Items(). Use Total() as part of your routine maintenance
during periods of low activity. See: Items: page 8 – 113.

Item type associated with the obsolete runtime
data you want to delete. Leave this argument null
to delete obsolete runtime data for all item types.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. If null, the procedure
purges all items in the specified itemtype.

Specified date to delete up to.

Specify TRUE or FALSE to indicate whether to
commit data while purging. If you want Total() to
commit data as it purges to reduce rollback
segments and improve performance, specify TRUE.
If you do not want to perform automatic commits,
specify FALSE. Defaults to TRUE.

itemtype

itemkey

enddate

docommit

Syntax

Description

Arguments (input)

8 – 117Oracle Workflow APIs

TotalPERM

procedure TotalPERM

 (itemtype in varchar2 default null,

 itemkey in varchar2 default null,

 enddate in date default sysdate,

 docommit in boolean default TRUE);

Deletes all eligible obsolete runtime data that is of persistence type
’PERM’ (Permanent) and that is associated with the specified item type
and has an END_DATE less than or equal to the specified end date.
TotalPERM() is similar to Total() except that TotalPERM() deletes only
items with a persistence type of ’PERM’. See: Total: page 8 – 116.

Item type associated with the obsolete runtime
data you want to delete. Leave this argument null
to delete obsolete runtime data for all item types.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. If null, the procedure
purges all items in the specified itemtype.

Specified date to delete up to.

Specify TRUE or FALSE to indicate whether to
commit data while purging. If you want
TotalPERM() to commit data as it purges to reduce
rollback segments and improve performance,
specify TRUE. If you do not want to perform
automatic commits, specify FALSE. Defaults to
TRUE.

itemtype

itemkey

enddate

docommit

Syntax

Description

Arguments (input)

8 – 118 Oracle Workflow Guide

AdHocDirectory

procedure AdHocDirectory

 (end_date in date default sysdate);

Purges all users and roles in the WF_LOCAL_* tables whose expiration
date is less than or equal to the specified end_date and that are not
referenced in any notification.

Date to purge to.end_date

8 – 119Oracle Workflow APIs

Purge Obsolete Workflow Runtime Data Concurrent Program

If you are using the version of Oracle Workflow embedded in Oracle
Applications, you can submit the Purge Obsolete Workflow Runtime
Data concurrent program to purge obsolete item type runtime status
information. Use the Submit Requests form in Oracle Applications to
submit this concurrent program.

Note: If you are using the version of Oracle Workflow
embedded in Oracle Applications and you have implemented
Oracle Applications Manager, you can use Oracle Workflow
Manager to submit and manage the Purge Obsolete Workflow
Runtime Data concurrent program. For more information,
please refer to the Oracle Applications Manager online help.

� To Purge Obsolete Workflow Runtime Data

1. Navigate to the Submit Requests form in Oracle Applications to
submit the Purge Obsolete Workflow Runtime Data concurrent
program. When you install and set up Oracle Applications and
Oracle Workflow, your system administrator needs to add this
concurrent program to a request security group for the
responsibility that you want to run this program from. The
executable name for this concurrent program is ”Oracle Workflow
Purge Obsolete Data” and its short name is FNDWFPR. See:
Overview of Concurrent Programs and Requests, Oracle
Applications System Administrator’s Guide.

2. Submit the Purge Obsolete Workflow Runtime Data concurrent
program as a request. See: Submitting a Request, Oracle
Applications User’s Guide.

3. In the Parameters window, enter values for the following
parameters:

Item type associated with the obsolete runtime
data you want to delete. Leave this argument null
to delete obsolete runtime data for all item types.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. If null, the program
purges all items in the specified itemtype.

Minimum age of data to purge, in days, if the
persistence type is set to ’TEMP’. The default is 0.

Item Type

Item Key

Age

8 – 120 Oracle Workflow Guide

Persistence type to be purged, either ’TEMP’ for
Temporary or ’PERM’ for Permanent. The default
is ’TEMP’.

4. Choose OK to close the Parameters window.

5. When you finish modifying the print and run options for this
request, choose Submit to submit the request.

Persistence
Type

�

8 – 121Oracle Workflow APIs

Workflow Directory Service APIs

The following APIs can be called by an application program or a
workflow function in the runtime phase to retrieve information about
existing users and roles, as well as create and manage new ad hoc users
and roles in the directory service. These APIs are defined in a PL/SQL
package called WF_DIRECTORY.

• GetRoleUsers: page 8 – 123

• GetUserRoles: page 8 – 124

• GetRoleInfo: page 8 – 125

• GetRoleInfo2: page 8 – 126

• IsPerformer: page 8 – 127

• UserActive: page 8 – 128

• GetUserName: page 8 – 129

• GetRoleName: page 8 – 130

• GetRoleDisplayName: page 8 – 131

• SetAdHocUserStatus: page 8 – 132

• SetAdHocRoleStatus: page 8 – 133

• CreateAdHocUser: page 8 – 134

• CreateAdHocRole: page 8 – 136

• AddUsersToAdHocRole: page 8 – 138

• SetAdHocUserExpiration: page 8 – 139

• SetAdHocRoleExpiration: page 8 – 140

• SetAdHocUserAttr: page 8 – 141

• SetAdHocRoleAttr: page 8 – 142

• RemoveUsersFromAdHocRole: page 8 – 143

Attention: If you implement OID integration, you must
maintain your users only through OID. You must not create ad
hoc users in the WF_LOCAL_USERS table, because you risk
discrepancies in your user information and unpredictable
results if you use any tool other than OID to maintain users
after integrating with OID. Consequently, if you implement
OID integration, you must not use the CreateAdHocUser(),
SetAdHocUserStatus(), SetAdHocUserExpiration(), or
SetAdHocUserAttr() APIs in the WF_DIRECTORY package.

8 – 122 Oracle Workflow Guide

You can still use ad hoc roles, however, since Workflow roles
are not maintained through OID.

See Also

Standard API for PL/SQL Procedures Called by Function Activities:
page 7 – 3

Syntax

Description

Arguments (input)

8 – 123Oracle Workflow APIs

GetRoleUsers

procedure GetRoleUsers

 (role in varchar2,

 users out UserTable);

Returns a table of users for a given role.

A valid role name.role

Syntax

Description

Arguments (input)

8 – 124 Oracle Workflow Guide

GetUserRoles

procedure GetUserRoles

 (user in varchar2,

 roles out RoleTable);

Returns a table of roles that a given user is assigned to.

A valid username.user

Syntax

Description

Arguments (input)

8 – 125Oracle Workflow APIs

GetRoleInfo

procedure GetRoleInfo

 (Role in varchar2,

 Display_Name out varchar2,

 Email_Address out varchar2,

 Notification_Preference out varchar2,

 Language out varchar2,

 Territory out varchar2);

Returns the following information about a role:

• Display name

• E–mail address

• Notification Preference (’QUERY’, ’MAILTEXT’, ’MAILHTML’,
’MAILATTH’, ’SUMMARY’)

• Language

• Territory

A valid role name.role

Syntax

Description

Arguments (input)

8 – 126 Oracle Workflow Guide

GetRoleInfo2

procedure GetRoleInfo2

 (Role in varchar2,

 Role_Info_Tbl out wf_directory.wf_local_roles_tbl_type);

Returns the following information about a role in a SQL table:

• Display name

• Description

• Notification Preference (’QUERY’, ’MAILTEXT’, ’MAILHTML’,
’MAILATTH’, ’SUMMARY’)

• Language

• Territory

• E–mail address

• FAX

• Status

• Expiration Date

A valid role name.role

Syntax

Description

Arguments (input)

8 – 127Oracle Workflow APIs

IsPerformer

function IsPerformer

 (user in varchar2,

 role in varchar2);

Returns true or false to identify whether a user is a performer of a role.

A valid username.

A valid role name.

user

role

Syntax

Description

Arguments (input)

8 – 128 Oracle Workflow Guide

UserActive

function UserActive

(username in varchar2)

 return boolean;

Determines if a user currently has a status of ’ACTIVE’ and is available
to participate in a workflow. Returns TRUE if the user has a status of
’ACTIVE’, otherwise it returns FALSE.

A valid username.username

Syntax

Description

Arguments (input)

8 – 129Oracle Workflow APIs

GetUserName

procedure GetUserName

 (p_orig_system in varchar2,

 p_orig_system_id in varchar2,

 p_name out varchar2,

 p_display_name out varchar2);

Returns a Workflow display name and username for a user given the
system information from the original user and roles repository.

Code that identifies the original repository table.

ID of a row in the original repository table.

p_orig_system

p_orig_system_id

Syntax

Description

Arguments (input)

8 – 130 Oracle Workflow Guide

GetRoleName

procedure GetRoleName

 (p_orig_system in varchar2,

 p_orig_system_id in varchar2,

 p_name out varchar2,

 p_display_name out varchar2);

Returns a Workflow display name and role name for a role given the
system information from the original user and roles repository.

Code that identifies the original repository table.

ID of a row in the original repository table.

p_orig_system

p_orig_system_id

Syntax

Description

Arguments (input)

8 – 131Oracle Workflow APIs

GetRoleDisplayName

function GetRoleDisplayName

 (p_role_name in varchar2)

 return varchar2;

 pragma restrict_references(GetRoleDisplayName, WNDS,

 WNPS);

Returns a Workflow role’s display name given the role’s internal name.

The internal name of the role.p_role_name

Syntax

Description

�

Arguments (input)

8 – 132 Oracle Workflow Guide

SetAdHocUserStatus

procedure SetAdHocUserStatus

 (user_name in varchar2,

 status in varchar2 default ’ACTIVE’);

Sets the status of an ad hoc user as ’ACTIVE’ or ’INACTIVE’.

Attention: If you implement Oracle Internet Directory
integration, you must maintain your users only through OID.
You must not use the SetAdHocUserStatus() API to update user
information in the WF_LOCAL_USERS table, because you risk
discrepancies in your user information and unpredictable
results if you use any tool other than OID to maintain users
after integrating with OID.

The internal name of the user.

A status of ’ACTIVE’ or ’INACTIVE’ to set for the
user. If null, the status is ’ACTIVE’.

user_name

status

Syntax

Description

Arguments (input)

8 – 133Oracle Workflow APIs

SetAdHocRoleStatus

procedure SetAdHocRoleStatus

 (role_name in varchar2,

 status in varchar2 default ’ACTIVE’);

Sets the status of an ad hoc role as ’ACTIVE’ or ’INACTIVE’.

The internal name of the role.

A status of ’ACTIVE’ or ’INACTIVE’ to set for the
role. If null, the status is ’ACTIVE’.

role_name

status

Syntax

Description

�

Arguments (input)

8 – 134 Oracle Workflow Guide

CreateAdHocUser

procedure CreateAdHocUser

 (name in out varchar2,

 display_name in out varchar2,

 language in varchar2 default null,

 territory in varchar2 default null,

 description in varchar2 default null,

 notification_preference in varchar2 default

 ’MAILHTML’,

 email_address in varchar2 default null,

 fax in varchar2 default null,

 status in varchar2 default ’ACTIVE’,

 expiration_date in date default sysdate);

Creates a user at runtime by creating a value in the
WF_LOCAL_USERS table. This is referred to as an ad hoc user.

Attention: If you implement Oracle Internet Directory
integration, you must maintain your users only through OID.
You must not use the CreateAdHocUser() API to create new
users in the WF_LOCAL_USERS table, because you risk
discrepancies in your user information and unpredictable
results if you use any tool other than OID to maintain users
after integrating with OID.

An internal name for the user. The name must less
than 30 characters long and is all uppercase. This
procedure checks that the name provided does not
already exist in WF_USERS and returns an error if
the name already exists. If you do not provide an
internal name, the system generates an internal
name for you where the name contains a prefix of
’~WF_ADHOC–’ followed by a sequence number.

The display name of the user. This procedure
checks that the display name provided does not
already exist in WF_USERS and returns an error if
the display name already exists. If you do not
provide an display name, the system generates one
for you where the display name contains a prefix of
’~WF_ADHOC–’ followed by a sequence number.

name

display_name

8 – 135Oracle Workflow APIs

The value of the database NLS_LANGUAGE
initialization parameter that specifies the default
language–dependent behavior of the user’s
notification session. If null, the procedure resolves
this to the language setting of your current session.

The value of the database NLS_TERRITORY
initialization parameter that specifies the default
territory–dependant date and numeric formatting
used in the user’s notification session. If null, the
procedure resolves this to the territory setting of
your current session.

An optional description for the user.

Indicate how this user prefers to receive
notifications: ’MAILTEXT’, ’MAILHTML’,
’MAILATTH’, ’QUERY’ or ’SUMMARY’. If null,
the procedure sets the notification preference to
’MAILHTML’.

A optional electronic mail address for this user.

An optional Fax number for the user.

The availability of the user to participate in a
workflow process. The possible statuses are
’ACTIVE’, ’EXTLEAVE’, ’INACTIVE’, and
’TMPLEAVE’. If null, the procedure sets the status
to ’ACTIVE’.

The date at which the user is no longer valid in the
directory service. If null, the procedure defaults
the expiration date to sysdate.

See Also

Setting Up an Oracle Workflow Directory Service: page 2 – 21

language

territory

description

notification_
preference

email_address

fax

status

expiration_date

Syntax

Description

Arguments (input)

8 – 136 Oracle Workflow Guide

CreateAdHocRole

procedure CreateAdHocRole

 (role_name in out varchar2,

 role_display_name in out varchar2,

 language in varchar2 default null,

 territory in varchar2 default null,

 role_description in varchar2 default null,

 notification_preference in varchar2 default

 ’MAILHTML’,

 role_users in varchar2 default null,

 email_address in varchar2 default null,

 fax in varchar2 default null,

 status in varchar2 default ’ACTIVE’,

 expiration_date in date default sysdate);

Creates a role at runtime by creating a value in the
WF_LOCAL_ROLES table. This is referred to as an ad hoc role.

An internal name for the role. The name must less
than 30 characters long and is all uppercase. This
procedure checks that the name provided does not
already exist in WF_ROLES and returns an error if
the name already exists. If you do not provide an
internal name, the system generates an internal
name for you where the name contains a prefix of
’~WF_ADHOC–’ followed by a sequence number.

The display name of the role. This procedure
checks that the display name provided does not
already exist in WF_ROLES and returns an error if
the display name already exists. If you do not
provide an display name, the system generates one
for you where the display name contains a prefix of
’~WF_ADHOC–’ followed by a sequence number.

The value of the database NLS_LANGUAGE
initialization parameter that specifies the default
language–dependent behavior of the user’s
notification session. If null, the procedure resolves
this to the language setting of your current session.

The value of the database NLS_TERRITORY
initialization parameter that specifies the default

role_name

role_display_
name

language

territory

8 – 137Oracle Workflow APIs

territory–dependant date and numeric formatting
used in the user’s notification session. If null, the
procedure resolves this to the territory setting of
your current session.

An optional description for the role.

Indicate how this role receives notifications:
’MAILTEXT’, ’MAILHTML’, ’MAILATTH’,
’QUERY’ or ’SUMMARY’. If null, the procedure
sets the notification preference to ’MAILHTML’.

Indicate the names of the users that belong to this
role, using commas or spaces to delimit the list.

A optional electronic mail address for this role or a
mail distribution list defined by your electronic
mail system.

An optional Fax number for the role.

The availability of the role to participate in a
workflow process. The possible statuses are
ACTIVE, EXTLEAVE, INACTIVE, and
TMPLEAVE. If null, the procedure sets the status
to ’ACTIVE’.

The date at which the role is no longer valid in the
directory service. If null, the procedure defaults the
expiration date to sysdate.

See Also

Setting Up an Oracle Workflow Directory Service: page 2 – 21

role_description

notification_
preference

role_users

email_address

fax

status

expiration_date

Syntax

Description

Arguments (input)

8 – 138 Oracle Workflow Guide

AddUsersToAdHocRole

procedure AddUsersToAdHocRole

 (role_name in varchar2,

 role_users in varchar2);

Adds users to a existing ad hoc role.

The internal name of the ad hoc role.

List of users delimited by spaces or commas.
Users can be ad hoc users or users defined in an
application, but they must already be defined in
the Oracle Workflow directory service.

role_name

role_users

Syntax

Description

�

Arguments (input)

8 – 139Oracle Workflow APIs

SetAdHocUserExpiration

procedure SetAdHocUserExpiration

 (user_name in varchar2,

 expiration_date in date default sysdate);

Updates the expiration date for an ad hoc user.

Attention: If you implement Oracle Internet Directory
integration, you must maintain your users only through OID.
You must not use the SetAdHocUserExpiration() API to update
user information in the WF_LOCAL_USERS table, because you
risk discrepancies in your user information and unpredictable
results if you use any tool other than OID to maintain users
after integrating with OID.

The internal name of the ad hoc user.

New expiration date. If null, the procedure
defaults the expiration date to sysdate.

user_name

expiration_date

Syntax

Description

Arguments (input)

8 – 140 Oracle Workflow Guide

SetAdHocRoleExpiration

procedure SetAdHocRoleExpiration

 (role_name in varchar2,

 expiration_date in date default sysdate);

Updates the expiration date for an ad hoc role.

The internal name of the ad hoc role.

New expiration date. If null, the procedure
defaults the expiration date to sysdate.

role_name

expiration_date

Syntax

Description

�

Arguments (input)

8 – 141Oracle Workflow APIs

SetAdHocUserAttr

procedure SetAdHocUserAttr

 (user_name in varchar2,

 display_name in varchar2 default null,

 notification_preference in varchar2 default null,

 language in varchar2 default null,

 territory in varchar2 default null,

 email_address in varchar2 default null,

 fax in varchar2 default null);

Updates the attributes for an ad hoc user.

Attention: If you implement Oracle Internet Directory
integration, you must maintain your users only through OID.
You must not use the SetAdHocUserAttr() API to update user
information in the WF_LOCAL_USERS table, because you risk
discrepancies in your user information and unpredictable
results if you use any tool other than OID to maintain users
after integrating with OID.

The internal name of the ad hoc user to update.

A new display name for the ad hoc user. If null,
the display name is not updated.

A new notification preference of ’MAILTEXT’,
’MAILHTML’, ’MAILATTH’, ’QUERY’ or
’SUMMARY’. If null, the notification preference is
not updated.

A new value of the database NLS_LANGUAGE
initialization parameter for the ad hoc user. If null,
the language setting is not updated.

A new value of the database NLS_TERRITORY
initialization parameter for the ad hoc user. If null,
the territory setting is not updated.

A new valid electronic mail address for the ad hoc
user. If null, the electronic mail address is not
updated.

A new fax number for the ad hoc user. If null, the
fax number is not updated.

user_name

display_name

notification_
preference

language

territory

email_address

fax

Syntax

Description

Arguments (input)

8 – 142 Oracle Workflow Guide

SetAdHocRoleAttr

procedure SetAdHocRoleAttr

 (role_name in varchar2,

 display_name in varchar2 default null,

 notification_preference in varchar2 default null,

 language in varchar2 default null,

 territory in varchar2 default null,

 email_address in varchar2 default null,

 fax in varchar2 default null);

Updates the attributes for an ad hoc role.

The internal name of the ad hoc role to update.

A new display name for the ad hoc role. If null, the
display name is not updated.

A new notification preference of ’MAILTEXT’,
’MAILHTML’, ’QUERY’ or ’SUMMARY’. If null,
the notification preference is not updated.

A new value of the database NLS_LANGUAGE
initialization parameter for the ad hoc role. If null,
the language setting is not updated.

A new value of the database NLS_TERRITORY
initialization parameter for the ad hoc role. If null,
the territory setting is not updated.

A new valid electronic mail address for the ad hoc
role. If null, the electronic mail address is not
updated.

A new fax number for the ad hoc role. If null, the
fax number is not updated.

role_name

display_name

notification_
preference

language

territory

email_address

fax

Syntax

Description

Arguments (input)

8 – 143Oracle Workflow APIs

RemoveUsersFromAdHocRole

procedure RemoveUsersFromAdHocRole

 (role_name in varchar2,

 role_users in varchar2 default null);

Removes users from an existing ad hoc role.

The internal name of the ad hoc role.

List of users to remove from the ad hoc role. The
users are delimited by commas or spaces. If null,
all users are removed from the role.

role_name

role_users

8 – 144 Oracle Workflow Guide

Workflow LDAP APIs

Call the following APIs to synchronize local user information in your
Workflow directory service with the users in an LDAP directory such
as Oracle Internet Directory (OID). These APIs are defined in a
PL/SQL package called WF_LDAP.

• Synch_changes: page 8 – 145

• Synch_all: page 8 – 146

• Schedule_changes: page 8 – 147

See Also

Synchronizing Workflow Directory Services with Oracle Internet
Directory: page 2 – 30

Syntax

Description

8 – 145Oracle Workflow APIs

Synch_changes

function synch_changes

 return boolean;

Determines whether there have been any user changes to an LDAP
directory since the last synchronization by querying the LDAP change
log records; if there are any changes, including creation, modification,
and deletion, Synch_changes() stores the user attribute information in
an attribute cache and raises the oracle.apps.wf.public.user.change
event to alert interested parties. The function connects to the LDAP
directory specified in the Global Workflow Preferences. One event is
raised for each changed user.

If the function completes successfully, it returns TRUE; otherwise, if it
encounters an exception, it returns FALSE.

See Also

Synchronizing Workflow Directory Services with Oracle Internet
Directory: page 2 – 30

Setting Global User Preferences: page 2 – 14

User Entry Has Changed Event: page 14 – 15

Syntax

Description

8 – 146 Oracle Workflow Guide

Synch_all

function synch_all

 return boolean;

Retrieves all users from an LDAP directory, stores the user attribute
information in an attribute cache, and raises the
oracle.apps.wf.public.user.change event to alert interested parties. The
function connects to the LDAP directory specified in the Global
Workflow Preferences. One event is raised for each user.

Because Synch_all() retrieves information for all users stored in the
LDAP directory, you should use this function only once during setup,
or as required for recovery or cleanup. Subsequently, you can use
Synch_changes() or Schedule_changes() to retrieve only changed user
information.

If the function completes successfully, it returns TRUE; otherwise, if it
encounters an exception, it returns FALSE.

Run Synch_all() to begin your Workflow directory service
synchronization with Oracle Internet Directory if you implement OID
integration.

See Also

Synchronizing Workflow Directory Services with Oracle Internet
Directory: page 2 – 30

Setting Global User Preferences: page 2 – 14

User Entry Has Changed Event: page 14 – 15

Synch_changes: page 8 – 145

Schedule_changes: page 8 – 147

Syntax

Description

Arguments (input)

8 – 147Oracle Workflow APIs

Schedule_changes

procedure schedule_changes

 (l_day in pls_integer default 0,

 l_hour in pls_integer default 0,

 l_minute in pls_integer default 10);

Runs the Synch_changes() API repeatedly at the specified time interval
to check for user changes in an LDAP directory and alert interested
parties of any changes. The default interval is ten minutes.
Schedule_changes() submits a database job using the DBMS_JOB utility
to run Synch_changes().

Run Schedule_changes() to maintain your Workflow directory service
synchronization with Oracle Internet Directory if you implement OID
integration.

The number of days in the interval to specify how
often you want to run the Synch_changes() API. The
default value is zero.

The number of hours in the interval to specify how
often you want to run the Synch_changes() API. The
default value is zero.

The number of minutes in the interval to specify
how often you want to run the Synch_changes()
API. The default value is ten.

See Also

Synch_changes: page 8 – 145

Synchronizing Workflow Directory Services with Oracle Internet
Directory: page 2 – 30

l_day

l_hour

l_minute

Syntax

Description

Arguments (input)

8 – 148 Oracle Workflow Guide

Workflow Preferences API

Call the following API to retrieve user preference information. The API
is defined in the PL/SQL package called WF_PREF.

get_pref

function get_pref

 (p_user_name in varchar2,

 p_preference_name in varchar2)

 return varchar2;

Retrieves the value of the specified preference for the specified user.

The internal name of the user. To retrieve the value
for a global preference, specify the user as
–WF_DEFAULT–.

The name of the user preference whose value you
wish to retrieve. Valid preference names are:

LANGUAGE

TERRITORY

MAILTYPE

DMHOME

DATEFORMAT

p_user_name

p_preference_
name

�

8 – 149Oracle Workflow APIs

Workflow Monitor APIs

Call the following APIs to retrieve an access key or to generate a
complete URL to access the various pages of the Workflow Monitor. All
Workflow Monitor APIs are defined in the PL/SQL package called
WF_MONITOR.

• GetAccessKey: page 8 – 150

• GetDiagramURL: page 8 – 151

• GetEnvelopeURL: page 8 – 153

• GetAdvancedEnvelopeURL: page 8 – 155

Attention: The GetURL API from earlier versions of Oracle
Workflow is replaced by the GetEnvelopeURL and
GetDiagramURL APIs. The functionality of the previous
GetURL API correlates directly with the new GetDiagramURL.
API. The current version of Oracle Workflow still recognizes
the GetURL API, but moving forward, you should only use the
two new APIs where appropriate.

Syntax

Description

Arguments (input)

8 – 150 Oracle Workflow Guide

GetAccessKey

function GetAccessKey

 (x_item_type varchar2,

 x_item_key varchar2,

 x_admin_mode varchar2)

 return varchar2;

Retrieves the access key password that controls access to the Workflow
Monitor. Each process instance has separate access keys for running the
Workflow Monitor in ’ADMIN’ mode or ’USER’ mode.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process to report on.

A value of YES or NO. YES directs the function to
retrieve the access key password that runs the
monitor in ’ADMIN’ mode. NO retrieves the
access key password that runs the monitor in
’USER’ mode.

x_item_type

x_item_key

x_admin_mode

Syntax

Description

Arguments (input)

8 – 151Oracle Workflow APIs

GetDiagramURL

function GetDiagramURL

 (x_agent in varchar2,

 x_item_type in varchar2,

 x_item_key in varchar2,

 x_admin_mode in varchar2 default ’NO’)

 return varchar2;

Can be called by an application to return a URL that allows access to
the Workflow Monitor with an attached access key password. The
URL displays the diagram for a specific instance of a workflow process
in the Workflow Monitor operating in either ’ADMIN’ or ’USER’ mode.

The URL returned by the function WF_MONITOR.GetDiagramURL()
looks as follows:

<webagent>/wf_monitor.html?x_item_type=<item_type>&x_item_ke

y=<item_key>&x_admin_mode=<YES or

NO>&x_access_key=<access_key>

 <webagent> represents the base URL of the web agent configured for
Oracle Workflow in your Web server. See: Setting Global User
Preferences: page 2 – 14.

wf_monitor.html represents the name of the PL/SQL package
procedure that generates the Workflow Monitor diagram of the process
instance.

The wf_monitor.html procedure requires four arguments.
<item_type> and <item_key> represent the internal name of the item
type and the item key that uniquely identify an instance of a process. If
<YES or NO> is YES, the monitor runs in ’ADMIN’ mode and if NO, the
monitor runs in ’USER’ mode. <access_key> represents the access key
password that determines whether the monitor is run in ’ADMIN’ or
’USER’ mode.

The base web agent string defined for Oracle
Workflow or Oracle Self–Service Web Applications
in your Web server. The base web agent string
should be stored in the WF_RESOURCES table,
and looks something like:
http://<server.com:portID>/<PLSQL_agent_path>

x_agent

Example

8 – 152 Oracle Workflow Guide

When calling this function, your application must
first retrieve the web agent string from the
WF_RESOURCES token WF_WEB_AGENT by
calling WF_CORE.TRANSLATE(). See: Setting
Global User Preferences: page 2 – 14.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process to report on.

A value of YES or NO. YES directs the function to
retrieve the access key password that runs the
monitor in ’ADMIN’ mode. NO retrieves the
access key password that runs the monitor in
’USER’ mode.

Following is an example of how you can call the GetDiagramUrl. This
example returns a URL that displays the Workflow Monitor diagram
for a process instance identified by the item type WFDEMO and item
key 10022, in ’USER’ mode:

URL := WF_MONITOR.GetDiagramURL

(WF_CORE.Translate(’WF_WEB_AGENT’),

’WFDEMO’,

’10022’,

’NO’);

See Also

TRANSLATE: page 8 – 110

x_item_type

x_item_key

x_admin_mode

Syntax

Description

Arguments (input)

8 – 153Oracle Workflow APIs

GetEnvelopeURL

function GetEnvelopeURL

 (x_agent in varchar2,

 x_item_type in varchar2,

 x_item_key in varchar2,

 x_admin_mode in varchar2 default ’NO’)

 return varchar2;

Can be called by an application to return a URL that allows access to
the Workflow Monitor Notifications List with an attached access key
password. The URL displays the Notifications List for a specific
instance of a workflow process in the Workflow Monitor.

The URL returned by the function WF_MONITOR.GetEnvelopeURL()
looks as follows:

<webagent>/wf_monitor.envelope?x_item_type=<item_type>&x_ite

m_key=<item_key>&x_admin_mode=<YES or

NO>&x_access_key=<access_key>

 <webagent> represents the base URL of the web agent configured for
Oracle Workflow in your Web server. See: Setting Global User
Preferences: page 2 – 14.

wf_monitor.envelope represents the name of the PL/SQL package
procedure that generates the Workflow Monitor Notifications List for
the process instance.

The base web agent string defined for Oracle
Workflow or Oracle Self–Service Web Applications
in your Web server. The base web agent string
should be stored in the WF_RESOURCES table,
and looks something like:
http://<server.com:portID>/<PLSQL_agent_path>

When calling this function, your application must
first retrieve the web agent string from the
WF_RESOURCES token WF_WEB_AGENT by
calling WF_CORE.TRANSLATE(). See: Setting
Global User Preferences: page 2 – 14.

A valid item type.

x_agent

x_item_type

8 – 154 Oracle Workflow Guide

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process to report on.

A value of YES or NO. YES directs the function to
retrieve the access key password that runs the
monitor in ’ADMIN’ mode. NO retrieves the
access key password that runs the monitor in
’USER’ mode.

See Also

TRANSLATE: page 8 – 110

x_item_key

x_admin_mode

Syntax

Description

Example

Arguments (input)

8 – 155Oracle Workflow APIs

GetAdvancedEnvelopeURL

function GetAdvancedEnvelopeURL

 (x_agent in varchar2,

 x_item_type in varchar2,

 x_item_key in varchar2,

 x_admin_mode in varchar2 default ’NO’,

 x_options in varchar2 default null)

 return varchar2;

Can be called by an application to return a URL that displays the
Workflow Monitor Activities List with an attached access key
password. The URL displays the Activities List for a specific instance
of a workflow process in the Workflow Monitor. The Activities List
allows you to apply advanced filtering options in displaying the list of
activities for a process instance.

The URL returned by the function
WF_MONITOR.GetAdvancedEnvelopeURL() looks as follows if the
x_options argument is null:

<webagent>/wf_monitor.envelope?x_item_type=<item_type>&x_ite

m_key=<item_key>&x_admin_mode=<YES or

NO>&x_access_key=<access_key>&x_advanced=TRUE

 <webagent> represents the base URL of the web agent configured for
Oracle Workflow in your Web server. See: Setting Global User
Preferences: page 2 – 14.

wf_monitor.envelope represents the name of the PL/SQL package
procedure that generates the Workflow Monitor Notifications List for
the process instance.

The base web agent string defined for Oracle
Workflow or Oracle Self–Service Web Applications
in your Web server. The base web agent string
should be stored in the WF_RESOURCES table,
and looks something like:
http://<server.com:portID>/<PLSQL_agent_path>

When calling this function, your application must
first retrieve the web agent string from the
WF_RESOURCES token WF_WEB_AGENT by

x_agent

8 – 156 Oracle Workflow Guide

calling WF_CORE.TRANSLATE(). See: Setting
Global User Preferences: page 2 – 14.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process to report on.

A value of YES or NO. YES directs the function to
retrieve the access key password that runs the
monitor in ’ADMIN’ mode. NO retrieves the
access key password that runs the monitor in
’USER’ mode.

Specify ’All’ if you wish to return a URL that
displays the Activities List with all filtering options
checked. If you leave this argument null, then a
URL that displays the Activities List with no
filtering options checked, is returned. This allows
you to append any specific options if you wish.
The default is null.

See Also

TRANSLATE: page 8 – 110

x_item_type

x_item_key

x_admin_mode

x_options

8 – 157Oracle Workflow APIs

Oracle Workflow Views

Public views are available for accessing workflow data. If you are
using the version of Oracle Workflow embedded in Oracle
Applications, these views are installed in the APPS account. If you are
using the standalone version of Oracle Workflow, these view are
installed in the same account as the Oracle Workflow server.

• WF_ITEM_ACTIVITY_STATUSES_V: page 8 – 157

• WF_NOTIFICATION_ATTR_RESP_V: page 8 – 159

• WF_RUNNABLE_PROCESSES_V: page 8 – 160

• WF_ITEMS_V: page 8 – 161

Note: These database views are public, meaning they are
available for you to use for your custom data requirements.
This description does not mean that any privileges for these
views have been granted to PUBLIC.

WF_ITEM_ACTIVITY_STATUSES_V

This view contains denormalized information about a workflow
process and its activities’ statuses. Use this view to create custom
queries and reports on the status of a particular item or process. The
column descriptions of the view are as follows:

 Name Null? Type

 ––––––––––––––––––––––––––––––– –––––––– ––––

 ROW_ID ROWID

 SOURCE CHAR(1)

 ITEM_TYPE VARCHAR2(8)

 ITEM_TYPE_DISPLAY_NAME VARCHAR2(80)

 ITEM_TYPE_DESCRIPTION VARCHAR2(240)

 ITEM_KEY VARCHAR2(240)

 USER_KEY VARCHAR2(240)

 ITEM_BEGIN_DATE DATE

 ITEM_END_DATE DATE

 ACTIVITY_ID NUMBER

 ACTIVITY_LABEL VARCHAR2(30)

 ACTIVITY_NAME VARCHAR2(30)

 ACTIVITY_DISPLAY_NAME VARCHAR2(80)

 ACTIVITY_DESCRIPTION VARCHAR2(240)

 ACTIVITY_TYPE_CODE VARCHAR2(8)

 ACTIVITY_TYPE_DISPLAY_NAME VARCHAR2(80)

8 – 158 Oracle Workflow Guide

 EXECUTION_TIME NUMBER

 ACTIVITY_BEGIN_DATE DATE

 ACTIVITY_END_DATE DATE

 ACTIVITY_STATUS_CODE VARCHAR2(8)

 ACTIVITY_STATUS_DISPLAY_NAME VARCHAR2(80)

 ACTIVITY_RESULT_CODE VARCHAR2(30)

 ACTIVITY_RESULT_DISPLAY_NAME VARCHAR2(4000)

 ASSIGNED_USER VARCHAR2(30)

 ASSIGNED_USER_DISPLAY_NAME VARCHAR2(4000)

 NOTIFICATION_ID NUMBER

 OUTBOUND_QUEUE_ID RAW(16)

 ERROR_NAME VARCHAR2(30)

 ERROR_MESSAGE VARCHAR2(2000)

 ERROR_STACK VARCHAR2(4000)

8 – 159Oracle Workflow APIs

WF_NOTIFICATION_ATTR_RESP_V

This view contains information about the Respond message attributes
for a notification group. If you plan to create a custom ”voting”
activity, use this view to create the function that tallies the responses
from the users in the notification group. See: Voting Activity: page
4 – 61.

The column descriptions of the view are as follows:

 Name Null? Type

 ––––––––––––––––––––––––––––––– –––––––– ––––

 GROUP_ID NOT NULL NUMBER

 RECIPIENT_ROLE NOT NULL VARCHAR2(30)

 RECIPIENT_ROLE_DISPLAY_NAME VARCHAR2(4000)

 ATTRIBUTE_NAME NOT NULL VARCHAR2(30)

 ATTRIBUTE_DISPLAY_NAME NOT NULL VARCHAR2(80)

 ATTRIBUTE_VALUE VARCHAR2(2000)

 ATTRIBUTE_DISPLAY_VALUE VARCHAR2(4000)

 MESSAGE_TYPE NOT NULL VARCHAR2(8)

 MESSAGE_NAME NOT NULL VARCHAR2(30)

8 – 160 Oracle Workflow Guide

WF_RUNNABLE_PROCESSES_V

This view contains a list of all runnable workflow processes in the
ACTIVITIES table.

The column descriptions of the view are as follows:

 Name Null? Type

 ––––––––––––––––––––––––––––––– –––––––– ––––

 ITEM_TYPE NOT NULL VARCHAR2(8)

 PROCESS_NAME NOT NULL VARCHAR2(30)

 DISPLAY_NAME NOT NULL VARCHAR2(80)

8 – 161Oracle Workflow APIs

WF_ITEMS_V

This view is a select only version of the WF_ITEMS table.

The column descriptions of the view are as follows:

Name Null? Type

––––––––––––––––––––––––––––––– –––––––– ––––

ITEM_TYPE NOT NULL VARCHAR2(8)

ITEM_KEY NOT NULL VARCHAR2(240)

USER_KEY VARCHAR2(240)

ROOT_ACTIVITY NOT NULL VARCHAR2(30)

ROOT_ACTIVITY_VERSION NOT NULL NUMBER

OWNER_ROLE VARCHAR2(30)

PARENT_ITEM_TYPE VARCHAR2(8)

PARENT_ITEM_KEY VARCHAR2(240)

PARENT_CONTEXT VARCHAR2(2000)

BEGIN_DATE NOT NULL DATE

END_DATE DATE

�

8 – 162 Oracle Workflow Guide

Workflow Queue APIs

Oracle Workflow queue APIs can be called by an application program
or a workflow function in the runtime phase to handle workflow
Advanced Queues processing. In Oracle Workflow, an ’outbound’ and
an ’inbound’ queue are established. A package of data on the queue is
referred to as an event or a message.

Note: An event in this context is different from the business
events associated with the Business Event System, and a
message in this context is different from the messages
associated with notification activities.

Events are enqueued in the outbound queue for agents to consume and
process. These agents may be any application that is external to the
database. Similarly an agent may enqueue some message to the
inbound queue for the Workflow Engine to consume and process. The
outbound and inbound queues facilitate the integration of external
activities into your workflow processes.

Note: Background engines use a separate ’deferred’ queue.

All Oracle Workflow queue APIs are defined in a PL/SQL package
called WF_QUEUE. You must execute these queue APIs from the same
Oracle Workflow account since the APIs are account dependent.

Attention: In using these APIs, we assume that you have
prior knowledge of Oracle Advanced Queuing concepts and
terminology. Refer to the Oracle Application Developer’s Guide –
Advanced Queuing for more information on Advanced Queues.

Note: In a future release, this workflow Advanced Queues
processing will be implemented within the Business Event
System using a specialized queue handler to handle dequeue
and enqueue operations.

Queue APIs

• EnqueueInbound: page 8 – 165

• DequeueOutbound: page 8 – 167

• DequeueEventDetail: page 8 – 170

• PurgeEvent: page 8 – 172

• PurgeItemtype: page 8 – 173

• ProcessInboundQueue: page 8 – 174

• GetMessageHandle: page 8 – 175

• DequeueException: page 8 – 176

8 – 163Oracle Workflow APIs

• Deferred_queue: page 8 – 177

• Inbound_queue: page 8 – 178

• Outbound_queue: page 8 – 179

Developer APIs for the Inbound Queue

The following APIs are for developers who wish to write to the
inbound queue by creating messages in the internal stack rather than
using WF_QUEUE.EnqueueInbound(). The internal stack is purely a
storage area and you must eventually write each message that you
create on the stack to the inbound queue.

Note: For efficient performance, you should periodically write
to the inbound queue to prevent the stack from growing too
large.

• ClearMsgStack: page 8 – 180

• CreateMsg: page 8 – 181

• WriteMsg: page 8 – 182

• SetMsgAttr: page 8 – 183

• SetMsgResult: page 8 – 184

Payload Structure

Oracle Workflow queues use the datatype system.wf_payload_t to
define the payload for any given message. The payload contains all the
information that is required about the event. The following table lists
the attributes of system.wf_payload_t.

Attribute Name Datatype Description

ITEMTYPE VARCHAR2(8) The item type of the event.

ITEMKEY VARCHAR2(240) The item key of the event.

ACTID NUMBER The function activity instance ID.

FUNCTION_NAME VARCHAR2(200) The name of the function to execute.

Table 8 – 5 (Page 1 of 2)

8 – 164 Oracle Workflow Guide

DescriptionDatatypeAttribute Name

PARAM_LIST VARCHAR2(4000) A list of ”value_name=value” pairs. In the
inbound scenario, the pairs are passed as
item attributes and item attribute values.
In the outbound scenario, the pairs are
passed as all the attributes and attribute
values of the function (activity attributes).

RESULT VARCHAR2(30) An optional activity completion result.
Possible values are determined by the
function activity’s Result Type or can be an
engine standard result.

Table 8 – 5 (Page 2 of 2)

See Also

Standard API for PL/SQL Procedures Called by Function Activities:
page 7 – 3

Advanced Queuing: Oracle Application Developer’s Guide – Advanced
Queuing

Syntax

Description

Arguments (input)

8 – 165Oracle Workflow APIs

EnqueueInbound

procedure EnqueueInbound

 (itemtype in varchar2,

 itemkey in varchar2,

 actid in number,

 result in varchar2 default null,

 attrlist in varchar2 default null,

 correlation in varchar2 default null,

 error_stack in varchar2 default null);

Enqueues the result from an outbound event onto the inbound queue.
An outbound event is defined by an outbound queue message that is
consumed by some agent.

Oracle Workflow marks the external function activity as complete with
the specified result when it processes the inbound queue. The result
value is only effective for successful completion, however. If you
specify an external program error in the error_stack parameter, Oracle
Workflow marks the external function activity as complete with an
ERROR status, overriding the result value. Additionally, if a
corresponding error process is defined in the item type, Oracle
Workflow launches that error process.

The item type of the event.

The item key of the event. An item key is a string
generated from the application object’s primary
key. The string uniquely identifies the item within
an item type. The item type and key together
identify the process instance.

The function activity instance ID that this event is
associated with.

An optional activity completion result. Possible
values are determined by the function activity’s
Result Type.

A longlist of ”value name=value” pairs that you
want to pass back as item attributes and item
attribute values. Each pair must be delimited by
the caret character (^), as in the example,
”ATTR1=A^ATTR2=B^ATTR3=C”. If a specified
value name does not exist as an item attribute,

itemtype

itemkey

actid

result

attrlist

8 – 166 Oracle Workflow Guide

Oracle Workflow creates the item attribute for you,
of type varchar2.

Specify an optional correlation identifier for the
message to be enqueued. Oracle Advanced
Queues allow you to search a queue for messages
based on a specific correlation value. If null, the
Workflow Engine creates a correlation identifier
based on the Workflow schema name and the item
type.

Specify an optional external program error that will
be placed on Oracle Workflow’s internal error
stack. You can specify any text value up to a
maximum length of 200 characters.

correlation

error_stack

Syntax

Description

�

Arguments (input)

8 – 167Oracle Workflow APIs

DequeueOutbound

procedure DequeueOutbound

 (dequeuemode in number,

 navigation in number default 1,

 correlation in varchar2 default null,

 itemtype in varchar2 default null,

 payload out system.wf_payload_t,

 message_handle in out raw,

 timeout out boolean);

Dequeues a message from the outbound queue for some agent to
consume.

Attention: If you call this procedure within a loop, you must
remember to set the returned message handle to null,
otherwise, the procedure dequeues the same message again.
This may not be the behavior you want and may cause an
infinite loop.

A value of DBMS_AQ.BROWSE,
DBMS_AQ.LOCKED, or DBMS_AQ.REMOVE,
corresponding to the numbers 1, 2 and 3
respectively, to represent the locking behavior of
the dequeue. A mode of DBMS_AQ.BROWSE
means to read the message from the queue without
acquiring a lock on the message. A mode of
DBMS_AQ.LOCKED means to read and obtain a
write lock on the message, where the lock lasts for
the duration of the transaction. A mode of
DBMS_AQ.REMOVE means read the message and
delete it.

Specify DBMS_AQ.FIRST_MESSAGE or
DBMS_AQ.NEXT_MESSAGE, corresponding to
the number 1 or 2 respectively, to indicate the
position of the message that will be retrieved. A
value of DBMS_AQ.FIRST_MESSAGE retrieves the
first message that is available and matches the
correlation criteria. The first message is inherently
the beginning of the queue. A value of
DBMS_AQ.NEXT_MESSAGE retrieves the next
message that is available and matches the

dequeuemode

navigation

�
Example

8 – 168 Oracle Workflow Guide

correlation criteria, and lets you read through the
queue. The default is 1.

Specify an optional correlation identifier for the
message to be dequeued. Oracle Advanced
Queues allow you to search a queue for messages
based on a specific correlation value. You can use
the Like comparison operator, ’%’, to specify the
identifier string. If null, the Workflow Engine
creates a correlation identifier based on the
Workflow schema name and the item type.

The item type of the event.

Specify an optional message handle ID for the
specific event to be dequeued. If you specify a
message handle ID, the correlation identifier is
ignored.

Attention: The timeout output returns TRUE when there is
nothing further to read in the queue.

Following is an example of code that loops through the outbound
queue and displays the output.

declare

 event system.wf_payload_t;

 i number;

 msg_id raw(16);

 queuename varchar2(30);

 navigation_mode number;

 end_of_queue boolean;

begin

 queuename:=wf_queue.OUTBOUNDQUEUE;

 i:=0;

 LOOP

 i:=i+1;

 –– always start with the first message then progress

to next

 if i = 1 then

 navigation_mode := dbms_aq.FIRST_MESSAGE;

 else

 navigation_mode := dbms_aq.NEXT_MESSAGE;

 end if;

correlation

itemtype

message_handle

8 – 169Oracle Workflow APIs

 –– not interested in specific msg_id. Leave it null so

 ––as to loop through all messages in queue

 msg_id :=null;

 wf_queue.DequeueOutbound(

 dequeuemode => dbms_aq.BROWSE,

 payload => event,

 navigation => navigation_mode,

 message_handle => msg_id,

 timeout => end_of_queue);

 if end_of_queue then

 exit;

 end if;

 –– print the correlation itemtype:itemKey

 dbms_output.put_line(’Msg ’||to_char(i)||’ = ’||

 event.itemtype||’:’||event.itemkey

 ||’ ’||event.actid||’ ’

 ||event.param_list);

 END LOOP;

end;

/

Syntax

Description

�

Arguments (input)

8 – 170 Oracle Workflow Guide

DequeueEventDetail

procedure DequeueEventDetail

 (dequeuemode in number,

 navigation in number default 1,

 correlation in varchar2 default null,

 itemtype in out varchar2,

 itemkey out varchar2,

 actid out number,

 function_name out varchar2,

 param_list out varchar2,

 message_handle in out raw,

 timeout out boolean);

Dequeue from the outbound queue, the full event details for a given
message. This API is similar to DequeueOutbound except it does not
reference the payload type. Instead, it outputs itemkey, actid,
function_name, and param_list, which are part of the payload.

Attention: If you call this procedure within a loop, you must
remember to set the returned message handle to null,
otherwise, the procedure dequeues the same message again.
This may not be the behavior you want and may cause an
infinite loop.

A value of DBMS_AQ.BROWSE,
DBMS_AQ.LOCKED, or DBMS_AQ.REMOVE,
corresponding to the numbers 1, 2 and 3
respectively, to represent the locking behavior of
the dequeue. A mode of DBMS_AQ.BROWSE
means to read the message from the queue without
acquiring a lock on the message. A mode of
DBMS_AQ.LOCKED means to read and obtain a
write lock on the message, where the lock lasts for
the duration of the transaction. A mode of
DBMS_AQ.REMOVE means read the message and
update or delete it.

Specify DBMS_AQ.FIRSTMESSAGE or
DBMS_AQ.NEXTMESSAGE, corresponding to the
number 1 or 2 respectively, to indicate the position
of the message that will be retrieved. A value of
DBMS_AQ.FIRSTMESSAGE retrieves the first
message that is available and matches the

dequeuemode

navigation

�

8 – 171Oracle Workflow APIs

correlation criteria. It also resets the position to the
beginning of the queue. A value of
DBMS_AQ.NEXTMESSAGE retrieves the next
message that is available and matches the
correlation criteria. The default is 1.

Specify an optional correlation identifier for the
message to be dequeued. Oracle Advanced
Queues allow you to search a queue for messages
based on a specific correlation value. You can use
the Like comparison operator, ’%’, to specify the
identifier string. If null, the Workflow Engine
creates a correlation identifier based on the
Workflow schema name and the item type.

The Oracle Workflow database account name. If
acctname is null, it defaults to the pseudocolumn
USER.

Specify an optional item type for the message to
dequeue if you are not specifying a correlation.

Specify an optional message handle ID for the
specific event to be dequeued. If you specify a
message handle ID, the correlation identifier is
ignored.

Attention: The timeout output returns TRUE when there is
nothing further to read in the queue.

correlation

acctname

itemtype

message_handle

Syntax

Description

Arguments (input)

8 – 172 Oracle Workflow Guide

PurgeEvent

procedure PurgeEvent

 (queuename in varchar2,

 message_handle in raw);

Removes an event from a specified queue without further processing.

The name of the queue from which to purge the
event.

The message handle ID for the specific event to
purge.

queuename

message_handle

Syntax

Description

Arguments (input)

8 – 173Oracle Workflow APIs

PurgeItemType

procedure PurgeItemType

 (queuename in varchar2,

 itemtype in varchar2 default null,

 correlation in varchar2 default null);

Removes all events belonging to a specific item type from a specified
queue without further processing.

The name of the queue from which to purge the
events.

An optional item type of the events to purge.

Specify an optional correlation identifier for the
message to be purged. Oracle Advanced Queues
allow you to search a queue for messages based on
a specific correlation value. You can use the Like
comparison operator, ’%’, to specify the identifier
string. If null, the Workflow Engine creates a
correlation identifier based on the Workflow
schema name and the item type.

queuename

itemtype

correlation

Syntax

Description

Arguments (input)

8 – 174 Oracle Workflow Guide

ProcessInboundQueue

procedure ProcessInboundQueue

 (itemtype in varchar2 default null,

 correlation in varchar2 default null);

Reads every message off the inbound queue and records each message
as a completed event. The result of the completed event and the list of
item attributes that are updated as a consequence of the completed
event are specified by each message in the inbound queue. See:
EnqueueInbound: page 8 – 165.

An optional item type of the events to process.

If you wish to process only messages with a
specific correlation, enter a correlation identifier. If
correlation is null, the Workflow Engine creates a
correlation identifier based on the Workflow
schema name and the item type.

itemtype

correlation

Syntax

Description

Arguments (input)

8 – 175Oracle Workflow APIs

GetMessageHandle

function GetMessageHandle

 (queuename in varchar2,

 itemtype in varchar2,

 itemkey in varchar2,

 actid in number,

 correlation in varchar2 default null)

 return raw;

Returns a message handle ID for a specified message.

The name of the queue from which to retrieve the
message handle.

The item type of the message.

The item key of the message. An item key is a
string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process instance.

The function activity instance ID that this message
is associated with.

Specify an optional correlation identifier for the
message. If the correlation is null, the Workflow
Engine creates a correlation identifier based on the
Workflow schema name and the item type.

queuename

itemtype

itemkey

actid

correlation

Syntax

Description

Arguments (input)

8 – 176 Oracle Workflow Guide

DequeueException

procedure DequeueException

 (queuename in varchar2);

Dequeues all messages from an exception queue and places the
messages on the standard Business Event System WF_ERROR queue
with the error message ’Message Expired.’ When the messages are
dequeued from WF_ERROR, a predefined subscription is triggered that
launches the Default Event Error process.

The name of the exception queue that has been
enabled for dequeue.

See Also

Default Event Error Process: page 6 – 34

queuename

Syntax

Description

8 – 177Oracle Workflow APIs

DeferredQueue

function DeferredQueue

Returns the name of the queue and schema used by the background
engine for deferred processing.

Syntax

Description

8 – 178 Oracle Workflow Guide

InboundQueue

function InboundQueue

Returns the name of the inbound queue and schema. The inbound
queue contains messages for the Workflow Engine to consume.

Syntax

Description

8 – 179Oracle Workflow APIs

OutboundQueue

function OutboundQueue

Returns the name of the outbound queue and schema. The outbound
queue contains messages for external agents to consume.

Syntax

Description

8 – 180 Oracle Workflow Guide

ClearMsgStack

procedure ClearMsgStack;

Clears the internal stack. See: Developer APIs for the Inbound Queue:
page 8 – 163.

Syntax

Description

Arguments (input)

8 – 181Oracle Workflow APIs

CreateMsg

procedure CreateMsg

 (itemtype in varchar2,

 itemkey in varchar2,

 actid in number);

Creates a new message in the internal stack if it doesn’t already exist.
See: Developer APIs for the Inbound Queue: page 8 – 163.

The item type of the message.

The item key of the message. An item key is a
string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process instance.

The function activity instance ID that this message
is associated with.

itemtype

itemkey

actid

Syntax

Description

Arguments (input)

8 – 182 Oracle Workflow Guide

WriteMsg

procedure WriteMsg

 (itemtype in varchar2,

 itemkey in varchar2,

 actid in number);

Writes a message from the internal stack to the inbound queue. See:
Developer APIs for the Inbound Queue: page 8 – 163.

The item type of the message.

The item key of the message. An item key is a
string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process.

The function activity instance ID that this message
is associated with.

itemtype

itemkey

actid

Syntax

Description

Arguments (input)

8 – 183Oracle Workflow APIs

SetMsgAttr

procedure SetMsgAttr

 (itemtype in varchar2,

 itemkey in varchar2,

 actid in number,

 attrName in varchar2,

 attrValue in varchar2);

Appends an item attribute to the message in the internal stack. See:
Developer APIs for the Inbound Queue: page 8 – 163.

The item type of the message.

The item key of the message. An item key is a
string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process instance.

The function activity instance ID that this message
is associated with.

The internal name of the item attribute you wish to
append to the message.

The value of the item attribute you wish to append.

itemtype

itemkey

actid

attrName

attrValue

Syntax

Description

Arguments (input)

8 – 184 Oracle Workflow Guide

SetMsgResult

procedure SetMsgResult

 (itemtype in varchar2,

 itemkey in varchar2,

 actid in number,

 result in varchar2);

Sets a result to the message written in the internal stack. See:
Developer APIs for the Inbound Queue: page 8 – 163.

The item type of the message.

The item key of the message. An item key is a
string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process instance.

The function activity instance ID that this message
is associated with.

The completion result for the message. Possible
values are determined by the activity’s Result
Type.

itemtype

itemkey

actid

result

�

8 – 185Oracle Workflow APIs

Document Management APIs

Attention: Document management functionality is reserved
for future use. This description of Oracle Workflow document
management APIs is provided for reference only.

The following document management APIs can be called by user
interface (UI) agents to return URLs or javascript functions that enable
integrated access to supported document management systems. All
supported document management (DM) systems accommodate a URL
interface to access documents.

The document management APIs allow you to access documents across
multiple instances of the same DM system, as well as across multiple
instances of DM systems from different vendors within the same
network.

The document management APIs are defined in a PL/SQL package
called FND_DOCUMENT_MANAGEMENT:

• get_launch_document_url: page 8 – 186

• get_launch_attach_url: page 8 – 187

• get_open_dm_display_window: page 8 – 188

• get_open_dm_attach_window: page 8 – 189

• set_document_id_html: page 8 – 190

See Also

Standard API for PL/SQL Procedures Called by Function Activities:
page 7 – 3

Syntax

Description

Arguments (input)

8 – 186 Oracle Workflow Guide

get_launch_document_url

procedure get_launch_document_url

 (username in varchar2,

 document_identifier in varchar2,

 display_icon in Boolean,

 launch_document_url out varchar2);

Returns an anchor URL that launches a new browser window
containing the DM integration screen that displays the specified
document. The screen is a frame set of two frames. The upper frame
contains a customizable company logo and a toolbar of Oracle
Workflow–integrated document management functions. The lower
frame displays the specified document.

The username of the person accessing the
document management system.

The document identifier for the document you
wish to display. The document identifier should be
stored as a value in an item attribute of type
document. You can retrieve the document
identifier using the GetItemAttrDocument API. See:
GetItemAttrDocument: page 8 – 59 and
SetItemAttrDocument: page 8 – 51.

True or False. True tells the procedure to return the
URL with the paper clip attachment icon and
translated prompt name, whereas False tells the
procedure to return only the URL. This argument
provides you the flexibility needed when you call
this procedure from a form– or HTML–based UI
agent.

username

document_
identifier

display_icon

Syntax

Description

Arguments (input)

8 – 187Oracle Workflow APIs

get_launch_attach_url

procedure get_launch_attach_url

 (username in varchar2,

 callback_function in varchar2,

 display_icon in Boolean,

 launch_attach_url out varchar2);

Returns an anchor URL that launches a new browser window
containing a DM integration screen that allows you to attach a
document. The screen is a frame set of two frames. The upper frame
contains a customizable company logo and a toolbar of Oracle
Workflow–integrated document management functions. The lower
frame displays the search screen of the default document management
system.

The username of the person accessing the
document management system.

The URL you would like to invoke after the user
selects a document to attach. This callback
function should be the callback_url syntax that is
returned from the set_document_id_html API.

True or False. True tells the procedure to return the
URL with the paper clip attachment icon and
translated prompt name, whereas False tells the
procedure to return only the URL. This argument
provides you the flexibility needed when you call
this procedure from a form– or HTML–based UI
agent.

username

callback_
function

display_icon

Syntax

Description

8 – 188 Oracle Workflow Guide

get_open_dm_display_window

procedure get_open_dm_display_window

Returns a javascript function that displays an attached document from
the current UI. The javascript function is used by all the document
management functions that the user can perform on an attached
document. Each DM function also gives the current DM integration
screen a name so that the Document Transport Window can call back to
the javascript function in the current window.

Syntax

Description

8 – 189Oracle Workflow APIs

get_open_dm_attach_window

procedure get_open_dm_attach_window

Returns a javascript function to open a Document Transport Window
when a user tries to attach a document in the current UI. The
javascript function is used by all the document management functions
that the user can perform to attach a document. Each DM function also
gives the current DM integration screen a name so that the Document
Transport Window can call back to the javascript function in the
current window.

Syntax

Description

Arguments (input)

8 – 190 Oracle Workflow Guide

set_document_id_html

procedure set_document_id_html

 (frame_name in varchar2,

 form_name in varchar2,

 document_id_field_name in varchar2

 document_name_field_name in varchar2,

 callback_url out varchar2);

Returns a callback URL that gets executed when a user selects a
document from the DM system. Use this procedure to set the
document that is selected from the document management Search
function to the specified destination field of an HTML page. The
destination field is the field from which the user launches the DM
integration screen to attach a document. Pass the returned callback
URL as an argument to the get_launch_attach_url API.

The name of the HTML frame that you wish to
interact with in the current UI.

The name of the HTML form that you wish to
interact with in the current UI.

The name of the HTML field in the current UI that
you would like to write the resulting document
identifier to. The resulting document identifier is
determined by the document the user selects from
the document management Search function. The
document identifier is a concatenation of the
following values:

DM:<node_id>:<document_id>:<version>

<nodeid> is the node ID assigned to the document
management system node as defined in the
Document Management Nodes web page.

<documentid> is the document ID of the document,
as assigned by the document management system
where the document resides.

<version> is the version of the document. If a
version is not specified, the latest version is
assumed.

frame_name

form_name

document_id_
field_name

8 – 191Oracle Workflow APIs

The name of the HTML field in the current UI that
you would like to write the resulting document
name to.

document_name_
field_name

8 – 192 Oracle Workflow Guide

Overview of the Oracle Workflow Notification System

Oracle Workflow communicates with users by sending notifications.
Notifications contain messages that may request users to take some
type of action and/or provide users with information. You define the
notification activity and the notification message that the notification
activity sends in the Workflow Builder. The messages may have
optional attributes that can specify additional resources and request
responses.

Users can query their notifications online using the Notifications web
page in an HTML browser. A user can also receive notifications in their
e–mail applications. E–mail notifications can contain HTML content or
include other documents as optional attachments. The Notification
System delivers the messages and processes the incoming responses.

Notification Model

A notification activity in a workflow process consists of a design–time
message and a list of message attributes. In addition, there may be a
number of runtime named values called item type attributes from
which the message attributes draw their values.

The Workflow Engine moves through the workflow process, evaluating
each activity in turn. Once it encounters a notification activity, the
engine makes a call to the Notification System Send() or SendGroup()
API to send the notification.

Sending Notification Messages

The Send() or SendGroup() API are called by the Workflow Engine
when it encounters a notification activity. These APIs do the following:

• Check that the performer role of the notification activity is valid.

• Identify the notification preference for of the performer role.

• Look up the message attributes for the message.

– If a message attribute is of source SEND, the Send() or
SendGroup() API retrieves its value from the item type
attribute that the message attribute references. If the
procedure cannot find an item type attribute, it uses the
default value of the message attribute, if available. The
Subject and Body of the message may include message
attributes of source SEND, which the Send() or SendGroup()

8 – 193Oracle Workflow APIs

API token replaces with each attribute’s current value when
creating the notification.

– If a message includes a message attribute of source
RESPOND, the Send() or SendGroup() API checks to see if it
has a default value assigned to it. The procedure then uses
these RESPOND attributes to create the default response
section of the notification.

• ’Construct’ the notification content by inserting relevant
information into the Workflow Notification tables.

• Update the notification activity’s status to ’NOTIFIED’ if a
response is required or to ’COMPLETE’ if no response is
required.

Note: If a notification activity sends a message that is for the
performer’s information only (FYI), where there are no
RESPOND message attributes associated with it, the
notification activity gets marked as complete as soon as the
Notification System delivers the message.

Note: In the case of a voting activity, the status is updated to
’WAITING’ instead of ’NOTIFIED’. See: Special Handling of
Voting Activities: page 8 – 195

If the performer role of a notification has a notification preference of
MAILTEXT, MAILHTML, MAILATTH or SUMMARY, the notification
is flagged with the corresponding value in the Notification table. The
Notification Mailer, which polls the Notification table for these flags,
then generates an e–mail version of that notification and sends it to the
performer. See: Implementing the Notification Mailer: page 2 – 48.

Users who view their notifications from the Notifications Web page,
regardless of their notifications preferences, are simply querying the
Workflow Notification tables from this interface.

A notification recipient can perform one of four actions with the
notification:

• Respond to the notification or close the notification if it does not
require a response. See: Processing a Notification Response:
page 8 – 194.

• Forward the notification to another role. See: Forwarding a
Notification: page 8 – 194.

• Transfer ownership of the notification to another role. See:
Transferring a Notification: page 8 – 195.

8 – 194 Oracle Workflow Guide

• Ignore the notification and let it time out. See: Processing a
Timed Out Notification: page 8 – 195.

Processing a Notification Response

After a recipient responds, the Notifications web page or Notification
Mailer assigns the response values to the notification response
attributes and calls the notification Respond() API. The Respond() API
first calls a notification callback function to execute the notification
activity’s post–notification function (if it has one) in RESPOND mode.
The post–notification function may interpret the response and perform
tightly–coupled post–response processing. If the post–notification
function raises an exception, the response is aborted. See:
Post–notification Functions: page 8 – 13.

If no exception is raised, Respond() marks the notification as closed and
then calls the notification callback function again in SET mode to
update the corresponding item attributes with the RESPOND
notification attributes values. If the notification message prompts for a
response that is specified in the Result tab of the message’s property
page, that response value is also set as the result of the notification
activity.

Finally, Respond() calls WF_ENGINE.CompleteActivity() to inform the
engine that the notification activity is complete so it can transition to
the next qualified activity.

Forwarding a Notification

If a recipient forwards a notification to another role, the Notifications
web page calls the Notification System’s Forward() API.

Note: The Notification System is not able to track notifications
that are forwarded via e–mail. It records only the eventual
responder’s e–mail address and any Respond message
attributes values included in the response.

The Forward() API validates the role, then calls a notification callback
function to execute the notification activity’s post–notification function
(if it has one) in FORWARD mode. As an example, the
post–notification function may verify whether the role that the
notification is being forwarded to has appropriate authority to view
and respond to the notification. If it doesn’t, the post–notification
function may return an error and prevent the Forward operation from
proceeding. See: Post–notification Functions: page 8 – 13.

8 – 195Oracle Workflow APIs

Forward() then forwards the notification to the new role, along with
any appended comments.

Note: Forward() does not update the owner or original
recipient of the notification.

Transferring a Notification

If a recipient transfers the ownership of a notification to another role,
the Notification web page calls the Notification System’s Transfer() API.

Note: Recipients who view notifications from an e–mail
application cannot transfer notifications. To transfer a
notification, the recipient must use the Notifications web page.

The Transfer() API validates the role, then calls a notification callback
function to execute the notification activity’s post–notification function
(if it has one) in TRANSFER mode. As an example, the
post–notification function may verify whether the role that the
notification is being transferred to has appropriate authority. If it
doesn’t, the post–notification function may return an error and prevent
the Transfer operation from proceeding. See: Post–notification
Functions: page 8 – 13.

Transfer() then assigns ownership of the notification to the new role,
passing along any appended comments. Note that a transfer is also
recorded in the comments of the notification.

Processing a Timed Out Notification

Timed out notification or subprocess activities are initially detected by
the background engine. Background engines set up to handle timed
out activities periodically check for activities that have time out values
specified. If an activity does have a time out value, and the current
date and time exceeds that time out value, the background engine
marks that activity’s status as ’TIMEOUT’ and calls the Workflow
Engine. The Workflow Engine then resumes by trying to execute the
activity to which the <Timeout> transition points.

Special Handling of Voting Activities

A voting activity by definition is a notification activity that:

• Has its roles expanded, so that an individual copy of the
notification message is sent to each member of the Performer
role.

8 – 196 Oracle Workflow Guide

• Has a message with a specified Result, that requires recipients to
respond from a list of values.

• Has a post–notification function associated with it that contains
logic in the RUN mode to process the polled responses from the
Performer members to generate a single response that the
Workflow Engine interprets as the result of the notification
activity. See: Voting Activity: page 4 – 61.

Once the Notification System sends the notification for a voting
activity, it marks the voting activity’s status as ’NOTIFIED’. The voting
activity’s status is updated to ’WAITING’ as soon as some responses
are received, but not enough responses are received to satisfy the
voting criteria.

The individual role members that each receive a copy of the notification
message can then respond or forward the notification if they use either
of the two notification interfaces to view the notification. They can also
transfer the notification if they use the Notifications web page.

The notification user interface calls the appropriate Respond(),
Forward(), or Transfer() API depending on the action that the performer
takes. Each API in turn calls the notification callback function to
execute the post–notification function in RESPOND, FORWARD, or
TRANSFER mode, respectively. When the Notification System finishes
executing the post–notification function in FORWARD or TRANSFER
mode, it carries out the Forward or Transfer operation, respectively.

When the Notification System completes execution of the
post–notification function in RESPOND mode, the Workflow Engine
then runs the post–notification function again in RUN mode. It calls
the function in RUN mode after all responses are received to execute
the vote tallying logic.

Also if the voting activity is reset to be reexecuted as part of a loop, or
if it times out, the Workflow Engine runs the post–notification function
in CANCEL or TIMEOUT mode, respectively. The logic for TIMEOUT
mode in a voting activity’s post–notification function should identify
how to tally the votes received up until the timeout.

�

8 – 197Oracle Workflow APIs

Notification APIs

The following APIs can be called by a notification agent to manage
notifications for a notification activity. The APIs are stored in the
PL./SQL package called WF_NOTIFICATION.

Many of these Notification APIs also have corresponding Java methods
that you can call from any Java program to integrate with Oracle
Workflow. The following list indicates whether the Notification APIs
are available as PL/SQL functions/procedures, as Java methods, or
both. See: Oracle Workflow Java Interface: page 8 – 5.

Attention: Java is case–sensitive and all Java method names
begin with a lower case letter to follow Java naming
conventions.

• Send: page 8 – 199—PL/SQL and Java

• SendGroup: page 8 – 203—PL/SQL

• Forward: page 8 – 205—PL/SQL and Java

• Transfer: page 8 – 207—PL/SQL and Java

• Cancel: page 8 – 209—PL/SQL and Java

• CancelGroup: page 8 – 210—PL/SQL

• Respond: page 8 – 211—PL/SQL and Java

• Responder: page 8 – 212—PL/SQL and Java

• VoteCount: page 8 – 213—PL/SQL and Java

• OpenNotificationsExist: page 8 – 214—PL/SQL and Java

• Close: page 8 – 215—PL/SQL and Java

• AddAttr: page 8 – 216—PL/SQL and Java

• SetAttribute: page 8 – 217—PL/SQL and Java

• GetAttrInfo: page 8 – 219—PL/SQL and Java

• GetInfo: page 8 – 220—PL/SQL and Java

• GetText: page 8 – 221—PL/SQL

• GetShortText: page 8 – 222—PL/SQL

• GetAttribute: page 8 – 223—PL/SQL and Java

• GetAttrDoc: page 8 – 225—PL/SQL and Java

• GetSubject: page 8 – 226—PL/SQL and Java

• GetBody: page 8 – 227—PL/SQL and Java

8 – 198 Oracle Workflow Guide

• GetShortBody: page 8 – 228—PL/SQL

• TestContext: page 8 – 229—PL/SQL

• AccessCheck: page 8 – 230—PL/SQL and Java

• WorkCount: page 8 – 231—PL/SQL and Java

• getNotifications: page 8 – 232—Java

• getNotificationAttributes: page 8 – 233—Java

• WriteToClob: page 8 – 234—PL/SQL

PL/SQL Syntax

Java Syntax

Description

8 – 199Oracle Workflow APIs

Send

function SEND

(role in varchar2,

 msg_type in varchar2,

 msg_name in varchar2,

 due_date in date default null,

 callback in varchar2 default null,

 context in varchar2 default null,

 send_comment in varchar2 default null

 priority in number default null)

return number;

public static BigDecimal send

 (WFContext wCtx,

 String role,

 String messagType,

 String messageName,

 String dueDate,

 String callback,

 String context,

 string sendComment,

 BigDecimal priority)

This function sends the specified message to a role, returning a
notification ID if successful. The notification ID must be used in all
future references to the notification.

If your message has message attributes, the procedure looks up the
values of the attributes from the message attribute table or it can use an
optionally supplied callback interface function to get the value from the
item type attributes table. A callback function can also be used when a
notification is responded to.

Note: If you are using the Oracle Workflow Notification
System and its e–mail–based or web–based notification client,
the Send procedure implicitly calls the WF_ENGINE.CB
callback function. If you are using your own custom
notification system that does not call the Workflow Engine,
then you must define your own callback function following a
standard format and specify its name for the callback
argument. See: Custom Callback Function: page 8 – 200.

Arguments (input)

8 – 200 Oracle Workflow Guide

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 8 – 6.

The role name assigned as the performer of the
notification activity.

The item type associated with the message.

The message internal name.

The date that a response is required. This optional
due date is only for the recipient’s information; it
has no effect on processing.

The callback function name used for
communication of SEND and RESPOND source
message attributes.

Context information passed to the callback
function.

A comment presented with the message.

The priority of the message, as derived from the
#PRIORITY notification activity attribute. If
#PRIORITY does not exist or if the value is null,
the Workflow Engine uses the default priority of
the message.

Custom Callback Function

A default callback function can be called at various points by the
actions of the WF_NOTIFICATION APIs. You may provide your own
custom callback function, but it must have the following specifications:

procedure <name in callback argument>

(command in varchar2,

context in varchar2,

attr_name in varchar2,

attr_type in varchar2,

text_value in out varchar2,

number_value in out number,

date_value in out date);

wCtx

role

msg_type or
messagType

msg_name or
messageName

due_date or
dueDate

callback

context

send_comment or
sendComment

priority

Arguments (input)

Example 1

Example 2

8 – 201Oracle Workflow APIs

Specify GET, SET, COMPLETE, ERROR, TESTCTX,
FORWARD, TRANSFER, or RESPOND as the
action requested. Use GET to get the value of an
attribute, SET to set the value of an attribute,
COMPLETE to indicate that the response is
complete, ERROR to set the associated notification
activity to a status of ’ERROR’, TESTCTX to test
the current context by calling the item type’s
Selector/Callback function, FORWARD to execute
the post–notification function in FORWARD mode,
TRANSFER to execute the post–notification
function in TRANSFER mode, and RESPOND to
execute the post–notification function in RESPOND
mode.

The context passed to SEND() or SendGroup().
The format is <itemtype>:<itemkey>:<activityid>.

An attribute name to set/get if command is GET or
SET.

An attribute type if command is SET or GET.

Value of a text attribute if command is SET or
value of text attribute returned if command is GET.

Value of a number attribute if command is SET or
value of a number attribute returned if command is
GET.

Value of a date attribute if command is SET or
value of a date attribute returned if command GET.

Note: The arguments text_value, number_value, and
date_value are mutually exclusive. That is, use only one of
these arguments depending on the value of the attr_type
argument.

When a notification is sent, the system calls the specified callback
function once for each SEND attribute (to get the attribute value).

For each SEND attribute, call:

your_callback(’GET’, context, ’BUGNO’, ’NUMBER’, textval,

numval, dateval)

When the user responds to the notification, the callback is called again,
once for each RESPOND attribute.

command

context

attr_name

attr_type

text_value

number_value

date_value

Example 3

8 – 202 Oracle Workflow Guide

your_callback(’SET’, context, ’STATUS’, ’TEXT’,

’COMPLETE’, numval, dateval);

Then finally the Notification System calls the ’COMPLETE’ command
to indicate the response is complete.

your_callback(’COMPLETE’, context, attrname, attrtype,

textval, numval, dateval);

PL/SQL Syntax

Description

Arguments (input)

8 – 203Oracle Workflow APIs

SendGroup

function SendGroup

(role in varchar2,

 msg_type in varchar2,

 msg_name in varchar2,

 due_date in date default null,

 callback in varchar2 default null,

 context in varchar2 default null,

 send_comment in varchar2 default null

 priority in number default null)

return number;

This function sends a separate notification to all the users assigned to a
specific role and returns a number called a notification group ID, if
successful. The notification group ID identifies that group of users and
the notification they each received.

If your message has message attributes, the procedure looks up the
values of the attributes from the message attribute table or it can use an
optionally supplied callback interface function to get the value from the
item type attributes table. A callback function can also be used when a
notification is responded to.

Note: If you are using the Oracle Workflow Notification
System and its e–mail–based or web–based notification client,
the Send procedure implicitly calls the WF_ENGINE.CB
callback function. If you are using your own custom
notification system, then you must define your own callback
function following a standard format and specify its name for
the callback argument. See: Custom Callback Function: page
8 – 200.

Generally, this function is called only if a notification activity has
’Expanded Roles’ checked in its properties page. If Expanded Roles is
not checked, then the Send() function is called instead. See: Voting
Activity: page 4 – 61.

The role name assigned as the performer of the
notification activity.

The item type associated with the message.

The message internal name.

role

msg_type

msg_name

8 – 204 Oracle Workflow Guide

The date that a response is required. This optional
due date is only for the recipient’s information; it
has no effect on processing.

The callback function name used for
communication of SEND source message
attributes.

Context information passed to the callback
function.

A comment presented with the message.

The priority of the message, as derived from the
#PRIORITY notification activity attribute. If
#PRIORITY does not exist or if the value is null,
the Workflow Engine uses the default priority of
the message.

due_date

callback

context

send_comment

priority

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

Example

8 – 205Oracle Workflow APIs

Forward

procedure FORWARD

(nid in number,

 new_role in varchar2,

 forward_comment in varchar2 default null);

public static boolean forward

 (WFContext wCtx,

 BigDecimal nid,

 String newRole

 String comment)

This procedure delegates a notification to a new role to perform work,
even though the original role recipient still maintains ownership of the
notification activity. Also implicitly calls the Callback function
specified in the Send or SendGroup function with FORWARD mode. A
comment can be supplied to explain why the forward is taking place.
Existing notification attributes (including due date) are not refreshed or
otherwise changed. The Delegate feature in the Notification System
calls this procedure. Note that when you forward a notification, the
forward is recorded in the USER_COMMENT field of the notification.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 8 – 6.

The notification id.

The role name of the person the note is reassigned
to.

An optional forwarding comment.

The following code excerpt shows an example of how to call forward()
in a Java program. The example code is from the WFTest.java program.

// forward to MBEECH

System.out.println(”Delegate Test”);

count = WFNotificationAPI.workCount(ctx, ”MBEECH”);

System.out.println(”There are ” + count +

 ” open notification(s) for” + ” MBEECH”);

System.out.println(”Delegate nid ” + myNid +

wCtx

nid

new_role or
newRole

forward_comment
or comment

8 – 206 Oracle Workflow Guide

 ” from BLEWIS to MBEECH”);

WFNotificationAPI.forward(ctx, myNid, ”MBEECH”,

 ”Matt, Please handle.”);

count = WFNotificationAPI.workCount(ctx, ”MBEECH”);

System.out.println(”There are ” + count +

 ” open notification(s) for” +

 ” MBEECH after Delegate.”);

PL/SQL Syntax

Java Syntax

Description

�

Arguments (input)

Example

8 – 207Oracle Workflow APIs

Transfer

procedure TRANSFER

(nid in number,

 new_role in varchar2,

 forward_comment in varchar2 default null);

public static boolean transfer

 (WFContext wCtx,

 BigDecimal nid,

 String newRole

 String comment)

This procedure forwards a notification to a new role and transfers
ownership of the notification to the new role. It also implicitly calls the
Callback function specified in the Send or SendGroup function with
TRANSFER mode. A comment can be supplied to explain why the
forward is taking place. The Transfer feature in the Notification System
calls this procedure. Note that when you transfer a notification, the
transfer is recorded in the USER_COMMENT field of the notification.

Attention: Existing notification attributes (including due date)
are not refreshed or otherwise changed except for
ORIGINAL_RECIPIENT, which identifies the owner of the
notification.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 8 – 6.

The notification id.

The role name of the person the note is transferred
to.

An optional comment to append to notification.

The following code excerpt shows an example of how to call transfer()
in a Java program. The example code is from the WFTest.java program.

// transfer to MBEECH

System.out.println(”Transfer Test”);

System.out.println(”Transfer nid ” + myNid +

 ” from BLEWIS to MBEECH”);

wCtx

nid

new_role or
newRole

forward_comment
or comment

8 – 208 Oracle Workflow Guide

WFNotificationAPI.transfer(ctx, myNid, ”MBEECH”,

 ”Matt, You own it now.”);

count = WFNotificationAPI.workCount(ctx, ”MBEECH”);

System.out.println(”There are ” + count +

 ” open notification(s) for” +

 p” MBEECH after Transfer.”);

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

8 – 209Oracle Workflow APIs

Cancel

procedure CANCEL

(nid in number,

 cancel_comment in varchar2 default null);

public static boolean cancel

 (WFContext wCtx,

 BigDecimal nid,

 String comment)

This procedure may be invoked by the sender or administrator to
cancel a notification. The notification status is then changed to
’CANCELED’ but the row is not removed from the
WF_NOTIFICATIONS table until a purge operation is performed.

If the notification was delivered via e–mail and expects a response, a
’Canceled’ e–mail is sent to the original recipient as a warning that the
notification is no longer valid.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 8 – 6.

The notification id.

An optional comment on the cancellation.

wCtx

nid

cancel_comment
or comment

PL/SQL Syntax

Description

Arguments (input)

8 – 210 Oracle Workflow Guide

CancelGroup

procedure CancelGroup

(gid in number,

 cancel_comment in varchar2 default null);

This procedure may be invoked by the sender or administrator to
cancel the individual copies of a specific notification sent to all users in
a notification group. The notifications are identified by the notification
group ID (gid). The notification status is then changed to
’CANCELED’ but the rows are not removed from the
WF_NOTIFICATIONS table until a purge operation is performed.

If the notification was delivered via e–mail and expects a response, a
’Canceled’ e–mail is sent to the original recipient as a warning that the
notification is no longer valid.

Generally, this function is called only if a notification activity has
’Expanded Roles’ checked in its properties page. If Expanded Roles is
not checked, then the Cancel() function is called instead. See: Voting
Activity: page 4 – 61.

The notification group id.

An optional comment on the cancellation.

gid

cancel_comment

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

8 – 211Oracle Workflow APIs

Respond

procedure RESPOND

(nid in number,

 respond_comment in varchar2 default null,

 responder in varchar2 default null);

public static boolean respond

 (WFContext wCtx,

 BigDecimal nid,

 String comment,

 String responder)

This procedure may be invoked by the notification agent (Notification
Web page or e–mail agent) when the performer completes the response
to the notification. The procedure marks the notification as ’CLOSED’
and communicates RESPOND attributes back to the database via the
callback function (if supplied).

This procedure also accepts the name of the individual who actually
responded to the notification. This may be useful to know especially if
the notification is assigned to a multi–user role. The information is
stored in the RESPONDER column of the WF_NOTIFICATIONS table.
The value stored in this column depends on how the user responds to
the notification. The following table shows the value that is stored for
each response mechanism.

Response Mechanism Value Stored

Web Web login username

E–mail E–mail username as displayed in the mail response

Table 8 – 6 (Page 1 of 1)

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 8 – 6.

The notification id

An optional comment on the response

The user who responded to the notification.

wCtx

nid

comment

responder

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

8 – 212 Oracle Workflow Guide

Responder

function RESPONDER

(nid in number)

returns varchar2;

public static String responder

 (WFContext wCtx,

 BigDecimal nid)

This function returns the responder of a closed notification.

If the notification was closed using the Web Notification interface the
value returned will be a valid role defined in the view WF_ROLES. If
the Notification was closed using the e–mail interface then the value
returned will be an e–mail address. See: Respond: page 8 – 211.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 8 – 6.

The notification id

wCtx

nid

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

8 – 213Oracle Workflow APIs

VoteCount

procedure VoteCount

 (gid in number,

 ResultCode in varchar2,

 ResultCount out number,

 PercentOfTotalPop out number,

 PercentOfVotes out number);

public static WFTwoDDataSource voteCount

 (WFContext wCtx,

 BigDecimal gid,

 String resultCode)

Counts the number of responses for a specified result code.

Use this procedure only if you are writing your own custom Voting
activity. See: Voting Activity: page 4 – 61.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 8 – 6.

The notification group id.

Result code to be tallied.

wCtx

gid

ResultCode

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

8 – 214 Oracle Workflow Guide

OpenNotificationsExist

function OpenNotificationsExist

 (gid in number)

 return boolean;

public static boolean openNotificationsExist

 (WFContext wCtx,

 BigDecimal gid)

This function returns ’TRUE’ if any notification associated with the
specified notification group ID is ’OPEN’, otherwise it returns ’FALSE’.

Use this procedure only if you are writing your own custom Voting
activity. See: Voting Activity: page 4 – 61.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 8 – 6.

The notification group id.

wCtx

gid

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

8 – 215Oracle Workflow APIs

Close

procedure Close

(nid in number,

 responder in varchar2 default null);

public static boolean close

 (WFContext wCtx,

 BigDecimal nid,

 String responder)

This procedure Closes a notification.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 8 – 6.

The notification id.

The user or role who responded to the notification.

wCtx

nid

responder

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

Example

8 – 216 Oracle Workflow Guide

AddAttr

procedure AddAttr

 (nid in number,

 aname in varchar2);

public static boolean addAttr

 (WFContext wCtx,

 BigDecimal nid,

 String aName)

Adds a new runtime notification attribute. You should perform
validation and insure consistency in the use of the attribute, as it is
completely unvalidated by Oracle Workflow.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 8 – 6.

The notification id.

The attribute name.

The attribute value.

The following code excerpt shows an example of how to call addAttr()
in a Java program. The example code is from the WFTest.java program.

if (WFNotificationAPI.addAttr(ctx, myNid, myAttr) == false)

{

 System.out.println(”Add attribute ” + myAttr + ” failed.”);

}

wCtx

nid

aname

avalue

PL/SQL Syntax

Java Syntax

Description

8 – 217Oracle Workflow APIs

SetAttribute

procedure SetAttrText

 (nid in number,

 aname in varchar2,

 avalue in varchar2);

procedure SetAttrNumber

 (nid in number,

 aname in varchar2,

 avalue in number);

procedure SetAttrDate

 (nid in number,

 aname in varchar2,

 avalue in date);

public static boolean setAttrText

 (WFContext wCtx,

 BigDecimal nid,

 String aName,

 String aValue)

public static boolean setAttrNumber

 (WFContext wCtx,

 BigDecimal nid,

 String aName,

 BigDecimal aValue)

public static boolean setAttrDate

 WFContext wCtx,

 BigDecimal nid,

 String aName,

 String aValue)

Used at both send and respond time to set the value of notification
attributes. The notification agent (sender) may set the value of SEND
attributes. The performer (responder) may set the value of RESPOND
attributes.

Arguments (input)

Example

8 – 218 Oracle Workflow Guide

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 8 – 6.

The notification id.

The attribute name.

The attribute value.

The following code excerpt shows an example of how to call a
setAttribute method in a Java program. The example code is from the
WFTest.java program.

if (WFNotificationAPI.setAttrDate(ctx, myNid, myAttr, value)

 == false)

{

 System.out.println(”set attribute ” + myAttr + ” to ” +

 value + ” failed.”);

}

wCtx

nid

aname

avalue

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

Example

8 – 219Oracle Workflow APIs

GetAttrInfo

procedure GetAttrInfo

(nid in number,

 aname in varchar2,

 atype out varchar2,

 subtype out varchar2,

 format out varchar2);

public static WFTwoDataSource getAttrInfo

 (WFContext wCtx,

 BigDecimal nid,

 String aName)

Returns information about a notification attribute, such as its type,
subtype, and format, if any is specified. The subtype is always SEND
or RESPOND to indicate the attribute’s source.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 8 – 6.

The notification id.

The attribute name.

The following code excerpt shows an example of how to call
getAttrInfo() in a Java program. The example code is from the
WFTest.java program.

dataSource = WFNotificationAPI.getAttrInfo(ctx, myNid,

 myAttr);

displayDataSource(ctx, dataSource);

// the first element is the attribute type

myAttrType = (String) dataSource.getData(0,0);

wCtx

nid

aname

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

Example

8 – 220 Oracle Workflow Guide

GetInfo

procedure GetInfo

(nid in number,

 role out varchar2,

 message_type out varchar2,

 message_name out varchar2,

 priority out number,

 due_date out date,

 status out varchar2);

public static WFTwoDDataSource getInfo

 (WFContext wCtx,

 BigDecimal nid)

Returns the role that the notification is sent to, the item type of the
message, the name of the message, the notification priority, the due
date and the status for the specified notification.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 8 – 6.

The notification id.

The following code excerpt shows an example of how to call getInfo() in
a Java program. The example code is from the WFTest.java program.

// Notification Info

System.out.println(”Notification Info for nid ” + myNid);

dataSource = WFNotificationAPI.getInfo(ctx, myNid);

displayDataSource(ctx, dataSource);

wCtx

nid

PL/SQL Syntax

Description

Arguments (input)

8 – 221Oracle Workflow APIs

GetText

function GetText

 (some_text in varchar2,

 nid in number,

 disptype in varchar2 default ’’)

 return varchar2;

Substitutes tokens in an arbitrary text string using token values from a
particular notification. This function may return up to 32K characters.
You cannot use this function in a view definition or in an Oracle Forms
Developer form. For views and forms, use GetShortText() which
truncates values at 1950 characters.

If an error is detected, this function returns some_text unsubstituted
rather than raise exceptions.

Text to be substituted.

Notification ID of notification to use for token
values.

The display type of the message body that you are
token substituting the text into. Valid display types
are:

• wf_notification.doc_text, which returns
text/plain

• wf_notification.doc_html, which returns
text/html

• wf_notification.doc_attach, which returns null

The default is null.

some_text

nid

disptype

PL/SQL Syntax

Description

Arguments (input)

8 – 222 Oracle Workflow Guide

GetShortText

function GetShortText

 (some_text in varchar2,

 nid in number)

 return varchar2;

Substitutes tokens in an arbitrary text string using token values from a
particular notification. This function may return up to 1950 characters.
This function is meant for use in view definitions and Oracle Forms
Developer forms, where the field size is limited to 1950 characters. Use
GetText() in other situations where you need to retrieve up to 32K
characters.

If an error is detected, this function returns some_text unsubstituted
rather than raise exceptions.

Text to be substituted.

Notification ID of notification to use for token
values.

some_text

nid

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

8 – 223Oracle Workflow APIs

GetAttribute

function GetAttrText

 (nid in number,

 aname in varchar2)

 return varchar2;

function GetAttrNumber

 (nid in number,

 aname in varchar2)

 return number;

function GetAttrDate

 (nid in number,

 aname in varchar2)

 return date;

public static String getAttrText

 (WFContext wCtx,

 BigDecimal nid,

 String aName)

public static BigDecimal getAttrNumber

 (WFContext wCtx,

 BigDecimal nid,

 String aName)

public static String getAttrDate

 WFContext wCtx,

 BigDecimal nid,

 String aName)

Returns the value of the specified message attribute.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 8 – 6.

The notification id.

The message attribute name.

wCtx

nid

aname

Example

8 – 224 Oracle Workflow Guide

The following code excerpt shows an example of how to call the
getAttribute methods in a Java program. The example code is from the
WFTest.java program.

// we get the value according to the type.

if (myAttrType == ”DATE”)

{

 value = WFNotificationAPI.getAttrDate(ctx, myNid, myAttr);

}

else if (myAttrType == ”NUMBER”)

{

 value = (WFNotificationAPI.getAttrNumber(ctx, myNid,

 myAttr)).toString();

}

else if (myAttrType == ”DOCUMENT”)

{

 value = WFNotificationAPI.getAttrDoc(ctx, myNid, myAttr,

 null);

}

else

 value = WFNotificationAPI.getAttrText(ctx, myNid, myAttr);

System.out.println(myAttr.toString() + ” = ’” + value +

 ”’”);

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

8 – 225Oracle Workflow APIs

GetAttrDoc

function GetAttrDoc

 (nid in number,

 aname in varchar2,

 disptype in varchar2)

 return varchar2;

public static String getAttrDoc

 (WFContext wCtx,

 BigDecimal nid,

 String aName,

 String dispType)

Returns the displayed value of a Document–type attribute. The
referenced document appears in either plain text or HTML format, as
requested.

If you wish to retrieve the actual attribute value, that is, the document
key string instead of the actual document, use GetAttrText().

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 8 – 6.

The notification id.

The message attribute name.

The display type of the document you wish to
return. Valid display types are:

• wf_notification.doc_text, which returns
text/plain

• wf_notification.doc_html, which returns
text/html

• wf_notification.doc_attach, which returns null

wCtx

nid

aname

disptype

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

8 – 226 Oracle Workflow Guide

GetSubject

function GetSubject

(nid in number)

 return varchar2

public static String getSubject

 (WFContext wCtx,

 BigDecimal nid)

Returns the subject line for the notification message. Any message
attribute in the subject is token substituted with the value of the
corresponding message attribute.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 8 – 6.

The notification id.

wCtx

nid

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

8 – 227Oracle Workflow APIs

GetBody

function GetBody

(nid in number,

 disptype in varchar2 default ’’)

 return varchar2;

public static String getBody

 (WFContext wCtx,

 BigDecimal nid,

 String dispType)

Returns the HTML or plain text message body for the notification,
depending on the message body type specified. Any message attribute
in the body is token substituted with the value of the corresponding
notification attribute. This function may return up to 32K characters.
You cannot use this function in a view definition or in an Oracle
Applications form. For views and forms, use GetShortBody() which
truncates values at 1950 characters.

Note that the returned plain text message body is not formatted; it
should be wordwrapped as appropriate for the output device. Body
text may contain tabs (which indicate indentation) and newlines (which
indicate paragraph termination).

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 8 – 6.

The notification id.

The display type of the message body you wish to
fetch. Valid display types are:

• wf_notification.doc_text, which returns
text/plain

• wf_notification.doc_html, which returns
text/html

• wf_notification.doc_attach, which returns null

The default is null.

wCtx

nid

disptype

PL/SQL Syntax

Description

Arguments (input)

8 – 228 Oracle Workflow Guide

GetShortBody

function GetShortBody

(nid in number)

 return varchar2;

Returns the message body for the notification. Any message attribute
in the body is token substituted with the value of the corresponding
notification attribute. This function may return up to 1950 characters.
This function is meant for use in view definitions and Oracle Forms
Developer forms, where the field size is limited to 1950 characters. Use
GetBody() in other situations where you need to retrieve up to 32K
characters.

Note that the returned plain text message body is not formatted; it
should be wordwrapped as appropriate for the output device. Body
text may contain tabs (which indicate indentation) and newlines (which
indicate paragraph termination).

If an error is detected, this function returns the body unsubstituted or
null if all else fails, rather than raise exceptions.

Note: This function is intended for displaying messages in
forms or views only.

The notification id.nid

PL/SQL Syntax

Description

Arguments (input)

8 – 229Oracle Workflow APIs

TestContext

function TestContext

(nid in number)

 return boolean;

Tests if the current context is correct by calling the Item Type
Selector/Callback function. This function returns TRUE if the context
check is OK, or if no Selector/Callback function is implemented. It
returns FALSE if the context check fails.

The notification id.nid

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

8 – 230 Oracle Workflow Guide

AccessCheck

function AccessCheck

(access_str in varchar2)

 return varchar2;

public static String accessCheck

 (WFContext wCtx,

 String accessString)

Returns a username if the notification access string is valid and the
notification is open, otherwise it returns null. The access string is
automatically generated by the Notification Mailer and is used to verify
the authenticity of both text and HTML versions of e–mail
notifications.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 8 – 6.

The access string, in the format: nid/nkey where nid
is the notification ID and nkey is the notification
key.

wCtx

access_str or
accessString

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

8 – 231Oracle Workflow APIs

WorkCount

function WorkCount

(username in varchar2)

 return number;

public static BigDecimal workCount

 (WFContext wCtx,

 String userName)

Returns the number of open notifications assigned to a role.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 8 – 6.

The internal name of a role.

wCtx

username

Java Syntax

Description

Arguments (input)

8 – 232 Oracle Workflow Guide

getNotifications

public static WFTwoDDataSource getNotifications

 (WFContext wCtx,

 String itemType,

 String itemKey)

Returns a list of notifications for the specified item type and item key.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 8 – 6.

The internal name of the item type.

A string derived from the application object’s
primary key. The string uniquely identifies the
item within the item type. The item type and key
together identify the process instance.

wCtx

itemType

itemKey

Java Syntax

Description

Arguments (input)

Example

8 – 233Oracle Workflow APIs

getNotificationAttributes

public static WFTwoDDataSource getNotificationAttributes

 (WFContext wCtx,

 BigDecimal nid)

Returns a list of notification attributes and their corresponding values
for the specified notification ID.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 8 – 6.

The notification ID.

The following code excerpt shows an example of how to call
getNotificationAttributes() in a Java program. The example code is from
the WFTest.java program.

// List available Notification Attributes

System.out.println(”List of Attributes for id ” + myNid

 ”:”);

dataSource =

 WFNotificationAPI.getNotificationAttributes(ctx, myNid);

displayDataSource(ctx, dataSource);

wCtx

nid

PL/SQL Syntax

Description

Arguments (input)

8 – 234 Oracle Workflow Guide

WriteToClob

procedure WriteToClob

(clob_loc in out clob,

 msg_string in varchar2);

Appends a character string to the end of a character large object
(CLOB). You can use this procedure to help build the CLOB for a
PL/SQL CLOB document attribute for a notification.

The CLOB to which the string should be added.

A string of character data.

See Also

To Define a Document Attribute: page 4 – 14

”PL/SQL CLOB” Documents: page 7 – 19

clob_loc

msg_string

8 – 235Oracle Workflow APIs

Overview of the Oracle Workflow Business Event System

The Oracle Workflow Business Event System leverages the Oracle
Advanced Queuing infrastructure to communicate business events
between systems. When a significant business event occurs in an
internet or intranet application on a system, it triggers event
subscriptions that specify the processing to execute for that event.

Subscriptions can include the following types of processing:

• Executing custom code on the event information

• Sending event information to a workflow process

• Sending event information to named communication points
called agents on the local system or external systems

The event information communicated by the Business Event System is
called an event message. The event message includes header properties
to identify the event as well as event data describing what occurred.

You define events, systems, agents, and subscriptions in the Event
Manager. You can also define event activities in the Workflow Builder
to include business events in your workflow processes.

See Also

Managing Business Events: page 13 – 2

Event Activities: page 4 – 54

8 – 236 Oracle Workflow Guide

Business Event System Datatypes

Oracle Workflow uses a number of abstract datatypes (ADTs) to model
the structure and behavior of Business Event System data. These
datatypes include the following:

• Agent structure: WF_AGENT_T

• Parameter structure: WF_PARAMETER_T

• Parameter list structure: WF_PARAMETER_LIST_T

• Event message structure: WF_EVENT_T

The Business Event System datatypes are created by a script called
wftypes.sql, which is located in the Oracle Workflow sql subdirectory
for the standalone version of Oracle Workflow, or in the sql
subdirectory under $FND_TOP for the version of Oracle Workflow
embedded in Oracle Applications.

See Also

User–Defined Datatypes, Oracle Concepts

PL/SQL Syntax

Description

PL/SQL Syntax

Description

8 – 237Oracle Workflow APIs

Agent Structure

Oracle Workflow uses the object type WF_AGENT_T to store
information about an agent in a form that can be referenced by an event
message. The following table lists the attributes of the WF_AGENT_T
datatype.

Attribute Name Datatype Description

NAME VARCHAR2(30) The name of the agent.

SYSTEM VARCHAR2(30) The system where the agent is located.

Table 8 – 7 (Page 1 of 1)

The WF_AGENT_T object type also includes the following methods,
which you can use to retrieve and set the values of its attributes.

• getName

• getSystem

• setName

• setSystem

getName

MEMBER FUNCTION getName

 return varchar2

Returns the value of the NAME attribute in a WF_AGENT_T object.

getSystem

MEMBER FUNCTION getSystem

 return varchar2

Returns the value of the SYSTEM attribute in a WF_AGENT_T object.

PL/SQL Syntax

Description

Arguments (input)

PL/SQL Syntax

Description

Arguments (input)

8 – 238 Oracle Workflow Guide

setName

MEMBER PROCEDURE setName

 (pName in varchar2)

Sets the value of the NAME attribute in a WF_AGENT_T object.

The value for the NAME attribute.

setSystem

MEMBER PROCEDURE setSystem

 (pSystem in varchar2)

Sets the value of the SYSTEM attribute in a WF_AGENT_T object.

The value for the SYSTEM attribute.

See Also

Agents: page 13 – 22

pName

pSystem

PL/SQL Syntax

Description

PL/SQL Syntax

8 – 239Oracle Workflow APIs

Parameter Structure

Oracle Workflow uses the object type WF_PARAMETER_T to store a
parameter name and value pair in a form that can be included in an
event message parameter list. WF_PARAMETER_T allows custom
values to be added to the WF_EVENT_T event message object. The
following table lists the attributes of the WF_PARAMETER_T datatype.

Attribute Name Datatype Description

NAME VARCHAR2(30) The parameter name.

VALUE VARCHAR2(2000) The parameter value.

Table 8 – 8 (Page 1 of 1)

The WF_PARAMETER_T object type also includes the following
methods, which you can use to retrieve and set the values of its
attributes.

• getName

• getValue

• setName

• setValue

getName

MEMBER FUNCTION getName

 return varchar2

Returns the value of the NAME attribute in a WF_PARAMETER_T
object.

getValue

MEMBER FUNCTION getValue

 return varchar2

Description

PL/SQL Syntax

Description

Arguments (input)

PL/SQL Syntax

Description

Arguments (input)

8 – 240 Oracle Workflow Guide

Returns the value of the VALUE attribute in a WF_PARAMETER_T
object.

setName

MEMBER PROCEDURE setName

 (pName in varchar2)

Sets the value of the NAME attribute in a WF_PARAMETER_T object.

The value for the NAME attribute.

setValue

MEMBER PROCEDURE setValue

 (pValue in varchar2)

Sets the value of the VALUE attribute in a WF_PARAMETER_T object.

The value for the VALUE attribute.

pName

pValue

8 – 241Oracle Workflow APIs

Parameter List Structure

Oracle Workflow uses the named varying array (varray)
WF_PARAMETER_LIST_T to store a list of parameters in a form that
can be included in an event message. WF_PARAMETER_LIST_T allows
custom values to be added to the WF_EVENT_T event message object.
The WF_PARAMETER_LIST_T datatype can include up to 100
parameter name and value pairs. A description of this datatype is as
follows:

WF_PARAMETER_LIST_T

• Maximum size: 100

• Element datatype: WF_PARAMETER_T

8 – 242 Oracle Workflow Guide

Event Message Structure

Oracle Workflow uses the object type WF_EVENT_T to store event
messages. This datatype contains all the header properties of an event
message as well as the event data payload, in a serialized form that is
suitable for transmission outside the system.

WF_EVENT_T defines the event message structure that the Business
Event System and the Workflow Engine use to represent a business
event. Internally, the Business Event System and the Workflow Engine
can only communicate events in this format.

The standard queues that Oracle Workflow provides for the Business
Event System, called WF_IN, WF_OUT, WF_DEFERRED, and
WF_ERROR, all use WF_EVENT_T as their payload type. If you want
to use queues with an alternate payload type, including any existing
queues you already have defined on your system, you must create a
queue handler to translate between the standard Workflow
WF_EVENT_T structure and your custom payload type. See: Setting
Up Queues: page 2 – 97 and Standard APIs for a Queue Handler: page
7 – 23.

The following table lists the attributes of the WF_EVENT_T datatype.

Attribute Name Datatype Description

PRIORITY NUMBER The priority with which the message recip-
ient should dequeue the message. A small-
er number indicates a higher priority. For
example, 1 represents a high priority, 50
represents a normal priority, and 99 repre-
sents a low priority.

SEND_DATE DATE The date and time when the message is
available for dequeuing. The send date can
be set to the system date to indicate that
the message is immediately available for
dequeuing, or to a future date to indicate
future availability.

If the send date is set to a future date when
an event is raised, the event message is
placed on the WF_DEFERRED queue, and
subscription processing does not begin un-
til the specified date. If the send date is set
to a future date when an event is sent to an
agent, the event message is propagated to
that agent’s queue, but does not become
available for the consumer to dequeue un-
til the specified date.

8 – 243Oracle Workflow APIs

DescriptionDatatypeAttribute Name

RECEIVE_DATE DATE The date and time when the message is de-
queued by an agent listener.

CORRELATION_ID VARCHAR2(240) A correlation identifier that associates this
message with other messages. This attrib-
ute is initially blank but can be set by a
function. If a value is set for the correlation
ID, then that value is used as the item key
if the event is sent to a workflow process.

PARAMETER_LIST WF_PARAMETER_
LIST_T

A list of additional parameter name and
value pairs.

EVENT_NAME VARCHAR2(240) The internal name of the event.

EVENT_KEY VARCHAR2(240) The string that uniquely identifies the
instance of the event.

EVENT_DATA CLOB A set of additional details describing what
occurred in the event. The event data can
be structured as an XML document.

FROM_AGENT WF_AGENT_T The agent from which the event is sent. For
locally raised events, this attribute is ini-
tially null.

TO_AGENT WF_AGENT_T The agent to which the event should be
sent (the message recipient).

ERROR_
SUBSCRIPTION

RAW(16) If an error occurs while processing this
event, this is the subscription that was be-
ing executed when the error was encoun-
tered.

ERROR_MESSAGE VARCHAR2(4000) An error message that the Event Manager
generates if an error occurs while proces-
sing this event.

ERROR_STACK VARCHAR2(4000) An error stack of arguments that the Event
Manager generates if an error occurs while
processing this event. The error stack pro-
vides context information to help you lo-
cate the source of an error.

Table 8 – 9 (Page 2 of 2)

The WF_EVENT_T object type also includes the following methods,
which you can use to retrieve and set the values of its attributes.

• Initialize: page 8 – 245

• getPriority: page 8 – 245

• getSendDate: page 8 – 245

8 – 244 Oracle Workflow Guide

• getReceiveDate: page 8 – 246

• getCorrelationID: page 8 – 246

• getParameterList: page 8 – 246

• getEventName: page 8 – 246

• getEventKey: page 8 – 247

• getEventData: page 8 – 247

• getFromAgent: page 8 – 247

• getToAgent: page 8 – 247

• getErrorSubscription: page 8 – 247

• getErrorMessage: page 8 – 248

• getErrorStack: page 8 – 248

• setPriority: page 8 – 248

• setSendDate: page 8 – 248

• setReceiveDate: page 8 – 249

• setCorrelationID: page 8 – 249

• setParameterList: page 8 – 249

• setEventName: page 8 – 250

• setEventKey: page 8 – 250

• setEventData: page 8 – 250

• setFromAgent: page 8 – 251

• setToAgent: page 8 – 251

• setErrorSubscription: page 8 – 251

• setErrorMessage: page 8 – 251

• setErrorStack: page 8 – 252

• Content: page 8 – 252

• Address: page 8 – 253

• AddParameterToList: page 8 – 253

• GetValueForParameter: page 8 – 253

Note: You can set the values of the EVENT_NAME,
EVENT_KEY, and EVENT_DATA attributes individually using
the setEventName, setEventKey, and setEventData methods, or

PL/SQL Syntax

Description

�

Arguments (input)

PL/SQL Syntax

Description

PL/SQL Syntax

8 – 245Oracle Workflow APIs

you can use the Content method to set all three event content
attributes at once. See: Content: page 8 – 252.

Similarly, you can set the values of the FROM_AGENT,
TO_AGENT, PRIORITY, and SEND__DATE attributes
individually using the setFromAgent, setToAgent, setPriority,
and setSendDate methods, or you can use the Address method
to set all four address attributes at once. See: Address: page
8 – 253.

Initialize

STATIC PROCEDURE initialize

 (new_wf_event_t in out wf_event_t)

Initializes a new WF_EVENT_T object by setting the PRIORITY
attribute to 0, initializing the EVENT_DATA attribute to EMPTY using
the Empty_CLOB() function, and setting all other attributes to NULL.

Attention: You must call the Initialize method before you can
perform any further manipulation on a new WF_EVENT_T
object.

The WF_EVENT_T object to initialize.

getPriority

MEMBER FUNCTION getPriority

 return number

Returns the value of the PRIORITY attribute in a WF_EVENT_T object.

getSendDate

MEMBER FUNCTION getSendDate

 return date

new_wf_event_t

Description

PL/SQL Syntax

Description

PL/SQL Syntax

Description

PL/SQL Syntax

Description

PL/SQL Syntax

Description

8 – 246 Oracle Workflow Guide

Returns the value of the SEND_DATE attribute in a WF_EVENT_T
object.

getReceiveDate

MEMBER FUNCTION getReceiveDate

 return date

Returns the value of the RECEIVE_DATE attribute in a WF_EVENT_T
object.

getCorrelationID

MEMBER FUNCTION getCorrelationID

 return varchar2

Returns the value of the CORRELATION_ID attribute in a
WF_EVENT_T object.

getParameterList

MEMBER FUNCTION getParameterList

 return wf_parameter_list_t

Returns the value of the PARAMETER_LIST attribute in a
WF_EVENT_T object.

getEventName

MEMBER FUNCTION getEventName

 return varchar2

Returns the value of the EVENT_NAME attribute in a WF_EVENT_T
object.

PL/SQL Syntax

Description

PL/SQL Syntax

Description

PL/SQL Syntax

Description

PL/SQL Syntax

Description

PL/SQL Syntax

8 – 247Oracle Workflow APIs

getEventKey

MEMBER FUNCTION getEventKey

 return varchar2

Returns the value of the EVENT_KEY attribute in a WF_EVENT_T
object.

getEventData

MEMBER FUNCTION getEventData

 return clob

Returns the value of the EVENT_DATA attribute in a WF_EVENT_T
object.

getFromAgent

MEMBER FUNCTION getFromAgent

 return wf_agent_t

Returns the value of the FROM_AGENT attribute in a WF_EVENT_T
object.

getToAgent

MEMBER FUNCTION getToAgent

 return wf_agent_t

Returns the value of the TO_AGENT attribute in a WF_EVENT_T
object.

getErrorSubscription

MEMBER FUNCTION getErrorSubscription

Description

PL/SQL Syntax

Description

PL/SQL Syntax

Description

PL/SQL Syntax

Description

Arguments (input)

PL/SQL Syntax

8 – 248 Oracle Workflow Guide

 return raw

Returns the value of the ERROR_SUBSCRIPTION attribute in a
WF_EVENT_T object.

getErrorMessage

MEMBER FUNCTION getErrorMessage

 return varchar2

Returns the value of the ERROR_MESSAGE attribute in a
WF_EVENT_T object.

getErrorStack

MEMBER FUNCTION getErrorStack

 return varchar2

Returns the value of the ERROR_STACK attribute in a WF_EVENT_T
object.

setPriority

MEMBER PROCEDURE setPriority

 (pPriority in number)

Sets the value of the PRIORITY attribute in a WF_EVENT_T object.

The value for the PRIORITY attribute.

setSendDate

MEMBER PROCEDURE setSendDate

pPriority

Description

Arguments (input)

PL/SQL Syntax

Description

Arguments (input)

PL/SQL Syntax

Description

Arguments (input)

PL/SQL Syntax

Description

8 – 249Oracle Workflow APIs

 (pSendDate in date default sysdate)

Sets the value of the SEND_DATE attribute in a WF_EVENT_T object.

The value for the SEND_DATE attribute.

setReceiveDate

MEMBER PROCEDURE setReceiveDate

 (pReceiveDate in date default sysdate)

Sets the value of the RECEIVE_DATE attribute in a WF_EVENT_T
object.

The value for the RECEIVE_DATE attribute.

setCorrelationID

MEMBER PROCEDURE setCorrelationID

 (pCorrelationID in varchar2)

Sets the value of the CORRELATION_ID attribute in a WF_EVENT_T
object.

The value for the CORRELATION_ID attribute.

setParameterList

MEMBER PROCEDURE setParameterList

 (pParameterList in wf_parameter_list_t)

Sets the value of the PARAMETER_LIST attribute in a WF_EVENT_T
object.

pSendDate

pReceiveDate

pCorrelationID

Arguments (input)

PL/SQL Syntax

Description

Arguments (input)

PL/SQL Syntax

Description

Arguments (input)

PL/SQL Syntax

Description

Arguments (input)

8 – 250 Oracle Workflow Guide

The value for the PARAMETER_LIST attribute.

setEventName

MEMBER PROCEDURE setEventName

 (pEventName in varchar2)

Sets the value of the EVENT_NAME attribute in a WF_EVENT_T
object.

The value for the EVENT_NAME attribute.

setEventKey

MEMBER PROCEDURE setEventKey

 (pEventKey in varchar2)

Sets the value of the EVENT_KEY attribute in a WF_EVENT_T object.

The value for the EVENT_KEY attribute.

setEventData

MEMBER PROCEDURE setEventData

 (pEventData in clob)

Sets the value of the EVENT_DATA attribute in a WF_EVENT_T object.

The value for the EVENT_DATA attribute.

pParameterList

pEventName

pEventKey

pEventData

PL/SQL Syntax

Description

Arguments (input)

PL/SQL Syntax

Description

Arguments (input)

PL/SQL Syntax

Description

Arguments (input)

PL/SQL Syntax

8 – 251Oracle Workflow APIs

setFromAgent

MEMBER PROCEDURE setFromAgent

 (pFromAgent in wf_agent_t)

Sets the value of the FROM_AGENT attribute in a WF_EVENT_T
object.

The value for the FROM_AGENT attribute.

setToAgent

MEMBER PROCEDURE setToAgent

 (pToAgent in wf_agent_t)

Sets the value of the TO_AGENT attribute in a WF_EVENT_T object.

The value for the TO_AGENT attribute.

setErrorSubscription

MEMBER PROCEDURE setErrorSubscription

 (pErrorSubscription in raw)

Sets the value of the ERROR_SUBSCRIPTION attribute in a
WF_EVENT_T object.

The value for the ERROR_SUBSCRIPTION
attribute.

setErrorMessage

MEMBER PROCEDURE setErrorMessage

pFromAgent

pToAgent

pErrorSubscrip–
tion

Description

Arguments (input)

PL/SQL Syntax

Description

Arguments (input)

PL/SQL Syntax

Description

Arguments (input)

8 – 252 Oracle Workflow Guide

 (pErrorMessage in varchar2)

Sets the value of the ERROR_MESSAGE attribute in a WF_EVENT_T
object.

The value for the ERROR_MESSAGE attribute.

setErrorStack

MEMBER PROCEDURE setErrorStack

 (pErrorStack in varchar2)

Sets the value of the ERROR_STACK attribute in a WF_EVENT_T
object.

The value for the ERROR_STACK attribute.

Content

MEMBER PROCEDURE Content

 (pName in varchar2,

 pKey in varchar2,

 pData in clob)

Sets the values of all the event content attributes in a WF_EVENT_T
object, including EVENT_NAME, EVENT_KEY, and EVENT_DATA.

The value for the EVENT_NAME attribute.

The value for the EVENT_KEY attribute.

The value for the EVENT_DATA attribute.

pErrorMessage

pErrorStack

pName

pKey

pData

PL/SQL Syntax

Description

Arguments (input)

PL/SQL Syntax

Description

Arguments (input)

PL/SQL Syntax

8 – 253Oracle Workflow APIs

Address

MEMBER PROCEDURE Address

 (pOutAgent in wf_agent_t,

 pToAgent in wf_agent_t,

 pPriority in number,

 pSendDate in date)

Sets the values of the all address attributes in a WF_EVENT_T object,
including FROM_AGENT, TO_AGENT, PRIORITY, and SEND_DATE.

The value for the FROM_AGENT attribute.

The value for the TO_AGENT attribute.

The value for the PRIORITY attribute.

The value for the SEND_DATE attribute.

AddParameterToList

MEMBER PROCEDURE AddParameterToList

 (pName in varchar2,

 pValue in varchar2)

Adds a new parameter name and value pair to the list stored in the
PARAMETER_LIST attribute of a WF_EVENT_T object. If a parameter
with the specified name already exists in the parameter list, then the
previous value of that parameter is overwritten with the specified
value.

The parameter name.

The parameter value.

GetValueForParameter

MEMBER FUNCTION GetValueForParameter

pOutAgent

pToAgent

pPriority

pSendDate

pName

pValue

Description

Arguments (input)

8 – 254 Oracle Workflow Guide

 (pName in varchar2) return varchar2

Returns the value of the specified parameter from the list stored in the
PARAMETER_LIST attribute of a WF_EVENT_T object. This method
begins at the end of the parameter list and searches backwards through
the list. If no parameter with the specified name is found in the
parameter list, then the GetValueForParameter method returns NULL.

The parameter name.pName

�

8 – 255Oracle Workflow APIs

Example for Using Abstract Datatypes

The following example shows some ways to use abstract datatype
methods in a SQL script, including:

• Initializing a new event message structure with the Initialize
method

Attention: You must call the Initialize method before you can
perform any further manipulation on a new WF_EVENT_T
object.

• Initializing a CLOB locator

• Writing a text variable into a CLOB variable

• Setting the content attributes of the event message structure with
the Content method

• Setting the address attributes of the event message structure
with the Address method

The example code is from the script wfevtenq.sql, which enqueues an
event message on a queue using an override agent. See: Wfevtenq.sql:
page 16 – 10.

declare

l_overrideagent varchar2(30) := ’&overrideagent’;

l_overridesystem varchar2(30) := ’&overridesystem’;

l_fromagent varchar2(30) := ’&fromagent’;

l_fromsystem varchar2(30) := ’&fromsystem’;

l_toagent varchar2(30) := ’&toagent’;

l_tosystem varchar2(30) := ’&tosystem’;

l_eventname varchar2(100) := ’&eventname’;

l_eventkey varchar2(100) := ’&eventkey’;

l_msg varchar2(200) := ’&message’;

l_clob clob;

l_overrideagent_t wf_agent_t;

l_toagent_t wf_agent_t;

l_fromagent_t wf_agent_t;

l_event_t wf_event_t;

begin

 /*You must call wf_event_t.initialize before you can manipulate

 a new wf_event_t object.*/

 wf_event_t.initialize(l_event_t);

8 – 256 Oracle Workflow Guide

 l_overrideagent_t := wf_agent_t(l_overrideagent,

 l_overridesystem);

 l_toagent_t := wf_agent_t(l_toagent, l_tosystem);

 l_fromagent_t := wf_agent_t(l_fromagent, l_fromsystem);

 if l_msg is null then

 l_event_t.Content(l_eventname, l_eventkey, null);

 else

 dbms_lob.createtemporary(l_clob, FALSE, DBMS_LOB.CALL);

 dbms_lob.write(l_clob, length(l_msg), 1, l_msg);

 l_event_t.Content(l_eventname, l_eventkey, l_clob);

 end if;

 l_event_t.Address(l_fromagent_t, l_toagent_t, 50, sysdate);

 wf_event.enqueue(l_event_t, l_overrideagent_t);

end;

8 – 257Oracle Workflow APIs

Mapping Between WF_EVENT_T and OMBAQ_TEXT_MSG

If you use Oracle8i, you can optionally implement Oracle Message
Broker (OMB) to propagate event messages between systems. OMB
queues require messages to be stored in a structure defined by a Java
Message Service abstract datatype called OMBAQ_TEXT_MSG.

Oracle Workflow provides a queue handler called
WF_EVENT_OMB_QH which you can use to translate between the
standard Workflow WF_EVENT_T message structure and the
OMBAQ_TEXT_MSG structure. See: Setting Up the
WF_EVENT_OMB_QH Queue Handler: page 2 – 100 and Agents: page
13 – 22.

Among other attributes, the OMBAQ_TEXT_MSG datatype contains an
attribute called TEXT_LOB, which contains the message payload in
CLOB format, and another attribute called HEADER, whose datatype
is another ADT called OMBAQ_HEADER.

OMBAQ_HEADER in turn contains an attribute called PROPERTIES,
whose datatype is a third ADT, a named varying array called
OMBAQ_PROPERTIES. The maximum size of OMBAQ_PROPERTIES
is 1000, and the datatype of its elements is a fourth ADT,
OMBAQ_PROPERTY.

The following table shows how the attributes of the WF_EVENT_T
message structure are mapped to the attributes within the
OMBAQ_TEXT_MSG structure.

WF_EVENT_T OMBAQ_TEXT_MSG

WF_EVENT_T.PRIORITY ombaq_properties(5).str_value
 [name = PRIORITY]

WF_EVENT_T.SEND_DATE ombaq_properties(6).str_value
[name = SENDDATE]

WF_EVENT_T.RECEIVE_DATE ombaq_properties(7).str_value
[name = RECEIVEDATE]

WF_EVENT_T.CORRELATION_ID ombaq_properties(8).str_value
[name = CORRELATIONID]

WF_EVENT_T.EVENT_NAME ombaq_properties(9).str_value
[name = EVENTNAME]

WF_EVENT_T.EVENT_KEY ombaq_properties(10).str_value
[name = EVENTKEY]

Table 8 – 10 (Page 1 of 2)

8 – 258 Oracle Workflow Guide

OMBAQ_TEXT_MSGWF_EVENT_T

WF_EVENT_T.EVENT_DATA text_lob (CLOB)

WF_EVENT_T.FROM_AGENT.NAME ombaq_properties(1).str_value
[name = FROMAGENTNAME]

WF_EVENT_T.FROM_AGENT.SYSTEM ombaq_properties(2).str_value
[name = FROMAGENTSYSTEM]

WF_EVENT_T.TO_AGENT.NAME ombaq_properties(3).str_value
[name = TOAGENTNAME]

WF_EVENT_T.TO_AGENT.SYSTEM ombaq_properties(4).str_value
[name = TOAGENTSYSTEM]

WF_EVENT_T.ERROR_SUBSCRIPTION ombaq_properties(11).str_value
[name = ERRORSUBSCRIPTION]

WF_EVENT_T.ERROR_MESSAGE ombaq_properties(12).str_value
[name = ERRORMESSAGE1]

WF_EVENT_T.ERROR_MESSAGE ombaq_properties(13).str_value
[name = ERRORMESSAGE2]

WF_EVENT_T.ERROR_STACK ombaq_properties(14).str_value
[name = ERRORSTACK1]

WF_EVENT_T.ERROR_STACK ombaq_properties(15).str_value
[name = ERRORSTACK2]

WF_EVENT_T.PARAMETER_LIST ombaq_properties(16).str_value
[name = <first_parameter_name>]

... ...

WF_EVENT_T.PARAMETER_LIST ombaq_properties(115).str_value
[name = <hundredth_parameter_name>]

Table 8 – 10 (Page 2 of 2)

Note: You can use any names you choose for the parameters in
the parameter list for an event, except the reserved words that
are used for the other event properties. The reserved words
are:

PRIORITY, SENDDATE, RECEIVEDATE, CORRELATIONID,

EVENTNAME, EVENTKEY, FROMAGENTNAME,

FROMAGENTSYSTEM, TOAGENTNAME, TOAGENTSYSTEM,

ERRORSUBSCRIPTION, ERRORMESSAGE1, ERRORMESSAGE2,

ERRORSTACK1, ERRORSTACK2

8 – 259Oracle Workflow APIs

Note: Oracle Message Broker and the OMBAQ_TEXT_MSG
datatype are no longer used in Oracle9i. In Oracle9i, you can
use the Messaging Gateway and Internet access features of
Oracle Advanced Queuing to propagate event messages, in
place of Oracle Message Broker.

See Also

Oracle AQ Driver ADTs, Oracle Message Broker Administration Guide

8 – 260 Oracle Workflow Guide

Event APIs

The Event APIs can be called by an application program or a workflow
process in the runtime phase to communicate with the Business Event
System and manage events. These APIs are defined in a PL/SQL
package called WF_EVENT.

• Raise: page 8 – 261

• Send: page 8 – 265

• NewAgent: page 8 – 267

• Test: page 8 – 268

• Enqueue: page 8 – 269

• Listen: page 8 – 270

Note: If you are using the version of Oracle Workflow
embedded in Oracle Applications, you can also use the
”Workflow Agent Listener” concurrent program to listen for
inbound event messages. See: Workflow Agent Listener: page
8 – 272.

• SetErrorInfo: page 8 – 273

• SetDispatchMode: page 8 – 274

• AddParameterToList: page 8 – 275

• AddParameterToListPos: page 8 – 276

• GetValueForParameter: page 8 – 277

• GetValueForParameterPos: page 8 – 278

PL/SQL Syntax

Description

8 – 261Oracle Workflow APIs

Raise

procedure Raise

 (p_event_name in varchar2,

 p_event_key in varchar2,

 p_event_data in clob default NULL,

 p_parameters in wf_parameter_list_t default NULL,

 p_send_date in date default NULL);

Raises a local event to the Event Manager. Raise() creates a
WF_EVENT_T structure for this event instance and sets the specified
event name, event key, event data, parameter list, and send date into
the structure.

The event data can be passed to the Event Manager within the call to
the Raise() API, or the Event Manager can obtain the event data itself by
calling the Generate function for the event, after first checking whether
the event data is required by a subscription. If the event data is not
already available in your application, you can improve performance by
allowing the Event Manager to run the Generate function and generate
the event data only when subscriptions exist that require that data,
rather than always generating the event data from your application at
runtime. See: Events: page 13 – 4 and Standard API for an Event Data
Generate Function: page 7 – 21.

The send date can optionally be set to indicate when the event should
become available for subscription processing. If the send date is null,
Raise() sets the send date to the current system date. You can defer an
event by setting the send date to a date later than the system date. In
this case, the Event Manager places the event message on the standard
WF_DEFERRED queue, where it remains in a WAIT state until the send
date. When the send date arrives, the event message becomes available
for dequeuing and will be dequeued the next time an agent listener
runs on the WF_DEFERRED queue.

Note: If an event is deferred when it is raised, the event retains
its original Local source type when it is dequeued from the
WF_DEFERRED queue.

When an event is raised and is not deferred, or when an event that was
deferred is dequeued from the WF_DEFERRED queue, the Event
Manager begins subscription processing for the event. The Event
Manager searches for and executes any active subscriptions by the local
system to that event with a source type of Local, and also any active
subscriptions by the local system to the Any event with a source type of
Local. If no active subscriptions exist for the event that was raised

Arguments (input)

Example

8 – 262 Oracle Workflow Guide

(apart from subscriptions to the Any event), then Oracle Workflow
executes any active subscriptions by the local system to the Unexpected
event with a source type of Local.

Note: The Event Manager does not raise an error if the event is
not defined.

The Event Manager checks each subscription before executing it to
determine whether the subscription requires the event data. If the event
data is required but is not already provided, the Event Manager calls
the Generate function for the event to produce the event data. If the
event data is required but no Generate function is defined for the event,
Oracle Workflow creates a default set of event data using the event
name and event key.

Note: Any exceptions raised during Raise() processing are not
trapped, but instead are exposed to the code that called the
Raise() procedure. This behavior enables you to use
subscriptions and their rule functions to perform validation,
with the same results as if the validation logic were coded
inline.

The internal name of the event.

A string generated when the event occurs within a
program or application. The event key uniquely
identifies a specific instance of the event.

An optional set of information about the event that
describes what occurred. The Event Manager
checks each subscription before executing it to
determine whether the subscription requires the
event data. If the event data is required but is not
already provided, the Event Manager calls the
Generate function for the event to produce the
event data. See: Events: page 13 – 4 and Standard
API for an Event Data Generate Function: page
7 – 21.

An optional list of additional parameter name and
value pairs.

An optional date to indicate when the event should
become available for subscription processing.

declare

 l_xmldocument varchar2(32000);

p_event_name

p_event_key

p_event_data

p_parameters

p_send_date

8 – 263Oracle Workflow APIs

 l_eventdata clob;

 l_parameter_list wf_parameter_list_t;

 l_message varchar2(10);

begin

/*

** If the complete event data is easily available, we can

** optionally test if any subscriptions to this event

** require it (rule data = Message).

*/

 l_message := wf_event.test(’<EVENT_NAME>’);

/*

** If we do require a message, and we have the message now,

** set it; else we can just rely on the Event Generate

** Function callback code. Then Raise the Event with the

** required parameters.

*/

 if l_message = ’MESSAGE’ then

 if l_xmldocument is not null then

 dbms_lob.createtemporary(l_eventdata, FALSE,

 DBMS_LOB.CALL);

 dbms_lob.write(l_eventdata, length(l_xmldocument), 1 ,

 l_xmldocument);

 –– Raise the Event with the message

 wf_event.raise(p_event_name => ’<EVENT_NAME>’,

 p_event_key => ’<EVENT_KEY>’,

 p_event_data => l_eventdata,

 p_parameters => l_parameter_list);

 else

 –– Raise the Event without the message

 wf_event.raise(p_event_name => ’<EVENT_NAME>’,

 p_event_key => ’<EVENT_KEY>’,

 p_parameters => l_parameter_list);

 end if;

 elsif

 l_message = ’KEY’ then

 –– Raise the Event

 wf_event.raise(p_event_name => <EVENT_NAME>,

 p_event_key => <EVENT_KEY>,

 p_parameters => l_parameter_list);

8 – 264 Oracle Workflow Guide

 end if;

/*

** Up to your own custom code to commit the transaction

*/

 commit;

/*

** Up to your own custom code to handle any major exceptions

*/

exception

when others then

null;

end;

See Also

Any Event: page 14 – 10

Unexpected Event: page 14 – 12

PL/SQL Syntax

Description

8 – 265Oracle Workflow APIs

Send

procedure Send

 (p_event in out wf_event_t);

Sends an event message from one agent to another. If the event
message contains both a From Agent and a To Agent, the message is
placed on the outbound queue of the From Agent and then
asynchronously delivered to the To Agent by AQ propagation, or
whichever type of propagation is implemented for the agents’ protocol.

If the event message contains a To Agent but no specified From Agent,
the message is sent from the default outbound agent that matches the
queue type of the To Agent.

If the event message contains a From Agent but no specified To Agent,
the event message is placed on the From Agent’s queue without a
specified recipient.

• You can omit the To Agent if the From Agent uses a
multi–consumer queue with a subscriber list. (The standard
Workflow queue handlers work only with multi–consumer
queues.) In this case, the queue’s subscriber list determines
which consumers can dequeue the message. If no subscriber list
is defined for that queue, however, the event message is placed
on the WF_ERROR queue for error handling.

Note: The subscriber list for a multi–consumer queue in Oracle
Advanced Queuing is different from event subscriptions in the
Oracle Workflow Business Event System. For more
information, see: Subscription and Recipient Lists, Oracle
Application Developer’s Guide – Advanced Queuing.

• You can also omit the To Agent if the From Agent uses a
single–consumer queue for which you have defined a custom
queue handler. For a single–consumer queue, no specified
consumer is required.

The send date within the event message indicates when the message
should become available for the consumer to dequeue. If the send date
is blank, the Send() procedure resets the value to the current system
date, meaning the message is immediately available for dequeuing as
soon as it is propagated. If the send date is a future date, the message is
marked with a delay time corresponding to that date and does not
become available for dequeuing until the delay time has passed. For
more information, see: Time Specification: Delay, Oracle Application
Developer’s Guide – Advanced Queuing.

Arguments (input)

8 – 266 Oracle Workflow Guide

Note: If you want to use the send date to determine when a
message becomes available for dequeuing on the To Agent, you
should set the send date during subscription processing before
Send() is called.

Send() returns the final event message that was sent, including any
properties set by the procedure.

The event message.p_event

PL/SQL Syntax

Description

Arguments (input)

8 – 267Oracle Workflow APIs

NewAgent

function NewAgent

 (p_agent_guid in raw) return wf_agent_t;

Creates a WF_AGENT_T structure for the specified agent and sets the
agent’s system and name into the structure. See: Agent Structure: page
8 – 237.

The globally unique identifier of the agent.p_agent_guid

PL/SQL Syntax

Description

Arguments (input)

8 – 268 Oracle Workflow Guide

Test

function Test

 (p_event_name in varchar2) return varchar2;

Tests whether the specified event is enabled and whether there are any
enabled subscriptions by the local system referencing the event, or
referencing an enabled event group that contains the event. Test()
returns the most costly data requirement among these subscriptions,
using the following result codes:

• NONE—No enabled local subscriptions reference the event, or
the event does not exist.

• KEY—At least one enabled local subscription references the
event, but all such subscriptions require only the event key.

• MESSAGE—At least one enabled local subscription on the event
requires the complete event data.

The internal name of the event.p_event_name

PL/SQL Syntax

Description

Arguments (input)

8 – 269Oracle Workflow APIs

Enqueue

procedure Enqueue

 (p_event in wf_event_t,

 p_out_agent_override in wf_agent_t default null);

Enqueues an event message onto a queue associated with an outbound
agent. You can optionally specify an override agent where you want to
enqueue the event message. Otherwise, the event message is enqueued
on the From Agent specified within the message. The message recipient
is set to the To Agent specified in the event message. Enqueue() uses the
queue handler for the outbound agent to place the message on the
queue.

The event message.

The outbound agent on whose queue the event
message should be enqueued.

p_event

p_out_agent_
override

PL/SQL Syntax

Description

Arguments (input)

8 – 270 Oracle Workflow Guide

Listen

procedure Listen

 (p_agent_name in varchar2);

Monitors an agent for inbound event messages and dequeues messages
using the agent’s queue handler.

The standard WF_EVENT_QH queue handler sets the date and time
when an event message is dequeued into the RECEIVE_DATE attribute
of the event message. Custom queue handlers can also set the
RECEIVE_DATE value if this functionality is included in the Dequeue
API.

When an event is dequeued, the Event Manager searches for and
executes any active subscriptions by the local system to that event with
a source type of External, and also any active subscriptions by the local
system to the Any event with a source type of External. If no active
subscriptions exist for the event that was received (apart from
subscriptions to the Any event), then Oracle Workflow executes any
active subscriptions by the local system to the Unexpected event with a
source type of External.

The Listen procedure exits after all event messages on the agent’s
queue have been dequeued.

Note: You can use the Check Setup web page to schedule
Listen procedures for all active inbound and error queues. See:
Scheduling Listeners for Local Inbound Agents: page 13 – 56.

Note: If you are using the standalone version of Oracle
Workflow available with Oracle9i Release 2, you can use the
standalone Oracle Workflow Manager component available
through Oracle Enterprise Manager to submit and manage
Workflow agent listener database jobs. For more information,
please refer to the Oracle Workflow Manager online help.

The name of the inbound agent.

See Also

Workflow Agent Listener Concurrent Program: page 8 – 272

Any Event: page 14 – 10

Unexpected Event: page 14 – 12

p_agent_name

8 – 271Oracle Workflow APIs

Wfagtlst.sql: page 16 – 6

Standard APIs for a Queue Handler: page 7 – 23

8 – 272 Oracle Workflow Guide

Workflow Agent Listener Concurrent Program

If you are using the version of Oracle Workflow embedded in Oracle
Applications, you can submit the Listen procedure as a concurrent
program to listen for inbound event messages. Use the Submit
Requests form in Oracle Applications to submit the Workflow Agent
Listener.

Note: If you are using the version of Oracle Workflow
embedded in Oracle Applications and you have implemented
Oracle Applications Manager, you can use Oracle Workflow
Manager to submit and manage the Workflow Agent Listener
concurrent program. For more information, please refer to the
Oracle Applications Manager online help.

� To Listen for Inbound Event Messages

1. Navigate to the Submit Requests form in Oracle Applications to
submit the Workflow Agent Listener concurrent program. When
you install and set up Oracle Applications and Oracle Workflow,
your system administrator needs to add this concurrent program to
a request security group for the responsibility that you want to run
this program from. The executable name for this concurrent
program is ”Workflow Agent Listener” and its short name is
FNDWFLST. See: Overview of Concurrent Programs and
Requests, Oracle Applications System Administrator’s Guide.

2. Submit the Workflow Agent Listener concurrent program as a
request. See: Submitting a Request, Oracle Applications User’s Guide.

3. In the Parameters window, enter the name of the agent that you
want to monitor for inbound event messages.

4. Choose OK to close the Parameters window.

5. When you finish modifying the print and run options to define the
schedule for this request, choose Submit to submit the request.

See Also

Listen: page 8 – 270

PL/SQL Syntax

Description

Arguments (input)

8 – 273Oracle Workflow APIs

SetErrorInfo

procedure SetErrorInfo

 (p_event in out wf_event_t,

 p_type in varchar2);

Retrieves error information from the error stack and sets it into the
event message. The error message and error stack are set into the
corresponding attributes of the event message. The error name and
error type are added to the PARAMETER_LIST attribute of the event
message.

The event message.

The error type, either ’ERROR’ or ’WARNING’.

p_event

p_type

PL/SQL Syntax

Description

Arguments (input)

8 – 274 Oracle Workflow Guide

SetDispatchMode

procedure SetDispatchMode

 (p_mode in varchar2);

Sets the dispatch mode of the Event Manager to either deferred or
synchronous subscription processing. Call SetDispatchMode() with the
mode ’ASYNC’ just before calling Raise() to defer all subscription
processing forever for the event that you will raise. In this case, the
Event Manager places the event on the WF_DEFERRED queue before
executing any subscriptions for that event. The subscriptions are not
executed until the agent listener runs to dequeue the event from the
WF_DEFERRED queue.

You can call SetDispatchMode() with the mode ’SYNC’ to set the
dispatch mode back to normal synchronous subscription processing. In
this mode, the phase number for each subscription determines whether
the subscription is executed immediately or deferred.

Note: This method of deferring subscription processing is not
recommended and should only be used in exceptional
circumstances, since it requires hard–coding the deferral in
your application. To retain the flexibility to modify subscription
processing without intrusion into the application, you can
simply mark some or all of the individual subscriptions for
deferral using the subscription phase numbers.

The dispatch mode: either ’ASYNC’ for deferred
(asynchronous) subscription processing, or ’SYNC’
for synchronous subscription processing.

See Also

Deferred Subscription Processing: page 13 – 41

Raise: page 8 – 261

p_mode

PL/SQL Syntax

Description

Arguments (input)

8 – 275Oracle Workflow APIs

AddParameterToList

procedure AddParameterToList

 (p_name in varchar2,

 p_value in varchar2,

 p_parameterlist in out wf_parameter_list_t);

Adds the specified parameter name and value pair to the end of the
specified parameter list varray. If the varray is null,
AddParameterToList() initializes it with the new parameter.

The parameter name.

The parameter value.

The parameter list.

p_name

p_value

p_parameterlist

PL/SQL Syntax

Description

Arguments (input)

8 – 276 Oracle Workflow Guide

AddParameterToListPos

procedure AddParameterToListPos

 (p_name in varchar2,

 p_value in varchar2,

 p_position out integer,

 p_parameterlist in out wf_parameter_list_t);

Adds the specified parameter name and value pair to the end of the
specified parameter list varray. If the varray is null,
AddParameterToListPos() initializes it with the new parameter. The
procedure also returns the index for the position at which the
parameter is stored within the varray.

The parameter name.

The parameter value.

The parameter list.

p_name

p_value

p_parameterlist

PL/SQL Syntax

Description

Arguments (input)

8 – 277Oracle Workflow APIs

GetValueForParameter

function GetValueForParameter

 (p_name in varchar2,

 p_parameterlist in wf_parameter_list_t)

 return varchar2;

Retrieves the value of the specified parameter from the specified
parameter list varray. GetValueForParameter() begins at the end of the
parameter list and searches backwards through the list.

The parameter name.

The parameter list.

p_name

p_parameterlist

PL/SQL Syntax

Description

Arguments (input)

8 – 278 Oracle Workflow Guide

GetValueForParameterPos

function GetValueForParameterPos

 (p_position in integer,

 p_parameterlist in wf_parameter_list_t)

 return varchar2;

Retrieves the value of the parameter stored at the specified position in
the specified parameter list varray.

The index representing the position of the
parameter within the parameter list.

The parameter list.

p_position

p_parameterlist

8 – 279Oracle Workflow APIs

Event Subscription Rule Function APIs

The event subscription rule function APIs provide standard rule
functions that you can assign to event subscriptions. A rule function
specifies the processing that Oracle Workflow performs when the
subscription’s triggering event occurs.

Oracle Workflow provides a standard Default_Rule function to
perform basic subscription processing. This function is executed by
default if no other rule function is specified for the subscription. The
default rule function includes the following actions:

• Sending the event message to a workflow process, if specified in
the subscription definition

• Sending the event message to an agent, if specified in the
subscription definition

Oracle Workflow also provides some other standard rule functions that
you can use. The Log, Error, Warning, and Success functions can be
used for testing and debugging your application. The
Workflow_Protocol function passes the event message to a workflow
process to be sent to an agent. The Error_Rule function performs the
same processing as the Default_Rule function, but also raises an
exception. The Workflow_Protocol and Error_Rule functions are used
in predefined Oracle Workflow event subscriptions. The
SetParametersIntoParameterList function adds the subscription
parameters to the parameter list within the event message.

These rule function APIs are defined in a PL/SQL package called
WF_RULE.

• Default_Rule: page 8 – 281

• Log: page 8 – 283

• Error: page 8 – 284

• Warning: page 8 – 285

• Success: page 8 – 286

• Workflow_Protocol: page 8 – 287

• Error_Rule: page 8 – 288

• SetParametersIntoParameterList: page 8 – 289

See Also

Event Subscriptions: page 13 – 34

8 – 280 Oracle Workflow Guide

Standard API for an Event Subscription Rule Function: page 7 – 25

PL/SQL Syntax

Description

8 – 281Oracle Workflow APIs

Default_Rule

function Default_Rule

 (p_subscription_guid in raw,

 p_event in out wf_event_t) return varchar2;

Performs default subscription processing when no rule function is
specified for an event subscription. The default processing includes:

• Sending the event message to a workflow process, if specified in
the subscription definition

• Sending the event message to an agent, if specified in the
subscription definition

If either of these operations raises an exception, Default_Rule() traps the
exception, stores the error information in the event message, and
returns the status code ERROR. Otherwise, Default_Rule() returns the
status code SUCCESS.

Note: If the event message is being sent to the Default Event
Error workflow process, Default_Rule() generates a new
correlation ID to use as the item key for the process in order to
ensure that the item key is unique.

If you want to run a custom rule function on the event message before
it is sent, you can define one subscription with a low phase number
that uses the custom rule function, and then define another
subscription with a higher phase number that uses the default rule
function to send the event.

For example, follow these steps:

1. Define a subscription to the relevant event with your custom rule
function and a phase of 10.

2. Define another subscription to the event with the rule function
WF_EVENT.Default_Rule and a phase of 20, and specify the
workflow or agent to which you want to send the event.

3. Raise the event to trigger the subscriptions. The subscription with
the lower phase number will be executed first and will run your
custom rule function on the event message. When the event is
passed to the second subscription, the modified event message will
be sent to the workflow or agent you specified.

You can also call Default_Rule() to add the default send processing
within a custom rule function. If you enter a rule function other than
Default_Rule() for a subscription, Oracle Workflow does not
automatically send the event message to the workflow and agent

Arguments (input)

8 – 282 Oracle Workflow Guide

specified in the subscription. Instead, if you want to send the message
from the same subscription, you must explicitly include the send
processing in your custom rule function, which you can optionally
accomplish by calling Default_Rule(). See: Standard API for an Event
Subscription Rule Function: page 7 – 25.

Note: You may find it advantageous to define multiple
subscriptions to an event with simple rule functions that you
can reuse, rather than creating complex specialized rule
functions that cannot be reused.

The globally unique identifier of the subscription.

The event message.

p_subscription_
guid

p_event

PL/SQL Syntax

Description

Arguments (input)

8 – 283Oracle Workflow APIs

Log

function Log

 (p_subscription_guid in raw,

 p_event in out wf_event_t) return varchar2;

Logs the contents of the specified event message using
DBMS_OUTPUT.put_line and returns the status code SUCCESS. Use
this function to output the contents of an event message to a SQL*Plus
session for testing and debugging purposes.

For example, if you want to test a custom rule function that modifies
the event message, you can use Log() to show the event message both
before and after your custom rule function is run. Define three
subscriptions to the relevant event as follows:

• Define the first subscription with a phase of 10 and the rule
function WF_RULE.Log.

• Define the second subscription with a phase of 20 and your
custom rule function.

• Define the third subscription with a phase of 30 and the rule
function WF_RULE.Log.

Next, connect to SQL*Plus. Execute the following command:

set serveroutput on size 100000

Then raise the event using WF_EVENT.Raise. As the Event Manager
executes your subscriptions to the event in phase order, you should see
the contents of the event message both before and after your custom
rule function is run.

Note: You should not assign Log() as the rule function for any
enabled subscriptions in a production instance of Oracle
Workflow. This function should be used for debugging only.

The globally unique identifier of the subscription.

The event message.

p_subscription_
guid

p_event

PL/SQL Syntax

Description

Arguments (input)

8 – 284 Oracle Workflow Guide

Error

function Error

 (p_subscription_guid in raw,

 p_event in out wf_event_t) return varchar2;

Returns the status code ERROR. Additionally, when you assign this
function as the rule function for a subscription, you must enter a text
string representing the internal name of an error message in the
Parameters field for the subscription. When the subscription is
executed, Error() will set that error message into the event message
using setErrorMessage(). See: setErrorMessage: page 8 – 251.

The text string you enter in the Parameters field must be a valid name
of an Oracle Workflow error message. The names of the error messages
provided by Oracle Workflow are stored in the NAME column of the
WF_RESOURCES table for messages with a type of WFERR.

You can use Error() as a subscription rule function if you want to send
the system administrator an error notification with one of the
predefined Workflow error messages whenever a particular event is
raised.

For example, define a subscription to the relevant event with the rule
function WF_RULE.Error and enter WFSQL_ARGS in the Parameters
field. Then raise the event to trigger the subscription. Because Error()
returns the status code ERROR, the Event Manager places the event
message on the WF_ERROR queue and subscription processing for the
event is halted. When the listener runs on the WF_ERROR queue, an
error notification will be sent to the system administrator with the
message ”Invalid value(s) passed for arguments,” which is the display
name of the WFSQL_ARGS error message.

Note: Error() does not raise any exception to the calling
application when it completes normally.

The globally unique identifier of the subscription.

The event message.

p_subscription_
guid

p_event

PL/SQL Syntax

Description

Arguments (input)

8 – 285Oracle Workflow APIs

Warning

function Warning

 (p_subscription_guid in raw,

 p_event in out wf_event_t) return varchar2;

Returns the status code WARNING. Additionally, when you assign this
function as the rule function for a subscription, you must enter a text
string representing the internal name of an error message in the
Parameters field for the subscription. When the subscription is
executed, Warning() will set that error message into the event message
using setErrorMessage(). See: setErrorMessage: page 8 – 251.

The text string you enter in the Parameters field must be a valid name
of an Oracle Workflow error message. The names of the error messages
provided by Oracle Workflow are stored in the NAME column of the
WF_RESOURCES table for messages with a type of WFERR.

You can use Warning() as a subscription rule function if you want to
send the system administrator a warning notification with one of the
predefined Workflow error messages whenever a particular event is
raised.

For example, define a subscription to the relevant event with the rule
function WF_RULE.Warning and enter WFSQL_ARGS in the Parameters
field. Then raise the event to trigger the subscription. Because
Warning() returns the status code WARNING, the Event Manager
places the event message on the WF_ERROR queue, but subscription
processing for the event still continues. When the listener runs on the
WF_ERROR queue, a warning notification will be sent to the system
administrator with the message ”Invalid value(s) passed for
arguments,” which is the display name of the WFSQL_ARGS error
message.

Note: Warning() does not raise any exception to the calling
application when it completes normally.

The globally unique identifier of the subscription.

The event message.

p_subscription_
guid

p_event

PL/SQL Syntax

Description

Arguments (input)

8 – 286 Oracle Workflow Guide

Success

function Success

 (p_subscription_guid in raw,

 p_event in out wf_event_t) return varchar2;

Returns the status code SUCCESS. This function removes the event
message from the queue but executes no other code except returning
the SUCCESS status code to the calling subscription.

You can use Success for testing and debugging purposes while
developing code for use with the Business Event System. For example,
if you are trying to debug multiple subscriptions to the same event, you
can modify one of the subscriptions by replacing its rule function with
WF_RULE.Success, leaving all other details for the subscription intact.
When the subscription is executed, it will return SUCCESS but not
perform any other subscription processing. This method can help you
isolate a problem subscription.

Success() is analogous to the WF_STANDARD.Noop procedure used in
the standard Noop activity.

The globally unique identifier of the subscription.

The event message.

p_subscription_
guid

p_event

PL/SQL Syntax

Description

Arguments (input)

8 – 287Oracle Workflow APIs

Workflow_Protocol

function Workflow_Protocol

 (p_subscription_guid in raw,

 p_event in out wf_event_t) return varchar2;

Sends the event message to the workflow process specified in the
subscription, which will in turn send the event message to the inbound
agent specified in the subscription.

Note: Workflow_Protocol() does not itself send the event
message to the inbound agent. This function only sends the
event message to the workflow process, where you can model
the processing that you want to send the event message on to
the specified agent.

If the subscription also specifies an outbound agent, the workflow
process places the event message on that agent’s queue for propagation
to the inbound agent. Otherwise, a default outbound agent will be
selected.

If the subscription parameters include the parameter name and value
pair ACKREQ=Y, then the workflow process waits to receive an
acknowledgement after sending the event message.

If the workflow process raises an exception, Workflow_Protocol() stores
the error information in the event message and returns the status code
ERROR. Otherwise, Workflow_Protocol() returns the status code
SUCCESS.

Workflow_Protocol() is used as the rule function in several predefined
subscriptions to Workflow Send Protocol and Event System
Demonstration events. See: Workflow Send Protocol: page 14 – 17 and
Event System Demonstration: page 15 – 63.

The globally unique identifier of the subscription.

The event message.

p_subscription_
guid

p_event

PL/SQL Syntax

Description

Arguments (input)

8 – 288 Oracle Workflow Guide

Error_Rule

function Error_Rule

 (p_subscription_guid in raw,

 p_event in out wf_event_t) return varchar2;

Performs the same subscription processing as Default_Rule(), including:

• Sending the event message to a workflow process, if specified in
the subscription definition

• Sending the event message to an agent, if specified in the
subscription definition

However, if either of these operations encounters an exception,
Error_Rule() reraises the exception so that the event is not placed back
onto the WF_ERROR queue. Otherwise, Error_Rule() returns the status
code SUCCESS.

Error_Rule() is used as the rule function for the predefined
subscriptions to the Unexpected event and to the Any event with the
Error source type. The predefined subscriptions specify that the event
should be sent to the Default Event Error process in the System: Error
item type.

You can also use this rule function with your own error subscriptions.
Enter WF_RULE.Error as the rule function for your error subscription
and specify the workflow item type and process that you want the
subscription to launch.

The globally unique identifier of the subscription.

The event message.

See Also

Unexpected Event: page 14 – 12

Any Event: page 14 – 10

p_subscription_
guid

p_event

PL/SQL Syntax

Description

Arguments (input)

8 – 289Oracle Workflow APIs

SetParametersIntoParameterList

function SetParametersIntoParameterList

 (p_subscription_guid in raw,

 p_event in out wf_event_t) return varchar2;

Sets the parameter name and value pairs from the subscription
parameters into the PARAMETER_LIST attribute of the event message,
except for any parameter named ITEMKEY or CORRELATION_ID. For
a parameter with one of these names, the function sets the
CORRELATION_ID attribute of the event message to the parameter
value.

If these operations raise an exception, SetParametersIntoParameterList()
stores the error information in the event message and returns the status
code ERROR. Otherwise, SetParametersIntoParameterList() returns the
status code SUCCESS.

You can use SetParametersIntoParameterList() as the rule function for a
subscription with a lower phase number, to add predefined parameters
from the subscription into the event message. Then subsequent
subscriptions with higher phase numbers can access those parameters
within the event message.

The globally unique identifier of the subscription.

The event message.

See Also

Event Message Structure: page 8 – 242

p_subscription_
guid

p_event

8 – 290 Oracle Workflow Guide

Event Function APIs

The Event Function APIs provide utility functions that can be called by
an application program, the Event Manager, or a workflow process in
the runtime phase to communicate with the Business Event System and
manage events. These APIs are defined in a PL/SQL package called
WF_EVENT_FUNCTIONS_PKG.

• Parameters: page 8 – 291

• SubscriptionParameters: page 8 – 293

• AddCorrelation: page 8 – 294

• Generate: page 8 – 296

• Receive: page 8 – 298

PL/SQL Syntax

Description

Arguments (input)

Example

8 – 291Oracle Workflow APIs

Parameters

function Parameters

 (p_string in varchar2,

 p_numvalues in number,

 p_separator in varchar2) return t_parameters;

Parses a string of text that contains the specified number of parameters
delimited by the specified separator. Parameters() returns the parsed
parameters in a varray using the T_PARAMETERS composite datatype,
which is defined in the WF_EVENT_FUNCTIONS_PKG package. The
following table describes the T_PARAMETERS datatype:

Datatype Name Element Datatype Definition

T_PARAMETERS VARCHAR2(240)

Table 8 – 11 (Page 1 of 1)

Parameters() is a generic utility that you can call in Generate functions
when the event key is a concatenation of values separated by a known
character. Use this function to separate the event key into its
component values.

A text string containing concatenated parameters.

The number of parameters contained in the string.

The separator used to delimit the parameters in the
string.

set serveroutput on

declare

l_parameters wf_event_functions_pkg.t_parameters;

begin

–– Initialize the datatype

l_parameters := wf_event_functions_pkg.t_parameters(1,2);

l_parameters :=

wf_event_functions_pkg.parameters(’1111/2222’,2,’/’);

dbms_output.put_line(’Value 1:’||l_parameters(1));

dbms_output.put_line(’Value 2:’||l_parameters(2));

p_string

p_numvalues

p_separator

8 – 292 Oracle Workflow Guide

end;

/

PL/SQL Syntax

Description

Arguments (input)

Example

8 – 293Oracle Workflow APIs

SubscriptionParameters

function SubscriptionParameters

 (p_string in varchar2,

 p_key in varchar2) return varchar2;

Returns the value for the specified parameter from a text string
containing the parameters defined for an event subscription. The
parameter name and value pairs in the text string should be separated
by spaces and should appear in the following format:

<name1>=<value1> <name2>=<value2> ... <nameN>=<valueN>

SubscriptionParameters() searches the text string for the specified
parameter name and returns the value assigned to that name. For
instance, you can call this function in a subscription rule function to
retrieve the value of a subscription parameter, and then code different
behavior for the rule function based on that value.

A text string containing the parameters defined for
an event subscription.

The name of the parameter whose value should be
returned.

In the following example, SubscriptionParameters() is used to assign the
value of the ITEMKEY subscription parameter to the l_function
program variable. The example code is from the AddCorrelation
function, which adds a correlation ID to an event message during
subscription processing. See: AddCorrelation: page 8 – 294.

...

––

–– This is where we will do some logic to determine

–– if there is a parameter

––

 l_function := wf_event_functions_pkg.SubscriptionParameters

 (l_parameters,’ITEMKEY’);

...

p_string

p_key

PL/SQL Syntax

Description

8 – 294 Oracle Workflow Guide

AddCorrelation

function AddCorrelation

 (p_subscription_guid in raw,

 p_event in out wf_event_t) return varchar2;

Adds a correlation ID to an event message during subscription
processing. AddCorrelation() searches the subscription parameters for a
parameter named ITEMKEY that specifies a custom function to
generate a correlation ID for the event message. The function must be
specified in the Parameters field for the subscription in the following
format:

ITEMKEY=<package_name.function_name>

AddCorrelation() uses SubscriptionParameters() to search for and retrieve
the value of the ITEMKEY parameter. See: SubscriptionParameters:
page 8 – 293.

If a custom correlation ID function is specified with the ITEMKEY
parameter, then AddCorrelation() runs that function and sets the
correlation ID to the value returned by the function. Otherwise,
AddCorrelation() sets the correlation ID to the system date. If the event
message is then sent to a workflow process, the Workflow Engine uses
that correlation ID as the item key to identify the process instance.

If AddCorrelation() encounters an exception, the function returns the
status code ERROR. Otherwise, AddCorrelation() returns the status code
SUCCESS.

AddCorrelation() is defined according the standard API for an event
subscription rule function. You can use AddCorrelation() as the rule
function for a subscription with a low phase number to add a
correlation ID to an event, and then use a subscription with a higher
phase number to perform any further processing.

For example, follow these steps:

1. Define a subscription to the relevant event with the rule function
WF_EVENT_FUNCTIONS_PKG.AddCorrelation and a phase of 10.
Enter the parameter name and value pair
ITEMKEY=<package_name.function_name> in the Parameters field
for the subscription, replacing <package_name.function_name>
with the package and function that will generate the correlation ID.

2. Define another subscription to the event with a phase of 20, and
specify the processing you want to perform by entering a custom
rule function or a workflow item type and process. or both.

Arguments (input)

8 – 295Oracle Workflow APIs

3. Raise the event to trigger the subscriptions. The subscription with
the lower phase number will be executed first and will add a
correlation ID to the event message. When the event is passed to
the second subscription, that correlation ID will be used as the item
key.

You can also call AddCorrelation() within a custom rule function to add
a correlation ID during your custom processing. See: Standard API for
an Event Subscription Rule Function: page 7 – 25.

Note: You may find it advantageous to define multiple
subscriptions to an event with simple rule functions that you
can reuse, rather than creating complex specialized rule
functions that cannot be reused.

The globally unique identifier of the subscription.

The event message.

p_subscription_
guid

p_event

PL/SQL Syntax

Description

8 – 296 Oracle Workflow Guide

Generate

function Generate

 (p_event_name in varchar2,

 p_event_key in varchar2) return clob;

Generates the event data for events in the Seed event group. This event
data contains Business Event System object definitions which can be
used to replicate the objects from one system to another.

The Seed event group includes the following events:

• oracle.apps.wf.event.event.create

• oracle.apps.wf.event.event.update

• oracle.apps.wf.event.event.delete

• oracle.apps.wf.event.group.create

• oracle.apps.wf.event.group.update

• oracle.apps.wf.event.group.delete

• oracle.apps.wf.event.system.create

• oracle.apps.wf.event.system.update

• oracle.apps.wf.event.system.delete

• oracle.apps.wf.event.agent.create

• oracle.apps.wf.event.agent.update

• oracle.apps.wf.event.agent.delete

• oracle.apps.wf.event.subscription.create

• oracle.apps.wf.event.subscription.update

• oracle.apps.wf.event.subscription.delete

• oracle.apps.wf.event.all.sync

For the event, event group, system, agent, and subscription definition
events, WF_EVENT_FUNCTIONS_PKG.Generate() calls the Generate
APIs associated with the corresponding tables to produce the event
data XML document. For the Synchronize Event Systems event,
WF_EVENT_FUNCTIONS_PKG.Generate() produces an XML document
containing all the event, event group, system, agent, and subscription
definitions from the Event Manager on the local system.

Arguments (input)

8 – 297Oracle Workflow APIs

The internal name of the event.

A string generated when the event occurs within a
program or application. The event key uniquely
identifies a specific instance of the event.

See Also

WF_EVENTS_PKG.Generate: page 8 – 303

WF_EVENT_GROUPS_PKG.Generate: page 8 – 306

WF_SYSTEMS_PKG.Generate: page 8 – 309

WF_AGENTS_PKG.Generate: page 8 – 312

WF_EVENT_SUBSCRIPTIONS_PKG.Generate: page 8 – 315

Predefined Workflow Events: page 14 – 2

p_event_name

p_event_key

PL/SQL Syntax

Description

8 – 298 Oracle Workflow Guide

Receive

function Receive

 (p_subscription_guid in raw,

 p_event in out wf_event_t) return varchar2;

Receives Business Event System object definitions during subscription
processing and loads the definitions into the appropriate Business
Event System tables. This function completes the replication of the
objects from one system to another.

WF_EVENT_FUNCTIONS_PKG.Receive() is defined according the the
standard API for an event subscription rule function. Oracle Workflow
uses WF_EVENT_FUNCTIONS_PKG.Receive() as the rule function for
two predefined subscriptions, one that is triggered when the System
Signup event is raised locally, and one that is triggered when any of the
events in the Seed event group is received from an external source.

The Seed event group includes the following events:

• oracle.apps.wf.event.event.create

• oracle.apps.wf.event.event.update

• oracle.apps.wf.event.event.delete

• oracle.apps.wf.event.group.create

• oracle.apps.wf.event.group.update

• oracle.apps.wf.event.group.delete

• oracle.apps.wf.event.system.create

• oracle.apps.wf.event.system.update

• oracle.apps.wf.event.system.delete

• oracle.apps.wf.event.agent.create

• oracle.apps.wf.event.agent.update

• oracle.apps.wf.event.agent.delete

• oracle.apps.wf.event.subscription.create

• oracle.apps.wf.event.subscription.update

• oracle.apps.wf.event.subscription.delete

• oracle.apps.wf.event.all.sync

Arguments (input)

8 – 299Oracle Workflow APIs

WF_EVENT_FUNCTIONS_PKG.Receive() parses the event data XML
document from the event message that was received and then loads the
Business Event System object definitions into the appropriate tables.

Note: For the event, event group, system, agent, and
subscription definition events,
WF_EVENT_FUNCTIONS_PKG.Receive() calls the Receive APIs
associated with the corresponding tables to parse the XML
document and load the definition into the table.

The globally unique identifier of the subscription.

The event message.

See Also

WF_EVENTS_PKG.Receive: page 8 – 304

WF_EVENT_GROUPS_PKG.Receive: page 8 – 307

WF_SYSTEMS_PKG.Receive: page 8 – 310

WF_AGENTS_PKG.Receive: page 8 – 313

WF_EVENT_SUBSCRIPTIONS_PKG.Receive: page 8 – 316

Predefined Workflow Events: page 14 – 2

p_subscription_
guid

p_event

8 – 300 Oracle Workflow Guide

Business Event System Replication APIs

You can call the following APIs to replicate Business Event System data
across your systems. The replication APIs are stored in the following
PL/SQL packages, each of which corresponds to a Business Event
System table. Oracle Workflow provides both a Generate function and
a Receive function for each table.

• WF_EVENTS_PKG

– WF_EVENTS_PKG.Generate: page 8 – 303

– WF_EVENTS_PKG.Receive: page 8 – 304

• WF_EVENT_GROUPS_PKG

– WF_EVENT_GROUPS_PKG.Generate: page 8 – 306

– WF_EVENT_GROUPS_PKG.Receive: page 8 – 307

• WF_SYSTEMS_PKG

– WF_SYSTEMS_PKG.Generate: page 8 – 309

– WF_SYSTEMS_PKG.Receive: page 8 – 310

• WF_AGENTS_PKG

– WF_AGENTS_PKG.Generate: page 8 – 312

– WF_AGENTS_PKG.Receive: page 8 – 313

• WF_EVENT_SUBSCRIPTIONS_PKG

– WF_EVENT_SUBSCRIPTIONS_PKG.Generate: page 8 – 315

– WF_EVENT_SUBSCRIPTIONS_PKG.Receive: page 8 – 316

Each Generate API produces an XML message containing the complete
information from the appropriate table for the specified Business Event
System object definition. The corresponding Receive API parses the
XML message and loads the row into the appropriate table.

Oracle Workflow uses these APIs during the automated replication of
Business Event System data. The Generate APIs are called by
WF_EVENT_FUNCTIONS_PKG.Generate(), while the Receive APIs are
called by WF_EVENT_FUNCTIONS_PKG.Receive(). See: Generate: page
8 – 296 and Receive: page 8 – 298.

Document Type Definitions

The document type definitions (DTDs) for the Workflow table XML
messages are defined under the master tag WF_TABLE_DATA.
Beneath the master tag, each DTD has a tag identifying the Workflow

8 – 301Oracle Workflow APIs

table name to which it applies, and beneath that, a version tag as well
as tags for each column in the table. The following example shows how
the DTDs are structured:

<WF_TABLE_DATA> <– masterTagName

 <WF_TABLE_NAME> <– m_table_name

 <VERSION></VERSION> <– m_package_version

 <COL1></COL1>

 <COL2></COL2>

 </WF_TABLE_NAME>

</WF_TABLE_DATA>

The Business Event System replication APIs use the following DTDs:

• WF_EVENTS DTD: page 8 – 302

• WF_EVENT_GROUPS DTD: page 8 – 305

• WF_SYSTEMS DTD: page 8 – 308

• WF_AGENTS DTD: page 8 – 311

• WF_EVENT_SUBSCRIPTIONS DTD: page 8 – 314

8 – 302 Oracle Workflow Guide

WF_EVENTS Document Type Definition

The following document type definition (DTD) describes the required
structure for an XML message that contains the complete information
for an event definition in the WF_EVENTS table.

<WF_TABLE_DATA>

 <WF_EVENTS>

 <VERSION></VERSION>

 <GUID></GUID>

 <NAME></NAME>

 <STATUS></STATUS>

 <GENERATE_FUNCTION></GENERATE_FUNCTION>

 <OWNER_NAME></OWNER_NAME>

 <OWNER_TAG></OWNER_TAG>

 <DISPLAY_NAME></DISPLAY_NAME>

 <DESCRIPTION></DESCRIPTION>

 </WF_EVENTS>

</WF_TABLE_DATA>

PL/SQL Syntax

Description

Arguments (input)

8 – 303Oracle Workflow APIs

WF_EVENTS_PKG.Generate

function Generate

 (x_guid in raw)

 return varchar2;

Generates an XML message containing the complete information from
the WF_EVENTS table for the specified event definition.

The globally unique identifier of the event.x_guid

PL/SQL Syntax

Description

Arguments (input)

8 – 304 Oracle Workflow Guide

WF_EVENTS_PKG.Receive

procedure Receive

 (x_message in varchar2);

Receives an XML message containing the complete information for an
event definition and loads the information into the WF_EVENTS table.

An XML message containing the complete
information for an event definition.

x_message

8 – 305Oracle Workflow APIs

WF_EVENT_GROUPS Document Type Definition

The following document type definition (DTD) describes the required
structure for an XML message that contains the complete information
for an event group member definition in the WF_EVENT_GROUPS
table.

Note: Event group header information is defined in the
WF_EVENTS table, similarly to an individual event. Only the
event group member definitions are stored in the
WF_EVENT_GROUPS table.

<WF_TABLE_DATA>

 <WF_EVENT_GROUPS>

 <VERSION></VERSION>

 <GROUP_GUID></GROUP_GUID>

 <MEMBER_GUID></MEMBER_GUID>

 </WF_EVENT_GROUPS>

</WF_TABLE_DATA>

PL/SQL Syntax

Description

Arguments (input)

8 – 306 Oracle Workflow Guide

WF_EVENT_GROUPS_PKG.Generate

function Generate

 (x_group_guid in raw,

 x_member_guid in raw)

 return varchar2;

Generates an XML message containing the complete information from
the WF_EVENT_GROUPS table for the specified event group member
definition.

The globally unique identifier of the event group.

The globally unique identifier of the individual
member event.

x_group_guid

x_member_guid

PL/SQL Syntax

Description

Arguments (input)

8 – 307Oracle Workflow APIs

WF_EVENT_GROUPS_PKG.Receive

procedure Receive

 (x_message in varchar2);

Receives an XML message containing the complete information for an
event group member definition and loads the information into the
WF_EVENT_GROUPS table.

An XML message containing the complete
information for an event group member definition.

x_message

8 – 308 Oracle Workflow Guide

WF_SYSTEMS Document Type Definition

The following document type definition (DTD) describes the required
structure for an XML message that contains the complete information
for a system definition in the WF_SYSTEMS table.

<WF_TABLE_DATA>

 <WF_SYSTEMS>

 <VERSION></VERSION>

 <GUID></GUID>

 <NAME></NAME>

 <MASTER_GUID></MASTER_GUID>

 <DISPLAY_NAME></DISPLAY_NAME>

 <DESCRIPTION></DESCRIPTION>

 </WF_SYSTEMS>

</WF_TABLE_DATA>

PL/SQL Syntax

Description

Arguments (input)

8 – 309Oracle Workflow APIs

WF_SYSTEMS_PKG.Generate

function Generate

 (x_guid in raw)

 return varchar2;

Generates an XML message containing the complete information from
the WF_SYSTEMS table for the specified system definition.

The globally unique identifier of the system.x_guid

PL/SQL Syntax

Description

Arguments (input)

8 – 310 Oracle Workflow Guide

WF_SYSTEMS_PKG.Receive

procedure Receive

 (x_message in varchar2);

Receives an XML message containing the complete information for a
system definition and loads the information into the WF_SYSTEMS
table.

An XML message containing the complete
information for a system definition.

x_message

8 – 311Oracle Workflow APIs

WF_AGENTS Document Type Definition

The following document type definition (DTD) describes the required
structure for an XML message that contains the complete information
for an agent definition in the WF_AGENTS table.

<WF_TABLE_DATA>

 <WF_AGENTS>

 <VERSION></VERSION>

 <GUID></GUID>

 <NAME></NAME>

 <SYSTEM_GUID></SYSTEM_GUID>

 <PROTOCOL></PROTOCOL>

 <ADDRESS></ADDRESS>

 <QUEUE_HANDLER></QUEUE_HANDLER>

 <QUEUE_NAME></QUEUE_NAME>

 <DIRECTION></DIRECTION>

 <STATUS></STATUS>

 <DISPLAY_NAME></DISPLAY_NAME>

 <DESCRIPTION></DESCRIPTION>

 </WF_AGENTS>

</WF_TABLE_DATA>

PL/SQL Syntax

Description

Arguments (input)

8 – 312 Oracle Workflow Guide

WF_AGENTS_PKG.Generate

function Generate

 (x_guid in raw)

 return varchar2;

Generates an XML message containing the complete information from
the WF_AGENTS table for the specified agent definition.

The globally unique identifier of the agent.x_guid

PL/SQL Syntax

Description

Arguments (input)

8 – 313Oracle Workflow APIs

WF_AGENTS_PKG.Receive

procedure Receive

 (x_message in varchar2);

Receives an XML message containing the complete information for an
agent definition and loads the information into the WF_AGENTS table.

An XML message containing the complete
information for an agent definition.

x_message

8 – 314 Oracle Workflow Guide

WF_EVENT_SUBSCRIPTIONS Document Type Definition

The following document type definition (DTD) describes the required
structure for an XML message that contains the complete information
for an event subscription definition in the
WF_EVENT_SUBSCRIPTIONS table.

<WF_TABLE_DATA>

 <WF_EVENT_SUBSCRIPTIONS>

 <VERSION></VERSION>

 <GUID></GUID>

 <SYSTEM_GUID></SYSTEM_GUID>

 <SOURCE_TYPE></SOURCE_TYPE>

 <SOURCE_AGENT_GUID></SOURCE_AGENT_GUID>

 <EVENT_FILTER_GUID></EVENT_FILTER_GUID>

 <PHASE></PHASE>

 <STATUS></STATUS>

 <RULE_DATA></RULE_DATA>

 <OUT_AGENT_GUID></OUT_AGENT_GUID>

 <TO_AGENT_GUID></TO_AGENT_GUID>

 <PRIORITY></PRIORITY>

 <RULE_FUNCTION></RULE_FUNCTION>

 <WF_PROCESS_NAME></WF_PROCESS_NAME>

 <PARAMETERS></PARAMETERS>

 <OWNER_NAME></OWNER_NAME>

 <DESCRIPTION></DESCRIPTION>

 </WF_EVENT_SUBSCRIPTIONS>

</WF_TABLE_DATA>

PL/SQL Syntax

Description

Arguments (input)

8 – 315Oracle Workflow APIs

WF_EVENT_SUBSCRIPTIONS_PKG.Generate

function Generate

 (x_guid in raw)

 return varchar2;

Generates an XML message containing the complete information from
the WF_EVENT_SUBSCRIPTIONS table for the specified event
subscription definition.

The globally unique identifier of the event
subscription.

x_guid

PL/SQL Syntax

Description

Arguments (input)

8 – 316 Oracle Workflow Guide

WF_EVENT_SUBSCRIPTIONS_PKG.Receive

procedure Receive

 (x_message in varchar2);

Receives an XML message containing the complete information for an
event subscription definition and loads the information into the
WF_EVENT_SUBSCRIPTIONS table.

An XML message containing the complete
information for an event subscription definition.

x_message

Index – 1

Index

Symbols
&#NID, 4–12, 4–13, 4–15, 4–32
#FROM_ROLE attribute, 4–25
#HIDE_REASSIGN attribute, 4–25

A
AbortProcess(), 8–36
Access Level, 2–102

default, 2–105
Access level indicator, 4–17
Access property page, 4–17
Access protection

See also Access level; Protection level
preserving customizations, 4–18

AccessCheck(), 8–230
ACCOUNT parameter, 2–59
Acknowledge Ping event, 14–8
ACTID, 7–5, 7–14
Actions, for subscriptions, 13–37
Activities, 3–10, 4–42

accessing from different data stores, 5–7, 6–2
Concurrent Manager, 6–22
copy, 4–60
cost, 4–47
create, 4–48, 4–50, 4–54, 4–57
deferred, 4–47
effective date, 4–59
error process, 4–59
event, 4–42, 4–45
External Java functions, 2–86

for an error process, 6–26
function, 4–42, 4–44
icons, 2–85, 4–49, 4–52, 4–54, 4–58, 4–62
in a loop, 4–60
in the Buyer: Advanced Shipment Notice

process, 15–84
in the Buyer: Receive Supplier Invoicing

process, 15–86
in the Buyer: Receive Supplier PO

Acknowledgement process, 15–81
in the Buyer: Send PO to Supplier process,

15–78
in the Buyer: Top Level PO process, 15–75
in the Detail Ping process, 13–82
in the Master Ping process, 13–80
in the Notify Approver subprocess, 15–21
in the Requisition process, 15–15
in the Supplier: Advanced Shipment Notice

process, 15–99
in the Supplier: Credit Check process, 15–95
in the Supplier: Get Order Details process,

15–92
in the Supplier: Send Supplier Invoice

process, 15–101
in the Supplier: Stock Check process, 15–97
in the Supplier: Top Level Order process,

15–88
in the Workflow Event Protocol process,

14–21
joining branches, 5–4
notification, 4–42, 4–43
optional details, 4–59
process, 4–42, 4–46
processing cost, 8–9
result type, 4–48, 4–52, 4–58

Index – 2 Oracle Workflow Guide

Standard, 4–42, 6–2
statuses, 8–3
System: Error, 4–42
timing out, 5–10
version number, 4–60

Activities(), 8–114
Activity attributes

See also Function activity attributes
setting values for, 5–12

Activity nodes
in the Buyer: Advanced Shipment Notice

process, 15–84
in the Buyer: Receive Supplier Invoicing

process, 15–86
in the Buyer: Receive Supplier PO

Acknowledgement process, 15–81
in the Buyer: Send PO to Supplier process,

15–78
in the Buyer: Top Level PO process, 15–75
in the Detail Ping process, 13–82
in the Master Ping process, 13–80
in the Notify Approver subprocess, 15–21
in the Requisition process, 15–15
in the Supplier: Advanced Shipment Notice

process, 15–99
in the Supplier: Credit Check process, 15–95
in the Supplier: Get Order Details process,

15–92
in the Supplier: Send Supplier Invoice

process, 15–101
in the Supplier: Stock Check process, 15–97
in the Supplier: Top Level Order process,

15–88
in the Workflow Event Protocol process,

14–21
Ad hoc users and roles, 5–24

APIs, 8–121
AddAttr(), 8–216
AddCorrelation(), 8–294
AddItemAttr(), 8–43
addItemAttrDate(), 8–43
AddItemAttrDateArray(), 8–46
addItemAttrNumber(), 8–43
AddItemAttrNumberArray(), 8–46
addItemAttrText(), 8–43

AddItemAttrTextArray(), 8–46
AddParameterToList, 8–253
AddParameterToList(), 8–275
AddParameterToListPos(), 8–276
Address, 8–253
AddUsersToAdHocRole(), 8–138
AdHocDirectory(), 8–118
Administrator privileges, 2–16
Advanced Queues integration, 8–162
Advanced Queuing, 13–2
Agent, datatype, 8–237
Agent Created event, 14–4
Agent Deleted event, 14–5
Agent Updated event, 14–4
Agents, 13–22

defining, 13–29
deleting, 13–33
direction, 13–22
finding, 13–32
pinging, 13–77
protocol, 13–23
queue handlers, 13–25
queues, 13–24
scheduling listeners, 13–56
scheduling propagations, 13–61
updating, 13–33

Agents web page, 13–29, 13–33
ALLOW_FORWARDED_RESPONSE

parameter, 2–61
And activity, 6–2
Any event, 14–10
Any transitions, 5–2
APIs, 8–3
AQ message payload, 8–163
Arrows, 5–2
Assign activity, 6–14
AssignActivity(), 8–74
Asynchronous processes, 8–14, C – 2
Attribute, token substitution, 4–41
Attribute types

attribute, 4–11
date, 4–10, 4–35
document, 4–11, 4–14, 4–36

Index – 3

event, 4–11, 4–36
form, 4–10, 4–13, 4–36
lookup, 4–10, 4–35
number, 4–10, 4–35
role, 4–11, 4–36
text, 4–10, 4–35
URL, 4–10, 4–12, 4–35

Attribute–type attributes, 4–4
Attributes

copy, 4–16
type, 4–3, 4–10, 4–35

AUTOCLOSE_FYI parameter, 2–61
Automatic Notification Handler, 10–25
Automatic replication, of Event Manager

objects, 13–71
Automatic responses, 10–25
Automatic routing, 10–25

B
B2B Advanced Shipment Notice event, 15–106
B2B Invoice event, 15–107
B2B Purchase Order Acknowledgement event,

15–105
B2B Purchase Order event, 15–102
Background engine, scripts, 16–7
Background Engines

about, 2–43
scripts, 16–6
starting, 2–44
submitting, 2–45

Background(), 8–41
BeginActivity(), 8–67
Block activity, 6–5
Business Event System, 1–3

checking setup, 13–53
managing business events, 13–2
overview, 8–235
Ping/Acknowledge example, 13–77
predefined events, 14–2
setting up, 2–96

Business Event System Replication APIs, 8–300

Business events, 13–4
in Workflow processes, 8–17

Buyer Workbench, web page, 15–67
Buyer: Advanced Shipment Notice process,

summary, 15–83
Buyer: Receive Supplier Invoicing process,

summary, 15–85
Buyer: Receive Supplier PO Acknowledgement

process, summary, 15–80
Buyer: Send PO to Supplier process, summary,

15–78
Buyer: Top Level PO process, summary, 15–73

C
Callback functions, 7–13

command, 7–15
for item types, 4–5

Cancel(), 8–209
CancelGroup(), 8–210
Check Setup web page, 13–53, 13–58, 13–62
Checking

activity versions, 16–17
background engines, 16–7
directory service data model, 16–10
foreign/primary key references, 16–13
workflow data model, 16–16

CLEAR(), 8–102
ClearMsgStack(), 8–180
Close(), 8–215
Compare Date activity, 6–3
Compare Event Property activity, 6–16
Compare Execution Time activity, 6–3
Compare Number activity, 6–3
Compare Text activity, 6–3
compareTo(), 8–100
Comparison activities, 6–3
CompleteActivity(), 8–69
CompleteActivityInternalName(), 8–72
Concurrent Manager activities, 6–22
Concurrent Manager Functions item type, 6–22
Concurrent program

FNDWFLST, 16–4

Index – 4 Oracle Workflow Guide

FNDWFPR, 16–5
Concurrent programs

Notification Mailer, 2–48, 2–56
Purge Obsolete Workflow Runtime Data,

8–119
Workflow Agent Listener, 8–272
Workflow Background Process, 2–45
Workflow Definitions Loader, 2–109
Workflow Resource Generator, 8–105

CONNECT parameter, 2–58
Constants, WFAttribute class, 8–90
Content, 8–252
Content–attached checkbox, 4–37
CONTEXT(), 8–108
Continue Flow activity, 6–12
Coordinating master/detail activities, 6–11
Cost threshold, 4–47
CreateAdHocRole(), 8–136
CreateAdHocUser(), 8–134
CreateForkProcess(), 8–38
CreateMsg(), 8–181
CreateProcess(), 8–21
Custom logos, in web pages, 2–84
Customization Level, 2–105

for activities, 4–8, 4–11, 4–20, 4–32, 4–50,
4–53, 4–56, 4–58, 4–63

D
Data types, wf_payload_t, 8–163
Database links

checking, 13–55
creating, 2–96

Datatypes
example, 8–255
for the Business Event System, 8–236
WF_AGENT_T, 8–237
WF_EVENT_T, 8–242
WF_PARAMETER_LIST_T, 8–241
WF_PARAMETER_T, 8–239

Date–type attributes, 4–3
DBA Studio, 2–96
DEBUG parameter, 2–62

Default Error Process, 6–28
Default Event Error Process, 6–34
Default transitions, 5–2
DEFAULT_ERROR, 6–28
DEFAULT_EVENT_ERROR, 6–34
Default_Rule(), 8–281
Defer Thread activity, 6–6
Deferred activities, 2–43, 4–47

performance, C – 7
Deferred processing

for event subscriptions, 13–41
for workflow processes, 2–43, 8–9, C – 7

DeferredQueue function, 8–177
Delete

all workflow data, 16–14
data for an item type, 16–15
item type attributes, 16–14
runtime data for an item type, 16–15, C – 9
workflow status information, 16–15

Demonstration, directory service, 15–7
Dequeue, queue handler, 7–24
DequeueEventDetail(), 8–170
DequeueException(), 8–176
DequeueOutbound(), 8–167
Detail Notification web page, 10–19
Detail Ping process, summary, 13–81
Detail process, 6–12
Detail Survey process

activities, 15–47
summary, 15–46

Diagram arrows, 5–2
Direct Response e–mail, 10–3
DIRECT_RESPONSE parameter, 2–60
Directory repository, 2–21
Directory Service

in Navigator tree, 3–4
view from Builder, 5–26

Directory services, 2–21
checking the data model, 2–27, 16–10
integrating with local workflow users, 2–28
integrating with native Oracle users, 2–27
integrating with Oracle HR, 2–27
synchronization, 2–30, 8–144

Index – 5

Directory Services APIs, 8–121
DISCARD parameter, 2–63
Dispatch mode, 13–43
Document integration, 4–3, 4–11, 4–36, 7–17
Document Management, item type, 15–49
Document Management APIs, 8–185
Document management integration, 4–3, 4–6
Document message attributes, attached vs

embedded, 4–37
Document Review process, 15–49

activities, 15–52
summary, 15–50

Document Type Definitions
Business Event System, 8–300
WF_AGENTS, 8–311
WF_EVENT_GROUPS, 8–305
WF_EVENT_SUBSCRIPTIONS, 8–314
WF_EVENTS, 8–302
WF_SYSTEMS, 8–308

Document–type attributes, 4–3
Documents, 4–6
Dynamic priority, 5–11
Dynamic timeouts, 5–10

E
E–mail notifications, 1–5, 2–48

and HTML attachments, 2–4
example direct response instructions, 10–7
modifying mail templates, 2–69
requirements, 2–4
summaries, 10–24
templates for, 2–48, 10–3
with HTML attachments, 10–2

Edit menu, A – 3
Effective date, 3–16
Effective dates, 3–14, 3–16, 4–59, 8–11
Effectivity, dates of, 3–7
END activities, 5–4
End Activity, 6–8
Engine thresholds, 2–47
Enqueue, queue handler, 7–23

Enqueue(), 8–269
EnqueueInbound(), 8–165
Environment variables

WF_ACCESS_LEVEL, 2–102, 2–106
WF_RESOURCES, 2–42

Error activities, 6–26
Error Check process, 15–54

activities, 15–57
summary, 15–56

Error handling
for event subscriptions, 13–44
for process activities, 8–77
for workflow processes, 8–10

Error process, 4–59, 6–26
Error(), 8–284
Error_Rule(), 8–288
Errored activities, retrying, 16–13
Event activities, 4–45

create, 4–54
Workflow Engine, 8–17

Event activity attributes, 4–56
Event activity details, 5–12
Event APIs, 8–260
Event Created event, 14–2
Event data, 7–21, 13–5, 13–36
Event data URL, 8–50
Event Deleted event, 14–3
Event Function APIs, 8–290
Event Group Creation event, 14–3
Event Group Deleted event, 14–3
Event Group Updated event, 14–3
Event groups, 13–4

defining, 13–8
Event Manager, 13–3
Event messages

datatype, 8–242
enqueuing, 16–10

Event nodes, 5–12
Event Rule APIs, 8–279
Event subscriptions, 13–34

rule functions, 7–25
Event Subscriptions web page, 13–52
Event System Demonstration

data model, 15–64

Index – 6 Oracle Workflow Guide

initiating, 15–66
overview, 15–63
setting up, 15–66

Event System Demonstration process,
installing, 15–64

Event System Local Queues web page, 13–73
Event Updated event, 14–2
Event(), 8–75
Event–type attributes, 4–4
Events, 13–4

defining, 13–5
deleting, 13–15
finding, 13–14
predefined, 14–2
raising, 13–4, 13–65
sending to agents, 13–39
sending to workflow processes, 13–38
updating, 13–15

Events web page, 13–5, 13–8, 13–15, 13–45
Events: Buyer Workbench, web page, 15–67
Events: Track Order, web page, 15–69
Example function activity

Select Approver, 15–26
Verify Authority, 15–29

Example process
Event System Demonstration, 15–63
Requisition, 15–5

Execute Concurrent Program activity, 6–22
execute(), 8–89
External document integration, 4–6
External Java function activities, 2–86, 8–5,

8–82

F
FAILCOMMAND parameter, 2–62
File menu, A – 2
Find Agent web page, 13–32
Find Event web page, 13–14, 13–50
Find Notifications web page, 10–15
Find System web page, 13–19
FND_FNDWFIAS, 11–8

FND_FNDWFNOT, 10–14
FNDWFLST, 8–272

concurrent program, 16–4
FNDWFPR, 8–119

concurrent program, 16–5
Fonts

modifying, 5–21
setting, 5–21

Forced synchronous processes, 8–14, C – 2
Form–type attributes, 4–3
FORWARD mode, 8–13
Forward(), 8–194, 8–205
Frame target, URL attributes, 4–37
FROM parameter, 2–59
FROM_ROLE attribute, 4–25
FUNCMODE, 7–5, 7–6
Function activities, 4–44

create, 4–50
standard Java API, 7–8
standard PL/SQL API, 7–3

Function activity attributes, 4–8, 4–53
Functions, 3–10

See also PL/SQL procedures
Future–dated events, 13–41

G
Generate function, 13–5
Generate()

WF_AGENTS_PKG, 8–312
WF_EVENT_FUNCTIONS_PKG, 8–296
WF_EVENT_GROUPS_PKG, 8–306
WF_EVENT_SUBSCRIPTIONS_PKG, 8–315
WF_EVENTS_PKG, 8–303
WF_SYSTEMS_PKG, 8–309

Get Event Property activity, 6–15
Get Monitor URL activity, 6–14
GET_ERROR(), 8–103
get_launch_attach_url(), 8–187
get_launch_document_url(), 8–186
get_open_dm_select_window(), 8–188, 8–189
get_pref(), 8–148
GetAccessKey(), 8–150

Index – 7

getActivityAttr(), 8–85
GetActivityAttrClob(), 8–66
GetActivityAttrDate(), 8–64
GetActivityAttrEvent(), 8–64
GetActivityAttrInfo(), 8–63
GetActivityAttrNumber(), 8–64
GetActivityAttrText(), 8–64
GetActivityLabel(), 8–25
GetAdvancedEnvelopeURL(), 8–155
GetAttrDate(), 8–223
GetAttrDoc(), 8–225
GetAttrInfo(), 8–219
GetAttrNumber(), 8–223
GetAttrText(), 8–223
GetBody(), 8–227
getCorrelationID, 8–246
GetDiagramURL(), 8–151
GetEnvelopeURL(), 8–153
getErrorMessage, 8–248
getErrorStack, 8–248
getErrorSubscription, 8–247
getEventData, 8–247
getEventKey, 8–247
getEventName, 8–246
getFormat(), 8–97
getFromAgent, 8–247
GetInfo(), 8–220
getItemAttr(), 8–87
GetItemAttrClob(), 8–60
GetItemAttrDate(), 8–57
GetItemAttrDocument(), 8–59
GetItemAttrEvent(), 8–57
getItemAttributes(), 8–61
GetItemAttrInfo(), 8–62
GetItemAttrNumber(), 8–57
GetItemAttrText(), 8–57
getItemTypes(), 8–56
GetItemUserKey(), 8–24
GetMessageHandle(), 8–175
getName

WF_AGENT_T, 8–237

WF_PARAMETER_T, 8–239
WFAttribute, 8–94

getNotificationAttributes(), 8–233
getNotifications(), 8–232
getParameterList, 8–246
getPriority, 8–245
getProcessStatus(), 8–81
getReceiveDate, 8–246
GetRoleDisplayName(), 8–131
GetRoleInfo(), 8–125
GetRoleInfo2(), 8–126
GetRoleName(), 8–130
GetRoleUsers(), 8–123
getSendDate, 8–245
GetShortBody(), 8–228
GetShortText(), 8–222
GetSubject(), 8–226
getSystem, 8–237
GetText(), 8–221
getToAgent, 8–247
getType(), 8–96
GetUserName(), 8–129
GetUserRoles(), 8–124
getValue

WF_PARAMETER_T, 8–239
WFAttribute, 8–95

GetValueForParameter, 8–253
GetValueForParameter(), 8–277
GetValueForParameterPos(), 8–278
getValueType(), 8–98
Global Preferences, web page, 2–14
Global variables, 4–2

H
HandleError(), 8–77
Hardware requirements, 2–2
Help menu, A – 6
Hidden item types, 3–4
HIDE_REASSIGN attribute, 4–25
Home page, 9–2
HTML_MAIL_TEMPLATE parameter, 2–65

Index – 8 Oracle Workflow Guide

HTMLAGENT parameter, 2–62

I
Icons, 2–85

viewing, 4–49, 4–52, 4–54, 4–58
IDLE parameter, 2–61
InboundQueue function, 8–178
Init.ora parameters, 13–54
Initialize, 8–245
Initiating a workflow process, 15–8, 15–36,

15–66
Internal names

updating activity, 16–7
updating activity attributes, 16–7
updating item attributes, 16–8
updating item types, 16–8
updating lookup codes, 16–8
updating lookup types, 16–9
updating message attributes, 16–9
updating messages, 16–9

IsPerformer(), 8–127
Item attributes, external document integration,

4–6
Item type attributes, 4–2, 4–8, 8–12

arrays, 8–13
Event System Demonstration, 15–71
performance, C – 3
Requisition, 15–12
Workflow Send Protocol, 14–18

Item types, 3–9, 4–2
callback function, 4–5
Concurrent Manager Functions, 6–22
context reset, 7–13
copy, 4–15
creation, 4–7
Event System Demonstration, 15–71
loading, 3–12, 3–13
persistence type, 4–4, C – 8
Requisition, 15–12
saving, 3–12
selector functions, 4–5, 7–13
Standard, 6–2
System: Error, 6–26

System: Mailer, 2–69
Workflow Agent Ping/Acknowledge, 13–78
Workflow Send Protocol, 14–18

ITEMKEY, 7–4, 7–14
Items(), 8–113
ItemStatus(), 8–80
ITEMTYPE, 7–4, 7–14

J
Java API, for function activities, 7–8
Java APIs, 8–5
Java Function Activity Agent, 2–86

starting, 2–86
stopping, 2–95, 16–11

Java interface, 8–5
Java monitor tool, 11–2
Java Runtime Environment, 2–5
JavaScript, support in a Web browser, 2–4
Joining activities, 5–4

L
Launch Process activity, 6–6
LaunchProcess(), 8–30
LDAP, 2–30
LDAP APIs, 2–34, 8–144
List of values, in a web interface, 10–24, 13–22
Listen(), 8–270
Listeners

deleting, 13–61
for inbound agents, 13–56
running, 16–6
scheduling, 13–58
updating, 13–61

Load balancing, 6–9
loadActivityAttributes(), 8–84
Loader program. See Workflow Definitions

Loader
Loading item types, 3–13
loadItemAttributes(), 8–83
Local system, 13–17
LOG parameter, 2–62

Index – 9

Log(), 8–283
Login Server, 2–32
Lookup codes, copy, 4–22
Lookup types, 3–9, 4–19

copy, 4–22
creation, 4–20

Lookup–type attributes, 4–3
Loop Counter activity, 6–7
Loop Reset, 5–3
Loops, 4–60, 7–6, 8–10

M
MAPI–compliant mail application, 2–55
Master Ping Process, summary, 13–79
Master process, 6–12
Master/copy systems, 13–72
Master/Detail coordination activities, 6–11

notes on usage, 6–13
Menus, Oracle Workflow Builder, A – 2
Message attributes, 4–23, 4–24, 4–33, 4–34,

15–32
#FROM_ROLE, 4–25
#HIDE_REASSIGN, 4–25
for Workflow Cancelled Mail message, 2–78
for Workflow Closed Mail message, 2–81
for Workflow Invalid Mail message, 2–79
for Workflow Open FYI Mail message, 2–77
for Workflow Open Mail (Direct) message,

2–73
for Workflow Open Mail (Templated)

message, 2–70
for Workflow Open Mail for Outlook

Express message, 2–75
for Workflow Summary Mail message, 2–82
for Workflow URL Attachment message,

2–77
for Workflow Warning Mail message, 2–82
formatted table, 4–26
performance, C – 5
Respond, 4–25, 4–35, 4–39
Send, 4–24, 4–35
source, 4–24, 4–35

Message function, WF_NOTIFICATION(),
4–26

Message propagation, setting up, 13–53
Message templates, for e–mail notifications,

2–69
Messages, 3–9

body, 4–31, 15–31
copy, 4–41
creation, 4–29
overriding default priority, 5–11
subject, 4–30, 15–31
viewing, 15–32

Messages window, 4–23
MIME support, 2–49
Mod_osso, 2–32
Monitoring

Workflow Monitor, 11–2
workitems, 1–5

Multi–consumer queues, 13–40
Multilingual support, 16–5, 16–12

N
Naming conventions, PL/SQL stored

procedures, 15–15
Navigator Toolbar, A – 7
Navigator tree, finding objects in, 3–6
NewAgent(), 8–267
NLS codeset, 2–65
NLS support

in a web session, 2–39
in e–mail notifications, 2–39
in Oracle Workflow Builder, 2–38

Node activities, dynamic priority, 5–11
NODE parameter, 2–59
Nodes

adding to a process, 5–6
start and end, 5–8

NOOP activity, 6–7
Notification, status, 16–12
Notification access keys, 10–3
Notification activities, 4–43

coupling with custom functions, 4–49, 8–13
create, 4–48

Index – 10 Oracle Workflow Guide

Notify Requisition Approval Required,
15–31

Notification APIs, 8–192, 8–197
Notification functions, 4–49, 8–13
Notification history, 4–26
Notification ID token, 4–12, 4–13, 4–15, 4–32
Notification IDs, 10–3
Notification Mailer

about, 2–48
configuration file, 2–58
MIME support, 2–49
notification preference, 2–49
required folders, 2–63
response processing, 2–67
script to restart, 2–67
shutdown, 2–48
starting, 2–56
starting for MAPI–compliant applications,

2–57
starting for UNIX Sendmail, 2–55

Notification method, 10–2
Notification preference, 9–8
Notification preferences, 2–20, 2–49
Notification summaries, via e–mail, 10–24
Notification System, 2–48, 8–192
Notification templates, for e–mail notifications,

2–69
Notification Web page, 1–5

reassigning notifications, 10–22
Notifications, 10–2

dependence on directory services, 10–2
forwarding, 8–194
hiding the Reassign button, 4–25
HTML–formatted e–mail, 10–9
identifying the responder, 8–211
load balancing, 6–9
plain text e–mail using direct response, 10–6
plain text e–mail using templated response,

10–5
plain text e–mail with attachments, 10–11
reassign in Notification Web page, 10–22
reassign via e–mail, 10–12
responding with Notification Web page,

10–22

setting the From Role, 4–25
timed out, 8–195
transferring, 8–195
via e–mail, 2–48, 10–2
via Notification Web page, 10–13

Notifications Worklist. See Worklist web page
Notifications(), 8–115
Notify activity, 6–9
Notify Approver, example notification

activities, 15–31
Notify Approver subprocess, summary, 15–19
Notify Requisition Approval Required, 15–31
Number–type attributes, 4–3

O
OMBAQ_TEXT_MSG, 8–257
On Revisit, 8–11
OpenNotificationsExist(), 8–214
Or activity, 6–2
Oracle Advanced Queues integration, 8–162
Oracle Advanced Queuing, 13–2
Oracle Applications Manager, 1–5
Oracle DBA Studio, 2–96
Oracle HTTP Server, 2–32

identifying the Workflow web agent, 2–17
Workflow server requirements, 2–4

Oracle Internet Directory, 2–30
Oracle Message Broker, 2–100
Oracle Net Services, 2–2
Oracle Workflow, implementation issues, 2–6
Oracle Workflow Builder, 1–3

Loader functionality, 3–15
overview, 3–2
requirements, 2–2
save modes, 3–15, 4–17
starting from command line, 3–17

Oracle Workflow home page, 9–2
Oracle Workflow Manager, 1–5
Oracle Workflow views, 8–157
Oracle9i Application Server, Workflow server

requirements, 2–4
Oracle9iAS Single Sign–On, 2–32

Index – 11

OutboundQueue function, 8–179

P
Parameter, datatype, 8–239
Parameter list, datatype, 8–241
Parameters(), 8–291
Partitioning Workflow tables, 2–12, C – 8
Payload, for Advanced Queues messages,

8–163
Performance

concepts, C – 2
deferred activities, C – 7
item attributes, C – 3
message attributes, C – 5
partitioning Workflow tables, C – 8
purging, C – 8
subprocesses, C – 5
synchronous and asynchronous workflows,

C – 2
Periodic Alert, item type, 15–54
Persistence, 4–4, C – 8
Phase numbers, 13–36, 13–42
Ping Agent event, 14–8
Pinging agents, 13–77
PL/SQL, 1–4

document, 7–17
PL/SQL APIs

for a ’PL/SQL CLOB’ document, 7–17
for a ’PL/SQL’ document, 7–17
for a Queue Handler, 7–23
for a selector or callback function, 7–13
for an Event Data Generate Function, 7–21
for an Event Subscription Rule Function,

7–25
for function activities, 7–3

PL/SQL CLOB, document, 7–17, 7–19
PL/SQL documents, 4–6
PL/SQL stored procedures

creating, 15–15
naming conventions, 15–15
scripts, 15–15

Post–notification functions, 4–43, 8–13

Predefined events, 14–2
Preferred notification method, 10–2
Preserving customizations, for an activity, 4–18
Process activities, 4–46

create, 4–57
Process definition, modifying, 3–11
Process diagram

adding nodes, 5–6
drawing, 5–2, 5–6

PROCESS parameter, 2–63
Process rollback, 8–77
Process window, 5–2

editing, 5–2
Process Window Toolbar, A – 8
Processes

activity transitions, 5–2
copying to clipboard, 5–20
creation, 3–7
editing, 3–10, 3–12
loops, 7–6, 8–10
overview, 5–19
printing, 5–20
starting, 5–4
verify, 5–21

ProcessInboundQueue(), 8–174
Product Survey, web page, 15–36
Product Survey item type, 15–38
Product Survey process, 15–34

initiating, 15–36
installing, 15–35

Propagation, setting up, 13–53
Propagations

deleting, 13–65
for outbound agents, 13–61
scheduling, 13–62
updating, 13–65

Protection level, 2–103
reset, 16–12

Protection level locking. See Access protection
Protocols, 13–23
Purge

outbound notification message queue, 16–12
performance, C – 8
runtime data, 16–5

Index – 12 Oracle Workflow Guide

Workflow Purge APIs, 8–111
Purge Obsolete Workflow Runtime Data

concurrent program, 8–119
PurgeEvent(), 8–172
PurgeItemType(), 8–173

Q
Queue handlers, 7–23, 13–25

WF_EVENT_OMB_QH, 2–100
Queue tables, 2–97
Queues

assigned to agents, 13–24
checking, 13–56
reviewing, 13–72
setting up, 2–97

R
Raise Event web page, 13–66
RAISE(), 8–105
Raise(), 8–261
Raising events, 13–4, 13–65
Reassign notifications

hiding the Reassign button, 4–25
in Notification Web page, 10–22
via e–mail, 10–12

Reassign web page, 10–22
Receive date, for event messages, 8–270
Receive()

WF_AGENTS_PKG, 8–313
WF_EVENT_FUNCTIONS_PKG, 8–298
WF_EVENT_GROUPS_PKG, 8–307
WF_EVENT_SUBSCRIPTIONS_PKG, 8–316
WF_EVENTS_PKG, 8–304
WF_SYSTEMS_PKG, 8–310

RemoveUsersFromAdHocRole, 8–143
Replication APIs, Business Event System,

8–300
REPLYTO parameter, 2–62
Requirements, hardware and software, 2–2
Requisition, data model, 15–6

Requisition Demonstration, web page, 15–8
Requisition process, 15–5

example function activities, 15–26
initiating, 15–8
installing, 15–6
summary, 15–13

Reset process. See Rollback
RESET_FAILED parameter, 2–65
RESET_NLS parameter, 2–65
Respond attributes, 2–70, 2–72, 2–75, 2–79
RESPOND mode, 8–13
Respond to notification

HTML–formatted e–mail, 10–9
plain text e–mail using direct response, 10–6
plain text e–mail using templated response,

10–5
plain text e–mail with attachments, 10–11
via Notification Web page, 10–13

Respond(), 8–194, 8–211
Responder, 8–211
Responder(), 8–212
Response methods, direct vs. templated, 2–60
Response processing, by Notification Mailer,

2–67
Responses, processing, 8–194
RESULT, 7–5, 7–15
Result type

for activities, 4–48, 4–52, 4–58
for voting activities, 4–62

ResumeProcess(), 8–34
Retry Error, 6–32
RETRY_ONLY, 6–32
Role

administrator, 2–16
property page, 5–26

Role Resolution activity, 6–9
Role–type attributes, 4–4
Roles, 5–24

ad hoc, 5–24
loading into the Workflow Builder, 5–25
tab page, 5–24
view from Builder, 5–26

Rollback, of process, 8–77
Routing, automatic, 10–25

Index – 13

Routing rules
deleting, 10–32
for a role, 10–27
listing, 10–26
overriding, 10–31
updating, 10–32

Rule functions, 7–25
for event subscriptions, 13–37

Runtime data, C – 8

S
Sample workflow processes, 15–2
Savepoints, 7–3, 7–8, 8–4
Schedule_changes(), 8–147
Seed event group, 14–6
Select Approver function activity, 15–26
Selector functions, 4–5, 7–13
Send date, for event messages, 8–265
Send(), 8–192, 8–199, 8–265
SEND_ACCESS_KEY parameter, 2–66
SendGroup(), 8–192, 8–203
Set Event Property activity, 6–15
set_document_id_html(), 8–190
SetAdHocRoleAttr(), 8–142
SetAdHocRoleExpiration(), 8–140
SetAdHocRoleStatus(), 8–133
SetAdHocUserAttr(), 8–141
SetAdHocUserExpiration(), 8–139
SetAdHocUserStatus(), 8–132
SetAttrDate(), 8–217
SetAttrNumber(), 8–217
SetAttrText(), 8–217
setCorrelationID, 8–249
SetDispatchMode(), 8–274
SetErrorInfo(), 8–273
setErrorMessage, 8–251
setErrorStack, 8–252
setErrorSubscription, 8–251
setEventData, 8–250

setEventKey, 8–250
setEventName, 8–250
setFromAgent, 8–251
SetItemAttrDate(), 8–48
SetItemAttrDateArray(), 8–53
SetItemAttrDocument(), 8–51
SetItemAttrEvent(), 8–48
SetItemAttrNumber(), 8–48
SetItemAttrNumberArray(), 8–53
SetItemAttrText(), 8–48
SetItemAttrTextArray(), 8–53
setItemAttrValue(), 8–88
SetItemOwner(), 8–26
SetItemParent API, 6–12
SetItemParent(), 8–79
SetItemUserKey(), 8–23
SetMsgAttr(), 8–183
SetMsgResult(), 8–184
setName

WF_AGENT_T, 8–238
WF_PARAMETER_T, 8–240

setParameterList, 8–249
SetParametersIntoParameterList(), 8–289
setPriority, 8–248
setReceiveDate, 8–249
setSendDate, 8–248
setSystem, 8–238
setToAgent, 8–251
setValue, 8–240
Shortcuts, 5–22
Shutdown files, 2–62
SHUTDOWN parameter, 2–62
Single sign–on, 2–30, 2–32
Single–consumer queues, 13–40
Software requirements, 2–2
Source types, 13–35
Standard activities, 6–2
Standard APIs

for ”PL/SQL CLOB” documents, 7–17, 7–19
for ”PL/SQL” documents, 7–17
for a Queue Handler, 7–23

Index – 14 Oracle Workflow Guide

for an Event Data Generate Function, 7–21
for an Event Subscription Rule Function,

7–25
for function activities, 7–3, 7–8
for selector/callback functions, 7–13

Standard error process, 6–26
Standard item type, 6–2
START activities, 5–4
Start activity, 6–8
StartForkProcess(), 8–40
StartProcess function, for sample Requisition

process, 15–23
StartProcess(), 8–28
Status report

developer, 16–16
end user, 16–16

Stuck processes, 2–43
Submit Concurrent Program activity, 6–23
Subprocesses

performance, C – 5
timing out, 5–10

Subscription Created event, 14–5
Subscription Deleted event, 14–5
Subscription Updated event, 14–5
SubscriptionParameters(), 8–293
Subscriptions, 13–34

deferring, 13–41
defining, 13–45
deleting, 13–52
finding, 13–50
predefined, 14–2
updating, 13–52

Success(), 8–286
SUMMARYONLY parameter, 2–59
Supplier: Advanced Shipment Notice process,

summary, 15–98
Supplier: Credit Check process, summary,

15–94
Supplier: Get Order Details process, summary,

15–91
Supplier: Send Supplier Invoice process,

summary, 15–100
Supplier: Stock Check process, summary, 15–96

Supplier: Top Level Order process, summary,
15–87

Survey–Master/Detail process
activities, 15–44
summary, 15–42

Survey–Single Process, activities, 15–41
Survey–Single process, summary, 15–39
SuspendProcess(), 8–32
Synch_all(), 8–146
Synch_changes(), 8–145
Synchronization, with Oracle Internet

Directory, 2–30, 2–34, 8–144
Synchronize Event Systems event, 14–5
Synchronous processes, 8–14, C – 2
System Created event, 14–4
System Deleted event, 14–4
System identifier, 13–68
System Identifier web page, 13–68
System integration, 13–2
System Signup event, 14–9
System Signup web page, 13–69
System Updated event, 14–4
System: Error item type, 6–26
System: Mailer item type, 2–69
Systems, 13–17

defining, 13–18
deleting, 13–21
finding, 13–19
local, 13–17
master/copy, 13–72
signing up, 13–67, 13–69
synchronizing, 13–70
updating, 13–21

Systems web page, 13–18, 13–21

T
Tag files, 2–63
TAGFILE parameter, 2–63
TCP/IP drivers, 2–2
Templated Response e–mail, 10–3
Test harness, 12–2
Test(), 8–268

Index – 15

TEST_ADDRESS parameter, 2–62
TestContext(), 8–229
Text–type attributes, 4–3
Timed out processes, 2–43, C – 7
Timeout transitions, 5–2, 5–3
Timeouts, 5–10

dynamic, 5–10
Token substitution

attributes, 4–41
of document–type message attributes, 4–14

TOKEN(), 8–104
Toolbars, Oracle Workflow Builder, A – 7
toString(), 8–99
Total(), 8–116
TotalPERM(), 8–117
TRANSFER mode, 8–13
Transfer(), 8–195, 8–207
Transitions, 5–2

Any, 5–2
creating, 5–18
Default, 5–2
editing, 5–18
Timeout, 5–2

TRANSLATE(), 8–110
Translation, 2–38

U
Unexpected event, 14–12
UNIX Sendmail, 2–55
UNPROCESS parameter, 2–63
Upgrading workflow definitions, 8–12
URL attributes, frame target, 4–37
URL message attributes, attached vs

embedded, 4–37
URL–type attributes, 4–3
URLs

for event data, 8–50
for Event System Demonstration web pages,

15–67, 15–69
for Find Notifications Routing Rules web

page, 10–27

for Find Notifications web page, 10–13
for Find Processes web page, 11–8
for Notifications Routing Rules web page,

10–26
for Oracle Workflow home page, 9–2
for Product Survey web page, 15–36
for Requisition Demonstration web page,

15–10
for the Workflow Monitor, 11–7
for Worklist web page, 10–13

User Defined Alert Action process
activities, 15–61
summary, 15–60

User Entry Has Changed event, 14–15
User Preferences, web page, 9–6
User preferences, 2–14

document management home, 2–20, 9–8
language and territory, 2–19, 9–7
notification preference, 2–20, 9–8

User–defined datatypes, for the Business Event
System, 8–236

UserActive(), 8–128
Users, ad hoc, 5–24

V
Vacation forwarding, 10–25
value(), 8–93
Verify Authority function activity, 15–29
Version, 8–11, 16–16

of Oracle Workflow, 2–9
Version compatibility, 2–9
Version number, for activities, 4–60
Versioning, 3–7
View menu, A – 4
View notifications

e–mail summary, 10–24
electronic mail, 10–2
Notification Web page, 10–13
web browser, 10–12

Views, Oracle Workflow, 8–157
Vote Yes/No activity, 6–10
VoteCount(), 8–213
Voting activities

processing, 8–195

Index – 16 Oracle Workflow Guide

result type, 4–62
Voting activity, 4–61

W
Wait activity, 6–4
Wait for Concurrent Program activity, 6–24
Wait for Flow activity, 6–12
Warning(), 8–285
Web agent, for Oracle Workflow, 2–17
Web home page, 9–2
Web notifications, requirements, 2–4
WF_ACCESS_LEVEL, 2–102, 2–106
WF_AGENT_T, 8–237
WF_AGENTS Document Type Definition,

8–311
WF_AGENTS_PKG.Generate, 8–312
WF_AGENTS_PKG.Receive, 8–313
WF_DEFERRED agent, 13–25
WF_DEFERRED queue, 2–97
WF_ENGINE.BACKROUND, 2–44
WF_ERROR agent, 13–25
WF_ERROR queue, 2–97
WF_ERROR_QH, 13–25
WF_EVENT_FUNCTIONS_PKG.Generate(),

8–296
WF_EVENT_FUNCTIONS_PKG.Receive(),

8–298
WF_EVENT_GROUPS Document Type

Definition, 8–305
WF_EVENT_GROUPS_PKG.Generate, 8–306
WF_EVENT_GROUPS_PKG.Receive, 8–307
WF_EVENT_OMB_QH, 13–25

attribute mapping, 8–257
setting up, 2–100

WF_EVENT_QH, 13–25
WF_EVENT_SUBSCRIPTIONS Document

Type Definition, 8–314
WF_EVENT_SUBSCRIPTIONS_PKG.Generate,

8–315
WF_EVENT_SUBSCRIPTIONS_PKG.Receive,

8–316

WF_EVENT_T, 8–242
mapping attributes to OMBAQ_TEXT_MSG,

8–257
WF_EVENTS Document Type Definition,

8–302
WF_EVENTS_PKG.Generate, 8–303
WF_EVENTS_PKG.Receive, 8–304
WF_IN agent, 13–25
WF_IN queue, 2–97
WF_ITEM_ACTIVITY_STATUSES_V, 8–157
WF_ITEMS_V, 8–161
WF_LANGUAGES view, 2–38
WF_LOCAL_* tables, 2–21
WF_NOTIFICATION() message function, 4–26
WF_NOTIFICATION_ATTR_RESP_V, 8–159
WF_OUT agent, 13–25
WF_OUT queue, 2–97
WF_PARAMETER_LIST_T, 8–241
WF_PARAMETER_T, 8–239
wf_payload_t, 8–163
WF_PURGE, 8–111
WF_REQDEMO.SelectApprover, 15–26
WF_REQDEMO.StartProcess, 15–8
WF_REQDEMO.VerifyAuthority, 15–18, 15–29
WF_RESOURCES, environment variable, 2–42
WF_ROLES, view, 2–24
WF_RUNNABLE_PROCESSES_V, 8–160
WF_SYSTEMS Document Type Definition,

8–308
WF_SYSTEMS_PKG.Generate, 8–309
WF_SYSTEMS_PKG.Receive, 8–310
WF_USER_ROLES, view, 2–25
WF_USERS, view, 2–22
Wfagtlst.sql, 16–6
WFAttribute class, 8–90
WFAttribute(), 8–92
Wfbkg.sql, 16–6
Wfbkgchk.sql, 16–7
Wfchact.sql, 16–7
Wfchacta.sql, 16–7
Wfchita.sql, 16–8
Wfchitt.sql, 16–8

Index – 17

Wfchluc.sql, 16–8
Wfchlut.sql, 16–9
Wfchmsg.sql, 16–9
Wfchmsga.sql, 16–9
Wfdirchk.sql, 16–10
wfdircsv.sql, 2–28
wfdirhrv.sql, 2–27
wfdirouv.sql, 2–27
wfevquec.sql, 2–99
wfevqued.sql, 2–99
Wfevtenq.sql, 16–10
WFFunctionAPI class, 8–82
wfjvlsnr.bat, 2–87
wfjvlsnr.csh, 2–87
Wfjvstop.sql, 16–11
WFLOAD, 2–109
wfload, 2–108
wfmail.cfg, 2–58
Wfmqupd.sql, 16–12
WFNLADD.sql, 16–5
WFNLENA.sql, 16–12
Wfntfsh.sql, 16–12
Wfprot.sql, 16–12
Wfqclean.sql, 16–13
Wfquhndob.pls, 2–100
Wfquhndos.pls, 2–100
Wfrefchk.sql, 16–13
wfresgen, 8–105
Wfretry.sql, 16–13
Wfrmall.sql, 16–14
Wfrmita.sql, 16–14
Wfrmitms.sql, 16–15
Wfrmitt.sql, 16–15
Wfrmtype.sql, 16–15, C – 9
Wfrun.sql, 16–15
WFRUND.SQL, 15–8
Wfstat.sql, 16–16
Wfstatus.sql, 16–16
Wfstdchk.sql, 16–16
Wftypes.sql, 8–236
Wfupart.sql, 2–12

Wfupartb.sql, 2–12
Wfver.sql, 16–16
Wfverchk.sql, 16–17
Wfverupd.sql, 16–17
wfxload, 2–114, 2–117
wfxload.bat, 2–114, 2–117
Windows menu, A – 6
WorkCount(), 8–231
Workflow administrator, 2–16
Workflow Agent Listener, 16–4
Workflow Agent Listener concurrent program,

8–272
Workflow Agent Ping/Acknowledge, 13–77

item type, 13–78
item type attributes, 13–78

Workflow Builder menus, A – 2
Workflow Cancelled Mail message template,

2–78
Workflow Closed Mail message template, 2–81
Workflow Core APIs, 8–101
Workflow definitions

loading, 1–4
source control, 3–12
testing, 12–2
transferring, 2–107

Workflow Definitions Loader, 1–4, 2–107,
2–108

concurrent program, 2–109
Workflow Demonstrations home page, 15–2
Workflow Designer. See Oracle Workflow

Builder
Workflow diagrams, displaying, 15–3
Workflow Directory Service APIs, 8–121
Workflow Engine, 1–3

calling after activity completion, 8–8
calling for activity initiation, 8–3
CANCEL mode, 8–11
core APIs, 8–101, 8–111
cost threshold, 4–47
deferred activities, 8–9
directory services, 8–121
error processing, 8–10
Java APIs, 8–5, 8–19
looping, 8–10

Index – 18 Oracle Workflow Guide

master/detail processes, 8–79
PL/SQL APIs, 8–19
RUN mode, 8–11
threshold cost, 2–47, 8–9

Workflow Engine APIs, 8–3
Workflow Event Protocol process, summary,

14–20
Workflow Invalid Mail message template, 2–79
Workflow LDAP APIs, 2–34, 8–144
Workflow Monitor, 11–2

Administration buttons, 11–6
Detail Tab window, 11–4
Process Diagram window, 11–3
Process title, 11–3
setup, 2–84

Workflow Monitor APIs, 8–149
Workflow Notification APIs. See Notification

APIs
Workflow Open Mail (Direct) message

template, 2–71
Workflow Open Mail (Templated) message

template, 2–69
Workflow Open Mail for Outlook Express

message template, 2–74
Workflow Open Mail message template, 2–76
Workflow Preferences API, 8–148
Workflow processes

creating and starting, 16–15
monitoring, 11–2
samples, 15–2

Workflow Purge APIs, 8–111
Workflow Queue APIs, 8–162
Workflow queues, cleaning, 16–13
Workflow Resource Generator, 8–105

concurrent program, 8–106

Workflow roles, 2–21
Workflow Send Protocol

item type, 14–18
sample workflow process, 14–17

Workflow Send Protocol Acknowledgement
event, 14–26

Workflow Send Protocol event, 14–24
Workflow Server, requirements, 2–3
Workflow Summary Mail message template,

2–82
Workflow URL Attachment message template,

2–77
Workflow users, 2–21
Workflow Views, 8–157
Workflow Warning Mail message template,

2–82
Workflow web pages, modifying template,

2–84
Workflow XML Loader, 2–112
Workflow_Protocol(), 8–287
Workitems. See Items
Worklist web page, 10–17
WriteMsg(), 8–182
WriteToClob(), 8–234

X
XML Compare Tag Value (Date) activity, 6–19
XML Compare Tag Value (Number) activity,

6–19
XML Compare Tag Value (Text) activity, 6–19
XML Compare Tag Value activities, 6–19
XML Get Tag Value activity, 6–18
XML Transform activity, 6–20

Reader’s Comment Form

Oracle Workflow Guide Volume 1, Release 2.6.2
A95276–03

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness
of this publication. Your input is an important part of the information we use for revision.

• Did you find any errors?

• Is the information clearly presented?

• Do you need more information? If so, where?

• Are the examples correct? Do you need more examples?

• What features did you like most about this manual? What did you like least about it?

If you find any errors or have any other suggestions for improvement, please indicate the topic, chapter,
and page number below:

Please send your comments to:

Oracle Applications Documentation Manager
Oracle Corporation
500 Oracle Parkway
Redwood Shores, CA 94065 USA
Phone: (650) 506–7000 Fax: (650) 506–7200

If you would like a reply, please give your name, address, and telephone number below:

Thank you for helping us improve our documentation.

Oracle� Workflow
Guide
RELEASE 2.6.2
VOLUME 2

March 2002

Oracle Workflow Guide Volume 2, Release 2.6.2

The part number for this volume is A95277–03. To reorder this book, please use the set part
number, A95265–03.

Copyright � 1996, 2002 Oracle Corporation. All rights reserved.

Primary Authors: Siu Chang, Clara Jaeckel

Major Contributors: George Buzsaki, John Cordes, Mark Craig, Kevin Hudson, George
Kellner, David Lam, Jin Liu, Kenneth Ma, Steve Mayze, Tim Roveda, Robin Seiden,
Sheryl Sheh, Susan Stratton

The Programs (which include both the software and documentation) contain proprietary information
of Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent
required to obtain interoperability with other independently created software or as specified by law, is
prohibited.

The information contained in this document is subject to change without notice. If you find any
problems in the documentation, please report them to us in writing. Oracle Corporation does not
warrant that this document is error–free. Except as may be expressly permitted in your license
agreement for these Programs, no part of these Programs may be reproduced or transmitted in any
form or by any means, electronic or mechanical, for any purpose, without the express written
permission of Oracle Corporation.

If the Programs are delivered to the US Government or anyone licensing or using the Programs on
behalf of the US Government, the following notice is applicable:

RESTRICTED RIGHTS NOTICE
Programs delivered subject to the DOD FAR Supplement are ”commercial computer software” and
use, duplication and disclosure of the Programs including documentation, shall be subject to the
licensing restrictions set forth in the applicable Oracle license agreement. Otherwise, Programs
delivered subject to the Federal Acquisition Regulations are ”restricted computer software” and use,
duplication and disclosure of the Programs shall be subject to the restrictions in FAR 52.227–19,
Commercial Computer Software – Restricted Rights (June, 1987). Oracle Corporation, 500 Oracle
Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be licensee’s responsibility to take all appropriate fail–safe,
back up, redundancy and other measures to ensure the safe use of such applications if the Programs
are used for such purposes, and Oracle disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Express, JInitiator, Oracle8, Oracle8i, Oracle9i, OracleMetaLink,
Oracle Press, Oracle Store, PL/SQL, and SQL*Plus are trademarks or registered trademarks of Oracle
Corporation. Other names may be trademarks of their respective owners.

 iiiContents

Contents

VOLUME 1Volume 1 i.

Preface xix.
Audience for This Guide xx.
How To Use This Guide xx.
Documentation Accessibility xxi.
Other Information Sources xxii.
Online Documentation xxii.
Related User’s Guides xxiii.
Guides Related to All Products xxiii.
User Guides Related to This Product xxiv.
Installation and System Administration xxv.
Other Implementation Documentation xxvi.
Training and Support xxviii.
Do Not Use Database Tools to Modify Oracle
Applications Data xxix.
About Oracle xxix.
Your Feedback xxx.

Chapter 1 Overview of Oracle Workflow 1 – 1.
Introduction to Oracle Workflow 1 – 2.

Major Features and Definitions 1 – 3.
Workflow Processes 1 – 6.

 iv Oracle Workflow Guide

Chapter 2 Setting Up Oracle Workflow 2 – 1.
Oracle Workflow Hardware and Software Requirements 2 – 2.
Overview of Setting Up 2 – 6.

Overview of Required Setup Steps for the
Standalone Version of Oracle Workflow 2 – 6.
Overview of Required Setup Steps for the Version of
Oracle Workflow Embedded in Oracle Applications 2 – 7.
Optional Setup Steps 2 – 7.
Other Workflow Features 2 – 8.
Identifying the Version of Your Oracle Workflow Server 2 – 9. . .
Setup Flowchart 2 – 10.
Setup Checklist 2 – 11.
Setup Steps 2 – 12.

Overview of Oracle Workflow Access Protection 2 – 101.
Setting Up a Default Access Level 2 – 105.

Using the Workflow Definitions Loader 2 – 107.
Using the Workflow XML Loader 2 – 112.

Chapter 3 Defining a Workflow Process 3 – 1.
Overview of Oracle Workflow Builder 3 – 2.

The Navigator Tree Structure 3 – 3.
Viewing the Navigator Tree 3 – 4.

Creating Process Definitions in Oracle Workflow Builder 3 – 7.
Opening and Saving Item Types 3 – 12.
Quick Start Wizard Overview 3 – 18.
Using Oracle Workflow Builder with Different
Server Versions 3 – 21.

Item Type Definition Web Page 3 – 24.

Chapter 4 Defining Workflow Process Components 4 – 1.
Workflow Process Components 4 – 2.

Item Types 4 – 2.
Allowing Access to an Object 4 – 17.
Lookup Types 4 – 19.
Messages 4 – 23.
Activities 4 – 42.
Voting Activity 4 – 61.

Deleting Objects in Oracle Workflow Builder 4 – 68.
Modifying Objects in Oracle Workflow Builder 4 – 69.

Workflow Objects That Support Versioning 4 – 70.

 vContents

Workflow Objects That Do Not Support Versioning 4 – 71.

Chapter 5 Defining a Workflow Process Diagram 5 – 1.
Process Window 5 – 2.

Modifying Fonts in Oracle Workflow Builder 5 – 21.
Creating a Shortcut Icon for a Workflow Process 5 – 22.

Roles 5 – 24.

Chapter 6 Predefined Workflow Activities 6 – 1.
Standard Activities 6 – 2.

And/Or Activities 6 – 2.
Comparison Activities 6 – 3.
Compare Execution Time Activity 6 – 3.
Wait Activity 6 – 4.
Block Activity 6 – 5.
Defer Thread Activity 6 – 6.
Launch Process Activity 6 – 6.
Noop Activity 6 – 7.
Loop Counter Activity 6 – 7.
Start Activity 6 – 8.
End Activity 6 – 8.
Role Resolution Activity 6 – 9.
Notify Activity 6 – 9.
Vote Yes/No Activity 6 – 10.
Master/Detail Coordination Activities 6 – 11.
Wait for Flow Activity 6 – 12.
Continue Flow Activity 6 – 12.
Assign Activity 6 – 14.
Get Monitor URL Activity 6 – 14.
Get Event Property Activity 6 – 15.
Set Event Property Activity 6 – 15.
Compare Event Property Activity 6 – 16.
XML Get Tag Value Activity 6 – 18.
XML Compare Tag Value Activities 6 – 19.
XML Transform Activity 6 – 20.

Concurrent Manager Standard Activities 6 – 22.
Execute Concurrent Program Activity 6 – 22.
Submit Concurrent Program Activity 6 – 23.
Wait for Concurrent Program Activity 6 – 24.

Default Error Process 6 – 26.

 vi Oracle Workflow Guide

System: Error Item Type and Item Attributes 6 – 27.
Default Error Process 6 – 28.
Retry–only Process 6 – 32.
Default Event Error Process 6 – 34.

Chapter 7 Defining Procedures and Functions for Oracle Workflow 7 – 1. . . .
Defining Procedures and Functions for Oracle Workflow 7 – 2.
Standard API for PL/SQL Procedures Called by Function
Activities 7 – 3.
Standard API for Java Procedures Called by Function
Activities 7 – 8.
Standard API for an Item Type Selector or Callback Function 7 – 13. .
Standard APIs for ”PL/SQL” and ”PL/SQL CLOB”
Documents 7 – 17.

”PL/SQL” Documents 7 – 17.
”PL/SQL CLOB” Documents 7 – 19.

Standard API for an Event Data Generate Function 7 – 21.
Standard APIs for a Queue Handler 7 – 23.

Enqueue 7 – 23.
Dequeue 7 – 24.

Standard API for an Event Subscription Rule Function 7 – 25.

Chapter 8 Oracle Workflow APIs 8 – 1.
Oracle Workflow Procedures and Functions 8 – 2.
Overview of the Workflow Engine 8 – 3.

Oracle Workflow Java Interface 8 – 5.
Additional Workflow Engine Features 8 – 8.

Workflow Engine APIs 8 – 19.
CreateProcess 8 – 21.
SetItemUserKey 8 – 23.
GetItemUserKey 8 – 24.
GetActivityLabel 8 – 25.
SetItemOwner 8 – 26.
StartProcess 8 – 28.
LaunchProcess 8 – 30.
SuspendProcess 8 – 32.
ResumeProcess 8 – 34.
AbortProcess 8 – 36.
CreateForkProcess 8 – 38.
StartForkProcess 8 – 40.

 viiContents

Background 8 – 41.
AddItemAttribute 8 – 43.
AddItemAttributeArray 8 – 46.
SetItemAttribute 8 – 48.
SetItemAttrDocument 8 – 51.
SetItemAttributeArray 8 – 53.
getItemTypes 8 – 56.
GetItemAttribute 8 – 57.
GetItemAttrDocument 8 – 59.
GetItemAttrClob 8 – 60.
getItemAttributes 8 – 61.
GetItemAttrInfo 8 – 62.
GetActivityAttrInfo 8 – 63.
GetActivityAttribute 8 – 64.
GetActivityAttrClob 8 – 66.
BeginActivity 8 – 67.
CompleteActivity 8 – 69.
CompleteActivityInternalName 8 – 72.
AssignActivity 8 – 74.
Event 8 – 75.
HandleError 8 – 77.
SetItemParent 8 – 79.
ItemStatus 8 – 80.
getProcessStatus 8 – 81.

Workflow Function APIs 8 – 82.
loadItemAttributes 8 – 83.
loadActivityAttributes 8 – 84.
getActivityAttr 8 – 85.
getItemAttr 8 – 87.
setItemAttrValue 8 – 88.
execute 8 – 89.

Workflow Attribute APIs 8 – 90.
WFAttribute 8 – 92.
value 8 – 93.
getName 8 – 94.
getValue 8 – 95.
getType 8 – 96.
getFormat 8 – 97.
getValueType 8 – 98.
toString 8 – 99.
compareTo 8 – 100.

Workflow Core APIs 8 – 101.

 viii Oracle Workflow Guide

CLEAR 8 – 102.
GET_ERROR 8 – 103.
TOKEN 8 – 104.
RAISE 8 – 105.
CONTEXT 8 – 108.
TRANSLATE 8 – 110.

Workflow Purge APIs 8 – 111.
Items 8 – 113.
Activities 8 – 114.
Notifications 8 – 115.
Total 8 – 116.
TotalPERM 8 – 117.
AdHocDirectory 8 – 118.
Purge Obsolete Workflow Runtime Data Concurrent
Program 8 – 119.

Workflow Directory Service APIs 8 – 121.
GetRoleUsers 8 – 123.
GetUserRoles 8 – 124.
GetRoleInfo 8 – 125.
GetRoleInfo2 8 – 126.
IsPerformer 8 – 127.
UserActive 8 – 128.
GetUserName 8 – 129.
GetRoleName 8 – 130.
GetRoleDisplayName 8 – 131.
SetAdHocUserStatus 8 – 132.
SetAdHocRoleStatus 8 – 133.
CreateAdHocUser 8 – 134.
CreateAdHocRole 8 – 136.
AddUsersToAdHocRole 8 – 138.
SetAdHocUserExpiration 8 – 139.
SetAdHocRoleExpiration 8 – 140.
SetAdHocUserAttr 8 – 141.
SetAdHocRoleAttr 8 – 142.
RemoveUsersFromAdHocRole 8 – 143.

Workflow LDAP APIs 8 – 144.
Synch_changes 8 – 145.
Synch_all 8 – 146.
Schedule_changes 8 – 147.

Workflow Preferences API 8 – 148.
get_pref 8 – 148.

Workflow Monitor APIs 8 – 149.

 ixContents

GetAccessKey 8 – 150.
GetDiagramURL 8 – 151.
GetEnvelopeURL 8 – 153.
GetAdvancedEnvelopeURL 8 – 155.

Oracle Workflow Views 8 – 157.
WF_ITEM_ACTIVITY_STATUSES_V 8 – 157.
WF_NOTIFICATION_ATTR_RESP_V 8 – 159.
WF_RUNNABLE_PROCESSES_V 8 – 160.
WF_ITEMS_V 8 – 161.

Workflow Queue APIs 8 – 162.
EnqueueInbound 8 – 165.
DequeueOutbound 8 – 167.
DequeueEventDetail 8 – 170.
PurgeEvent 8 – 172.
PurgeItemType 8 – 173.
ProcessInboundQueue 8 – 174.
GetMessageHandle 8 – 175.
DequeueException 8 – 176.
DeferredQueue 8 – 177.
InboundQueue 8 – 178.
OutboundQueue 8 – 179.
ClearMsgStack 8 – 180.
CreateMsg 8 – 181.
WriteMsg 8 – 182.
SetMsgAttr 8 – 183.
SetMsgResult 8 – 184.

Document Management APIs 8 – 185.
get_launch_document_url 8 – 186.
get_launch_attach_url 8 – 187.
get_open_dm_display_window 8 – 188.
get_open_dm_attach_window 8 – 189.
set_document_id_html 8 – 190.

Overview of the Oracle Workflow Notification System 8 – 192.
Notification Model 8 – 192.

Notification APIs 8 – 197.
Send 8 – 199.
Custom Callback Function 8 – 200.
SendGroup 8 – 203.
Forward 8 – 205.
Transfer 8 – 207.
Cancel 8 – 209.

 x Oracle Workflow Guide

CancelGroup 8 – 210.
Respond 8 – 211.
Responder 8 – 212.
VoteCount 8 – 213.
OpenNotificationsExist 8 – 214.
Close 8 – 215.
AddAttr 8 – 216.
SetAttribute 8 – 217.
GetAttrInfo 8 – 219.
GetInfo 8 – 220.
GetText 8 – 221.
GetShortText 8 – 222.
GetAttribute 8 – 223.
GetAttrDoc 8 – 225.
GetSubject 8 – 226.
GetBody 8 – 227.
GetShortBody 8 – 228.
TestContext 8 – 229.
AccessCheck 8 – 230.
WorkCount 8 – 231.
getNotifications 8 – 232.
getNotificationAttributes 8 – 233.
WriteToClob 8 – 234.

Overview of the Oracle Workflow Business Event System 8 – 235.
Business Event System Datatypes 8 – 236.

Agent Structure 8 – 237.
getName 8 – 237.
getSystem 8 – 237.
setName 8 – 238.
setSystem 8 – 238.
Parameter Structure 8 – 239.
getName 8 – 239.
getValue 8 – 239.
setName 8 – 240.
setValue 8 – 240.
Parameter List Structure 8 – 241.
Event Message Structure 8 – 242.
Initialize 8 – 245.
getPriority 8 – 245.
getSendDate 8 – 245.
getReceiveDate 8 – 246.
getCorrelationID 8 – 246.

 xiContents

getParameterList 8 – 246.
getEventName 8 – 246.
getEventKey 8 – 247.
getEventData 8 – 247.
getFromAgent 8 – 247.
getToAgent 8 – 247.
getErrorSubscription 8 – 247.
getErrorMessage 8 – 248.
getErrorStack 8 – 248.
setPriority 8 – 248.
setSendDate 8 – 248.
setReceiveDate 8 – 249.
setCorrelationID 8 – 249.
setParameterList 8 – 249.
setEventName 8 – 250.
setEventKey 8 – 250.
setEventData 8 – 250.
setFromAgent 8 – 251.
setToAgent 8 – 251.
setErrorSubscription 8 – 251.
setErrorMessage 8 – 251.
setErrorStack 8 – 252.
Content 8 – 252.
Address 8 – 253.
AddParameterToList 8 – 253.
GetValueForParameter 8 – 253.
Example for Using Abstract Datatypes 8 – 255.
Mapping Between WF_EVENT_T and
OMBAQ_TEXT_MSG 8 – 257.

Event APIs 8 – 260.
Raise 8 – 261.
Send 8 – 265.
NewAgent 8 – 267.
Test 8 – 268.
Enqueue 8 – 269.
Listen 8 – 270.
Workflow Agent Listener Concurrent Program 8 – 272.
SetErrorInfo 8 – 273.
SetDispatchMode 8 – 274.
AddParameterToList 8 – 275.
AddParameterToListPos 8 – 276.
GetValueForParameter 8 – 277.

 xii Oracle Workflow Guide

GetValueForParameterPos 8 – 278.
Event Subscription Rule Function APIs 8 – 279.

Default_Rule 8 – 281.
Log 8 – 283.
Error 8 – 284.
Warning 8 – 285.
Success 8 – 286.
Workflow_Protocol 8 – 287.
Error_Rule 8 – 288.
SetParametersIntoParameterList 8 – 289.

Event Function APIs 8 – 290.
Parameters 8 – 291.
SubscriptionParameters 8 – 293.
AddCorrelation 8 – 294.
Generate 8 – 296.
Receive 8 – 298.

Business Event System Replication APIs 8 – 300.
WF_EVENTS Document Type Definition 8 – 302.
WF_EVENTS_PKG.Generate 8 – 303.
WF_EVENTS_PKG.Receive 8 – 304.
WF_EVENT_GROUPS Document Type Definition 8 – 305.
WF_EVENT_GROUPS_PKG.Generate 8 – 306.
WF_EVENT_GROUPS_PKG.Receive 8 – 307.
WF_SYSTEMS Document Type Definition 8 – 308.
WF_SYSTEMS_PKG.Generate 8 – 309.
WF_SYSTEMS_PKG.Receive 8 – 310.
WF_AGENTS Document Type Definition 8 – 311.
WF_AGENTS_PKG.Generate 8 – 312.
WF_AGENTS_PKG.Receive 8 – 313.
WF_EVENT_SUBSCRIPTIONS Document Type
Definition 8 – 314.
WF_EVENT_SUBSCRIPTIONS_PKG.Generate 8 – 315.
WF_EVENT_SUBSCRIPTIONS_PKG.Receive 8 – 316.

Index

 xiiiContents

VOLUME 2Volume 2 i.

Chapter 9 Oracle Workflow Home Page 9 – 1.
Accessing the Oracle Workflow Home Page 9 – 2.

Setting User Preferences 9 – 6.

Chapter 10 Viewing Notifications and Processing Responses 10 – 1.
Overview of Notification Handling 10 – 2.

Reviewing Notifications via Electronic Mail 10 – 2.
Viewing Notifications from a Web Browser 10 – 12.
Reviewing a Summary of Your Notifications via
Electronic Mail 10 – 24.
Defining Rules for Automatic Notification Processing 10 – 25.

Chapter 11 Monitoring Workflow Processes 11 – 1.
Overview of Workflow Monitoring 11 – 2.

Workflow Monitor 11 – 2.
Workflow Monitor Access 11 – 7.

Chapter 12 Testing a Workflow Definition 12 – 1.
Testing Workflow Definitions 12 – 2.

Chapter 13 Managing Business Events 13 – 1.
Managing Business Events 13 – 2.

Events 13 – 4.
Systems 13 – 17.
Agents 13 – 22.
Event Subscriptions 13 – 34.
Setting Up Message Propagation 13 – 53.
Raising Events 13 – 65.
Signing Up Systems 13 – 67.
Synchronizing Systems 13 – 70.
Reviewing Local Queues 13 – 72.

Workflow Agent Ping/Acknowledge 13 – 77.
The Workflow Agent Ping/Acknowledge Item Type 13 – 78.
Summary of the Master Ping Process 13 – 79.
Master Ping Process Activities 13 – 80.
Summary of the Detail Ping Process 13 – 81.

 xiv Oracle Workflow Guide

Detail Ping Process Activities 13 – 82.

Chapter 14 Predefined Workflow Events 14 – 1.
Predefined Workflow Events 14 – 2.

Event Definition Events 14 – 2.
Event Group Definition Events 14 – 3.
System Definition Events 14 – 4.
Agent Definition Events 14 – 4.
Event Subscription Definition Events 14 – 5.
Synchronize Event Systems Event 14 – 5.
Seed Event Group 14 – 6.
Ping Agent Events 14 – 8.
System Signup Event 14 – 9.
Any Event 14 – 10.
Unexpected Event 14 – 12.
User Entry Has Changed Event 14 – 15.

Workflow Send Protocol 14 – 17.
The Workflow Send Protocol Item Type 14 – 18.
Summary of the Workflow Event Protocol Process 14 – 20.
Workflow Event Protocol Process Activities 14 – 21.
Workflow Send Protocol Events 14 – 24.

Chapter 15 Demonstration Workflow Processes 15 – 1.
Sample Workflow Processes 15 – 2.

Displaying the Process Diagram of a Sample Workflow 15 – 3. . . .
Requisition Process 15 – 5.

Installing the Requisition Data Model 15 – 6.
Initiating the Requisition Workflow 15 – 8.
The Requisition Item Type 15 – 12.
Summary of the Requisition Approval Process 15 – 13.
Requisition Process Activities 15 – 15.
Summary of the Notify Approver Subprocess 15 – 19.
Notify Approver Subprocess Activities 15 – 21.
Sample StartProcess Function 15 – 23.
Example Function Activities 15 – 26.
Example: Select Approver 15 – 26.
Example: Verify Authority 15 – 29.
Example Notification Activity 15 – 31.
Example: Notify Requisition Approval Required 15 – 31.

Product Survey Process 15 – 34.

 xvContents

Installing the Product Survey Data Model 15 – 35.
Initiating the Product Survey Workflow 15 – 36.
The Product Survey Item Type 15 – 38.
Summary of the Survey – Single Process 15 – 39.
Survey – Single Process Activities 15 – 41.
Summary of the Survey – Master/Detail Process 15 – 42.
Survey – Master/Detail Process Activities 15 – 44.
Summary of the Detail Survey Process 15 – 46.
Detail Survey Process Activities 15 – 47.

Document Review Process 15 – 49.
The Document Management Item Type 15 – 49.
Summary of the Document Review Process 15 – 50.
Document Review Process Activities 15 – 52.

Error Check Process 15 – 54.
The Periodic Alert Item Type 15 – 54.
Summary of the Error Check Process 15 – 56.
Error Check Process Activities 15 – 57.
Summary of the User Defined Alert Action Process 15 – 60.
User Defined Alert Action Process Activities 15 – 61.

Event System Demonstration 15 – 63.
Installing the Event System Demonstration Data Model 15 – 64. . .
Initiating the Event System Demonstration Workflow 15 – 66.
The Event System Demonstration Item Type 15 – 71.
Summary of the Buyer: Top Level PO Process 15 – 73.
Buyer: Top Level PO Process Activities 15 – 75.
Summary of the Buyer: Send PO to Supplier Subprocess 15 – 78. . .
Buyer: Send PO to Supplier Subprocess Activities 15 – 78.
Summary of the Buyer: Receive Supplier PO
Acknowledgement Subprocess 15 – 80.
Buyer: Receive Supplier PO Acknowledgement
Subprocess Activities 15 – 81.
Summary of the Buyer: Advanced Shipment Notice
Subprocess 15 – 83.
Buyer: Advanced Shipment Notice Subprocess Activities 15 – 84. .
Summary of the Buyer: Receive Supplier Invoicing
Subprocess 15 – 85.
Buyer: Receive Supplier Invoicing Subprocess Activities 15 – 86. . .
Summary of the Supplier: Top Level Order Process 15 – 87.
Supplier: Top Level Order Process Activities 15 – 88.
Summary of the Supplier: Get Order Details Subprocess 15 – 91. . .
Supplier: Get Order Details Subprocess Activities 15 – 92.
Summary of the Supplier: Credit Check Subprocess 15 – 94.

 xvi Oracle Workflow Guide

Supplier: Credit Check Subprocess Activities 15 – 95.
Summary of the Supplier: Stock Check Subprocess 15 – 96.
Supplier: Stock Check Subprocess Activities 15 – 97.
Summary of the Supplier: Advanced Shipment Notice
Subprocess 15 – 98.
Supplier: Advanced Shipment Notice Subprocess
Activities 15 – 99.
Summary of the Supplier: Send Supplier Invoice
Subprocess 15 – 100.
Supplier: Send Supplier Invoice Subprocess Activities 15 – 101.
B2B Purchase Order Event 15 – 102.
B2B Purchase Order Acknowledgement Event 15 – 105.
B2B Advanced Shipment Notice Event 15 – 106.
B2B Invoice Event 15 – 107.

Chapter 16 Workflow Administration Scripts 16 – 1.
Miscellaneous SQL Scripts 16 – 2.

FNDWFLST 16 – 4.
FNDWFPR 16 – 5.
WFNLADD.sql 16 – 5.
Wfagtlst.sql 16 – 6.
Wfbkg.sql 16 – 6.
Wfbkgchk.sql 16 – 7.
Wfchact.sql 16 – 7.
Wfchacta.sql 16 – 7.
Wfchita.sql 16 – 8.
Wfchitt.sql 16 – 8.
Wfchluc.sql 16 – 8.
Wfchlut.sql 16 – 9.
Wfchmsg.sql 16 – 9.
Wfchmsga.sql 16 – 9.
Wfdirchk.sql 16 – 10.
Wfevtenq.sql 16 – 10.
Wfjvstop.sql 16 – 11.
Wfmqupd.sql 16 – 12.
Wfnlena.sql 16 – 12.
Wfntfsh.sql 16 – 12.
Wfprot.sql 16 – 12.
Wfqclean.sql 16 – 13.
Wfrefchk.sql 16 – 13.
Wfretry.sql 16 – 13.
Wfrmall.sql 16 – 14.

 xviiContents

Wfrmita.sql 16 – 14.
Wfrmitms.sql 16 – 15.
Wfrmitt.sql 16 – 15.
Wfrmtype.sql 16 – 15.
Wfrun.sql 16 – 15.
Wfstat.sql 16 – 16.
Wfstatus.sql 16 – 16.
Wfstdchk.sql 16 – 16.
Wfver.sql 16 – 16.
Wfverchk.sql 16 – 17.
Wfverupd.sql 16 – 17.

Appendix A Oracle Workflow Builder Menus and Toolbars A – 1.
Oracle Workflow Builder Menus A – 2.
Oracle Workflow Builder Toolbars A – 7.

Appendix B Oracle Workflow Implementation in Other Oracle Products B – 1.
Predefined Workflows Embedded in Oracle E–Business Suite B – 2. .
Oracle Workflow Business Event System Implementation
in Oracle E–Business Suite B – 16.
Oracle Workflow Implementation in the Oracle9i Platform B – 18. . . .
Oracle Support Policy for Predefined Workflows, Events,
and Subscriptions B – 20.

Customization Guidelines B – 20.
Resolving Customization Issues B – 21.
What Is NOT Supported B – 21.
What Is Supported B – 21.

Appendix C Oracle Workflow Performance Concepts C – 1.
Oracle Workflow Performance Concepts C – 2.

Designing Workflow Processes for Performance C – 2.
Managing Runtime Data for Performance C – 8.

Glossary

Index

 xviii Oracle Workflow Guide

C H A P T E R

9
T

9 – 1Oracle Workflow Home Page

Oracle Workflow Home
Page

his chapter discusses the Oracle Workflow home page, where
users and administrators can centrally access all the web–based
features of Oracle Workflow.

�

9 – 2 Oracle Workflow Guide

Accessing the Oracle Workflow Home Page

Use the Oracle Workflow home page to link to all of Oracle Workflow’s
web–based features. This page centralizes your access to the features
so you do not have to remember individual URLs.

Note: If Oracle Internet Directory/Single Sign–On integration
has been implemented for your installation of Oracle Workflow,
you can use single sign–on when accessing Oracle Workflow’s
web–based features. With single sign–on, a user who is logged
into any participating Oracle9iAS component is automatically
authenticated when accessing any other participating
component and does not need to log in again. See:
Synchronizing Workflow Directory Services with Oracle
Internet Directory: page 2 – 30.

� To Access the Oracle Workflow Home Page

1. Use a web browser to connect to the URL for the home page:

<webagent>/wfa_html.home

 <webagent> represents the base URL of the web agent configured
for Oracle Workflow in your Web server. See: Setting Global User
Preferences: page 2 – 14.

Attention: This is a secured page, so if you have not yet
logged on as a valid user in the current web session, you will
be prompted to do so before the page appears.

9 – 3Oracle Workflow Home Page

2. The web page identifies the current version of Oracle Workflow.

3. A toolbar appears in the upper left corner of the Oracle Workflow
home page, as well as on every other Oracle Workflow web page.
The Home icon returns you to the Oracle Workflow home page.
The name of the current page appears in the middle of the toolbar.
The Logout icon logs you out of your current Oracle Workflow web
session and the Help icon displays online help for the current
screen. Some of the Event Manager web pages also include a Query
icon that lets you enter query details to search for Event Manager
objects.

4. Choose the Worklist link to display your list of workflow
notifications. You can close or reassign your notifications directly
from the Worklist or you can drill down to the details of each
specific notification and close, reassign, or respond to them
individually. See: To View Notifications from the Worklist: page
10 – 17.

5. Choose the Find Notifications link to locate notifications that match
specific criteria and act on those notifications. See: To Find
Notifications: page 10 – 15.

6. Choose the Notification Rules link to view and define your
automatic notification routing rules. If you are logged in as a role

9 – 4 Oracle Workflow Guide

with workflow administrator privileges, the Find Automatic
Notification Processing Rules web page appears, letting you first
display the routing rules for the role you specify. See: To Define a
Rule for Automatic Notification Routing: page 10 – 26.

7. Choose the Find Processes link to query for a list of workflow
process instances that match certain search criteria. Once you find
a specific process instance, you can view its status details in the
Workflow Monitor. See: Using the Find Processes Web Page: page
11 – 9.

8. Choose the User Preferences link to set the preferences that control
how you interact with Oracle Workflow. See: Setting User
Preferences: page 9 – 6.

9. If you are logged in as a role with workflow administrator
privileges, you can choose the Global Preferences link to set global
preferences that control how users interact with Oracle Workflow.
See: Setting Global User Preferences: page 2 – 14.

10. If you are logged in as a role with workflow administrator
privileges, the Document Nodes link appears. This functionality is
reserved for future use. You do not need to perform any actions
with this link.

11. Choose the Item Type Definition link to access the Find Item Type
web page. Use the Find Item Type web page to query for a specific
item type definition to display in the Item Type Definition page.
See: Item Type Definition Page: page 3 – 24.

12. If you are logged in as a role with workflow administrator
privileges, you can choose the Launch Processes link to test a
specific workflow process definition. See: Testing Workflow
Definitions: page 12 – 2.

13. If you are logged in as a role with workflow administrator
privileges, you can choose the Demonstration Page link to access
the Demonstration home page. You can use the Demonstration
home page to launch any of the demonstration workflow processes
provided with Oracle Workflow. See: Sample Workflow Processes:
page 15 – 2.

14. If you are logged in as a role with workflow administrator
privileges, you can choose the Events link to view and define
Business Event System events. See: To Define an Event: page 13 – 5.

15. If you are logged in as a role with workflow administrator
privileges, you can choose the Find Event/Group link to query for

9 – 5Oracle Workflow Home Page

events and event groups that match certain search criteria. See: To
Find Events: page 13 – 14.

16. If you are logged in as a role with workflow administrator
privileges, you can choose the Systems link to view and define
Business Event System systems. See: To Define a System: page
13 – 18.

17. If you are logged in as a role with workflow administrator
privileges, you can choose the Find System link to query for
systems that match certain search criteria. See: To Find Systems:
page 13 – 19.

18. If you are logged in as a role with workflow administrator
privileges, you can choose the Agents link to view and define
Business Event System agents. See: To Define an Agent: page
13 – 29.

19. If you are logged in as a role with workflow administrator
privileges, you can choose the Find Agent link to query for agents
that match certain search criteria. See: To Find Agents: page 13 – 32.

20. If you are logged in as a role with workflow administrator
privileges, you can choose the Event Subscriptions link to view and
define Business Event System subscriptions. See: To Define an
Event Subscription: page 13 – 45.

21. If you are logged in as a role with workflow administrator
privileges, you can choose the Find Subscription link to query for
subscriptions that match certain search criteria. See: To Find Event
Subscriptions: page 13 – 50.

22. If you are logged in as a role with workflow administrator
privileges, you can choose the Check Setup link to check your
Business Event System setup and schedule listeners and
propagations for local agents. See: Setting Up Message
Propagation: page 13 – 53.

23. If you are logged in as a role with workflow administrator
privileges, you can choose the Raise Event link to raise a business
event to the Event Manager. See: Raising Events: page 13 – 65.

24. If you are logged in as a role with workflow administrator
privileges, you can choose the System Signup link to sign up one
system with another to receive business events. See: Signing Up
Systems: page 13 – 67.

25. If you are logged in as a role with workflow administrator
privileges, you can choose the System Identifier link to retrieve the

�

9 – 6 Oracle Workflow Guide

system identifier information required for signing up systems. See:
To Retrieve System Identifier Information: page 13 – 68.

26. If you are logged in as a role with workflow administrator
privileges, you can choose the Event Queue Summary link to
review the local queues used by the Business Event System. See:
Reviewing Local Queues: page 13 – 72.

Setting User Preferences

You can control how you interact with Oracle Workflow by specifying
user preferences that you can set from the User Preferences web page.
The values that you specify in the User Preferences web page override
the default global values set by your workflow administrator in the
Global User Preferences web page.

� To Set User Preferences

1. Use a web browser to connect to the Oracle Workflow home page:

<webagent>/wfa_html.home

From the Oracle Workflow home page, choose the User Preferences
link.

Alternatively, you can connect directly to the User Preferences web
page:

<webagent>/wf_pref.edit

 <webagent> represents the base URL of the web agent configured
for Oracle Workflow in your Web server. See: Setting Global User
Preferences: page 2 – 14.

Attention: These are secured pages, so if you have not yet
logged on as a valid user in the current web session, you will
be prompted to do so before the page appears.

9 – 7Oracle Workflow Home Page

2. The User Preferences web page displays a summary of your
current user preferences. Choose Update to modify these
preferences.

3. In the Language and Territory fields, use the list of values to select
the NLS_LANGUAGE and NLS_TERRITORY combination that
defines the default language–dependent behavior and
territory–dependent formatting of your notification sessions.

4. In the Date Format field, specify an Oracle8i–compliant date format
to use for your database session. An example of an
Oracle8i–compliant date format is DD–Mon–RRRR. If you do not
specify a date format, then the date format defaults to
DD–MON–YYYY.

9 – 8 Oracle Workflow Guide

Note: Oracle Workflow may include a time element when
relevant for certain displayed dates, even if you do not include
a time format with your date format. If you specify a time
format along with your date format, then in those situations
when Oracle Workflow displays a time element, you will see
two time elements following your date.

5. Leave the Document Home Node field blank. This functionality is
reserved for future use.

6. In the ’Send me electronic mail notifications’ section, check a
notification preference:

– HTML mail—send you notifications as HTML e–mail. Your
mail reader must be able to display HTML formatting in the
message body.

– Plain text mail with HTML attachments—send you
notifications as plain text e–mail but include the
HTML–formatted version of the notifications as
attachments.

– Plain text mail—send you notifications as plain text e–mail.

– Plain text summary mail—send you a summary of all
notifications as plain text e–mail. You must use the
Notifications web page to take action on individual
notifications.

– Do not send me mail—do not send you notifications as
e–mail. You must view the notifications and take action
from the Notifications web page.

7. Check OK once you are satisfied with your changes.

See Also

Notification Preferences: page 2 – 49

C H A P T E R

10

T

10 – 1Viewing Notifications and Processing Responses

Viewing Notifications
and Processing
Responses

his chapter discusses the different ways people involved in a
workflow process can view and respond to workflow notifications.
This chapter also describes how you can define rules to have Oracle
Workflow automatically handle your notifications.

10 – 2 Oracle Workflow Guide

Overview of Notification Handling

Oracle Workflow sends a notification to a role when the Workflow
Engine executes a notification activity in a workflow process. The
notification activity may designate the role as being responsible for
performing some human action or may simply relay process–related
information to the role. To successfully deliver a notification to a role,
the role must be defined in the Oracle Workflow directory service.

As a member of a role, you can view a notification using any one of
three interfaces depending on your role’s notification preference setting
in the Oracle Workflow directory service. You can receive an e–mail for
each individual notification, receive a single e–mail summarizing all
your notifications or query the Workflow Notifications Web page for
your notifications. See: Setting Up an Oracle Workflow Directory
Service: page 2 – 21 and Setting User Preferences: page 9 – 6.

Each notification message can include context–sensitive information
about the process and directions on how to respond to the notification,
if a response is required. The message can also include pointers to Web
URLs and references to Oracle Applications forms that allow the user
to get additional information related to the notification.

As a notification recipient, there may be occasions when you will not be
able to view or respond to your notifications in a timely manner.
Rather than create a bottleneck in a workflow process, you can take
advantage of the Automatic Notification Handler to define rules that
direct Oracle Workflow to automatically manage the notifications for
you.

Reviewing Notifications via Electronic Mail

You can have your workflow notifications delivered to you as e–mail
messages if your notification preference is set to ’Plain text mail’,
’HTML mail’, or ’Plain text mail with attachments’ in the User
Preferences web page and your workflow administrator sets up the
Notification Mailer to run.

If your e–mail reader can only support plain text messages with no
attachments, set your notification preference to ’Plain text mail’.

If your e–mail reader can interpret and display HTML–formatting in
the body of a message, select ’HTML mail’ as your notification
preference. HTML mail provides direct links to supporting
information sources that you may need access to to complete a
notification.

10 – 3Viewing Notifications and Processing Responses

If your e–mail reader can only display plain text in the body of a
message, but can also display attachments to the message, set your
notification preference to ’Plain text mail with Attachments’.

An e–mail notification that requires a response maintains an ’Open’
status until you respond to the notification. For e–mail notifications
that do not require a response, such as FYI (For Your Information)
notifications, your workflow administrator determines how the
notification status is updated when setting up the Notification Mailer.
Depending on the setup configuration, either Oracle Workflow
automatically updates the status of FYI notifications to ’Closed’ after
sending you the notifications by e–mail, or those notifications maintain
an ’Open’ status until you manually close them in the Notifications
Worklist web page.

Once you read an FYI message, you can delete it from your inbox.
However, if the Notification Mailer for your organization is set up to
keep FYI notifications open after sending them by e–mail, you must
also use the Notifications Worklist to manually close the notification,
even if you have already deleted the notification message from your
e–mail inbox. See: To View Notifications from the Worklist: page
10 – 17.

There are two response methods for plain text e–mail notifications:
templated response or direct response. Your workflow administrator
determines the response method for your organization when setting up
the Notification Mailer. For the templated response method, you reply
using the template of response prompts provided in the notification
and enter your response values between the quotes following each
prompt. For the direct response method, you enter your response
values directly as the first lines of your reply.

Both templated and direct response e–mail notifications are based on
standard message templates defined in Oracle Workflow Builder. Both
describe the syntax the reply should follow and list the information
needed to confirm the notification. Both types of messages also include
any custom site information, the due date of the notification, and any
information necessary to process the response. See: Modifying Your
Message Templates: page 2 – 69.

When you respond to a notification by e–mail, your reply message
must include the notification ID (NID) and access key from the original
notification message. The Notification Mailer can process your
response properly only if you include the correct NID and access key
combination in your response. You can ensure that your reply contains
the NID and access key either by including the entire original message

10 – 4 Oracle Workflow Guide

in your reply or by using a response template that includes the NID
line.

Note: The notification access key is a distinct random key
generated by the Notification System for each NID. The access
key serves as a password that allows only users who actually
received the notification containing the key to respond to that
notification.

See Also

Starting the Notification Mailer: page 2 – 55

� To Respond to a Plain Text E–mail Notification Using Templated
Response

10 – 5Viewing Notifications and Processing Responses

1. Your plain text e–mail notification includes information that is
helpful for you to respond to the notification. Depending on the
notification, the information may appear as references to other
sources or as attachments. Some attachments, depending on their
content may only be viewable if you display your notification using
the Notification web pages. See: Viewing Notifications from a Web
Browser: page 10 – 12.

2. To respond to your notification, use the Reply command in your
mail application to reply to the original e–mail notification.

3. Include the response template from the original notification in your
reply. In addition to the response prompts, the response template
includes the special notification ID and access key that the
Notification Mailer requires to identify the notification you are
responding to. If your mail application includes an editable copy of
the original message when it generates the reply message, you can
use that copy to enter your response values. Otherwise, copy and
paste from the original message to obtain a copy of the response
template that you can edit.

4. Follow the response template instructions and insert your response
values between the quotes (” ”) following each response prompt.
The Notification System interprets your response values literally, so
a value in uppercase is interpreted differently from the same value
in lowercase.

5. When you are satisfied with your response, use the Send command
of the mail application to send your reply.

Note: If you send an invalid response, the Notification System
sends you an ”invalid response” message. If you respond to a
notification that has been canceled, you get a message
informing you that the notification was canceled. Similarly, if
you respond to a notification that was already previously
responded to, you get a message informing you that the
notification is closed.

See Also

Plain Text E–mail: page 2 – 50

10 – 6 Oracle Workflow Guide

� To Respond to a Plain Text E–mail Notification Using Direct
Response

1. Your plain text e–mail notification includes information that is
helpful for you to respond to the notification. Depending on the
notification, the information may appear as references to other
sources or as attachments. Some attachments, depending on their
content may only be viewable if you display your notification using
the Notification web pages. See: Viewing Notifications from a Web
Browser: page 10 – 12.

2. To respond to your notification, use the Reply command in your
mail application to reply to the original e–mail notification.

3. Include the text of the original notification message in your reply.
This text contains the special notification ID and access key that the
Notification Mailer requires to identify the notification you are
responding to.

Example

10 – 7Viewing Notifications and Processing Responses

4. Follow the syntax instructions in the notification message carefully
when formatting your reply. The response values must be within
the first lines of your reply, where each line represents a separate
response value.

If a response value requires more than one line, then the entire
response value must be enclosed in double quotes (” ”). Everything
enclosed in the double quotes is counted as one line.

The Notification System interprets your response values literally, so
a value in uppercase is interpreted differently from the same value
in lowercase.

If a response prompt provides a default response value, you can
accept the default value by leaving the appropriate response line
blank.

5. When you are satisfied with your response, use the Send command
of the mail application to send your reply.

Note: If you send an invalid response, the Notification System
sends you an ”invalid response” message. If you respond to a
notification that has been canceled, you get a message
informing you that the notification was canceled. Similarly, if
you respond to a notification that was already previously
responded to, you get a message informing you that the
notification is closed.

Following is a set of response instructions and examples of three
possible responses.

Response Instructions

Enter the Action on line 1. Do you approve? Value must be one of the following (default
is ”Reject”):

Approve

Reject

Enter the Review Comments on line 2. Value must be 2000 bytes or less.

Enter the Required Date on line 3. If there is no required date, leave this blank. Value
must be a date in the form ”DD–MON–YYYY”.

Enter the Maximum Amount on line 4. This is the maximum approved amount. Value
must be a number. Default is 1500.

10 – 8 Oracle Workflow Guide

Valid Response A – Approve

Approve

Let me know if this item meets expectations.

01–JAN–1998

1000.00

Valid Response B – Reject

Reject

Too expensive.

Note: The blank lines in this response indicate acceptance of
the default values for those response values.

Valid Response C – Reject

Reject

”This item is too expensive. Please find a replacement that is of lower cost, or else

include additional justification for why this item should be approved.”

01–JAN–1998

1000.00

See Also

Plain Text E–mail: page 2 – 50

�

10 – 9Viewing Notifications and Processing Responses

� To Respond to an HTML E–mail Notification

1. Your HTML–formatted e–mail notification includes information
that is helpful for you to respond to the notification. Depending on
the notification, the information may appear as links to other
sources or as attachments.

Attention: An HTML–formatted e–mail notification always
includes one attachment. The attachment is called Notification
Detail Link and it provides a direct link to your notification in
the Notification Details web page.

Note that your Web browser must support JavaScript and
Frames to open this attachment. When you open the
Notification Detail Link attachment, it automatically attempts
to establish a web session with your web server. In doing so, it
authenticates your access, verifies that your notification is still
open, and displays a message if the notification is already
closed.

If your workflow administrator has configured the Notification
Mailer to require a login when you select the Notification
Detail Link, and you are not already logged in, you will be
prompted to log in before you can access the Notification
Details web page.

10 – 10 Oracle Workflow Guide

You may respond directly to your notification from this
Notification Details page, bypassing the need to process your
response through the Notification Mailer. If you decide to
respond from the Notification Details page, skip the remaining
steps.

See: To View the Details of a Notification: page 10 – 19.

2. When you are done reviewing all the information for the
notification, click on one of the response links shown at the end of
the notification.

Note: If your workflow administrator has configured the
Notification Mailer to use the Workflow Open Mail for Outlook
Express message template, a link called ”Click here to respond”
will appear in place of the links for individual responses. The
”Click here to respond” link provides access to your
notification in the Notification Details web page.

Note that your Web browser must support JavaScript and
Frames to open this link. When you choose the ”Click here to
respond” link, it automatically attempts to establish a web
session with your web server. In doing so, it authenticates
your access, verifies that your notification is still open, and
displays a message if the notification is already closed. If you
are disconnected from your network, however, you will not be
able to use the link.

Once you have accessed the Notification Details page, you can
respond directly to your notification from this page. In this
case, you should skip the remaining steps.

3. Each response link automatically generates a plain text e–mail
reply. The reply contains the correct Reply To: e–mail address as
well as a response template in the message body. The response
template consists of the required notification ID and access key that
identify the notification you are responding to and a response
prompt edited with your selected response.

Warning: Do not include any HTML–formatting in the e–mail
response.

4. Depending on the notification, the auto–generated e–mail response
template may also prompt you for other information in addition to
your selected response. Supply responses by editing the response
value text between the quotes (’ ’) following each response prompt.

Note: Response templates generated from a response link in an
HTML–formatted e–mail notification provide single quotes to
enclose your response values, rather than the double quotes

10 – 11Viewing Notifications and Processing Responses

provided in plain text response templates. This use of single
quotes accommodates e–mail applications that cannot process
double quotes in the tag for the link but
can accept single quotes.

5. When you are satisfied with your response, use the Send command
of the mail application to send your reply.

Note: If you send an invalid response, the Notification System
sends you an ”invalid response” message. If you respond to a
notification that has been canceled, you get a message
informing you that the notification was canceled. Similarly, if
you respond to a notification that was already previously
responded to, you get a message informing you that the
notification is closed.

See Also

HTML–Formatted E–mail: page 2 – 51

� To Respond to a Plain Text E–mail Notification with an HTML
Attachment

1. Your plain text e–mail notification with attachments includes
information that is helpful for you to respond to the notification.
Depending on the notification, the information may appear inline
in the message body, as links to other reference sources or as
attachments to the message. In addition, the notification always
includes at least two attachments:

• HTML Message Body—an HTML–formatted version of the
notification message.

• Notification Detail Link—a direct link to your notification
displayed in the Notification Details web page.

2. When you are done reviewing all the information for the
notification, you can respond to the notification in one of three
ways:

• Use your mail reader’s Reply command to respond, following
the instructions in the plain text message body. See: To Respond
to a Plain Text E–mail Notification Using Templated Response:
page 10 – 4 and To Respond to a Plain Text E–mail Notification
Using Direct Response: page 10 – 6.

• Display the HTML Message Body attachment and respond by
selecting one of the response links at the bottom of the HTML

�

10 – 12 Oracle Workflow Guide

message body. See: To Respond to an HTML E–mail
Notification: page 10 – 9.

• Choose the Notification Detail Link attachment to display the
Notification Details web page. See: To View the Details of a
Notification: page 10 – 19.

Note: Your Web browser must support JavaScript and Frames
to open this attachment. When you open the Notification
Detail Link attachment, it automatically attempts to establish a
web session with your web server. In doing so, it authenticates
your access, verifies that your notification is still open, and
displays a message if the notification is already closed.

If your workflow administrator has configured the Notification
Mailer to require a login when you select the Notification
Detail Link, and you are not already logged in, you will be
prompted to log in before you can access the Notification
Details web page.

See Also

Plain Text E–mail with an HTML Attachment: page 2 – 53

� To Reassign a Notification to Another User:

� Use the ”Forward” feature in your mail reader to forward or
reassign an e–mail notification to another user. Do not use the
”Reassign” button on the HTML attachment.

Attention: When you forward a notification to another user
via e–mail, you are simply asking that user to respond to the
notification on your behalf. Note that you still maintain
ownership of the notification. If you want to transfer the
notification and ownership of the notification to another user,
you can only do so from the Notifications web pages. See:
Viewing Notifications from a Web Browser: page 10 – 12.

Viewing Notifications from a Web Browser

You can use any Web browser that supports JavaScript and Frames to
view and respond to your notifications in the Notifications Web page.

10 – 13Viewing Notifications and Processing Responses

� To Access Notifications from a Web Browser

1. If you are using Oracle Self–Service Web Applications, log on using
the Oracle Self–Service Web Applications login page and choose the
appropriate link to display the Notifications Worklist page. Skip to
Step 1.

2. If you are not using Oracle Self–Service Web Applications, you can
access your worklist in one of several ways.

• To navigate directly to your current worklist of open
notifications, enter:

 <webagent>/wfa_html.worklist[?orderkey=<orderkey>

 &status=<status>&user=<user>]

The portion of the Worklist URL in square brackets [] represents
optional arguments that you can pass (by omitting the square
brackets).

Replace the bracketed italicized text in these URLs as follows:

– <webagent> represents the base URL of the web agent
configured for Oracle Workflow in your Web server. See:
Setting Global User Preferences: page 2 – 14.

– <orderkey> represents the key with which to order the list
of notifications. Valid values include PRIORITY,
MESSAGE_TYPE, SUBJECT, BEGIN_DATE, DUE_DATE,
END_DATE, and STATUS. If you leave <orderkey> null,
the worklist will be ordered by PRIORITY, and then by
BEGIN_DATE in descending order (the notifications with
the highest priority and the most recent date will be
displayed first).

– <status> represents the status of the notifications you wish
to display. Valid values include OPEN, CLOSED,
CANCELED, and ERROR. If you leave <status> null, the
URL will display notifications with a status of OPEN.

– <user> represents the internal name of the role to query
notifications for. You can only include this argument if you
are logged in to the current web session as a role with
workflow administrator privileges. If your role does not
have administrator privileges or if you leave <user> blank,
the URL displays notifications for your current role. See:
Setting Global User Preferences: page 2 – 14.

• To display a worklist of notifications that match specific search
criteria, go to the Find Notifications web page by entering:

10 – 14 Oracle Workflow Guide

 <webagent>/wfa_html.find

• You can also navigate to the Notifications Worklist or Find
Notifications web pages from the Oracle Workflow home page.
See: Accessing the Oracle Workflow Home Page: page 9 – 2.

• For Oracle Applications users only, your system administrator
can add the Notifications Worklist web page to your application
by using the Oracle Applications function FND_FNDWFNOT.
This function calls the web page wfa_html.worklist. An Oracle
Applications System Administrator or Oracle Applications
developer must add this function to the Navigate menu of a
user’s responsibility or call this function from an Oracle
Applications form. You can then use the modified menu or form
to navigate to the Notifications Worklist web page. See:
Overview of Function Security, Oracle Applications System
Administrator’s Guide, Overview of Menus and Function Security,
Oracle Applications Developer’s Guide, Menus Window, Oracle
Applications Developer’s Guide, and Overview of Form
Development Steps, Oracle Applications Developer’s Guide.

3. If you are not using Oracle Self–Service Web Applications and you
are accessing any of the Oracle Workflow URLs for the first time in
your web browser session, you will be prompted for a valid
username and password to log on.

4. Enter your username and password.

5. Choose OK. If you have made an error, you can clear the values
and start over.

If you used the wfa_html.worklist URL, skip to the Notification
Worklist section: page 10 – 17.

10 – 15Viewing Notifications and Processing Responses

� To Find Notifications

1. The Find Notifications window lets you enter search criteria to
locate specific notifications. If you are logged on to the current
session as a regular workflow user, you can specify criteria to
search for any notification(s) you own. The search criteria are:

• From – enter a role to search for all notifications from that role.
The From role for a notification is determined by the
#FROM_ROLE message attribute. See: #FROM_ROLE Attribute:
page 4 – 25.

• Status – choose a notification status of Canceled, Closed, Invalid
Reply, or Open. Choose All to display notifications of any status.

• Type – choose the item type of the notification(s). Choose All to
display notifications of any item type.

• Subject – enter the subject of the notification you wish to search
for. This field accepts case insensitive text strings and interprets
the percent sign (%) as a wildcard.

• Sent – enter the date or range of dates from which the
notification(s) were sent. Use the default date format of your
database.

10 – 16 Oracle Workflow Guide

• Due – enter the date or range of dates by which the
notification(s) should be completed. Use the default date format
of your database.

• Priority – choose High, Normal or Low as the priority of the
notification(s) you wish to find or choose All to display
notifications of any priority.

• Notifications Delegated to – check this criterion to search for
notifications that you have forwarded to a specified role but yet
still own. Click on the adjacent field’s up arrow icon to display a
list of roles from which to choose. See: Using a List of Values:
page 10 – 24.

2. As a user with workflow administrator privileges, you can also
search for notifications that you do not own. See: Setting Global
User Preferences: page 2 – 14

In addition to being able to specify any of the standard search
criteria listed above except for ”Notifications Delegated to”, you
also have the following criteria options:

• Notification ID—enter a specific notification ID. Note that if you
specify a notification ID, all other search criteria are ignored.

10 – 17Viewing Notifications and Processing Responses

• Owner—enter a role to identify all notifications owned by that
role. Click on the field’s up arrow icon to display a list of roles
from which to choose. See: Using a List of Values: page 10 – 24.

• To—enter a role to identify all notifications sent to that role.
Click on the field’s up arrow icon to display a list of roles from
which to choose. See: Using a List of Values: page 10 – 24.

Note: To identify notifications where the original owner
delegated the work to another role (without transferring
ownership), specify different roles in the Owner and To fields.
This combination of criteria is equivalent to selecting the
”Notifications Delegated to” criterion in the standard Find
Notifications screen.

3. Choose the Find button to open the Worklist window.

� To View Notifications from the Worklist

1. The Notifications Worklist either displays the notifications that
match your search criteria if you navigated from the Find
Notifications page, or lists all your open notifications if you
navigated directly to this page.

The Worklist displays the following information for each
notification:

• Priority—a high or low priority icon represents the urgency of
the notification.

10 – 18 Oracle Workflow Guide

• Type—the item type with which the workflow process and
notification is associated.

• From—the role from which the notification was sent. The From
role for a notification is determined by the #FROM_ROLE
message attribute. See: #FROM_ROLE Attribute: page 4 – 25.

• Subject—a description of the notification.

Note: If a notification is Open and requires a response, a
Response Required icon appears next to its Subject link.

• Sent—date when the notification was delivered.

• Due—date by which the notification should be completed.

2. Click on any column heading to sort your notifications by that
column in ascending order.

3. A Find icon in the toolbar lets you navigate back to the Find
Notifications screen at any time so you can use search criteria to
reduce the Worklist to a smaller subset of notifications.

4. The Worklist lets you simultaneously close multiple FYI–type
notifications that do not require a response. Simply check Select for
the each FYI–type notification you wish to close, and then choose
Close.

5. You can also collectively reassign a group of notifications. Check
Select for the notifications you wish to reassign, then choose
Reassign... A Reassign page appears that lets you specify to whom
and how you wish to reassign the notification(s). See:To Reassign a
Notification to Another User: page10 – 22.

6. You can navigate to the full details of any notification and act on
the notification by clicking on the notification’s Subject link.

10 – 19Viewing Notifications and Processing Responses

� To View the Details of a Notification

1. In the Detail Notification page, the full details of the notification
appear in the upper frame, and the response section of the
notification appears in the lower frame. You can scroll through or
resize these frames.

2. The upper frame may include links embedded in the message body
to additional information sources for the notification. A reference
URL link opens another Web browser window and connects to a
specified URL.

3. The upper frame may also include attachment icons that appear
after the message body. These icons also link to additional
information sources for the notification. There are three types of
attachment links:

• A reference URL link that opens another Web browser window
and connects to a specified URL.

• A PL/SQL or PL/SQL CLOB document link that displays the
contents of a document generated from a PL/SQL function.

• If you are using Oracle Workflow embedded in Oracle
Applications, an Oracle Applications form link that drills down
to a Oracle Applications form referenced by the underlying
message attribute. Depending on how the message attribute is

�

�

10 – 20 Oracle Workflow Guide

defined, the Oracle Applications form can automatically display
appropriate context information.

Attention: Attached form icons appear in a notification
message only if the Worklist web page was initially launched
by Oracle Applications from a menu. The Oracle Applications
socket listener must be activated, and the socket listener port
must be set to the port where the form should be launched. See:
Setting the Socket Listener Profile Options: page 2 – 40.

Attention: The Notification System first verifies with Oracle
Applications whether the recipient’s responsibility has the
appropriate security to open the linked form. If the
responsibility is not allowed to open the form, the attached
form icon is disabled and a message to that effect is displayed.
Also, you cannot update information in a form that is attached
in the upper frame for reference only.

When you choose the attached form icon, a launch window
appears to make the socket connection. You can choose the Keep
Window button to continue displaying the launch window.
Otherwise, this window is automatically closed after thirty
seconds.

The form that is launched appears in the Oracle Applications
Navigator window on top of the browser window displaying the
notification.

Note: If the form does not appear, check for error messages in
the JInitiator console.

4. The Response section may look as follows:

• If a notification requires a response, but none of the responses
affect the result of the notification activity, the response prompts

10 – 21Viewing Notifications and Processing Responses

all appear as fields and/or poplists. When you are done entering
your response values, submit your response by choosing the
Submit button.

• If a notification requires a response, and one of the responses
becomes the result of the notification activity, then that
determining response will appear last as a set of buttons to
choose from as shown in the figure above. The buttons represent
the possible choices to the response prompt. All other response
prompts, if any, appear as fields or poplists above that prompt.
When you choose a button for that last response prompt, you
also submit your response for the notification.

• If a notification does not require a response, the response section
indicates that. Choose Close in the Response section to close the
notification so that it does not appear in your notification
summary list the next time you query for open notifications.

Note: You can click on any response prompt to display more
information about the response attribute.

Note: If you launch the Notification Worklist from Oracle
Applications, your response section may display an attached
form icon that lets you drill down to an Oracle Applications
form to complete your response.

The Oracle Applications socket listener must be activated, and
the socket listener port must be set to the port where the form
should be launched. See: Setting the Socket Listener Profile
Options: page 2 – 40.

When you choose the attached form icon, a launch window
appears to make the socket connection. You can choose the
Keep Window button to continue displaying the launch
window. Otherwise, this window is automatically closed after
thirty seconds.

�

10 – 22 Oracle Workflow Guide

The form that is launched appears in the Oracle Applications
Navigator window on top of the browser window displaying
the notification.

Note: If the form does not appear, check for error messages in
the JInitiator console.

5. Once you submit your response, the Detail Notification page
returns you to the Worklist, where the notification you just
responded to now displays a status of Closed.

Note: If you revisit a Closed notification, the Response section
indicates that the Response has been submitted and displays
the values that were submitted as the response.

6. A Find icon in the toolbar of the Detail Notification page lets you
navigate back to the Find Notifications screen at any time to search
for and display other notifications.

� To Reassign a Notification to Another User

1. You can reassign a notification in one of two ways:

• In the Worklist page, you check Select for one or more
notifications and choose Reassign....

• In the Worklist page, click on the subject link of the notification
you wish to reassign. In the Detail Notification page that
appears, choose Reassign... in the Response frame of the
notification.

Attention: Your workflow may include a special
#HIDE_REASSIGN attribute to restrict reassignment of
notifications. If so, the Reassign button may not be displayed
in the Response frame, and you should not reassign the
notification. See: #HIDE_REASSIGN Attribute: page 4 – 25.

�

10 – 23Viewing Notifications and Processing Responses

2. In the Reassign page that appears, a summary of the selected
notification(s) appear towards the bottom of the screen.

Note: If you clicked on the Reassign button in the Response
frame of a specific notification, you do not see a summary of
selected notifications.

3. In the ’Reassign to’ field, click on the up–arrow icon to display a
window that lets you search for a list of roles to choose from. See:
Using a List of Values: page 10 – 24.

4. After choosing a role, specify how you wish to reassign the
notification. Select ’Delegate Authority for Responding to
Notifications’ if you want to give someone else authority to
respond to the notification on your behalf. With this option, Oracle
Workflow maintains that you own the notification. Or select
’Transfer Ownership of Notifications’, if you want to give someone
else complete ownership and responsibility of the notification.

5. Enter any comments you want to pass along to the new role.
Choose Reassign. Once the notification is reassigned, the web
browser returns you to your Worklist page, where the reassigned
notification is no longer in your worklist.

Attention: Your workflow may include special logic called a
post–notification function to verify that the role that you
attempt to delegate or transfer a notification to is legitimate or
to restrict reassignment of notifications altogether. If so, you
may get a warning message to that effect when you attempt to

10 – 24 Oracle Workflow Guide

reassign a notification. See: Post–Notification Functions: page
8 – 13.

6. A Find icon in the toolbar of the Reassign page lets you navigate
back to the Find Notifications screen at any time to search for and
display other notifications.

� Using a List of Values

1. For a field that supports a list of values, click on the field’s
up–arrow icon to display a list of values window.

2. In the Find field, enter search criteria and choose the Find button to
retrieve a subset of values that match your criteria. You can also
choose the Clear button to clear the Find field. If you do not specify
any search criteria and simply choose Find, you retrieve the
complete list of values.

3. Click on a value from the list to select that value and close the list
of values window. The value you select populates the original
field.

Reviewing a Summary of Your Notifications via Electronic Mail

You can have a summary of your workflow notifications delivered to
you as a single e–mail message if your notification preference is set to
’Plain text summary mail’ in the User Preferences web page. The
frequency that you receive notification summaries depends on how
frequently your Notification Mailer for notification summaries is
scheduled to run. See: Starting the Notification Mailer: page 2 – 55.

You can receive your e–mail notification summary using any e–mail
reader. The following example shows a notification summary received
through Netscape Messenger as the mail client.

10 – 25Viewing Notifications and Processing Responses

The e–mail notification summary is based on a standard template
defined in Oracle Workflow Builder. The summary identifies the
recipient, notification ID, subject, priority and due date of each
notification. See: Modifying Your Message Templates: page 2 – 69.

It also indicates that if you wish to view the details of the notification
or respond or close the notification, you should use the Notification
Web page.

Defining Rules for Automatic Notification Processing

Use Oracle Workflow Automatic Notification Processing to
automatically forward your notifications to another role or respond to
incoming notifications with a predefined response when you are not
available to manage your notifications directly, such as when you are
on vacation.

10 – 26 Oracle Workflow Guide

The Automatic Notification Processing web page lets you define the
rules for automatic notification processing. Each rule is specific to a
role and can apply to any or all messages of a specific item type and/or
message name. A rule can result in one of three actions: reassigning the
notification to another user, responding to or closing the notification, or
simply delivering the notification to the original recipient with no
further action.

Each time the Notification System sends or reassigns a notification to a
role, Oracle Workflow tests the notification against that role’s list of
rules for the most specific match based on the criteria in the order
listed below:

ROLE = <role> and:

1. MESSAGE_TYPE = <type> and MESSAGE_NAME = <name>

2. MESSAGE_TYPE = <type> and MESSAGE_NAME is null

3. MESSAGE_TYPE is null and MESSAGE_NAME is null

As soon as it finds a match, Oracle Workflow applies the rule and
discontinues any further rule matching.

If a rule reassigns a notification, Oracle Workflow performs rule
matching again against the new recipient role’s list of rules. Oracle
Workflow maintains a count of the number of times it forwards a
notification to detect perpetual forwarding cycles. If a notification is
automatically forwarded more than ten times, Oracle Workflow
assumes a forwarding cycle has occurred and ceases executing any
further forwarding rules, marking the notification as being in error.

� To Define a Rule for Automatic Notification Processing

1. Use a web browser to connect to one of two URLs.

To display the list of routing rules for your current role, enter:

<webagent>/wf_route.list[?user=<rolename>]

This URL can include an optional argument, as denoted by the
square brackets []. You should omit the square brackets to pass the
optional argument.

Replace the bracketed italicized text in the above URL as follows:

• <webagent> represents the base URL of the web agent
configured for Oracle Workflow in your Web server. See: Setting
Global User Preferences: page 2 – 14.

• <rolename> represents an internal role name that you want to
query routing rules for. Note, however, that you can query for

�

10 – 27Viewing Notifications and Processing Responses

roles other than your current role only if your current role has
workflow administrator privileges. See: Setting Global User
Preferences: page 2 – 14.

If you have workflow administrator privileges, you can display a
web page that lets you find the routing rules for a specified role.
Enter:

<webagent>/wf_route.find

Enter the user ID of a role and choose Find.

Attention: Both of these URLs access secured pages, so if you
have not yet logged on as valid user in the current web session,
you will be prompted to do so before the page appears.

Note: You can also access the Notification Rules web page
from the Oracle Workflow home page. See: Accessing the
Oracle Workflow Home Page: page 9 – 2.

2. The Notification Rules page for the role appears, listing all existing
rules for the current role. Choose Create Rule.

10 – 28 Oracle Workflow Guide

3. In the Item Type poplist field, select the item type to which this rule
applies or select <All> if you want this rule to apply to notifications
associated with any item type.

4. Choose Next to proceed or choose Cancel if you want to cancel this
rule and return to the previous page.

5. If you selected <All> as the item type to apply the rule to, then skip
to step 8. If you selected a specific item type, then proceed to the
next step to choose a notification from that item type to which you
want your rule to apply.

6. In the Notification field, select the notification message to which
this rule applies or select <All> if you want this rule to apply to all
notifications in the item type.

10 – 29Viewing Notifications and Processing Responses

7. Choose Next to proceed or choose Cancel if you want to cancel this
rule and return to the previous page.

8. The final Create New Rule page appears. The fields in this page
vary depending on the item type(s) and notification(s) that you are
creating this rule for. For example, if your rule pertains to all item
types, you can automatically reassign all the notifications to
another user, but you cannot define an automatic response to all
the notifications since different notifications have different response
attributes.

10 – 30 Oracle Workflow Guide

9. Enter values in the Start Date and End Date fields to specify the
period that this rule should be active. Specify the date using the
default date format of your database and specify a time using the
format HH24:MI:SS if your default date format does not have a
time component.

If you leave Start Date blank, the rule is effective immediately. If
you leave End Date blank, the rule is effective indefinitely.

Warning: Since you can define different rules for the same
notification(s) to be effective at different times, the Automatic
Notification Processing web page does not prevent you from
defining multiple rules for the same notification(s). You should
be careful to ensure that rules for the same notification(s) do
not overlap in their effective dates. If multiple rules are
effective for the same notification, Oracle Workflow picks one
rule at random to apply.

10. In the ”Comments to include in notification” field, enter any text
that you want to append to the notification when the rule is
applied. The comments appear in a special ”Prior comments” field
when the notification is reassigned or automatically responded to.

�

10 – 31Viewing Notifications and Processing Responses

11. Choose the action that you want this rule to perform:

• ”Reassign to”—forward the notification to a designated role.

• ”Respond”—respond to the message with a set of predefined
response values.

• ”Deliver Notifications to me, regardless of any general
rules”—leave the notification in the your inbox and do nothing.
You can define a rule with this action to exclude a certain subset
of notifications from a more encompassing rule. For example,
suppose you have a rule that forwards all your notification
messages to another role, but you want to exclude a subset of
notifications from that rule. To accomplish this, you can define a
new rule that applies only to that subset of notifications, whose
action is to ’Deliver Notifications to me,...’.

12. If your rule action is ”Reassign to”, click on the up–arrow icon to
display a window that lets you search for a role to reassign to. See:
Using a List of Values: page 10 – 24.

13. After choosing a role, specify how you wish to reassign the
notifications. Select ’Delegate Authority for Responding to
Notifications’ if you want to give the new role authority to respond
to the notification on your behalf. With this option, Oracle
Workflow maintains that you still own the notifications, but the
recipient role of the notifications is now the role that you are
reassigning your notifications to. Select ’Transfer Ownership of
Notifications’, if you want to give the new role complete ownership
and responsibility of the notification.

Attention: Your workflow administrator may implement
special logic to verify that the role that you attempt to delegate
or transfer the notifications to is legitimate or to restrict
reassignment of notifications altogether. If so, you may get a
warning message to that effect when you attempt to create a
reassigning rule.

14. If your rule action is ”Respond”, set the values that you want to
automatically respond with.

15. Choose OK to save this rule and return to the Notification Rules
page to display an updated list of your role’s routing rules. You
can also choose Cancel at any time if you want to cancel this rule
and return to the previous page.

10 – 32 Oracle Workflow Guide

� To Update or Delete an Automatic Notification Processing Rule

1. Connect to the URL for the Automatic Notification Processing web
page:

<webagent>/wf_route.list

 <webagent> represents the base URL of the web agent configured
for Oracle Workflow in your Web server. See: Setting Global User
Preferences: page 2 – 14.

2. The Automatic Notification Processing page for the role appears.
In the ”Result of Applying Rule” column, click on the rule you
wish to update.

3. In the Modify Rule page make your changes to the rule and choose
OK to save your changes.

You can also choose Cancel to undo your changes and go back to
the previous page.

4. To delete a rule, in the ”Delete Rule” column, choose ’X’ for the
rule you wish to delete.

C H A P T E R

11
T

11 – 1Monitoring Workflow Processes

Monitoring Workflow
Processes

his chapter discusses how to monitor an instance of a workflow
process.

11 – 2 Oracle Workflow Guide

Overview of Workflow Monitoring

Once a workflow has been initiated for a work item, it may be
necessary to check on its status to ensure that it is progressing forward,
or to identify the activity currently being executed for the work item.
Oracle Workflow provides a Java–based Workflow Monitor tool, and a
view called WF_ITEM_ACTIVITY_STATUSES_V to access status
information regarding for an instance of a workflow process.

Note: If you are using the version of Oracle Workflow
embedded in Oracle Applications and you have implemented
Oracle Applications Manager, you can use Oracle Workflow
Manager as an additional administration tool to review and
manage work items. For more information, please refer to the
Oracle Applications Manager online help.

Also, if you are using the standalone version of Oracle
Workflow available with Oracle9i Release 2, you can use the
standalone Oracle Workflow Manager component available
through Oracle Enterprise Manager as an additional
administration tool to review and manage work items. For
more information, please refer to the Oracle Workflow
Manager online help.

See Also

Oracle Workflow Views: page 8 – 157

Workflow Monitor

The Workflow Monitor is a tool that allows you to view and administer
the status of a specific instance of a workflow process. You can use the
point–and–click interface to display detailed status information about
activities in the process as well as about the process as a whole. The
Workflow Monitor can be run in ’USER’ or ’ADMIN’ mode, where
’ADMIN’ mode provides additional details and functionality pertinent
only to a workflow administrator. See: Workflow Monitor Access: page
11 – 7.

The Workflow Monitor consists of the following sections:

• Process Title

• Process Diagram Window

• Detail Tab Window

11 – 3Monitoring Workflow Processes

• Administration Buttons

Process Title

The process title appears in the upper left of the Workflow Monitor and
displays the name of the workflow process and the name of the item
type and user key that uniquely identify a running instance of that
process in the process diagram window. If no user key has been set,
then the item key is displayed instead. If you drill down into a
subprocess in the process diagram window, the process title updates to
display the subprocess name.

Click on any empty space in the process diagram window to deselect
any selected activity in the process diagram window and to direct the
detail tab window to display information about that process or
subprocess as a whole.

Process Diagram Window

The process diagram window is a scrolling canvas that displays the
diagram of the workflow process or subprocess currently listed in the
process title. This diagram is identical to the diagram created in Oracle
Workflow Builder. Note, however, that you cannot use the Workflow
Monitor to edit this diagram.

11 – 4 Oracle Workflow Guide

The process diagram window provides graphical cues about the status
of the process and its activities:

• An activity icon may be highlighted with a colored box to
indicate that it is in an ”interesting” state. The following table
shows what state each color indicates.

Color of Box State Possible Status Code

Red Error ERROR

Green Active/In Progress ACTIVE, NOTIFIED, DEFERRED

Yellow Suspended HOLD

<none> Normal COMPLETE, WAITING, NULL

Table 11 – 1 (Page 1 of 1)

• Any transition (arrow) that has been traversed appears with a
thick green line, while an untraversed transition appears with a
thin black line.

• Click on an activity icon in the diagram to select it and update
the detail tab window to display information about the activity.

• Click on any empty space in the process diagram to deselect the
currently selected activity icon and to refresh the detail tab
window to display information about the current process as a
whole.

• Double–click on an activity icon that represents a subprocess to
drill down to the subprocess’ diagram. This action automatically
updates the process title to reflect the name of the subprocess
and updates the detail tab window to display information about
the subprocess as a whole.

Alternatively, you can select the subprocess activity and choose
Zoom In to drill down to the subprocess’ diagram. Choose
Zoom Out to navigate back to the process at the previous level.

Detail Tab Window

The detail tab window, which appears below the process diagram, is a
vertically scrollable display area that provides information about a
selected process or activity.

11 – 5Monitoring Workflow Processes

The information appears as follows for each tab, where rows preceded
by an asterisk (*) or values shown in bold parentheses () appear only
when the monitor is run in ’ADMIN’ mode:

Definition Tab

Current Location:Process Display Name/Activity Display Name

Item Type: Item Type display name (internal name)

Activity Name: Activity display name (internal name)

Description: Activity description

Activity Type: Process, Notice, Event, or Function

Message: Message internal name

Function: Name of PL/SQL procedure called by activity

Result Type: Result type display name (internal name)

*Cost: Function activity cost in seconds

*On Revisit: IGNORE, LOOP, or RESET

*Error Process: Error Item Type and Error Process internal

name assigned to activity, if any

Usage Tab

Current Location:Activity Display Name

Start/End: No, Start, or End (process result)

Performer: Role name or item attribute internal name

*Comment: Comments for the process activity node

Timeout: N minutes or item attribute internal name

Status Tab

Current Location:Activity Display Name

Status: Activity status

Result: Activity result (result code)

Begin Date: Date activity begins

End Date: Date activity ends

Due Date: Date activity is due to timeout

*Notification: Notification ID

Assigned User: Role name or item attribute internal name

(shown only if Activity Status is ’ERROR’)

*Error Name: Name of error

Error Message: Error message

*Error Stack: Error stack

Notification Tab

Current Location: Activity Display Name

*ID: Notification ID

Recipient: Recipient of notification

Status: Notification status

11 – 6 Oracle Workflow Guide

Begin Date: Date notification is delivered

End Date: Date notification is closed

Due Date: Date activity is due to timeout

(If the selected activity is a notification that requires a

response, then instead of displaying the above information,

this tab displays the message response attributes as

<message_attribute> <type (Format)> <value>. If the

selected activity is a polling–type notification activity,

where Expand Roles is checked and a response is required,

then this tab displays the message response attributes as

described above for each recipient. If the selected

activity is a notification activity, where Expand Roles is

on, but no response is required, then the recipient shown is

simply the role, rather than the individual users in the

role.)

Item Tab

Process Display Name: Item Type, Item Key (or User Key, if

set)

Owner: Owner of the item, not implemented yet

Begin Date: Date workflow process instance is created

End Date: Date workflow process instance is completed

<Item Attribute>: <type(format)> <value>

...

Administration Buttons

The administration buttons appear beneath the detail tab window only
when the Workflow Monitor is run in ’ADMIN’ mode. Each button
allows you to perform a different administrative operation by calling
the appropriate Workflow Engine API. The buttons and their behavior
are as follows:

• Abort Process—Available only if you select the process title or a
process activity. Calls WF_ENGINE.AbortProcess to abort the
selected process and cancel any outstanding notifications.
Prompts for a result to assign to the process you are about to
abort. The process will have a status of Complete, with the
result you specify. See: AbortProcess: page 8 – 36.

• Suspend Process—Available only if you select the process title or
a process activity. Calls WF_ENGINE.SuspendProcess to suspend
the selected process so that no further activities can be
transitioned to. See: SuspendProcess: page 8 – 32.

11 – 7Monitoring Workflow Processes

• Resume Process—Available only if you select a suspended
process. Calls WF_ENGINE.ResumeProcess to resume the
suspended process to normal execution status. Activities that
were transitioned to when the process was suspended are now
executed. See: ResumeProcess: page 8 – 34.

• Reassign—Available only if you select a notification activity.
Calls WF_ENGINE.AssignActivity to reassign a notification
activity to a different performer. Prompts for a role name. See:
AssignActivity: page 8 – 74.

• Expedite—Available if you select the process title, or an activity.
Calls WF_ENGINE.HandleError to alter the state of an errored
activity, or to undo the selected activity and all other activities
following it to rollback part of the process. Prompts you to select
Skip, to skip the activity and assign it a specified result, or Retry,
to reexecute the activity. See: HandleError: page 8 – 77.

• Attribute—Always available so that you can change the value of
an item type attribute. The current values appear for each item
type attribute. After changing a value, choose OK to apply the
change.

Workflow Monitor Access

You can control a user’s access to the Workflow Monitor in one of two
ways. You can either depend on the workflow–enabled application to
control access to the Workflow Monitor or provide direct access to the
Find Processes web page.

Application–controlled Access to the Workflow Monitor

Identify within the logic of your application code, the workflow
process instance(s) that a user is allowed to view, and whether to run
the monitor in ’ADMIN’ or ’USER’ mode for that user. You must also
provide a means in your application’s user interface to call a web
browser application that supports Java 1.1.8 and AWT and pass it the
Workflow Monitor URL that gets returned from the function
WF_MONITOR.GetDiagramURL(). The returned URL will have a
hidden password attached that provides the user access to the
Workflow Monitor in either ’ADMIN’ or ’USER’ mode. See:
GetDiagramUrl: page 8 – 151.

11 – 8 Oracle Workflow Guide

Provide Access to the Find Processes Web Page

Another way to access the Workflow Monitor is to pass the Find
Processes URL to a web browser that supports Java 1.1.8 and AWT.
The Find Processes page requires user authentication before access.
Depending on whether Oracle Workflow is configured to use Oracle
Self–Service Web Applications or Oracle HTTP Server security, the user
must log in using the appropriate username and password if he or she
has not done so for the current browser session. If the user has
workflow administrator privileges, the Find Processes web page that
appears lets the user search for any workflow process instance. If the
user does not have workflow administrator privileges, the Find
Processes web page lets the user search for only processes that the user
owns, as set by a call to the Workflow Engine SetProcessOwner API. The
user can then display the notifications or the process diagram for any
of those process instances in the Workflow Monitor.

The Find Processes URL looks similar to the following:

<webagent>/wf_monitor.find_instance

<webagent> is the web agent string that you can retrieve from the
WF_WEB_AGENT token in the WF_RESOURCES table by calling
WF_CORE.TRANSLATE(). See: TRANSLATE: page 8 – 110.

Note: You can also access the Find Processes web page from
the Oracle Workflow home page. See: Accessing the Oracle
Workflow Home Page: page 9 – 2.

Access to the Workflow Monitor from Oracle Applications

For Oracle Applications only, you can add access to the Workflow
Monitor to your application by using the Oracle Applications function
FND_FNDWFIAS. This function calls the web page wf_monitor.show.

You can add this function to the Navigate menu of a user’s
responsibility or call the function from an Oracle Applications form.
See: Menus Window, Oracle Applications Developer’s Guide and
Overview of Form Development Steps, Oracle Applications Developer’s
Guide.

If you call FND_FNDWFIAS without passing any parameters in the
call, then wf_monitor.show displays the Find Processes web page.

If you want to specify a process instance to display, you must pass the
function the following parameters:

• ITEM_TYPE—A valid item type.

11 – 9Monitoring Workflow Processes

• ITEM_KEY—A string derived from the application object’s
primary key. The string uniquely identifies the item within an
item type. The item type and key together identify the process.

• ADMIN_MODE—YES to run the monitor in ’ADMIN’ mode, or NO
to run the monitor in ’USER’ mode.

• ACCESS_KEY—The access key password to run the monitor in
the selected mode. Use the Workflow Monitor API
GetAccessKey() to retrieve the appropriate access key. See:
GetAccessKey: page 8 – 150.

When you pass these parameters, wf_monitor.show displays the
Workflow Monitor Notifications List web page for the specified process
instance.

You can call the function FND_FUNCTION.EXECUTE to execute
FND_FNDWFIAS specifying your parameters. See:
FND_FUNCTION.EXECUTE, Oracle Applications Developer’s Guide. Use
the following syntax:

fnd_function.execute(

 FUNCTION_NAME=>’FND_FNDWFIAS’,

 OTHER_PARAMS=>’ITEM_TYPE=’||<item_type>||

 ’ ITEM_KEY=’||<item_key>||’ ADMIN_MODE=’||<admin_mode>||

 ’ ACCESS_KEY=’||(wf_monitor.GetAccessKey(’<item_type>’,

 ’<item_key>’, ’<admin_mode>’)));

The function FND_FNDWFIAS uses Oracle Applications function
security to control user access. See: Overview of Function Security,
Oracle Applications System Administrator’s Guide and Overview of Menus
and Function Security, Oracle Applications Developer’s Guide.

Note: In Oracle Applications, you can also call the function
FND_UTILITIES.OPEN_URL to open a web browser and have
it connect to a specified URL, such as the Find Processes URL
or a Workflow Monitor diagram URL. However, this function
does not use Oracle Applications function security. See:
FND_UTILITIES:Utility Routine, Oracle Applications Developer’s
Guide.

Using the Find Processes Web Page

The Oracle Workflow Find Processes web page allows you to query for
a list of workflow process instances that match certain search criteria.
From the Process List that appears, you can select a single process
instance to review in more detail.

11 – 10 Oracle Workflow Guide

You can view details about the completed notification activities in the
Notifications List web page that appears, or choose Advanced Options
to display details about other activities in the Activities List web page.
You can also navigate to the Workflow Monitor from the Notifications
List to administer the process or see a graphical representation of the
process and its status.

� To Specify Search Criteria in the Find Processes Page

1. You can enter search criteria using any combination of the
following fields to find a subset of workflow process instances:

• Process Status—Specify Any Status, Active, or Complete.

• Item Type—Select the item type of the workflow process
instances you want to find, or select All to find workflow process
instances for all item types.

• Item Key or User Key—Specify an item key or a user key. An
item key presents the internal identifier of an item whereas a
user key is an end–user identifier assigned to an item. A user
key may not necessarily be unique to an item. See:
SetItemUserKey: page 8 – 23.

• Process Name—Specify the display name of a process activity.

11 – 11Monitoring Workflow Processes

2. If you log on as a user with Workflow Administrator privileges,
you can search for and display any process instance, even if you do
not own the process. In the Process Owner field, enter the internal
name of any role defined in WF_ROLES to list only processes
owned by that role. Alternatively, leave the field blank to list all
process instances that match your search criteria regardless of the
process owner.

If you do not have Workflow Administrator privileges, then the
Process Owner field reflects the internal name of the role you are
logged in as for the current web session and you are allowed to
search and display only processes that you initiated or are the
primary participant of.

Note: You can set the owner of a process by making a call to
the WF_ENGINE.SetItemOwner API. The owner of a process
is the person who initiated the process or is the primary
participant of the process.

3. Optionally, you can also find workflow process instances with
activities that are Suspended, In Error, or that have Any Status.

4. You can find workflow process instances that have activities
waiting for a response from a particular user or role.

5. You can also identify workflow process instances that have not
progressed for a specified number of days.

6. When you finish entering your search criteria, choose Find to
display all matching process instances in the Process List web page.

� To Review the Process List

11 – 12 Oracle Workflow Guide

1. The Process List provides a summary of all workflow process
instances that match your search criteria as specified in the Find
Processes web page.

2. The process instances are listed in ascending order first by item
type, then by item key.

3. The Process List summarizes the status of each process instance, as
indicated by the Complete, In Error, and Suspended columns.

4. Choose a process link in the Process Name column to display the
Notifications List for that process instance.

� To Review the Notifications List

1. The Notifications List shows for the selected process instance, all
the current notifications that have been sent that require a special
Result response. In other words, these are the notification activities
that allow the process to branch based on the recipient’s response.

2. The Notification List summarizes what each notification activity is,
who it is assigned to, when it was sent, whether it has been
completed, how many days have passed before completion, as well
as what its result is.

Note: If the process itself is in an error state, and the cause of
the error was from a notification, the result of that notification
may appear as a link in the Result column. Choose that link to
display the cause of the error.

�

11 – 13Monitoring Workflow Processes

3. Choose a user link in the Who column if you want to send e–mail
to the user that a notification has been assigned to.

Note: You can display a helpful hint about any link on the
Notifications List web page by placing your cursor over the
link. The hint appears in your web browser’s status bar.

4. Choose a notification activity link in the Activity column if you
want to view the full definition of a notification activity.

5. If a notification activity is still open and requires a response, and
you are logged on with workflow administrator privileges, an icon
will appear after the notification activity name in the Activity
column. You can click on this icon to go to the Notification Details
page where you can directly respond to this notification. When
complete your response, choose the browser Back button to return
to the Notifications List.

6. Choose Advanced Options to go to the Activities List web page
where you can specify advanced criteria to search and display
specific activities of interest for the process. See: To Filter Activities
in the Activities List: page 11 – 14.

7. You can also choose the View Diagram button to display the
selected process instance in the Workflow Monitor for a graphical
representation of the process status. If you connected to the
current web session as a user with Workflow Administrator
privileges, the Workflow Monitor displays the process in ’ADMIN’
mode, otherwise the process is displayed in ’USER’ mode. See:
Workflow Monitor: page 11 – 2.

Attention: If the process you select is a member of a
parent/child process, a parent/child hierarchy list appears on
the left hand side. The hierarchy list show links to
corresponding parent and child instances of the current process
instance. The links invoke the Notifications List on the selected
parent or child instance.

11 – 14 Oracle Workflow Guide

� To Filter Activities in the Activities List

1. The Activities List web page lets you specify various criteria to
filter for specific activities of interest.

2. Use the Activity Status Options check boxes to specify any activity
status of interest. A status of Active also includes activities that are
in the Notified, Deferred and Waiting state.

3. Use the Activity Type check boxes to specify the types of activities
you want to view. You can choose to display notification activities
that require a response, notification activities that do not require a
response, function activities, activities that belong to the Standard
item type, and/or event activities.

4. Once you finish selecting your criteria, choose Filter Activities to
display the activities that match your criteria.

5. The resulting activities summary list includes the following
columns of information:

11 – 15Monitoring Workflow Processes

• Status—the status of the activity, which is either Active,
Complete, Error or Suspend.

• Who—the performer of the activity. If the activity is a function
activity, the Workflow Engine is the performer. If the performer
is a person, you can click on the link to that person’s name to
send mail to that individual. Note that if an activity is a
notification activity that has Expand Roles on, multiple rows of
that same activity appear in the summary, with the individual
members of the role listed in the Who column.

• Parent Activity—the process activity that this activity belongs to,
unless the activity itself is the top level process. The parent
activity provides a link to the details of its definition.

• Activity—the name of the activity. This activity provides a link
to the details of its definition.

• Started—the date and time when the activity was initiated.

• Duration—the amount of time taken to complete the activity,
shown as one unit lower than the most significant unit of time
taken. If the activity took only seconds to complete, then only
seconds are shown.

• Result—the result of the activity. If the activity has a status of
Error, then the result provides a link to the error name, error
message, and error stack associated with the error.

Note: You can display a helpful hint about any link on the
Activities List web page by placing your cursor over the link.
The hint appears in your web browser’s status bar.

6. You can sort the activities summary list based on any column by
clicking on a column header. An asterisk (*) appears next to the
column title to indicate that it is being used for sorting. If the
asterisk is to the left of the column title, the sort order is ascending.
If the asterisk is to the right of the column title, the sort order is
descending. Clicking multiple times on the same column title
reverses the sort order.

7. You can also choose the View Diagram button to display the
process instance in the Workflow Monitor for a graphical
representation of the process status. If you connected to the
current web session as a user with Workflow Administrator
privileges, the Workflow Monitor displays the process in ’ADMIN’
mode, otherwise the process is displayed in ’USER’ mode. See:
Workflow Monitor: page 11 – 2.

11 – 16 Oracle Workflow Guide

See Also

Setting Up an Oracle Workflow Directory Service: page 2 – 21

Setting Global User Preferences: page 2 – 14

C H A P T E R

12
T

12 – 1Testing a Workflow Definition

Testing a Workflow
Definition

his chapter tells you how to test your workflow definitions using
the Oracle Workflow Launch Processes web page.

12 – 2 Oracle Workflow Guide

Testing Workflow Definitions

Oracle Workflow provides a web–based interface called Launch
Processes for you to test any workflow definition you define and save
to the database. Launch Processes is accessible only to users belonging
to the Workflow Administrator role.

Although you can run the Launch Processes web page against any
Oracle Workflow database, we advise that you create a separate
environment for testing purposes. To test a workflow definition, you
should set up the following in your test environment:

• Define test users/roles. You can test against the users and roles
predefined in the Oracle Workflow demonstration data model.
See: Installing the Requisition Data Model: page 15 – 6.

• If you are using the standalone version of Oracle Workflow and
you plan to use the Notifications web page to view notifications,
you need to define your test users/roles in your web security
system. Refer to your web server documentation for more
information.

• If you plan to use e–mail to view notifications, you can send all
notifications to a single test e–mail address by setting the
TEST_ADDRESS parameter in the Notification Mailer
configuration file. See: To create a configuration file for the
Notification Mailer: page 2 – 58.

� To Test a Workflow Definition:

1. Use a web browser to connect to the Oracle Workflow home page.
See: Accessing the Oracle Workflow Home Page: page 9 – 2.

2. Select the Launch Processes link to display the Launch Processes
web page.

�

�

12 – 3Testing a Workflow Definition

Attention: Note that you can also connect to this page directly
using the secured URL:

<webagent>/wf_initiate.ItemType

 <webagent> represents the base URL of the web agent configured
for Oracle Workflow in your Web server. See: Setting Global User
Preferences: page 2 – 14.

Attention: This is a secured page, so if you have not yet
logged on as a valid workflow administrator in the current web
session, you will be prompted to do so before the page appears.

3. The Launch Processes page displays all the item type definitions
stored in the database except the Oracle Workflow seeded item
types: Wferror, Wfmail, and Wfstd. The internal name and
description for each item type also appears. Select the item type
that owns the workflow process definition you wish to test.

12 – 4 Oracle Workflow Guide

4. Use the Initiate Workflow web page to specify the details for the
process you wish to launch. To initiate an instance of a workflow
process, you need to specify:

• A unique item key for the process instance.

• A user–defined key that you want to use to identify the process.

• The name of the process to test.

• An optional process owner.

• Values for any item type attributes associated with the item type
of the process.

Select OK. To initiate the workflow process, the Initiate Workflow
web page calls the Workflow Engine CreateProcess and Startprocess
APIs for the item type and item key specified. It also calls the
Workflow Engine SetItemOwner and SetItemAttr APIs to set the
process owner and all the item type attributes to the values
specified.

5. The Workflow Monitor Activities List for your initiated process
instance appears. The Activities List displays the status of the
activities that have been executed. You can also select the View
Diagram button to display the status of the process graphically in
the Workflow Monitor. See: To Filter Activities in the Activities
List: page 11 – 14.

6. If the process you are testing contains notifications, you can
navigate back to the Workflow Home page and select the Find

12 – 5Testing a Workflow Definition

Notifications link to find the outstanding Notifications that require
responses to complete the process. Alternatively, if you prefer to
test the notification responses via e–mail, you can connect to the
e–mail test account you specified in the Notification Mailer to
respond to the outstanding notifications for your process.

12 – 6 Oracle Workflow Guide

C H A P T E R

13
T

13 – 1Managing Business Events

Managing Business
Events

his chapter tells you how to manage business events using the
Oracle Workflow Event Manager web pages.

13 – 2 Oracle Workflow Guide

Managing Business Events

The Oracle Workflow Business Event System is an application service
that leverages the Oracle Advanced Queuing (AQ) infrastructure to
communicate business events between systems. The Business Event
System consists of the Event Manager and workflow process event
activities.

The Event Manager contains a registry of business events, systems,
named communication agents within those systems, and subscriptions
indicating that an event is significant to a particular system. Events can
be raised locally or received from an external system or the local
system through AQ. When a local event occurs, the subscribing code is
executed in the same transaction as the code that raised the event,
unless the subscriptions are deferred.

Subscriptions can include the following types of processing:

• Executing custom code on the event information

• Sending event information to a workflow process

• Sending event information to other queues or systems

Business events are represented within workflow processes by event
activities. By including event activities in a workflow process, you can
model complex processing or routing logic for business events beyond
the options of directly running a predefined function or sending the
event to a predefined recipient. See: Event Activity: page 4 – 45.

The uses of the Business Event System include:

• System integration messaging hubs—Oracle Workflow with the
Business Event System can serve as a messaging hub for
complex system integration scenarios. The Event Manager can be
used to ”hard–wire” routing between systems based on event
and originator. Workflow process event activities can be used to
model more advanced routing, content–based routing,
transformations, error handling, and so on.

• Distributed applications messaging—Applications can supply
Generate and Receive event message handlers for their business
entities. For example, message handlers can be used to
implement Master/Copy replication for distributed applications.

• Message–based system integration—You can set up
subscriptions which cause messages to be sent from one system
to another when business events occur. In this way, you can use
the Event Manager to implement point–to–point messaging
integration.

13 – 3Managing Business Events

• Business–event based workflow processes—You can develop
sophisticated workflow processes that include advanced routing
or processing based on the content of business events.

• Non–invasive customization of packaged applications—
Analysts can register interesting business events for their
internet or intranet applications. Users of those applications can
register subscriptions to those events to trigger custom code or
workflow processes.

Event Manager

The Oracle Workflow Event Manager lets you register interesting
business events that may occur in your applications, the systems
among which events will be communicated, named communication
agents within those systems, and subscriptions indicating that an event
is significant to a particular system. You can use the Event Manager
web pages to define and maintain these events, systems, agents, and
subscriptions.

Note: You must have workflow administrator privileges to
access the Event Manager web pages.

You can use the Workflow XML Loader to upload and download XML
definitions for Business Event System objects between a database and a
flat file. See: Using the Workflow XML Loader: page 2 – 112.

When an event is raised by a local application or received from a local
or external system, the Event Manager executes any subscriptions to
that event. Depending on the action defined in the subscription, the
Event Manager may call custom code, send the event information to a
workflow process, or send the event information to an agent.

The Event Manager also lets you complete your setup for message
propagation, including scheduling listeners for inbound event
messages and propagations for outbound event messages.

After you finish setting up the Business Event System, you can use the
Event Manager to raise events manually, sign up systems to receive
business events from each other, synchronize systems with each other,
and review your local queues. You can test your setup using Workflow
Agent Ping/Acknowledge.

13 – 4 Oracle Workflow Guide

Events

A business event is an occurrence in an internet or intranet application
or program that might be significant to other objects in a system or to
external agents. For instance, the creation of a purchase order is an
example of a business event in a purchasing application. You can define
your significant events in the Event Manager.

Oracle Workflow provides several predefined events for significant
occurrences within the Business Event System. See: Predefined
Workflow Events: page 14 – 2

When an event occurs in an application on your local system, an event
key must be assigned to uniquely identify that particular instance of
the event. Then the event must be raised to the Event Manager.

You can raise an event by any of the following methods:

• Raise the event from the application where the event occurs
using the WF_EVENT.Raise() API. See: Raise: page 8 – 261.

• Raise the event from a workflow process using a Raise event
activity. See: Event Activity: page 4 – 54.

• Raise the event manually using the Raise Events page. See:
Raising Events: page 13 – 65.

Additionally, the Event Manager can receive events sent from the local
system or remote systems.

When you define an event in the Event Manager, you must assign it a
unique internal name, which is case–sensitive. The suggested format
for these internal names is a compound structure of identifiers
separated by periods (.) as follows:

<company>.<family>.<product>.<component>.<object>.<event>

This format allows you to organize the events you define into a
classification hierarchy.

You can also define event groups that let you associate any events you
want with each other and reference them as a group in event
subscriptions. An event group is a type of event composed of a set of
individual member events. The internal names of event groups should
follow the same format as the names of individual events. Once you
have defined an event group, you can register a subscription on the
group rather than having to create separate subscriptions for each
individual event within it. The subscription will be executed whenever
any one of the group’s member events occurs.

13 – 5Managing Business Events

Note: Event groups cannot be used to raise events. You must
raise each event individually.

Any detail information needed to describe what occurred in an event,
in addition to the event name and event key, is called the event data.
For example, the event data for a purchase order event includes the
item numbers, descriptions, and cost. The event data can be structured
as an XML document.

The application where the event occurs can include the event data
when raising the event to the Event Manager. If the application will not
provide the event data, you should specify a Generate function for the
event that can produce the complete event data from the event name,
event key, and an optional parameter list. The Generate function must
follow a standard API. See: Raise: page 8 – 261 and Standard API for an
Event Data Generate Function: page 7 – 21.

The Event Manager checks each subscription before executing it to
determine whether the subscription requires the event data. If the event
data is required but is not already provided, the Event Manager calls
the Generate function for the event to produce the event data. If the
event data is required but no Generate function is defined for the event,
Oracle Workflow creates a default set of event data using the event
name and event key.

Note: If the Generate function is costly, and you want to return
control to the calling application more quickly after raising the
event, you can defer all the subscriptions that require the
complete event data. Then the Event Manager will not run the
Generate function until those subscriptions are executed at a
later time. See: Deferred Subscription Processing: page 13 – 41.

If you use a program to create event definitions automatically, the
program can set its own name and brief identifier as the owner name
and owner tag for the events. The program can then use this
identifying information to locate the events that it owns. You can use
the Edit Event and Edit Group pages to update the owner name and
owner tag manually if necessary.

� To Define an Event

1. Use a web browser to connect to the following URL:

<webagent>/wf_event_html.listevents

Replace <webagent> with the base URL of the web agent
configured for Oracle Workflow in your Web server. See: Setting
Global User Preferences: page 2 – 14.

�

13 – 6 Oracle Workflow Guide

Attention: This URL accesses a secured page, so if you have
not yet logged on as valid user in the current web session, you
will be prompted to do so before the page appears. You must
have workflow administrator privileges to access the Event
Manager web pages.

Note: You can also access the Events web page from the Oracle
Workflow home page. See: Accessing the Oracle Workflow
Home Page: page 9 – 2.

2. The Events page appears, displaying a list of existing events. The
Events page summarizes the internal name, display name, type,
and status of each event.

Choose the Add Event button to open the Edit Event page.

13 – 7Managing Business Events

3. Enter the internal name of the event in the Name field. All Oracle
Workflow APIs, SQL scripts, and PL/SQL procedures refer to the
internal name when identifying an event. The internal name is
case–sensitive. The suggested format is a compound structure of
identifiers separated by periods (.) as follows:

<company>.<family>.<product>.<component>.<object>.<event>

4. Enter a Display Name for the event. This name appears in the
Events list.

5. Enter an optional description for the event.

6. In the Status field, select Enabled or Disabled as the event status. If
you disable an event, it still remains in the Events list for reference,
but you cannot use the event in active subscriptions.

7. If you are defining an event that occurs on your local system, enter
the Generate Function for the event. The Generate function is a
PL/SQL procedure that can produce the complete event data from
the event name, event key, and an optional parameter list. See:
Standard API for an Event Data Generate Function: page 7 – 21.

8. You can optionally identify the program or application that owns
the event by entering the program name in the Owner Name field
and the program ID in the Owner Tag field. The Owner Name and
Owner Tag are not required if you are defining an event manually
in the Edit Event page. However, if you use a program to create

�

13 – 8 Oracle Workflow Guide

event definitions automatically, the Event Manager displays the
owner information set by that program in these fields. You can use
the Edit Event page to update this information manually if
necessary.

9. Choose the Submit button to save the event and return to the
Events page. The Events page displays an updated list of events.

You can also choose the Cancel button to return to the Events page
without saving the event.

� To Define an Event Group

1. Use a web browser to connect to the following URL:

<webagent>/wf_event_html.listevents

Replace <webagent> with the base URL of the web agent
configured for Oracle Workflow in your Web server. See: Setting
Global User Preferences: page 2 – 14.

Attention: This URL accesses a secured page, so if you have
not yet logged on as valid user in the current web session, you
will be prompted to do so before the page appears. You must
have workflow administrator privileges to access the Event
Manager web pages.

Note: You can also access the Events web page from the Oracle
Workflow home page. See: Accessing the Oracle Workflow
Home Page: page 9 – 2.

13 – 9Managing Business Events

2. The Events page appears, displaying a list of existing events.
Choose the Add Group button to open the Edit Group page.

13 – 10 Oracle Workflow Guide

3. Enter the internal name of the event group in the Name field. All
Oracle Workflow APIs, SQL scripts, and PL/SQL procedures refer
to the internal name when identifying an event group. The internal
name is case–sensitive and should have a compound structure of
identifiers separated by periods (.) in the following format:

<company>.<family>.<product>.<component>.<object>.<event>

4. Enter a Display Name for the event group. This name appears in
the Events list.

5. Enter an optional description for the event group.

6. In the Status field, select Enabled or Disabled as the event group
status. If you disable an event group, it still remains in the Events
list for reference, but you cannot use the event group in active
subscriptions.

7. You can optionally identify the program or application that owns
the event group by entering the program name in the Owner Name
field and the program ID in the Owner Tag field. The Owner Name
and Owner Tag are not required if you are defining an event group
manually in the Edit Group page. However, if you use a program
to create event group definitions automatically, the Event Manager
displays the owner information set by that program in these fields.
You can use the Edit Group page to update this information
manually if necessary.

8. Choose the Submit button to save the event group.

Note: You can also choose the Cancel button to return to the
Events page without saving the event group.

After you save the event group definition, the Edit Group page
displays the list of member events for that group, including the
name, display name, and status of each event.

13 – 11Managing Business Events

9. To add a member event to the group, choose the Add Event button.

Note: An event group can contain only individual events as its
members. It cannot contain another group.

10. In the Add to Group page that appears, enter search criteria to
locate the event you want to add. The search criteria are:

• Name—enter the internal name of the event you want to add.

13 – 12 Oracle Workflow Guide

• Display Name—enter the display name of the event you want to
add.

• Status—choose Enabled or Disabled as the status of the event
you want to add. Choose Any to search for events of any status.

11. Choose the Go button. The Add to Group page displays a list of
events that match your search criteria.

12. Select the event or events that you want to add to your event
group. You can choose the Select All button to select all the events
in the list, or choose the Deselect All button to deselect all the
events in the list.

If you want to search for different events, enter new search criteria
and choose the Go button. The Add to Group page displays the list
of events that match your new search criteria.

You can also choose the Cancel button to cancel your current search
and return to your previous search results.

13. When you have finished selecting the events you want to add,
choose the Add button to add the selected events to your event

13 – 13Managing Business Events

group. The Edit Group page appears, displaying the updated list of
event group members.

14. Choose the Submit button to save the event group definition.

Note: You can also choose the Cancel button to return to the
Add to Group page with your latest search results.

15. If you want to remove a member event from the group, select the
event or events you want to delete in the Edit Group page. Choose
Select All to select all the events in the list, or choose Deselect All to
deselect all the events in the list.

16. Choose the Delete button to remove the selected events from your
event group. The Edit Group page displays the updated list of
event group members.

Note: Removing an individual member event from an event
group does not delete the event definition for the individual
event. The individual event remains in the Events list.

17. To view the subscriptions that reference an event, choose the
schedule icon in the Subs column for that event. The Event

�

13 – 14 Oracle Workflow Guide

Subscriptions page appears, displaying the list of subscriptions to
the event.

Note: For events that do not have any subscriptions yet, a
blank schedule icon appears. For events that do have
subscriptions referencing them, a full schedule icon appears.

You can begin defining a new subscription on the event by
choosing the Add Subscription button in the Event Subscriptions
page. The Edit Subscription page appears with the event name
automatically entered in the Event Filter field. See Defining Event
Subscriptions: page 13 – 34.

18. To update an event, choose the pencil icon in the Edit column for
that event. The Edit Event page appears. Make your changes to the
event definition and save your work. See: To Define an Event: page
13 – 5.

� To Find Events

1. Use a web browser to connect to the following URL:

<webagent>/wf_event_html.findevent

Replace <webagent> with the base URL of the web agent
configured for Oracle Workflow in your Web server. See: Setting
Global User Preferences: page 2 – 14.

Attention: This URL accesses a secured page, so if you have
not yet logged on as valid user in the current web session, you
will be prompted to do so before the page appears. You must
have workflow administrator privileges to access the Event
Manager web pages.

Note: You can also access the Find Event/Group web page
from the Oracle Workflow home page. See: Accessing the
Oracle Workflow Home Page: page 9 – 2.

13 – 15Managing Business Events

2. The Find Event/Group page appears. The Find Event/Group page
lets you enter search criteria to locate specific events. The search
criteria are:

• Name—enter the internal name of the event you want to display.

• Display Name—enter the display name of the event you want to
display.

• Status—choose Enabled or Disabled as the status of the events
you want to display, or choose Any to display events of any
status.

• Type—choose Event or Group as the type of the events you want
to display, or choose Any to display events of any type.

3. Choose the Go button. The Events page appears, displaying a list of
events that match your search criteria.

� To Update or Delete an Event

1. Locate the event you want in the Events page. You can use the Find
Event/Group page to find the event that you want and display the
event in the Events page. See: To Find Events: page 13 – 14.

13 – 16 Oracle Workflow Guide

2. To view the subscriptions that reference an event, choose the
schedule icon in the Subs column for that event. The Event
Subscriptions page appears, displaying the list of subscriptions to
the event.

Note: For events that do not have any subscriptions yet, a
blank schedule icon appears. For events that do have
subscriptions referencing them, a full schedule icon appears.

You can begin defining a new subscription on the event by
choosing the Add Subscription button in the Event Subscriptions
page. The Edit Subscription page appears with the event name
automatically entered in the Event Filter field. See Defining Event
Subscriptions: page 13 – 34.

3. To update an event, choose the pencil icon in the Edit column for
that event. The Edit Event page appears. Make your changes to the
event definition and save your work. See: To Define an Event: page
13 – 5.

4. To delete an event, choose the trash icon in the Delete column for
that event, and choose OK in the confirmation window that
appears. You can also choose Cancel in the confirmation window to
return to the Events page without deleting the event.

13 – 17Managing Business Events

Note: You can only delete events that do not have any
subscriptions referencing them and that do not belong to any
event groups.

Systems

A system is a logically isolated software environment such as a host
machine or database instance. You should define each system to or
from which you will communicate events in the Event Manager.

When you define a system, you can specify whether it is associated
with a master system from which you want it to receive Event Manager
object definition updates.

Each system can expose one or more addressable points of
communication, called agents. After you define your systems, you
should define the agents within those systems that you will use to
communicate business events. See: Agents: page 13 – 22.

Local System

When you install Oracle Workflow in a database, that database is
automatically defined as a system in the Event Manager and set as the
local system in the Global Workflow Preferences page. The following
table lists the default properties of the local system definition.

System Property Value

Name <database global name>

Display Name <database global name>

Description Local System Created by Oracle Workflow Configuration
Assistant

Master (blank)

Table 13 – 1 (Page 1 of 1)

You can update the local system definition if necessary.

Oracle Workflow sets the status of the local system to Enabled by
default. After you finish setting up the Business Event System, you can
use the Global Workflow Preferences page to set the system status that
you want for event processing. See: Setting Global User Preferences:
page 2 – 14.

�

13 – 18 Oracle Workflow Guide

� To Define a System

1. Use a web browser to connect to the following URL:

<webagent>/wf_event_html.listsystems

Replace <webagent> with the base URL of the web agent
configured for Oracle Workflow in your Web server. See: Setting
Global User Preferences: page 2 – 14.

Attention: This URL accesses a secured page, so if you have
not yet logged on as valid user in the current web session, you
will be prompted to do so before the page appears. You must
have workflow administrator privileges to access the Event
Manager web pages.

Note: You can also access the Systems web page from the
Oracle Workflow home page. See: Accessing the Oracle
Workflow Home Page: page 9 – 2.

2. The Systems page appears, displaying a list of existing systems.
The Systems page summarizes the internal name, display name,
and master system of each system. An asterisk marks the local
system.

Choose the Add System button to open the Edit System page.

�

13 – 19Managing Business Events

3. Enter the internal name of the system in the Name field. All Oracle
Workflow APIs, SQL scripts, and PL/SQL procedures refer to the
internal name when identifying a system.

Attention: The internal name must be all–uppercase and
should not include any single or double quotation marks (’ or
”) or spaces.

4. Enter a Display Name for the system. This name appears in the
Systems list.

5. Enter an optional description for the system.

6. Optionally enter a Master system from which you want this system
to receive Event Manager object definition updates. Click on the
Master field’s up arrow icon to display a list of systems from which
to choose. See: Using a List of Values: page 13 – 22.

7. Choose the Submit button to save the system and return to the
Systems page. The Systems page displays an updated list of
systems.

You can also choose the Cancel button to return to the Systems
page without saving the system.

� To Find Systems

1. Use a web browser to connect to the following URL:

<webagent>/wf_event_html.findsystem

Replace <webagent> with the base URL of the web agent
configured for Oracle Workflow in your Web server. See: Setting
Global User Preferences: page 2 – 14.

�

13 – 20 Oracle Workflow Guide

Attention: This URL accesses a secured page, so if you have
not yet logged on as valid user in the current web session, you
will be prompted to do so before the page appears. You must
have workflow administrator privileges to access the Event
Manager web pages.

Note: You can also access the Find System web page from the
Oracle Workflow home page. See: Accessing the Oracle
Workflow Home Page: page 9 – 2.

2. The Find System page appears. The Find System page lets you
enter search criteria to locate specific systems. The search criteria
are:

• Name—enter the internal name of the system you want to
display.

• Display Name—enter the display name of the system you want
to display.

• Master—enter the master system for the system you want to
display. Click on the field’s up arrow icon to display a list of
systems from which to choose. See: Using a List of Values: page
13 – 22.

3. Choose the Find button. The Systems page appears, displaying a
list of systems that match your search criteria. An asterisk marks
the local system.

13 – 21Managing Business Events

� To Update or Delete a System

1. Locate the system you want in the Systems page. You can use the
Find System page to find the system that you want and display the
system in the Systems page. See: To Find Systems: page 13 – 19.

2. To view the subscriptions for a system, choose the schedule icon in
the Subs column for that system. The Event Subscriptions page
appears, displaying the list of subscriptions by the system.

Note: For systems that do not have any subscriptions yet, a
blank schedule icon appears. For systems that do have
subscriptions, a full schedule icon appears.

You can begin defining a new subscription for the system by
choosing the Add Subscription button in the Event Subscriptions
page. The Edit Subscription page appears with the system name
automatically entered in the System field. See Defining Event
Subscriptions: page 13 – 34.

3. To update a system, choose the pencil icon in the Edit column for
that system. The Edit System page appears. Make your changes to
the system definition and save your work. See: To Define a System:
page 13 – 18.

4. To delete a system, choose the trash icon in the Delete column for
that system, and choose OK in the confirmation window that
appears. You can also choose Cancel in the confirmation window to
return to the Systems page without deleting the system.

Note: You can only delete systems that do not have any agents
defined on them or any subscriptions referencing them.

13 – 22 Oracle Workflow Guide

� Using a List of Values

1. For a field that supports a list of values, click on the field’s
up–arrow icon to display a list of values window.

2. In the Find field, enter search criteria and choose the Find button to
retrieve a subset of values that match your criteria. You can also
choose the Clear button to clear the Find field. If you do not specify
any search criteria and simply choose Find, you retrieve the
complete list of values.

3. Click on a value from the list to select that value and close the list
of values window. The value you select populates the original
field.

Agents

An agent is a named point of communication within a system.
Communication within and between systems is accomplished by
sending a message from one agent to another. A single system can have
several different agents representing different communication
alternatives. For example, a system may have different agents to
support inbound and outbound communication, communication by
different protocols, different propagation frequencies, or other
alternatives.

You should define each agent that you will use to communicate events
in the Event Manager. Each agent’s name must be unique within its
system. The agent can be referenced in code within Oracle Workflow by
a compound name in the following format:

<agent_name>@<system_name>

For example, the agent WF_IN within the system HUB could be
referenced as WF_IN@HUB.

After defining the agents on your local system, you should set them up
for event message propagation by scheduling listeners for local
inbound agents and propagations for local outbound agents. See:
Scheduling Listeners for Local Inbound Agents: page 13 – 56 and
Scheduling Propagations for Local Outbound Agents: page 13 – 56.

Assigning a Direction to an Agent

When you define an agent in the Event Manager, you must specify the
direction of communication that the agent supports on its local system.

13 – 23Managing Business Events

• In—Inbound communication to the system. The agent receives
messages in a specific protocol and presents them to the system
in a standard format.

• Out—Outbound communication from the system. The agent
accepts messages from the system in a standard format and
sends them using the specified protocol.

Assigning a Protocol to an Agent

You must associate each agent with the protocol by which it
communicates messages. The protocol specifies how the messages are
encoded and transmitted. For a message to be successfully
communicated, the sending and receiving agents must use the same
protocol.

A protocol can represent a network standard, such as SQLNET. It can
also represent a business–to–business standard that defines the
higher–level message format and handshaking agreements between
systems in addition to the network standard.

The Business Event System interacts with an agent through an AQ
queue. You can use AQ to perform the propagation of messages by the
SQLNET protocol which it supports. In Oracle9i, AQ also includes
Internet access functionality that lets you perform AQ operations over
the Internet by using AQ’s Internet Data Access Presentation (IDAP)
for messages and transmitting the messages over the Internet using
transport protocols such as HTTP or HTTPS. Additionally, the
Messaging Gateway feature of AQ in Oracle9i enables communication
between applications based on non–Oracle messaging systems and AQ,
letting you integrate with third party messaging solutions. You can also
implement other services to propagate messages by different protocols.
The following table shows which services you can use for various
protocols, depending on your database version.

Database
Version

SQLNET
Protocol

HTTP/HTTPS
Protocols

Integration with Third Party
Messaging Solutions

Oracle8i Oracle
Advanced
Queuing

Oracle Message
Broker

Oracle Message Broker

Oracle9i Oracle
Advanced
Queuing

Oracle
Advanced
Queuing

Oracle Advanced Queuing
Messaging Gateway feature

Table 13 – 2 (Page 1 of 1)

13 – 24 Oracle Workflow Guide

To implement a custom protocol, you must perform the following
steps:

1. Define AQ queues to hold pending inbound and outbound
messages.

2. Provide code that propagates messages to and from the AQ
queues.

3. Define a lookup code for the new protocol in the Event Protocol
Type (WF_AQ_PROTOCOLS) lookup type, which is stored in the
Standard item type. The Event Manager uses the Event Protocol
Type lookup type to validate the protocol for an agent. See: To
Create Lookup Codes for a Lookup Type: page 4 – 21.

4. Define agents with the new protocol. See: To Define an Agent: page
13 – 29.

If an agent supports inbound communication, you must specify the
address by which systems can communicate with it. The format of the
address depends on the agent’s protocol. For agents that use the
SQLNET protocol, the address must be in the following format to
enable AQ propagation:

<schema>.<queue>@<database link>

In this format, <schema> represents the schema that owns the queue,
<queue> represents the queue name, and <database link> represents
the name of the database link to the instance where the queue is
located.

Note: You must enter the database link name exactly as the
name was specified when the database link was created. For
example, if a database link is named ORA816.US.ORACLE.COM,
you must enter that complete name in the address of an agent
on that database. You cannot abbreviate the name to ORA816.

The names of the database links that you want to use for the
Business Event System should be fully qualified with the
domain names. To confirm the names of your database links,
use the following syntax:

SELECT db_link FROM all_db_links

See: Creating Database Links: page 2 – 96.

Assigning a Queue to an Agent

You must associate each agent with an AQ queue. The local system
uses this queue to interact with the agent. To send messages, the
system enqueues the messages on the queue and sets the recipient

13 – 25Managing Business Events

addresses. To receive messages, the system runs a queue listener on the
queue.

Event messages within the Oracle Workflow Business Event System are
encoded in a standard format defined by the datatype WF_EVENT_T.
You must assign each agent a PL/SQL package called a queue handler
that translates between this standard Workflow format and the format
required by the agent’s queue. See: Event Message Structure: page
8 – 242.

Note: Even if the agent’s queue uses WF_EVENT_T as its
payload type, a queue handler is still required in order to set
native AQ message properties.

Oracle Workflow provides two standard queue handlers, called
WF_EVENT_QH and WF_ERROR_QH, for queues that use SQLNET
propagation and use the WF_EVENT_T datatype as their payload type.
You can use WF_EVENT_QH with queues that handle normal Business
Event System processing, while WF_ERROR_QH should be used
exclusively with error queues.

Oracle Workflow also provides a queue handler called
WF_EVENT_OMB_QH, which you can use if you implement Oracle
Message Broker with Oracle8i to propagate messages between systems
by another protocol such as HTTP. See: Setting Up the
WF_EVENT_OMB_QH Queue Handler: page 2 – 100 and Mapping
Between WF_EVENT_T and OMBAQ_TEXT_MSG: page 8 – 257.

If you want to use queues that require a different format, create a
custom queue handler for that format. Your custom queue handler
must include a set of standard APIs to enqueue and dequeue messages
in the custom format. See: Standard APIs for a Queue Handler: page
7 – 23.

Standard Agents

When you install Oracle Workflow, four standard agents are
automatically defined for the Business Event System.

• WF_IN—Standard inbound agent

• WF_OUT—Standard outbound agent

• WF_DEFERRED—Standard agent for deferred subscription
processing

• WF_ERROR—Standard agent for error handling

These agents use standard queues that are automatically defined when
you install Oracle Workflow. See: Setting Up Queues: page 2 – 97.

13 – 26 Oracle Workflow Guide

You can enable or disable the WF_IN and WF_OUT agents, but you
must not make any other changes to their definitions. You must not
make any changes to the definitions of the WF_DEFERRED and
WF_ERROR agents.

However, you must schedule listeners for the WF_DEFERRED and
WF_ERROR agents to enable deferred subscription processing and
error handling for the Business Event System, respectively. Also, if you
want to use the WF_IN and WF_OUT agents for event message
propagation, schedule a listener for WF_IN and propagations for
WF_OUT as well. See: Scheduling Listeners for Local Inbound Agents:
page 13 – 56 and Scheduling Propagations for Local Outbound Agents:
page 13 – 56.

Additionally, a standard agent named WF_SMTP_O_1_QUEUE is
defined for the Notification Mailer SMTP queue. This agent appears in
the Check Setup page and the Event System Local Queues page,
enabling you to use these pages to check the number of notification
messages on the Notification Mailer queue. The
WF_SMTP_O_1_QUEUE agent is not used by the Business Event
System, however, so its status is Disabled and no queue handler is
defined for it. You must not run an agent listener for this agent. See:
Implementing the Notification Mailer: page 2 – 48, Checking the
Business Event System Setup: page 13 – 53, and Reviewing Local
Queues: page 13 – 72.

The following table lists the default properties for the standard WF_IN
agent.

Agent Property Value

Name WF_IN

Display Name WF_IN

Description WF_IN

Protocol SQLNET

Address <workflow schema>.WF_IN@<local database>

System <local system>

Queue Handler WF_EVENT_QH

Queue Name <workflow schema>.WF_IN

Table 13 – 3 (Page 1 of 2)

13 – 27Managing Business Events

ValueAgent Property

Direction In

Status Enabled

Table 13 – 3 (Page 2 of 2)

The following table lists the default properties for the standard
WF_OUT agent.

Agent Property Value

Name WF_OUT

Display Name WF_OUT

Description WF_OUT

Protocol SQLNET

Address <workflow schema>.WF_OUT@<local database>

System <local system>

Queue Handler WF_EVENT_QH

Queue Name <workflow schema>.WF_OUT

Direction Out

Status Enabled

Table 13 – 4 (Page 1 of 1)

The following table lists the default properties for the standard
WF_DEFERRED agent.

Agent Property Value

Name WF_DEFERRED

Display Name WF_DEFERRED

Description WF_DEFERRED

Protocol SQLNET

Address <workflow schema>.WF_DEFERRED@<local database>

Table 13 – 5 (Page 1 of 2)

13 – 28 Oracle Workflow Guide

ValueAgent Property

System <local system>

Queue Handler WF_EVENT_QH

Queue Name <workflow schema>.WF_DEFERRED

Direction In

Status Enabled

Table 13 – 5 (Page 2 of 2)

The following table lists the default properties for the standard
WF_ERROR agent.

Agent Property Value

Name WF_ERROR

Display Name WF_ERROR

Description WF_ERROR

Protocol SQLNET

Address <workflow schema>.WF_ERROR@<local database>

System <local system>

Queue Handler WF_ERROR_QH

Queue Name <workflow schema>.WF_ERROR

Direction In

Status Enabled

Table 13 – 6 (Page 1 of 1)

The following table lists the default properties for the standard
WF_SMTP_O_1_QUEUE agent.

Agent Property Value

Name WF_SMTP_O_1_QUEUE

Display Name WF_SMTP_O_1_QUEUE

Table 13 – 7 (Page 1 of 2)

�

13 – 29Managing Business Events

ValueAgent Property

Description This is the Mailer Queue – do not submit the Agent Lis-
tener Concurrent Program on this Agent.

Protocol SQLNET

Address <workflow schema>.WF_SMTP_O_1_QUEUE
@<local database>

System <local system>

Queue Handler

Queue Name <workflow schema>.WF_SMTP_O_1_QUEUE

Direction In

Status Disabled

Table 13 – 7 (Page 2 of 2)

� To Define an Agent

1. Use a web browser to connect to the following URL:

<webagent>/wf_event_html.listagents

Replace <webagent> with the base URL of the web agent
configured for Oracle Workflow in your Web server. See: Setting
Global User Preferences: page 2 – 14.

Attention: This URL accesses a secured page, so if you have
not yet logged on as valid user in the current web session, you
will be prompted to do so before the page appears. You must
have workflow administrator privileges to access the Event
Manager web pages.

Note: You can also access the Agents web page from the
Oracle Workflow home page. See: Accessing the Oracle
Workflow Home Page: page 9 – 2.

13 – 30 Oracle Workflow Guide

2. The Agents page appears, displaying a list of existing agents
grouped by the system where they are located. The Agents page
summarizes the internal name, address, protocol, direction, and
status of each agent.

Choose the Add Agent button to open the Edit Agent page.

3. Enter the internal name of the agent in the Name field. The agent’s
internal name must be unique within the agent’s system. Oracle

�

�

13 – 31Managing Business Events

Workflow APIs, SQL scripts, and PL/SQL procedures may refer to
the internal name when identifying an agent.

Attention: The internal name must be all–uppercase and
should not include any single or double quotation marks (’ or
”) or spaces.

4. Enter a Display Name for the agent.

5. Enter an optional description for the agent.

6. Select the message communication protocol that the agent
supports.

7. If the agent supports inbound communication to its system, enter
the address for the agent. The format of the address depends on the
protocol you select.

For agents that use the SQLNET protocol, the address must be in
the following format to enable AQ propagation:

<schema>.<queue>@<database link>

<schema> represents the schema that owns the queue, <queue>
represents the queue name, and <database link> represents the
database link to the instance where the queue is located.

Note: You must enter the database link name exactly as the
name was specified when the database link was created. See:
Creating Database Links: page 2 – 96.

8. Enter the system in which the agent is defined. Click on the System
field’s up arrow icon to display a list of systems from which to
choose. See: Using a List of Values: page 13 – 22.

9. Enter the Queue Handler for the agent. The queue handler is the
PL/SQL package that translates between the Workflow event
message format (WF_EVENT_T) and the message format required
by the queue associated with the agent. See: Standard APIs for a
Queue Handler: page 7 – 23.

Attention: You must enter the queue handler name in all
uppercase.

10. Enter the name of the queue that the local system uses to interact
with the agent. Since only the local system refers to this queue
name, the queue name should be within the scope of this system,
without requiring a database link. Use the following format to
specify the queue name:

<schema>.<queue>

�

�

13 – 32 Oracle Workflow Guide

<schema> represents the schema that owns the queue, and <queue>
represents the queue name.

Attention: You must enter the queue name in all uppercase.

11. In the Direction field, select In for an agent that supports inbound
communication to its system, or select Out for an agent that
supports outbound communication from its system.

12. In the Status field, select Enabled or Disabled as the agent status. If
you disable an agent, it still remains in the Agents list for reference,
but you cannot use the agent in active subscriptions.

13. Choose the Submit button to save the agent and return to the
Agents page. The Agents page displays an updated list of agents.

You can also choose the Cancel button to return to the Agents page
without saving the agent.

� To Find Agents

1. Use a web browser to connect to the following URL:

<webagent>/wf_event_html.findagent

Replace <webagent> with the base URL of the web agent
configured for Oracle Workflow in your Web server. See: Setting
Global User Preferences: page 2 – 14.

Attention: This URL accesses a secured page, so if you have
not yet logged on as valid user in the current web session, you
will be prompted to do so before the page appears. You must
have workflow administrator privileges to access the Event
Manager web pages.

Note: You can also access the Find Agent web page from the
Oracle Workflow home page. See: Accessing the Oracle
Workflow Home Page: page 9 – 2.

13 – 33Managing Business Events

2. The Find Agent page appears. The Find Agent page lets you enter
search criteria to locate specific agents. The search criteria are:

• Name—enter the internal name of the agent you want to display.

• Protocol—choose the protocol of the agent you want to display,
or choose Any to display agents of any protocol.

• Address—enter the address of the agent you want to display.

• System—enter the system of the agent you want to display. Click
on the field’s up arrow icon to display a list of systems from
which to choose. See: Using a List of Values: page 13 – 22.

• Direction—choose In or Out as the direction of the agents you
want to display, or choose Any to display agents of any
direction.

• Status—choose Enabled or Disabled as the status of the agents
you want to display, or choose Any to display agents of any
status.

3. Choose the Find button. The Agents page appears, displaying a list
of agents that match your search criteria.

� To Update or Delete an Agent

1. Locate the agent that you want in the Agents page. You can use the
Find Agent page to find the agent that you want and display the
agent in the Agents page. See: To Find Agents: page 13 – 32.

13 – 34 Oracle Workflow Guide

2. To update an agent, choose the pencil icon in the Edit column for
that agent. The Edit Agent page appears. Make your changes to the
agent definition and save your work. See: To Define an Agent: page
13 – 29.

3. To delete an agent, choose the trash icon in the Delete column for
that agent, and choose OK in the confirmation window that
appears. You can also choose Cancel in the confirmation window to
return to the Agents page without deleting the agent.

Note: You can only delete agents that do not have any
subscriptions referencing them.

Note: Whenever you make changes to your agents that affect
the physical implementation required for message propagation,
you should recheck your propagation setup. See: Setting Up
Message Propagation: page 13 – 53.

Event Subscriptions

An event subscription is a registration indicating that a particular event
is significant to a particular system and specifying the processing to
perform when the triggering event occurs. You can define your event
subscriptions in the Event Manager.

When you install Oracle Workflow, several default subscriptions to
predefined Workflow events are automatically created. You can update,
enable, or disable these subscriptions to perform the event processing
that you want. See: Predefined Workflow Events: page 14 – 2.

13 – 35Managing Business Events

Whenever an event is raised locally or received from an external
source, the Event Manager searches for and executes any active
subscriptions by the local system to that event or to the Any event. If
no active subscriptions exist for the event that occurred (apart from
subscriptions to the Any event), then Oracle Workflow executes any
active subscriptions to the Unexpected event. See: Any Event: page
14 – 10 and Unexpected Event: page 14 – 12.

Defining the Subscriber

To begin defining a subscription, you specify which system is the
subscriber. The subscriber is the system where you want the
subscription to execute.

Each subscription defines an action on exactly one system, so you
should define a separate subscription for each system involved in the
processing you want to perform. For example, if you want to propagate
data from one system to another, you should define one subscription
for the sending system, and another subscription for the receiving
system.

Defining How a Subscription is Triggered

You must specify the source type of the events to which the
subscription applies. Events can have the following source types:

• Local—The subscription applies only to events raised on the
subscribing system.

• External—The subscription applies only to events received by an
inbound agent on the subscribing system.

Note: All event messages received by an inbound agent on the
subscribing system are considered to have an External source,
whether the sending agent is located on a remote system or on
the local system.

• Error—The subscription applies to only to errored events
dequeued from the WF_ERROR queue.

Next, select the event that you want to trigger the subscription. You can
choose either an individual event or an event group. If you choose an
event group, the subscription will be triggered whenever any one of the
group’s member events occurs.

You can also optionally restrict the subscription to be triggered only by
events received from a specific source agent. However, in most cases
you do not need to specify a source agent.

13 – 36 Oracle Workflow Guide

Controlling How a Subscription is Executed

If you define multiple subscriptions to the same event, you can control
the order in which the Event Manager executes those subscriptions by
specifying a phase number for each subscription. Subscriptions are
executed in ascending phase order. For example, you can enter 10 for
the subscription that you want to execute first when an event occurs, 20
for the subscription that you want to execute second, and so on. You
can use phases to ensure that different types of actions are performed
in the appropriate order, such as executing subscriptions that perform
validation before subscriptions that perform other types of processing.

Note: If you enter the same phase number for more than one
subscription, the Event Manager may execute those
subscriptions in any order, relative to each other. However, the
Event Manager will still execute that group of subscriptions in
their specified place in the phase order, relative to subscriptions
with other phase numbers.

You can also use the phase number for a subscription to control
whether the subscription is executed immediately or is deferred. The
Event Manager treats subscriptions with a phase number of 100 or
higher as deferred subscriptions. See: Deferred Subscription
Processing: page 13 – 41.

Depending on the processing to be performed, a subscription may
require the complete set of event information contained in the event
data, or it may require only the event key that identifies the instance of
the event. You can improve performance by specifying Key as the rule
data for subscriptions that do not require the complete event data. For
locally raised events, the Event Manager checks each subscription
before executing it to determine whether the subscription requires the
complete event data. If the event data is required but is not already
provided, the Event Manager runs the Generate function for the event
to produce the event data. However, if no subscriptions to the event
require the event data, then the Event Manager will not run the
Generate function, minimizing the resources required to execute the
subscriptions.

Note: Even if there are subscriptions that require the complete
event data, you can return control to the calling application
more quickly after raising the event by deferring all those
subscriptions. Then the Event Manager will not run the
Generate function until those subscriptions are executed at a
later time.

13 – 37Managing Business Events

Defining the Action for a Subscription

Subscription processing can include the following types of processing:

• Run a function on the event message.

• Send the event message to a workflow process.

• Send the event message to an agent.

Running a Rule Function

To run a function on the event message, you must specify the rule
function that you want to execute. You can also specify any additional
parameters that you want to pass to the function.

Oracle Workflow provides a standard default rule function to perform
basic subscription processing. This function is executed by default if no
other rule function is specified for the subscription. The default rule
function includes the following actions:

• Sending the event message to a workflow process, if specified in
the subscription definition

• Sending the event message to an agent, if specified in the
subscription definition

See: Default_Rule: page 8 – 281.

Oracle Workflow also provides some standard rule functions that you
can use for testing and debugging or other purposes. See: Event
Subscription Rule APIs: page 8 – 279.

You can extend your subscription processing by creating custom rule
functions. Custom rule functions must be defined according to a
standard API. See: Standard API for an Event Subscription Rule
Function: page 7 – 25.

You can use a rule function for many different purposes, including:

• Performing validation

• Processing inbound messages as a Receive message handler for
an application

• Making modifications to an outbound message, such as adding a
correlation ID that associates this message with other messages

Note: You can call
WF_EVENT_FUNCTIONS_PKG.AddCorrelation() within a
custom rule function to add a correlation ID during your
custom processing. See: AddCorrelation: page 8 – 294.

13 – 38 Oracle Workflow Guide

A rule function may read or write to the event message or perform any
other database action. However, you should never commit within a
rule function. The Event Manager never issues a commit as it is the
responsibility of the calling application to commit. Additionally, the
function must not change the connection context in any way, including
security and NLS settings. If a rule function returns an error,
subscription processing is halted.

If the subscription processing that you want to perform for an event
includes several successive steps, you may find it advantageous to
define multiple subscriptions to the event with simple rule functions
that you can reuse, rather than creating complex specialized rule
functions that cannot be reused. You can enter phase values for the
subscriptions to specify the order in which they should be executed.

Note: If you enter a rule function other than the default
function, you can still enter workflow and agent information
for your function to reference, but Oracle Workflow does not
automatically send the event message to the specified
workflow and agent. Instead, you must either explicitly include
the send processing in your rule function, or define a separate
subscription that does use the default rule function to perform
the send processing.

Sending the Event to a Workflow Process

To send the event to a workflow process, you must specify the item
type and process name of the process. The item key for the process is
determined either by the correlation ID specified in the event message,
or by the event key if no correlation ID is specified.

Note: You can call
WF_EVENT_FUNCTIONS_PKG.AddCorrelation() during
subscription processing to add a correlation ID to the event
message. To use AddCorrelation(), you must enter a subscription
parameter named ITEMKEY that specifies a function to
generate the correlation ID. The function must be specified in
the following format:

ITEMKEY=<package_name.function_name>

See: AddCorrelation: page 8 – 294.

By sending an event to a workflow process, you can model complex
processing or routing logic beyond the options of directly running a
predefined function or sending the event to a predefined recipient. For
example, you can branch to different functions, initiate subprocesses,
send notifications, or select recipient agents, based on the contents of
the event message, or modify the event message itself.

13 – 39Managing Business Events

Events are represented within workflow processes by event activities.
See: Event Activity: page 4 – 54.

When the process receives the event, the Workflow Engine stores the
event name, event key, and event message in item type attributes, as
specified in the Receive event activity node’s event details. The
Workflow Engine also sets any parameters in the event message
parameter list as item type attributes for the process, creating new item
type attributes if a corresponding attribute does not already exist for
any parameter. Also, the subscription’s globally unique identifier
(GUID) is set as a dynamic item attribute so that the workflow process
can reference other information in the subscription definition.

If the event was originally raised by a Raise event activity in another
workflow process, the item type and item key for that process are
included in the parameter list within the event message. In this case,
the Workflow Engine automatically sets the specified process as the
parent for the process that receives the event, overriding any existing
parent setting. See: SetItemParent: page 8 – 79.

If you want to specify additional parameters to set as item attributes
for the workflow process, you can enter these parameters in the
Parameters field of a subscription and use
WF_RULE.SetParametersIntoParameterList() in the subscription rule
function to set the subscription parameters into the event message
parameter list. The event parameters will then be set as item attributes
for the workflow process when the process receives the event. See:
SetParametersIntoParameterList: page 8 – 289.

Note: To send an event to a workflow process, you must either
use the default rule function provided by Oracle Workflow or
include send processing in your custom rule function. See:
Standard API for an Event Subscription Rule Function: page
7 – 25.

Sending the Event to an Agent

To send an event to an agent, you must specify either the Out Agent
that you want to send the outbound message, or the To Agent that you
want to receive the inbound message, or both.

• If you specify both a To Agent and an Out Agent, Oracle
Workflow places the event message on the Out Agent’s queue
for propagation, addressed to the To Agent.

• If you specify a To Agent without an Out Agent, Oracle
Workflow selects an outbound agent on the subscribing system
whose queue type matches the queue type of the To Agent. The

13 – 40 Oracle Workflow Guide

event message is then placed on this outbound agent’s queue for
propagation, addressed to the To Agent.

• If you specify an Out Agent without a To Agent, Oracle
Workflow places the event message on the Out Agent’s queue
without a specified recipient.

– You can omit the To Agent if the Out Agent uses a
multi–consumer queue with a subscriber list. (The standard
Workflow queue handlers work only with multi–consumer
queues.) In this case the queue’s subscriber list determines
which consumers can dequeue the message. If no subscriber
list is defined for that queue, however, the event message is
placed on the WF_ERROR queue for error handling.

Note: The subscriber list for a multi–consumer queue in Oracle
Advanced Queuing is different from event subscriptions in the
Oracle Workflow Business Event System. For more
information, see: Subscription and Recipient Lists, Oracle
Application Developer’s Guide – Advanced Queuing.

– You can also omit the To Agent if the Out Agent uses a
single–consumer queue for which you have defined a
custom queue handler. For a single–consumer queue, no
specified consumer is required.

You can optionally specify the priority with which the recipient should
dequeue a message. Messages are dequeued in ascending priority
order.

Note: To send an event to an agent, you must either use the
default rule function provided by Oracle Workflow or include
send processing in your custom rule function. See: Standard
API for an Event Subscription Rule Function: page 7 – 25.

If you want an event message to become available to the recipient at a
future date, rather than being available immediately as soon as it is
propagated, you can set the SEND_DATE attribute within the event
message to the date you want. You should set the send date during
subscription processing before the event is sent, either in a prior
subscription or earlier in the rule function before the send processing.
The event message is propagated to the To Agent but does not become
available for dequeuing until the specified date.

Documenting Identifying Information for a Subscription

If you use a program to create subscription definitions automatically,
the program can set its own name and brief identifier as the owner
name and owner tag for the subscriptions. The program can then use

13 – 41Managing Business Events

this identifying information to locate the subscriptions that it owns.
You can use the Edit Subscription page to update the owner name and
owner tag manually if necessary.

Deferred Subscription Processing

If you do not want subscriptions for an event to be executed
immediately when the event occurs, you can defer the subscriptions. In
this way you can return control more quickly to the calling application
and let the Event Manager execute any costly subscription processing
at a later time.

You can defer subscription processing by three different methods:

• Raise the event with a future date in the SEND_DATE attribute.
Use this method when you want to defer all subscription
processing for a locally raised event until a particular effective
date.

• Define subscriptions to the event with phase numbers of 100 or
higher. Use this method when you want to defer processing of
particular subscriptions for either local or external events.

• Set the dispatch mode of the Event Manager to deferred
processing before raising the event. This method can be used to
defer all subscription processing for a locally raised event. This
method is not recommended, however, and should only be used
in exceptional circumstances.

When subscription processing for an event is deferred by any of these
methods, the event message is placed on the standard WF_DEFERRED
queue associated with the WF_DEFERRED agent. You must schedule a
listener to monitor the WF_DEFERRED agent. See: Scheduling
Listeners for Local Inbound Agents: page 13 – 56.

The listener dequeues event messages from the WF_DEFERRED agent
in priority order. The event messages retain their original source type,
whether Local or External. The amount of time by which subscription
processing for these events is deferred depends on the schedule
defined for the listener, and, for future–dated events, on the specified
effective date.

Deferring Subscription Processing Using a Future Send Date

You can defer subscription processing for a local event until a
particular future effective date by raising the event with that date in the
SEND_DATE attribute. For example, you could enter information for a
new employee in a human resources application as soon as the

13 – 42 Oracle Workflow Guide

employee was hired, but defer payroll processing until the employee’s
start date.

When an event is raised with a future send date, the Event Manager
immediately places the event message on the WF_DEFERRED queue,
without executing any of the subscriptions for the event. All
subscriptions to the event are deferred, regardless of their phase
number. The event remains in a WAIT state until the send date. When
the send date arrives, the event message becomes available for
dequeuing and will be dequeued the next time an agent listener runs
on the WF_DEFERRED queue. The amount of time by which
subscription processing is deferred depends on the send date you
specify as well as on the schedule defined for the listener.

When the listener dequeues the event message, the Event Manager
checks for a subscription ID in the ERROR_SUBSCRIPTION attribute.
If the event message does not contain a subscription ID, meaning that
all subscription processing for the event was deferred immediately
after the event was raised, then the Event Manager proceeds to execute
all subscriptions to the event, in ascending phase order.

Note: If an event was deferred when it was raised, the Event
Manager executes all eligible subscriptions to the event when
the event is dequeued from the WF_DEFERRED queue,
regardless of the subscription phase numbers. Subscriptions
will not be deferred a second time, even if they have a phase
number of 100 or higher.

See Also

Raise: page 8 – 261

Deferring Subscription Processing Using Subscription Phase
Numbers

You can also use the phase number for a subscription to control
whether the subscription is executed immediately or is deferred. The
Event Manager treats subscriptions with a phase number of 100 or
higher as deferred subscriptions. Both Local and External subscriptions
can be deferred in this way.

Note: For this deferral method to take effect when an event is
raised locally, the event must not be raised with a future send
date, and the Event Manager must be in the normal
synchronous mode for subscription processing. Otherwise, the
event message will immediately be placed on the
WF_DEFERRED queue, and the Event Manager will not

13 – 43Managing Business Events

execute any subscriptions until the event is dequeued from
there.

When a triggering event is raised or received, the Event Manager
executes subscriptions to that event in phase order until it encounters a
subscription with a phase number of 100 or higher. The Event Manager
sets that subscription into the ERROR_SUBSCRIPTION attribute within
the event message, as well as setting the priority specified in the
subscription properties into the PRIORITY attribute. Then the event
message is placed on the standard WF_DEFERRED queue.

The amount of time by which subscription processing is deferred
depends on the schedule defined for the agent listener monitoring the
WF_DEFERRED agent. When the listener dequeues an event message,
the Event Manager checks for a subscription ID in the
ERROR_SUBSCRIPTION attribute. If a subscription ID is present,
meaning that subscription processing was deferred from that
subscription onwards, the Event Manager begins by executing that
subscription, and then continues executing any other subscriptions to
the event with the same or a higher phase number.

Note: The Event Manager resumes subscription processing at
the phase number of the subscription set into the event
message. It does not necessarily begin with the phase number
100, if there were no subscriptions with that phase number
when the event was originally processed.

Deferring Subscription Processing Using the Event Manager
Dispatch Mode

If you raise an event from a local application, you can also choose to
defer all subscription processing for that event every single time it is
raised. To do so, call the SetDispatchMode() API with the mode
’ASYNC’, indicating deferred (asynchronous) processing, just before
calling the Raise() API. This method is not recommended, however, and
should only be used in exceptional circumstances, since it requires
hard–coding the deferral in your application. To retain the flexibility to
modify subscription processing without intrusion into the application,
you can simply raise the event with a future send date or mark some or
all of the individual subscriptions for deferral using the subscription
phase numbers.

When an event is raised after the dispatch mode is set to deferred
processing, the Event Manager immediately places the event message
on the WF_DEFERRED queue, without executing any of the
subscriptions for the event. All subscriptions to the event are deferred,
regardless of their phase number.

13 – 44 Oracle Workflow Guide

The amount of time by which subscription processing is deferred
depends on the schedule defined for the agent listener monitoring the
WF_DEFERRED agent. When the listener dequeues the event message,
the Event Manager checks for a subscription ID in the
ERROR_SUBSCRIPTION attribute. If the event message does not
contain a subscription ID, meaning that all subscription processing for
the event was deferred immediately after the event was raised, then the
Event Manager proceeds to execute all subscriptions to the event, in
ascending phase order.

Note: If an event was deferred when it was raised, the Event
Manager executes all eligible subscriptions to the event when
the event is dequeued from the WF_DEFERRED queue,
regardless of the subscription phase numbers. Subscriptions
will not be deferred a second time, even if they have a phase
number of 100 or higher.

See Also

SetDispatchMode: page 8 – 274

Error Handling

If a rule function returns a status code of WARNING or ERROR,
indicating that a warning condition or an error occurred during
subscription processing, the Event Manager places the event message
on the standard WF_ERROR queue associated with the WF_ERROR
agent. For a WARNING status, the Event Manager then continues
subscription processing for the event. For an ERROR status, the Event
Manager halts subscription processing for the event and rolls back any
subscriptions already executed for the event.

You must schedule a listener to monitor the WF_ERROR agent. When
this listener dequeues the event message from the WF_ERROR queue,
the message is assigned a source type of Error. The Event Manager then
searches for and executes any subscriptions by the local system to that
event or to the Any event with the source type Error. If no
subscriptions are found, the Event Manager executes any subscriptions
by the local system to the Unexpected event with the source type Error.

Oracle Workflow provides one predefined subscription to the
Unexpected event with the source type Error. This subscription
performs the default error handling for any errored event for which
you have not defined a custom Error subscription. The subscription
sends the event message to the Default Event Error process in the
System: Error item type.

�

�

13 – 45Managing Business Events

Attention: You must not change or disable the definition of
the Unexpected event or of the predefined Error subscription
to that event. If you do, the Event Manager will not be able to
perform default error handling for event and subscription
processing.

The Default Event Error process sends a notification to the system
administrator. For a warning condition, no response is required. For an
error, the process allows the system administrator to abort or retry the
event subscription processing. See: Unexpected Event: page 14 – 12 and
Default Event Error Process: page 6 – 34.

You can set up custom error handling for a particular event by defining
a subscription to that event with a source type of Error and specifying
the custom processing you want to execute as the subscription action.
In this case, the Event Manager will not perform the default error
handling, since the errored event will no longer be an unexpected
event. Instead, your custom error handling will replace the default
error handling.

Note: If a rule function raises an exception, the Event Manager
rolls back all subscription processing for the event and raises
the error to the calling application. In this case the event
message is not placed on the WF_ERROR queue.

See Also

Standard API for an Event Subscription Rule Function: page 7 – 25

Scheduling Listeners for Local Inbound Agents: page 13 – 56

� To Define an Event Subscription

1. Use a web browser to connect to the following URL:

<webagent>/wf_event_html.listsubscriptions

Replace <webagent> with the base URL of the web agent
configured for Oracle Workflow in your Web server. See: Setting
Global User Preferences: page 2 – 14.

Attention: This URL accesses a secured page, so if you have
not yet logged on as valid user in the current web session, you
will be prompted to do so before the page appears. You must
have workflow administrator privileges to access the Event
Manager web pages.

13 – 46 Oracle Workflow Guide

Note: You can also access the Event Subscriptions web page
from the Oracle Workflow home page. See: Accessing the
Oracle Workflow Home Page: page 9 – 2.

2. The Event Subscriptions page appears, displaying a list of existing
subscriptions grouped by the subscribing system and triggering
event. The Event Subscriptions page summarizes the source type,
out agent, to agent, function, workflow, and status of each
subscription.

Choose the Add Subscription button to open the Edit Subscription
page.

13 – 47Managing Business Events

3. In the Subscriber region, enter the system where the subscription
executes. Click on the System field’s up arrow icon to display a list
of systems from which to choose. See: Using a List of Values: page
13 – 22.

4. In the Triggering Condition region, specify the type of source
system to which the subscription applies in the Source Type field.

• Local—The subscription applies only to events raised on the
subscribing system.

• External—The subscription applies only to events received by an
inbound agent on the subscribing system.

Note: All event messages received by an inbound agent on the
subscribing system are considered to have an External source,
whether the sending agent is located on a remote system or on
the local system.

• Error—The subscription applies to only to errored events
dequeued from the WF_ERROR queue.

13 – 48 Oracle Workflow Guide

5. Enter the event to which the subscription applies in the Event Filter
field. You can specify an individual event or an event group. Click
on the Event Filter field’s up arrow icon to display a list of events
from which to choose. See: Using a List of Values: page 13 – 22.

6. Enter an optional Source Agent to which the subscription applies. If
you specify a source agent, then the subscription is executed only
when the triggering event is received from that agent. Click on the
Source Agent field’s up arrow icon to display a list of agents from
which to choose. See: Using a List of Values: page 13 – 22.

Note: In most cases, the Source Agent field is left blank.

7. In the Execution Control region, enter an optional Phase number
for the subscription to specify the order in which subscriptions that
apply to the same event are executed. The phase number also
controls whether a subscription is executed immediately or is
deferred.

8. Select Enabled or Disabled as the subscription status. If you disable
a subscription, it still remains in the Event Subscriptions list for
reference, but it can no longer be actively used to respond to
events.

9. In the Rule Data field, specify the event information required by
the subscription.

• Key—The subscription requires only the event key.

• Message—The subscription requires the complete event data.

10. In the Action region, define the subscription processing you want
to perform when the triggering event occurs. Subscription
processing can include:

• Running a function on the event message.

• Sending the event message to a workflow process.

• Sending the event message to an agent.

11. If you want to run a function on the event message, enter the Rule
Function to run. The rule function must be defined according to a
standard API. See: Standard API for an Event Subscription Rule
Function: page 7 – 25.

If you do not specify a rule function, Oracle Workflow runs a
default rule function to send the event message to the workflow
process and the agent that you specify.

Note: If you enter a rule function other than the default,
Oracle Workflow does not automatically send the event

13 – 49Managing Business Events

message to the specified workflow and agent. You must
explicitly include the send processing in your custom rule
function instead. You can still enter workflow and agent
information in the Action region for your function to reference,
however.

12. If you want to send the event message to a workflow process, enter
the item type that the process belongs to in the Workflow Item Type
field and the name of the process in the Workflow Process Name
field. Click on each field’s up arrow icon to display a list of values
from which to choose. See: Using a List of Values: page 13 – 22.

Note: The list of values for the Workflow Process Name field
includes only the runnable processes within the item type you
specify.

13. If you want to send the event message to an agent, enter either the
Out Agent that you want to send the outbound message, or the To
Agent that you want to receive the inbound message, or both. Click
on each field’s up arrow icon to display a list of values from which
to choose. See: Using a List of Values: page 13 – 22.

• If you specify both a To Agent and an Out Agent, Oracle
Workflow places the event message on the Out Agent’s queue
for propagation, addressed to the To Agent.

• If you specify a To Agent without an Out Agent, Oracle
Workflow selects an outbound agent on the subscribing system
whose queue type matches the queue type of the To Agent. The
event message is then placed on this outbound agent’s queue for
propagation, addressed to the To Agent.

• If you specify an Out Agent without a To Agent, Oracle
Workflow places the event message on the Out Agent’s queue
without a specified recipient. The Out Agent must use either a
multi–consumer queue with a subscriber list or a
single–consumer queue.

Note: The Out Agent must be located on the subscribing
system. The list of values for the Out Agent field includes only
agents with a direction of Out.

The list of values for the To Agent field includes only agents
with a direction of In.

14. If you want to send the event message to an agent, select Normal,
High, or Low as the priority with which the recipient should
dequeue the message.

�

13 – 50 Oracle Workflow Guide

15. Optionally enter any additional parameters for the rule function in
the Parameters field. Use spaces to separate the parameters, and
specify the name and value for each parameter in the following
format:

<name1>=<value1> <name2>=<value2> ... <nameN>=<valueN>

Note: If you send the event message to a workflow process
and you want to specify additional parameters to set as item
attributes for the process, you can enter these parameters in the
Parameters field for a subscription and use
WF_RULE.SetParametersIntoParameterList() in the subscription
rule function to set the subscription parameters into the event
message parameter list. The event parameters will then be set
as item attributes for the workflow process when the process
receives the event. See: SetParametersIntoParameterList: page
8 – 289.

16. In the Documentation region, you can optionally identify the
program or application that owns the subscription by entering the
program name in the Owner Name field and the program ID in the
Owner Tag field. The Owner Name and Owner Tag are not
required if you are defining a subscription manually in the Edit
Subscription page. However, if you use a program to create
subscription definitions automatically, the Event Manager displays
the owner information set by that program in these fields. You can
use the Edit Subscription page to update this information manually
if necessary.

17. Enter an optional description for the subscription.

18. Choose the Submit button to save the subscription and return to
the Event Subscriptions page. The Event Subscriptions page
displays an updated list of subscriptions.

You can also choose the Cancel button to return to the Event
Subscriptions page without saving the subscription.

� To Find Event Subscriptions

1. Use a web browser to connect to the following URL:

<webagent>/wf_event_html.findsubscription

Replace <webagent> with the base URL of the web agent
configured for Oracle Workflow in your Web server. See: Setting
Global User Preferences: page 2 – 14.

Attention: This URL accesses a secured page, so if you have
not yet logged on as valid user in the current web session, you

13 – 51Managing Business Events

will be prompted to do so before the page appears. You must
have workflow administrator privileges to access the Event
Manager web pages.

Note: You can also access the Find Subscription web page
from the Oracle Workflow home page. See: Accessing the
Oracle Workflow Home Page: page 9 – 2.

2. The Find Subscription page appears. The Find Subscription page
lets you enter search criteria to locate specific event subscriptions.
The search criteria are:

• System—select the system for which you want to display
subscriptions. Click on the field’s up arrow icon to display a list
of systems from which to choose. See: Using a List of Values:
page 13 – 22.

• Source Type—choose Local, External, or Error as the type of
source system for which you want to display subscriptions, or
choose Any to display subscriptions for any type of source
system.

• Event—select the event for which you want to display
subscriptions. Click on the field’s up arrow icon to display a list
of events from which to choose. See: Using a List of Values: page
13 – 22.

• Status—choose Enabled or Disabled as the status of the
subscriptions you want to display, or choose Any to display
subscriptions of any status.

3. Choose the Find button. The Event Subscriptions page appears,
displaying a list of subscriptions that match your search criteria.

13 – 52 Oracle Workflow Guide

If your search criteria included a system or an event, you can
choose the Add Subscription button to open the Edit Subscription
page with the system and event information you specified
automatically entered in the System and Event Filter fields,
respectively. You can begin defining a new subscription in this way
even if your search did not find any existing subscriptions
matching your criteria.

� To Update or Delete an Event Subscription

1. Locate the subscription you want in the Event Subscriptions page.
You can use the Find Subscription page to find the subscription that
you want and display the subscription in the Event Subscriptions
page. See: To Find Event Subscriptions: page 13 – 50.

2. To update a subscription, choose the pencil icon in the Edit column
for that subscription. The Edit Subscription page appears. Make
your changes to the subscription definition and save your work.
See: To Define an Event Subscription: page 13 – 45.

3. To delete a subscription, choose the trash icon in the Delete column
for that subscription, and choose OK in the confirmation window
that appears. You can also choose Cancel in the confirmation
window to return to the Event Subscriptions page without deleting
the subscription.

�

�

13 – 53Managing Business Events

Setting Up Message Propagation

After you define your events, systems, agents, and subscriptions, you
must set up the Business Event System for message propagation. Use
the Check Setup web page in the Event Manager to perform the
following steps:

1. Check the Business Event System setup.

2. Schedule listeners for local inbound agents.

3. Schedule propagations for local outbound agents.

Note: If you are using the version of Oracle Workflow
embedded in Oracle Applications, you should use the
Concurrent Manager to schedule listeners for your local
inbound agents. Use the Check Setup web page only to review
and verify your setup and to schedule propagations for your
local outbound agents.

You should recheck your setup whenever you make changes to your
agents that affect the physical implementation required for
propagation. See: Agents: page 13 – 22.

Attention: Oracle Workflow sets the status of the local system
to Enabled by default. After you finish setting up the Business
Event System, you can use the Global Workflow Preferences
web page to to set the system status that you want for event
processing. See: Setting Global User Preferences: page 2 – 14.

Checking the Business Event System Setup

Use the Check Setup web page to verify that the required parameters
and components have been set up to enable message propagation for
the Business Event System.

� To Check the Business Event System Setup

1. Use a web browser to connect to the following URL:

<webagent>/wf_setup.check_all

Replace <webagent> with the base URL of the web agent
configured for Oracle Workflow in your Web server. See: Setting
Global User Preferences: page 2 – 14.

Attention: This URL accesses a secured page, so if you have
not yet logged on as valid user in the current web session, you
will be prompted to do so before the page appears. You must

13 – 54 Oracle Workflow Guide

have workflow administrator privileges to access the Event
Manager web pages.

Note: You can also access the Check Setup web page from the
Oracle Workflow home page. See: Accessing the Oracle
Workflow Home Page: page 9 – 2.

2. The Check Setup page appears, displaying the propagation settings
and components for your local system.

3. Use the Database Init.ora Parameters region to verify your settings
for the database initialization parameters related to AQ. The Check
Setup page displays the actual value defined for each parameter as
well as the minimum recommended value for Oracle Workflow.

To modify any of these parameters when using Oracle8i, change
the settings in the init.ora file for your database. Then you must
restart your database to make the changes effective.

13 – 55Managing Business Events

If you are using Oracle 9i, you can either modify the parameters in
the init.ora file and restart the database, or you can use the ALTER
SYSTEM statement to dynamically modify the values for
AQ_TM_PROCESSES and JOB_QUEUE_PROCESSES for the
duration of the instance.

• AQ_TM_PROCESSES—This parameter enables the time
manager process in Oracle Advanced Queuing (AQ). The time
manager process is required by Oracle Workflow to monitor
delay events in queues, as in the case of the Oracle Workflow
standard Wait activity. The minimum recommended number of
time manager processes for Oracle Workflow is one.

• JOB_QUEUE_INTERVAL—If you are using Oracle8i, specify the
job queue interval to determine how frequently each SNP job
queue process in your instance wakes up. Oracle Workflow
requires the job queue interval to be less than or equal to the
latency parameter defined for your AQ propagation schedules,
to allow queues to be rechecked for messages with the specified
latency. The recommended job queue interval for Oracle
Workflow is five seconds.

Note: Because the JOB_QUEUE_INTERVAL parameter is
desupported in Oracle9i, the Check Setup page does not
display this parameter if you are using Oracle9i, and you do
not need to set a value for it.

• JOB_QUEUE_PROCESSES—This parameter defines the
number of SNP job queue processes for your instance. Oracle
Workflow requires job queue processes to handle propagation of
Business Event System event messages by AQ queues. You must
start at least one job queue process to enable message
propagation. The minimum recommended number of processes
for Oracle Workflow is two.

Note: You can use another initialization parameter, EVENT,
for detailed database level tracing of issues related to AQ. Add
the following line to your init.ora file:

 event = ”24040 trace name context forever, level 10”

Then restart your database to make this change effective. Be
aware that using this parameter may generate large trace files.

4. Use the Database Links region to verify your database links. The
Check Setup page displays the name and status of each database
link that is referenced in an agent’s address. You should create any
required database links that do not yet exist. See: Creating
Database Links: page 2 – 96.

13 – 56 Oracle Workflow Guide

Note: Ensure that the database link names used in your
agents’ addresses are exactly the same as the database link
names specified when the database links were created.

5. Use the Local Agents region to verify the queues that are set up for
the agents defined on your local system. The Check Setup web
page displays the name and direction of each agent, the name of
the queue assigned to the agent, whether or not the queue has been
created, how many messages on the queue have been processed
and are ready to be consumed, and how many messages are still
waiting to be processed. You should create any required queues
that do not yet exist. See: Agents: page 13 – 22 and Setting Up
Queues: page 2 – 97.

Note: In addition to Business Event System agents, the Local
Agents region also displays the standard agent defined for the
Notification Mailer SMTP queue, WF_SMTP_O_1_QUEUE.
You can review the information for this agent to check the
number of notification messages on the Notification Mailer
queue. The WF_SMTP_O_1_QUEUE agent is not used by the
Business Event System, however. See: Standard Agents: page
13 – 25.

6. Use the Listeners for Local Inbound Agents region to schedule
listeners to receive inbound event messages. See: Scheduling
Listeners for Local Inbound Agents: page 13 – 56.

7. Use the Propagations for Local Outbound Agents region to
schedule propagations to send event messages. See: Scheduling
Propagations for Local Outbound Agents: page 13 – 61.

See Also

Oracle Reference

Oracle Application Developer’s Guide – Advanced Queuing

Scheduling Listeners for Local Inbound Agents

Use the Check Setup web page to schedule listeners for the inbound
agents on your local system. The Business Event System requires
listeners to be scheduled to receive inbound event messages.

When you schedule a listener for an agent, it starts monitoring the
agent’s queue on the run day you specify, dequeuing any inbound
event messages. When an event message is received, the Event
Manager searches for and executes any active subscriptions by the local
system to that event with a source type of External, and also any active

13 – 57Managing Business Events

subscriptions by the local system to the Any event with a source type of
External.

The listener exits after all event messages on the agent’s queue have
been dequeued. Oracle Workflow reruns the listener indefinitely, at the
interval you specify.

After you schedule a listener, you can modify its schedule by updating
its settings. You can also stop a listener altogether by deleting it.

You must schedule listeners for the standard WF_DEFERRED and
WF_ERROR agents to enable deferred subscription processing and
error handling for the Business Event System, respectively. Also, if you
want to use the standard WF_IN agent for event message propagation,
schedule a listener for that agent as well.

Note: If you are using the version of Oracle Workflow
embedded in Oracle Applications, you should use the
Concurrent Manager to schedule listeners for your local
inbound agents by submitting the Workflow Agent Listener
concurrent program. Use the Check Setup web page only to
review and verify your setup and to schedule propagations for
your local outbound agents.

If you are using the version of Oracle Workflow embedded in
Oracle Applications and you have implemented Oracle
Applications Manager, you can use Oracle Workflow Manager
to submit and manage the Workflow Agent Listener concurrent
program. For more information, please refer to the Oracle
Applications Manager online help.

If you are using the standalone version of Oracle Workflow
available with Oracle9i Release 2, you can use the standalone
Oracle Workflow Manager component available through Oracle
Enterprise Manager to submit and manage Workflow agent
listener database jobs. For more information, please refer to the
Oracle Workflow Manager online help.

Note: You must not run an agent listener on the standard
WF_SMTP_O_1_QUEUE agent. This agent is defined for the
Notification Mailer SMTP queue and is not used by the
Business Event System. See: Standard Agents: page 13 – 25.

See Also

Agents: page 13 – 22

Listen(): page 8 – 270

Workflow Agent Listener Concurrent Program: page 8 – 272

�

13 – 58 Oracle Workflow Guide

Wfagtlst.sql: page 16 – 6

� To Schedule a Listener for a Local Inbound Agent

1. Use a web browser to connect to the following URL:

<webagent>/wf_setup.check_all

Replace <webagent> with the base URL of the web agent
configured for Oracle Workflow in your Web server. See: Setting
Global User Preferences: page 2 – 14.

Attention: This URL accesses a secured page, so if you have
not yet logged on as valid user in the current web session, you
will be prompted to do so before the page appears. You must
have workflow administrator privileges to access the Event
Manager web pages.

Note: You can also access the Check Setup web page from the
Oracle Workflow home page. See: Accessing the Oracle
Workflow Home Page: page 9 – 2.

13 – 59Managing Business Events

2. The Check Setup page appears, displaying the propagation settings
and components for your local system.

3. Locate the agent you want in the Listeners for Local Inbound
Agents region. The Check Setup page summarizes the agent name
and Scheduled status for each local inbound agent.

4. If no listeners are scheduled for the agent yet, the Scheduled status
for the agent is No. Choose the Create link in the Action column for
that agent to create the first listener for the agent. The Edit Listener
page appears, displaying the name of the selected agent.

If at least one listener is already scheduled for the agent, the
Scheduled status for the agent is Yes. Choose the Edit link in the
Action column for that agent to create an additional listener. The
Listeners page appears, displaying a list of existing listeners for the
agent. The Listeners page summarizes each Listen procedure that
runs for the agent as well as the interval at which the procedure is
resubmitted.

13 – 60 Oracle Workflow Guide

Choose the Add button. The Edit Listener page appears, displaying
the name of the selected agent. You can also choose the Cancel
button to return to the Check Setup page without creating a new
listener.

5. In Edit Listener page, enter the date on which you want to start
running the listener in the Run Day field. To start the listener on the
current system date, leave this field blank.

Note: If you have set your user preferences to a date format
that includes a time setting, then you can specify the time when
you want to start the listener, as well as the date. Otherwise,
you can only specify a date. See: Setting User Preferences: page
9 – 6

6. In the Run Every fields, enter an interval to specify how often you
want the listener to be run. You can specify the interval in days,
hours, minutes, and seconds.

7. Choose the Submit button to save the listener schedule. If you are
scheduling the first listener for the agent, the Check Setup page

13 – 61Managing Business Events

appears, displaying an updated Scheduled status. If you are
scheduling an additional listener, the Listeners page appears,
displaying an updated list of listeners.

You can also choose the Cancel button to return to the Check Setup
page or the Listeners page without saving the listener.

� To Update or Delete a Listener

1. Use the Listeners for Local Inbound Agents region of the Check
Setup page to locate the inbound agent that you want. See: To
Schedule a Listener for a Local Inbound Agent: page 13 – 58.

2. If the Scheduled status for the agent is Yes, at least one listener is
already scheduled for the agent. Choose the Edit link in the Action
column to open the Listeners page, displaying a list of existing
listeners.

3. To update a listener, choose the pencil icon in the Edit column for
that listener. The Edit Listener page appears. Make your changes to
the listener schedule and save your work. See: To Schedule a
Listener for a Local Inbound Agent: page 13 – 58.

4. To delete a listener, choose the trash icon in the Delete column for
that listener, and choose OK in the confirmation window that
appears. You can also choose Cancel in the confirmation window to
return to the Listeners page without deleting the listener.

Scheduling Propagations for Local Outbound Agents

Use the Check Setup web page to schedule propagations for the
outbound agents on your local system. The Business Event System
requires propagations to be scheduled to send outbound event
messages.

�

13 – 62 Oracle Workflow Guide

When you send an event message to an agent, the Event Manager
places the message on the queue associated with the outbound agent.
The message is then asynchronously delivered to the inbound agent by
propagation. The Check Setup page lets you verify whether the
required propagations are scheduled and schedule AQ propagations
for agents that use the SQLNET protocol.

For agents that use other protocols, you must provide external
propagation logic. See: Agents: page 13 – 22

If you want to use the standard WF_OUT agent for event message
propagation, ensure that you schedule propagations for that agent.

Note: If you are using the version of Oracle Workflow
embedded in Oracle Applications and you have implemented
Oracle Applications Manager, you can use Oracle Workflow
Manager to review the propagation schedules for your local
outbound agents. For more information, please refer to the
Oracle Applications Manager online help.

If you are using the standalone version of Oracle Workflow
available with Oracle9i Release 2, you can use the standalone
Oracle Workflow Manager component available through Oracle
Enterprise Manager to review the propagation schedules for
your local outbound agents. For more information, please refer
to the Oracle Workflow Manager online help.

See Also

Agents: page 13 – 22

� To Schedule a Propagation for a Local Outbound Agent

1. Use a web browser to connect to the following URL:

<webagent>/wf_setup.check_all

Replace <webagent> with the base URL of the web agent
configured for Oracle Workflow in your Web server. See: Setting
Global User Preferences: page 2 – 14.

Attention: This URL accesses a secured page, so if you have
not yet logged on as valid user in the current web session, you
will be prompted to do so before the page appears. You must
have workflow administrator privileges to access the Event
Manager web pages.

13 – 63Managing Business Events

Note: You can also access the Check Setup web page from the
Oracle Workflow home page. See: Accessing the Oracle
Workflow Home Page: page 9 – 2.

2. The Check Setup page appears, displaying the propagation settings
and components for your local system.

3. The Propagations for Local Outbound Agents region displays a list
of the combinations of local outbound agents and database links
that may require propagations. This list matches each of your local
outbound agents with each database link to a remote system that
appears in the addresses of the inbound agents you have defined.
Each local outbound agent is also listed with a Local destination in
the Database Link column for propagation to inbound agents on
the local system. See: Agents: page 13 – 22

Locate the outbound agent and database link combination for
which you want to schedule a propagation.

13 – 64 Oracle Workflow Guide

4. If no propagation is scheduled yet for the agent and database link
you want, choose the Create link in the Schedule column to
schedule the propagation. The Edit Propagation page appears,
displaying the name of the outbound agent’s queue, as well as the
database link name for a remote destination or Local System for a
local destination.

5. In the Duration field, enter the duration of the propagation
window, in seconds.

6. In the Run Every field, enter an interval in seconds to specify how
often you want a propagation window to occur.

Note: The run interval must be longer than the duration of the
propagation window.

7. In the Latency field, enter a latency time in seconds to specify how
long you want to wait, after all messages have been propagated,
before rechecking the queue for new messages to the destination.

The latency represents the maximum wait time during the
propagation window for a message to be propagated after it is
enqueued. To propagate messages as soon as possible after they are
enqueued, enter a latency of zero. The default latency is 60 seconds.

Note: To enable AQ to enforce the latency time, the job queue
interval setting in your database initialization parameters must
be less than or equal to the latency value. See: Checking the
Business Event System Setup: page 13 – 53.

8. Choose the Submit button to save the propagation schedule and
return to the Check Setup page. You can also choose the Cancel
button to return to the Check Setup page without saving the
propagation.

13 – 65Managing Business Events

� To Update or Delete a Propagation

1. Use the Propagations for Local Outbound Agents region of the
Check Setup page to locate the outbound agent and database link
combination that you want. See: To Schedule a Propagation for a
Local Outbound Agent: page 13 – 62.

2. If a propagation is already scheduled, choose the Edit link in the
Schedule column to open the Edit Propagation page, displaying the
propagation settings.

3. To update the propagation, make your changes to the settings and
save your work. See: To Schedule a Propagation for a Local
Outbound Agent: page 13 – 62.

4. To delete the propagation, choose the Delete button. You can also
choose the Cancel button to return to the Check Setup page
without changing or deleting the propagation.

Note: You may not be able to delete a propagation until the
propagation window closes.

Raising Events

In addition to raising events from your applications or through
workflows, you can raise events that do not require additional
parameters manually using the Raise Event web page for testing
purposes. When you raise an event, the Event Manager searches for
and executes any active subscriptions by the local system to that event

�

13 – 66 Oracle Workflow Guide

with a source type of Local, and also any active subscriptions by the
local system to the Any event with a source type of Local.

� To Raise an Event

1. Use a web browser to connect to the following URL:

<webagent>/wf_event_html.entereventdetails

Replace <webagent> with the base URL of the web agent
configured for Oracle Workflow in your Web server. See: Setting
Global User Preferences: page 2 – 14.

Attention: This URL accesses a secured page, so if you have
not yet logged on as valid user in the current web session, you
will be prompted to do so before the page appears. You must
have workflow administrator privileges to access the Event
Manager web pages.

Note: You can also access the Raise Event web page from the
Oracle Workflow home page. See: Accessing the Oracle
Workflow Home Page: page 9 – 2.

2. The Raise Event page appears.

3. In the Event Name field, select the event that you want to raise.

13 – 67Managing Business Events

4. Enter an event key that uniquely identifies this instance of the
event.

5. Optionally enter event data to describe what occurred in the event.

Note: The maximum length of the data you can enter in the
Event Data field is 32 kilobytes. If the event data exceeds 32 Kb,
you should assign a Generate function in the event definition to
generate the event data, rather than entering the data directly
in the Event Data field. See: To Define an Event: page 13 – 5.

You can also choose to raise the event using the
WF_EVENT.Raise API instead. This method lets you provide
the event data as a CLOB storing up to four gigabytes of data.
See: Raise: page 8 – 261.

6. Choose the Submit button to raise the event to the Event Manager.
You can also choose the Cancel button to return to the Oracle
Workflow home page without raising the event.

If you choose the Submit button, Oracle Workflow raises the event
and displays a confirmation message with the event name and
event key. Choose the OK button to return to the Raise Event page.

Signing Up Systems

Before you can send business events from one system to another, you
must sign up the destination system with the source system as a
potential recipient of event messages. Signing up a system means
defining the destination system as well as its inbound agents in the
Event Manager of the source system, so that event messages from the
source system can be addressed to the destination agents.

Usually, both systems should be signed up with each other, so that each
system can both send messages to and receive messages from the other
system.

To sign up a destination system for receiving event messages from a
source system, perform the following steps:

1. Retrieve the local system and inbound agent definitions, which
together make up the system identifier information, from the
destination system. You can use the System Identifier web page on
the destination system to generate an XML document containing
the system identifier information. See: To Retrieve System Identifier
Information: page 13 – 68.

�

13 – 68 Oracle Workflow Guide

Note: If you do not have access to the Oracle Workflow
installation on the destination system, ask the workflow
administrator for that system to perform this step.

2. Add the destination system identifier information to the Event
Manager in the source system. You can use the System Signup web
page on the source system to add the information by raising the
System Signup event with the XML document from the destination
system as the event data. When the System Signup event is raised
on the source system, Oracle Workflow executes a predefined
subscription that adds the system identifier information to the
Event Manger in that system. See: To Sign Up a System: page
13 – 69.

Note: If you do not have access to the Oracle Workflow
installation on the source system, ask the workflow
administrator for that system to perform this step.

� To Retrieve System Identifier Information

1. Use a web browser to connect to the following URL on the system
you want to sign up as a destination system:

<webagent>/wf_event_html.getsystemidentifier

Replace <webagent> with the base URL of the web agent
configured for Oracle Workflow in your Web server. See: Setting
Global User Preferences: page 2 – 14.

Attention: This URL accesses a secured page, so if you have
not yet logged on as valid user in the current web session, you
will be prompted to do so before the page appears. You must
have workflow administrator privileges to access the Event
Manager web pages.

If you do not have access to the Oracle Workflow installation
on the destination system, ask the workflow administrator for
that system to perform this step.

Note: You can also access the System Identifier web page from
the Oracle Workflow home page. See: Accessing the Oracle
Workflow Home Page: page 9 – 2.

2. Oracle Workflow produces the system identifier XML document,
which contains the definitions of the local system and its inbound
agents. Save this document as a text file. You can then copy the
document and enter it as the event data for the System Signup
event when you sign this system up with a source system. See: To
Sign Up a System: page 13 – 69.

�

13 – 69Managing Business Events

� To Sign Up a System

1. Use a web browser to connect to the following URL on the source
system where you want to sign up a destination system:

<webagent>/wf_event_html.entereventdetails?p_event_name=

oracle.apps.wf.event.system.signup

Replace <webagent> with the base URL of the web agent
configured for Oracle Workflow in your Web server. See: Setting
Global User Preferences: page 2 – 14.

Attention: This URL accesses a secured page, so if you have
not yet logged on as valid user in the current web session, you
will be prompted to do so before the page appears. You must
have workflow administrator privileges to access the Event
Manager web pages.

If you do not have access to the Oracle Workflow installation
on the source system, ask the workflow administrator for that
system to perform this step.

Note: You can also access the System Signup web page from
the Oracle Workflow home page. See: Accessing the Oracle
Workflow Home Page: page 9 – 2.

13 – 70 Oracle Workflow Guide

2. The System Signup page appears, displaying the internal name of
the System Signup event.

3. Enter an event key that uniquely identifies this instance of the
event.

4. Copy the XML document containing the destination system
identifier information into the Event Data field. See: To Retrieve
System Identifier Information: page 13 – 68.

5. Choose the Submit button to raise the System Signup event to the
Event Manager. A confirmation message is displayed. When the
System Signup event is raised, Oracle Workflow executes a
predefined subscription that adds the system identifier information
from the event data to the Event Manager. See: System Signup
Event: page 14 – 9.

You can also choose the Cancel button to return to the Oracle
Workflow home page without raising the System Signup event.

Synchronizing Systems

Synchronizing systems means replicating all the Event Manager objects
that are defined on the source system to the target system. You can use
the Synchronize Event Systems event to synchronize systems with each
other.

� To Synchronize Systems

1. Sign up the source and target systems with each other. See: Signing
Up Systems: page 13 – 67.

2. On the source system, modify the predefined subscription to the
Seed Event Group with the Local source type.

• Specify the inbound agent on the target system that you want to
receive the event message, or specify a workflow process that
sends the event message to the target system.

Note: If you want to send the event message to more than one
target system, you can either define additional subscriptions or
specify a workflow process that sends the event message to
multiple systems.

• Enable the subscription.

13 – 71Managing Business Events

Note: If you do not have access to the Oracle Workflow
installation on the source system, ask the workflow
administrator for that system to perform this step.

3. On the target system, enable the predefined subscription to the
Seed Event Group with the External source type.

Note: If you do not have access to the Oracle Workflow
installation on the target system, ask the workflow
administrator for that system to perform this step.

4. On the source system, raise the Synchronize Event Systems event
(oracle.apps.wf.event.all.sync) using the Raise Event web page.
Enter a unique event key, but leave the Event Data field blank. See:
Raising Events: page 13 – 65

Note: If you do not have access to the Oracle Workflow
installation on the source system, ask the workflow
administrator for that system to perform this step.

When the Synchronize Event Systems event is raised on the source
system, it triggers the subscription to the Seed Event Group with
the Local source type. The Event Manager generates the event
message, which contains the definitions of all the Event Manager
objects on the local system, including events, event groups,
systems, agents, and subscriptions. Then the event message is sent
to the specified inbound agent on the target system, or to the
specified workflow process that sends the event message to the
target system.

When the Synchronize Event Systems event is received on the
target system, it triggers the subscription to the Seed Event Group
with the External source type. Oracle Workflow loads the object
definitions from the event message into the Event Manager on the
target system, creating new definitions or updating existing
definitions as necessary.

Automatic Replication

After you enable the predefined subscriptions in steps 2 and 3, these
subscriptions will also replicate any subsequent changes you make to
Event Manager object definitions on the source system. Whenever you
create, update, or delete events, event group members, systems, agents,
or subscriptions, Oracle Workflow raises the corresponding predefined
events. These events trigger the Local subscription to the Seed Event
Group on the source system, which sends the object definition data to
the target system. The External subscription to the Seed Event Group

13 – 72 Oracle Workflow Guide

on the target system receives the data and adds, updates, or deletes the
object definition in the Event Manager there.

If you do not want to continue automatically replicating changes on the
source system to the target system, you can either disable the
subscriptions after you finish synchronizing the systems, or disable the
predefined events corresponding to those changes.

Master/Copy Systems

If you choose, you can treat one system as a master system that
replicates its own Event Manager object definitions to its associated
copy systems, but does not accept any object definition changes from
those systems. To set up master/copy replication, perform the steps to
synchronize the target copy systems with the source master system, as
usual. Then, to prevent object definitions from being sent from the copy
systems, ensure that the Local subscription to the Seed Event Group on
the copy systems is disabled. To prevent object definitions from being
received into the master system, ensure that the External subscription
to the Seed Event Group on the master system is disabled as well.

See Also

Predefined Workflow Events: page 14 – 2

Synchronize Event Systems Event: page 14 – 5

Seed Event Group: page 14 – 6

To Define an Event Subscription: page 13 – 45

Reviewing Local Queues

You can use the Event System Local Queues page to review the local
queues used by the Business Event System as well as the messages
currently being held on those queues.

Note: You can also use the Check Setup page to verify the
setup of your local queues. See: Checking the Business Event
System Setup: page 13 – 53.

Note: If you are using the version of Oracle Workflow
embedded in Oracle Applications and you have implemented
Oracle Applications Manager, you can use Oracle Workflow
Manager to review the statuses of the messages being held on

�

13 – 73Managing Business Events

local queues. For more information, please refer to the Oracle
Applications Manager online help.

If you are using the standalone version of Oracle Workflow
available with Oracle9i Release 2, you can use the standalone
Oracle Workflow Manager component available through Oracle
Enterprise Manager to review the statuses of the messages
being held on local queues. For more information, please refer
to the Oracle Workflow Manager online help.

Note: In addition to Business Event System agents, the Event
System Local Queues page also displays the standard agent
defined for the Notification Mailer SMTP queue,
WF_SMTP_O_1_QUEUE. You can review the information for
this agent to check the number of notification messages on the
Notification Mailer queue. The WF_SMTP_O_1_QUEUE agent
is not used by the Business Event System, however. You cannot
view message details for this queue because it does not use
WF_EVENT_T as its payload type. See: Standard Agents: page
13 – 25.

� To Review Local Queues

1. Use a web browser to connect to the following URL:

<webagent>/wf_event_html.eventqueuedisplay

Replace <webagent> with the base URL of the web agent
configured for Oracle Workflow in your Web server. See: Setting
Global User Preferences: page 2 – 14.

Attention: This URL accesses a secured page, so if you have
not yet logged on as valid user in the current web session, you
will be prompted to do so before the page appears. You must
have workflow administrator privileges to access the Event
Manager web pages.

Note: You can also access the Event System Local Queues web
page from the Oracle Workflow home page. See: Accessing the
Oracle Workflow Home Page: page 9 – 2.

13 – 74 Oracle Workflow Guide

2. The Event System Local Queues page appears, displaying a list of
the local queues used by the Business Event System. For each
queue, the Event System Local Queues page summarizes the
protocol and name of the agent with which the queue is associated,
whether the agent is used for inbound or outbound communication
on the system, and the number of messages currently being held on
the queue.

3. You can review message details for queues that use the standard
WF_EVENT_T datatype as their payload type. To review message
details for a queue, choose the flashlight icon in the View Detail
column for that queue.

Note: You cannot view message details for queues that do not
use WF_EVENT_T as their payload type.

13 – 75Managing Business Events

4. The Find Standard Event Queue Messages page appears,
displaying the name of the queue you selected. The Find Standard
Event Queue Messages page lets you enter search criteria to locate
specific event messages. The search criteria are:

• Event Name—enter the internal event name for the event
messages you want to display.

• Event Key—enter the event key for the event messages you want
to display.

• Status—choose Ready, Wait, Processed, or Expired as the status
of the event messages you want to display, or choose Any to
display messages of any status.

5. Choose the Go button. The Local Queue Messages page appears,
displaying a list of event messages on the queue you selected that
match your search criteria. For each message, the Local Queue
Messages page summarizes the event name, event key, correlation
ID, event parameters, From System that sent the message, To
System that received the message, send date, error message, error
stack, and the message status.

13 – 76 Oracle Workflow Guide

6. To review the event data for a message as an XML document,
choose the flashlight icon in the Event Data (XML Format) column
for that message.

7. To review the event data for a message as a text document, choose
the flashlight icon in the Event Data (Text Format) column for that
message.

13 – 77Managing Business Events

Workflow Agent Ping/Acknowledge

You can test your Business Event System setup using the Workflow
Agent Ping/Acknowledge workflow. This workflow sends a ping event
message to each inbound agent on the local system or on external
systems, and waits to receive an acknowledgement event message from
each of the agents. If the workflow completes successfully, then the
basic Business Event System setup for communication with these
agents is complete.

How Workflow Agent Ping/Acknowledge Works

Use the Launch Processes web page to launch the Workflow Agent
Ping/Acknowledge workflow. This workflow consists of two
processes, the Master Ping process and the Detail Ping process. To ping
all inbound agents, select the Master Ping process, and enter a unique
item key. See: Testing Workflow Definitions: page 12 – 2.

When you launch the Master Ping process, the Workflow Engine
identifies all the inbound agents that you have defined on the local
system or on external systems and launches a Detail Ping process for
each agent. The master process then waits for each detail process to
complete.

The Detail Ping process begins by sending a Ping Agent event to the
inbound agent identified by the master process. The detail process
places a Ping Agent event message on a queue associated with an
outbound agent on the local system. The event message is addressed to
the inbound agent and contains a correlation ID that identifies the
detail process to which it belongs. AQ propagation transmits the event
message from the outbound queue to the queue associated with the
specified inbound agent.

On the receiving system, the listener for the inbound agent dequeues
the Ping Agent message the next time it runs. When the event message
is dequeued, the Event Manager searches for and executes any active
subscriptions to the Ping Agent event or the Any event on that system
that have a source type of External.

When the predefined External subscription to the Ping Agent event is
executed, its rule function places an Acknowledge Ping event message
on a queue associated with an outbound agent on that system. The
event message is addressed to an inbound agent on the originating
system and includes the correlation ID from the Ping Agent event
message. AQ propagation transmits the Acknowledge Ping event
message from the outbound queue to the queue associated with the
specified inbound agent.

13 – 78 Oracle Workflow Guide

On the originating system, the listener for the inbound agent dequeues
the Acknowledge Ping message the next time it runs. When the event
message is dequeued, the Event Manager searches for and executes any
active subscriptions to the Acknowledge Ping event or the Any event
on that system that have a source type of External.

When the predefined External subscription to the Acknowledge Ping
event is executed, its rule function, which is the default rule function,
sends the event message to the Detail Ping process. The Workflow
Engine uses the correlation ID to match the message with the running
detail process to which it belongs. After receiving the event message,
the Detail Ping process completes.

Finally, after all the detail processes are complete, the master process
also completes.

You can use the Workflow Monitor to check the progress of the
Workflow Agent Ping/Acknowledge workflow. You can also use the
Event System Local Queues page to confirm the processing of the Ping
Agent and Acknowledge Ping event messages. See: Workflow Monitor:
page 11 – 2 and Reviewing Local Queues: page 13 – 72.

The amount of time needed to complete the Workflow Agent
Ping/Acknowledge workflow depends on how often the listeners run
to dequeue messages from the inbound agents. See: Scheduling
Listeners for Local Inbound Agents: page 13 – 56.

See Also

Ping Agent Events: page 14 – 8

The Workflow Agent Ping/Acknowledge Item Type

The Workflow Agent Ping/Acknowledge process is associated with an
item type called Workflow Agent Ping/Acknowledge. Currently there
are two workflow processes associated with Workflow Agent
Ping/Acknowledge: Master Ping Process and Detail Ping Process.

To view the details of the Workflow Agent Ping/Acknowledge item
type in the Workflow Builder, choose Open from the File menu. Then
connect to the database and select the Workflow Agent
Ping/Acknowledge item type, or connect to a file called wfping.wft in
the <ORACLE_HOME>\wf\Data\<language> subdirectory on your file
system.

13 – 79Managing Business Events

If you examine the property page of Workflow Agent
Ping/Acknowledge, you see that it has a persistence type of Temporary
and persistence number of days of 0. This means that the runtime data
associated with any work items for this item type are eligible for
purging as soon as they complete.

The Workflow Agent Ping/Acknowledge item type also has several
attributes associated with it. These attributes reference information in
the Workflow application tables. The attributes are used and
maintained by function activities as well as event activities throughout
the process. The following table lists the Workflow Agent
Ping/Acknowledge item type attributes.

Display Name Description Type Length/Format/
Lookup Type

To Agent The inbound agent that
receives the event
message, in the format
<agent>@<system>

Text

Event Name The internal name of the
event

Text

Out Agent The outbound agent that
sends the event message,
in the format
<agent>@<system>

Text

Event Key The event key that
uniquely identifies the
specific instance of the
event

Text

Event Message The event message Event

Table 13 – 8 (Page 1 of 1)

Summary of the Master Ping Process

To view the properties of the Master Ping process, select the process in
the navigator tree, and then choose Properties from the Edit menu. This
process activity is runnable, indicating that it can be initiated as a top
level process to run.

When you display the Process window for the Master Ping process,
you see that the process consists of four unique activities. To examine
the activities of the process in more detail, we have numbered each

13 – 80 Oracle Workflow Guide

node for easy referencing below. The numbers themselves are not part
of the process diagram.

The Workflow Agent Ping/Acknowledge workflow begins when you
launch the Master Ping Process using the Launch Processes web page.
You can optionally provide a to agent, event name, out agent, event
key, and event message. See: Testing Workflow Definitions: page 12 – 2.

The workflow begins at node 1 with the Start activity. At node 2, the
master process spawns a detail process for each inbound agent that you
have defined on the local system or on external systems. The detail
process pings the agent by sending it a Ping Agent event and waits to
receive an acknowledgement in the form of an Acknowledge Ping
event.

Node 3 is a Wait for Flow activity that waits for all the detail processes
to complete. When all the detail processes have completed, the master
process ends.

Master Ping Process Activities

Following is a description of each activity in the process, listed by the
activity’s display name.

Start (Node 1)

This Standard function activity marks the start of the process.

WF_STANDARD.NOOP

None

None

Function

Result Type

Prerequisite
Activities

13 – 81Managing Business Events

Spawn Detail Processes (Node 2)

This function activity identifies all the inbound agents that you have
defined on the local system or external systems, and spawns a Detail
Ping process for each agent. The function sets the Ping Agent event
(oracle.apps.wf.event.test.ping) as the event to be sent to the Detail
Ping processes.

WF_EVENT_PING_PKG.LAUNCH_PROCESSES

None

None

Event Name, To Agent

Wait for Flow (Node 3)

This Standard function activity pauses the flow until the corresponding
detail processes complete a specified activity.

WF_STANDARD.WAITFORFLOW

None

Spawn Detail Processes

End (Node 4)

This Standard function activity marks the end of the process.

WF_STANDARD.NOOP

None

Wait for Flow

Summary of the Detail Ping Process

To view the properties of the Detail Ping process, select its process
activity in the navigator tree, and then choose Properties from the Edit
menu. This process activity is runnable, indicating that it can be
initiated as a top level process to run.

When you display the Process window for the Detail Ping process, you
see that the process consists of five unique activities. To examine the
activities of the process in more detail, we have numbered each node

Function

Result Type

Prerequisite
Activities

Item Attributes
Set by Function

Function

Result Type

Prerequisite
Activities

Function

Result Type

Prerequisite
Activities

13 – 82 Oracle Workflow Guide

for easy referencing below. The numbers themselves are not part of the
process diagram.

The Detail Ping process begins when it is launched by the Master Ping
process. See: Summary of the Master Ping Process: page 13 – 79.

The workflow begins at node 1 with the Start activity. At node 2, the
process sends a Ping Agent event to the selected inbound agent. At
node 3, the process waits to receive an Acknowledge Ping event back
from the agent. When the acknowledgement is received, the master
process can continue. The detail process ends at this point.

Detail Ping Process Activities

Following is a description of each activity in the process, listed by the
activity’s display name.

Start (Node 1)

This Standard function activity marks the start of the process.

WF_STANDARD.NOOP

None

None

Send Event (Node 2)

This event activity sends the Ping Agent event
(oracle.apps.wf.event.test.ping) from an outbound agent on the local
system to the inbound agent identified by the master process. The
event message includes a correlation ID that identifies the detail
process to which it belongs.

Function

Result Type

Prerequisite
Activities

13 – 83Managing Business Events

Send

None

Event Message, Event Name, Event Key, To Agent

Receive Event (Node 3)

This event activity receives the Acknowledge Ping event
(oracle.apps.wf.event.test.ack) that is returned to the originating
system from the system that received the Ping Agent event. The
Acknowledge Ping event message contains the correlation ID, which
the Workflow Engine uses to match the event message with the detail
process to which it belongs.

Receive

oracle.apps.wf.event.test.ack

Send Event

Event Name, Event Key, Event Message

Continue Flow (Node 4)

This Standard function activity marks the position in the detail process
where, upon completion, the corresponding halted master process will
continue.

WF_STANDARD.CONTINUEFLOW

None

Receive Event

End (Node 5)

This Standard function activity marks the end of the process.

WF_STANDARD.NOOP

None

Continue Flow

Event Action

Prerequisite
Activities

Item Attributes
Retrieved by
Activity

Event Action

Event Filter

Prerequisite
Activities

Item Attributes
Set by Activity

Function

Result Type

Prerequisite
Activities

Function

Result Type

Prerequisite
Activities

13 – 84 Oracle Workflow Guide

C H A P T E R

14
T

14 – 1Predefined Workflow Events

Predefined Workflow
Events

his chapter tells you how to use Oracle Workflow’s predefined
events.

�

14 – 2 Oracle Workflow Guide

Predefined Workflow Events

Oracle Workflow provides several predefined events for significant
occurrences within the Business Event System. You can define
subscriptions to these events for replication, validation, or other
purposes.

All the predefined events are enabled by default. You can disable many
of the events if necessary.

Some predefined events are referenced by default subscriptions that are
created automatically when you install Oracle Workflow. The
subscriber for all the default subscriptions is the local system. You can
update, enable, or disable many of these subscriptions to perform the
event processing that you want.

Attention: You must not change or disable the definition of
the Unexpected event or of the predefined Error subscription
to that event. If you do, the Event Manager will not be able to
perform default error handling for events and subscription
processing.

Note: Predefined events and default subscriptions are also
provided with some Oracle Applications and Oracle
Self–Service Web Applications. For more information on
Oracle Applications–specific workflow events, consult the
documentation or help for that specific Oracle Application
product.

Event Definition Events

Event Created

Oracle Workflow raises this event whenever a new individual event or
event group definition is created.

oracle.apps.wf.event.event.create

wf_event_functions_pkg.generate

Event Updated

Oracle Workflow raises this event whenever an individual event or
event group definition is updated.

oracle.apps.wf.event.event.update

Internal Name

Generate
Function

Internal Name

14 – 3Predefined Workflow Events

wf_event_functions_pkg.generate

Event Deleted

Oracle Workflow raises this event whenever an individual event or
event group definition is deleted.

oracle.apps.wf.event.event.delete

wf_event_functions_pkg.generate

Event Group Definition Events

Event Group Creation

Oracle Workflow raises this event whenever a new event group
member definition is created.

oracle.apps.wf.event.group.create

wf_event_functions_pkg.generate

Event Group Updated

Oracle Workflow raises this event whenever an event group member
definition is updated.

oracle.apps.wf.event.group.update

wf_event_functions_pkg.generate

Event Group Deleted

Oracle Workflow raises this event whenever an event group member
definition is deleted.

oracle.apps.wf.event.group.delete

wf_event_functions_pkg.generate

Generate
Function

Internal Name

Generate
Function

Internal Name

Generate
Function

Internal Name

Generate
Function

Internal Name

Generate
Function

14 – 4 Oracle Workflow Guide

System Definition Events

System Created

Oracle Workflow raises this event whenever a new system definition is
created.

oracle.apps.wf.event.system.create

wf_event_functions_pkg.generate

System Updated

Oracle Workflow raises this event whenever a system definition is
updated.

oracle.apps.wf.event.system.update

wf_event_functions_pkg.generate

System Deleted

Oracle Workflow raises this event whenever a system definition is
deleted.

oracle.apps.wf.event.system.delete

wf_event_functions_pkg.generate

Agent Definition Events

Agent Created

Oracle Workflow raises this event whenever a new agent definition is
created.

oracle.apps.wf.event.agent.create

wf_event_functions_pkg.generate

Agent Updated

Oracle Workflow raises this event whenever an agent definition is
updated.

oracle.apps.wf.event.agent.update

Internal Name

Generate
Function

Internal Name

Generate
Function

Internal Name

Generate
Function

Internal Name

Generate
Function

Internal Name

14 – 5Predefined Workflow Events

wf_event_functions_pkg.generate

Agent Deleted

Oracle Workflow raises this event whenever an agent definition is
deleted.

oracle.apps.wf.event.agent.delete

wf_event_functions_pkg.generate

Event Subscription Definition Events

Subscription Created

Oracle Workflow raises this event whenever a new subscription
definition is created.

oracle.apps.wf.event.subscription.create

wf_event_functions_pkg.generate

Subscription Updated

Oracle Workflow raises this event whenever a subscription definition is
updated.

oracle.apps.wf.event.subscription.update

wf_event_functions_pkg.generate

Subscription Deleted

Oracle Workflow raises this event whenever a subscription definition is
deleted.

oracle.apps.wf.event.subscription.delete

wf_event_functions_pkg.generate

Synchronize Event Systems Event

You can raise this event to synchronize the Event Manager data on the
local system with another system. The event message for the
Synchronize Systems event contains the definitions of all the Event

Generate
Function

Internal Name

Generate
Function

Internal Name

Generate
Function

Internal Name

Generate
Function

Internal Name

Generate
Function

14 – 6 Oracle Workflow Guide

Manager objects on the local system. See: Synchronizing Systems: page
13 – 70.

oracle.apps.wf.event.all.sync

wf_event_functions_pkg.generate

Seed Event Group

This event group contains events used for automatic replication of
Business Event System objects from one system to another. The group
includes all the event, event group, system, agent, and subscription
definition events, as well as the Synchronize Event Systems event.

oracle.apps.wf.event.group.all

oracle.apps.wf.event.event.create

oracle.apps.wf.event.event.update

oracle.apps.wf.event.event.delete

oracle.apps.wf.event.group.create

oracle.apps.wf.event.group.update

oracle.apps.wf.event.group.delete

oracle.apps.wf.event.system.create

oracle.apps.wf.event.system.update

oracle.apps.wf.event.system.delete

oracle.apps.wf.event.agent.create

oracle.apps.wf.event.agent.update

oracle.apps.wf.event.agent.delete

oracle.apps.wf.event.subscription.create

oracle.apps.wf.event.subscription.update

oracle.apps.wf.event.subscription.delete

oracle.apps.wf.event.all.sync

Oracle Workflow provides two default subscriptions to the Seed Event
Group. The first subscription can send the Event Manager data to an
agent and to a workflow process when one of the group member events
is raised locally. To use this subscription, you must add the agent or
workflow to which you want to send the data, and enable the

Internal Name

Generate
Function

Internal Name

Members

14 – 7Predefined Workflow Events

subscription. The following table lists the properties defined for this
subscription.

Subscription Property Value

System <local system>

Source Type Local

Event Filter oracle.apps.wf.event.group.all

Status Disabled

Rule Data Message

Rule Function wf_rule.default_rule

Priority Normal

Table 14 – 1 (Page 1 of 1)

The second subscription can load the Event Manager data into the local
system when one of the group member events is received from an
external source. To use this subscription, you must enable it. The
following table lists the properties defined for this subscription.

Subscription Property Value

System <local system>

Source Type External

Event Filter oracle.apps.wf.event.group.all

Status Disabled

Rule Data Key

Rule Function wf_event_functions_pkg.receive

Table 14 – 2 (Page 1 of 1)

See Also

To Define an Event Subscription: page 13 – 45

Synchronizing Systems: page 13 – 70

14 – 8 Oracle Workflow Guide

Ping Agent Events

Ping Agent Event

The Detail Ping process in the Workflow Agent Ping/Acknowledge
item type sends this event to ping inbound agents. You can use the
Launch Processes web page to launch the Master Ping Process, which
in turn launches the Detail Ping process. See: Workflow Agent
Ping/Acknowledge: page 13 – 77.

oracle.apps.wf.event.test.ping

None

Oracle Workflow provides one default subscription to the Ping Agent
event. This subscription sends the Acknowledge Ping event back to the
originating system when the Ping Agent event is received from an
external source. The subscription is enabled by default. The following
table lists the properties defined for this subscription.

Subscription Property Value

System <local system>

Source Type External

Event Filter oracle.apps.wf.event.test.ping

Status Enabled

Rule Data Key

Rule Function wf_event_ping_pkg.acknowledge

Table 14 – 3 (Page 1 of 1)

Acknowledge Ping

Oracle Workflow sends this event back to the originating system when
a Ping Agent event is received. See: Workflow Agent
Ping/Acknowledge: page 13 – 77.

oracle.apps.wf.event.test.ack

None

Oracle Workflow provides one default subscription to the
Acknowledge Ping event. This subscription sends the Acknowledge

Internal Name

Generate
Function

Internal Name

Generate
Function

14 – 9Predefined Workflow Events

Ping event to the Detail Ping process in the Workflow Agent
Ping/Acknowledge item type when the event is received from an
external source. The subscription is enabled by default. The following
table lists the properties defined for this subscription.

Subscription Property Value

System <local system>

Source Type External

Event Filter oracle.apps.wf.event.test.ack

Status Enabled

Rule Data Key

Rule Function wf_rule.default_rule

Workflow Item Type WFPING

Workflow Process Name WFDTLPNG

Table 14 – 4 (Page 1 of 1)

See Also

To Define an Event Subscription: page 13 – 45

System Signup Event

You can raise this event from the System Signup web page on a source
system to sign up a destination system for receiving event messages
from the source system. See: To Sign Up a System: page 13 – 69.

oracle.apps.wf.event.system.signup

None

Oracle Workflow provides one default subscription to the System
Signup event. This subscription loads the Event Manager data into the
local system when the System Signup event is raised locally. The
subscription is enabled by default. The following table lists the
properties defined for this subscription.

Internal Name

Generate
Function

�

14 – 10 Oracle Workflow Guide

Subscription Property Value

System <local system>

Source Type Local

Event Filter oracle.apps.wf.event.system.signup

Status Enabled

Rule Data Key

Rule Function wf_event_functions_pkg.receive

Table 14 – 5 (Page 1 of 1)

See Also

To Define an Event Subscription: page 13 – 45

Any Event

This event is raised implicitly when any other event is raised locally or
received from an external source. You can define a subscription to the
Any event to implement processing that you want to execute whenever
an event occurs.

Attention: You must not change or disable the definition of
the Any event. If you do, the Event Manager will not be able to
perform error handling for event and subscription processing.

oracle.apps.wf.event.any

None

Oracle Workflow provides three default subscriptions to the Any event.
The first subscription can be triggered when an event is raised locally.
To use this subscription, you must define the action for the subscription
and enable it. The following table lists the properties defined for this
subscription.

Internal Name

Generate
Function

14 – 11Predefined Workflow Events

Subscription Property Value

System <local system>

Source Type Local

Event Filter oracle.apps.wf.event.any

Phase 100

Status Disabled

Rule Data Key

Priority Normal

Table 14 – 6 (Page 1 of 1)

The second subscription can be triggered when an event is received
from an external source. To use this subscription, you must define the
action for the subscription and enable it. The following table lists the
properties defined for this subscription.

Subscription Property Value

System <local system>

Source Type External

Event Filter oracle.apps.wf.event.any

Phase 100

Status Disabled

Rule Data Key

Priority Normal

Table 14 – 7 (Page 1 of 1)

The third subscription sends the event message to the Default Event
Error process in the System: Error item type and raises an exception
when an event is received from an Error source (that is, when it is
dequeued from the WF_ERROR queue). To use this subscription, you
must enable it. The following table lists the properties defined for this
subscription.

�

14 – 12 Oracle Workflow Guide

Subscription Property Value

System <local system>

Source Type Error

Event Filter oracle.apps.wf.event.any

Phase 100

Status Disabled

Rule Data Key

Rule Function wf_rule.error_rule

Workflow Item Type WF_ERROR

Workflow Process Name DEFAULT_EVENT_ERROR

Priority Normal

Table 14 – 8 (Page 1 of 1)

See Also

To Define an Event Subscription: page 13 – 45

Unexpected Event

Oracle Workflow executes subscriptions to this event when an event is
raised locally or received from an external source, but no subscription
exists on that event.

oracle.apps.wf.event.unexpected

None

Oracle Workflow provides three default subscriptions to the
Unexpected event. The first subscription can send the event message to
the Default Event Error process in the System: Error item type when an
unexpected event is raised locally. To use this subscription, you must
enable it.

Attention: If you want to enable this subscription, be careful
to consider all the events that can be raised on your local
system and trigger the subscription. Many local events may be

Internal Name

Generate
Function

�

14 – 13Predefined Workflow Events

raised to which you do not want to subscribe. Additionally, if a
large number of events are raised on the local system, enabling
this subscription may flood the Business Event System.

The following table lists the properties defined for this subscription.

Subscription Property Value

System <local system>

Source Type Local

Event Filter oracle.apps.wf.event.unexpected

Status Disabled

Rule Data Key

Workflow Item Type WF_ERROR

Workflow Process Name DEFAULT_EVENT_ERROR

Table 14 – 9 (Page 1 of 1)

The second subscription sends the event message to the Default Event
Error process in the System: Error item type when an unexpected event
is received from an external source. This subscription allows your local
system to handle any event messages received from external systems
that you were not expecting.

The Default Event Error process notifies the system administrator, who
can retry or abort subscription processing for the event. For example,
the system administrator can optionally define a subscription to
process the event and then retry the event.

The External subscription to the Unexpected event is enabled by
default. You can disable it if necessary.

Attention: If you want to disable this subscription, be careful
to consider all the consequences for handling unexpected event
messages from external sources. If the subscription is disabled,
these event messages will remain on the inbound queue where
they are received and may be undetected for some time.

The following table lists the properties defined for this subscription.

�

14 – 14 Oracle Workflow Guide

Subscription Property Value

System <local system>

Source Type External

Event Filter oracle.apps.wf.event.unexpected

Status Enabled

Rule Data Key

Workflow Item Type WF_ERROR

Workflow Process Name DEFAULT_EVENT_ERROR

Table 14 – 10 (Page 1 of 1)

The third subscription sends the event message to the Default Event
Error process in the System: Error item type when an unexpected event
is received from an Error source (that is, when it is dequeued from the
WF_ERROR queue). This subscription is enabled by default.

Attention: You must not change or disable the definition of
the predefined Error subscription to the Unexpected event. If
you disable this subscription, then the Event Manager will not
be able to perform error handling for any events for which you
have not defined custom Error subscriptions.

The following table lists the properties defined for this subscription.

Subscription Property Value

System <local system>

Source Type Error

Event Filter oracle.apps.wf.event.unexpected

Status Enabled

Rule Data Key

Rule Function wf_rule.error_rule

Workflow Item Type WF_ERROR

Table 14 – 11 (Page 1 of 2)

14 – 15Predefined Workflow Events

ValueSubscription Property

Workflow Process Name DEFAULT_EVENT_ERROR

Priority Normal

Table 14 – 11 (Page 2 of 2)

See Also

To Define an Event Subscription: page 13 – 45

User Entry Has Changed Event

The Workflow LDAP APIs raise this event when changed user
information is retrieved from an LDAP directory. You can run these
APIs to synchronize the Workflow directory service with Oracle
Internet Directory if you implement OID integration. One event is
raised for each changed user. See: Synchronizing Workflow Directory
Services with Oracle Internet Directory: page 2 – 30 and Workflow
LDAP APIs: page 8 – 144.

oracle.apps.wf.public.user.change

wf_entity_mgr.gen_xml_payload

Oracle Workflow provides two default subscriptions to the User Entry
Has Changed event. The first subscription loads the changed user data
into the WF_LOCAL_USERS table for the standalone version of Oracle
Workflow when the User Entry Has Changed event is raised locally.
You should enable this subscription if you are using the standalone
version of Oracle Workflow and you want to implement integration
with Oracle Internet Directory. The following table lists the properties
defined for this subscription.

Subscription Property Value

System <local system>

Source Type Local

Table 14 – 12 (Page 1 of 2)

Internal Name

Generate
Function

14 – 16 Oracle Workflow Guide

ValueSubscription Property

Event Filter oracle.apps.wf.public.user.change

Status Disabled

Rule Data Key

Rule Function wf_sso.user_change

Table 14 – 12 (Page 2 of 2)

The second subscription loads the changed user data into the
WF_LOCAL_USERS table for the version of Oracle Workflow
embedded in Oracle Applications when the User Entry Has Changed
event is raised locally. You should enable this subscription if you are
using the version of Oracle Workflow embedded in Oracle Applications
and you want to implement integration with Oracle Internet Directory.
The following table lists the properties defined for this subscription.

Subscription Property Value

System <local system>

Source Type Local

Event Filter oracle.apps.wf.public.user.change

Status Disabled

Rule Data Key

Rule Function fnd_user_pkg.user_change

Table 14 – 13 (Page 1 of 1)

See Also

To Define an Event Subscription: page 13 – 45

14 – 17Predefined Workflow Events

Workflow Send Protocol

The Workflow Send Protocol process is a sample workflow process that
demonstrates receiving, sending, and acknowledging event messages.
Depending on your requirements, you can copy or customize this
process to accommodate your organization’s specific needs.

The Workflow Send Protocol process receives an event message from a
subscription, sends the event message to the inbound agent specified in
the subscription, waits to receive an acknowledgement if required, and
also sends an acknowledgement if required. You can use the process on
one system to send a message to another system, for example, and you
can also use the same process on the second system to send the
acknowledgement message back to the first system.

The Workflow Send Protocol workflow consists of one process, the
Workflow Event Protocol process. This process is launched when it
receives an event message from an event subscription.

You can start the Workflow Send Protocol workflow by any of the
following methods:

• Raise the Workflow Send Protocol event from the Raise event
page. Enter a unique event key, and enter any valid XML
document as the event data. A predefined subscription sends the
event message to the Workflow Event Protocol process. See:
Raising Events: page 13 – 65 and Workflow Send Protocol
Events: page 14 – 24.

• The process can also be started when an agent receives the
Workflow Send Protocol event from an external source. A
predefined subscription sends the event message to the
Workflow Event Protocol process. See: Workflow Send Protocol
Events: page 14 – 24.

• Define your own subscription to send any event you choose to
the Workflow Event Protocol process. In the subscription, specify
the workflow item type as WFSNDPRT and the workflow
process name as WFEVPRTC. Ensure that you either use the
default rule function or include send processing in your custom
rule function to send the event to the workflow. The Workflow
Event Protocol process starts when the subscription is executed
and the process receives the event message. See: To Define an
Event Subscription: page 13 – 45.

14 – 18 Oracle Workflow Guide

The Workflow Send Protocol Item Type

The Workflow Send Protocol process is associated with an item type
called Workflow Send Protocol. Currently there is one workflow
process associated with Workflow Send Protocol: the Workflow Event
Protocol process.

To view the details of the Workflow Send Protocol item type in the
Workflow Builder, choose Open from the File menu. Then connect to
the database and select the Workflow Send Protocol item type, or
connect to a file called wfsndprt.wft in the
<ORACLE_HOME>\wf\Data\<language> subdirectory on your file system.

If you examine the property page of Workflow Send Protocol, you see
that it has a persistence type of Temporary and persistence number of
days of 0. This means that the runtime data associated with any work
items for this item type are eligible for purging as soon as they
complete.

The Workflow Send Protocol item type also has several attributes
associated with it. These attributes reference information in the
Workflow application tables. The attributes are used and maintained
by function activities as well as event activities throughout the process.
The following table lists the Workflow Send Protocol item type
attributes.

14 – 19Predefined Workflow Events

Display Name Description Type Length/Format/
Lookup Type

Event Name The internal name of the
event

Text

Event Key The event key that
uniquely identifies the
specific instance of the
event

Text

Event Message The event message Event

To Agent The inbound agent that
receives the event
message, in the format
<agent>@<system>

Text

From Agent The outbound agent that
sends the event message,
in the format
<agent>@<system>

Text

Acknowledge Required? An option that specifies
whether the event
message that is sent
requires an
acknowledgement from
the recipient

Text

Send Acknowledgement? An option that specifies
whether to send an
acknowledgement of a
message that is received

Text

Acknowledge Message The acknowledgement
message that is sent

Event

Acknowledge To Agent The inbound agent that
receives the
acknowledgement
message, in the format
<agent>@<system>

Text

Subscription GUID The globally unique
identifier of the
subscription

Text

Table 14 – 14 (Page 1 of 1)

14 – 20 Oracle Workflow Guide

Summary of the Workflow Event Protocol Process

To view the properties of the Workflow Event Protocol process, select
the process in the navigator tree, and then choose Properties from the
Edit menu. This process activity is runnable, indicating that it can be
initiated as a top level process to run.

When you display the Process window for the Workflow Event
Protocol process, you see that the process consists of eight unique
activities, some of which are reused to make up the ten activity nodes
that appear in the workflow diagram. To examine the activities of the
process in more detail, we have numbered each node for easy
referencing below. The numbers themselves are not part of the process
diagram.

The Workflow Send Protocol workflow begins when the Event
Manager sends an event message to the Workflow Event Protocol
process. For example, when you raise the Workflow Send Protocol
event locally or receive that event from an external source, predefined
subscriptions send the event message to the Workflow Event Protocol
process. See: Workflow Send Protocol Events: page 14 – 24.

The workflow begins at node 1 with the Receive message activity. At
node 2, the process attempts to retrieve the agent details for the
intended outbound and inbound agents from the subscription.

If no inbound agent is specified, the process continues immediately to
node 6 to determine whether to send an acknowledgement message.

If the subscription does specify a To Agent, the process sends the event
message to that agent. Then the process determines whether the event
message requires an acknowledgement from the recipient, based on a

14 – 21Predefined Workflow Events

subscription parameter. If an acknowledgement is required, the
Workflow Engine waits to receive the acknowledgement message.
Otherwise, the process continues immediately to node 6 to determine
whether to send an acknowledgement message.

At node 6, the process determines whether it should send an
acknowledgement of the original message that it received. If no
acknowledgement needs to be sent, the process ends at this point.
Otherwise, the process retrieves the agent details for the inbound agent
where the acknowledgement must be sent and sends the
acknowledgement message to that agent. Then the process ends.

Workflow Event Protocol Process Activities

Following is a description of each activity in the process, listed by the
activity’s display name.

Receive Message (Node 1)

This event activity receives the event message that is sent to the
Workflow Event Protocol process by the Event Manager to start a new
item.

Receive

None

None

Event Name, Event Key, Event Message

Get Agent Details (Node 2)

This function activity attempts to retrieve the agent details from the
subscription for the outbound agent that should send the message and
the inbound agent that should receive the message. If no inbound agent
is specified, the process continues immediately to node 6. If an inbound
agent is specified, but no outbound agent is specified, the function
selects a default outbound agent on the local system.

WF_STANDARD.GETAGENTS

Boolean

Event Action

Event Filter

Prerequisite
Activities

Item Attributes
Set by Activity

Function

Result Type

14 – 22 Oracle Workflow Guide

Receive Message

Subscription GUID

To Agent, From Agent

Send Event Message (Node 3)

This event activity sends the event message from an outbound agent on
the local system to the specified inbound agent.

Send

Get Agent Details

Event Message, From Agent, To Agent

Compare Text (Node 4)

This Standard function activity compares two text values. At this node,
the process checks the Acknowledge Required? item attribute to
determine whether the event message sent at node 3 requires an
acknowledgement from the recipient.

If the subscription that initiated the process included the parameter
name and value pair ACKREQ=Y, the Workflow Engine sets the
Acknowledge Required? item attribute to Y when the process is
launched. In this case, the process continues from node 4 to node 5.
Otherwise, the process continues directly from node 4 to node 6.

WF_STANDARD.COMPARE

Comparison

None

Acknowledge Required?

Prerequisite
Activities

Item Attributes
Retrieved by
Function

Item Attributes
Set by Function

Event Action

Prerequisite
Activities

Item Attributes
Retrieved by
Activity

Function

Result Type

Prerequisite
Activities

Item Attributes
Retrieved by
Activity

14 – 23Predefined Workflow Events

Receive Acknowledgement Message (Node 5)

This event activity waits to receive the Workflow Send Protocol
Acknowledgement event message that is returned to the Workflow
Event Protocol process from the system that received the event
message sent at node 3.

Receive

oracle.apps.wf.event.wf.ack

Compare Text

Compare Text (Node 6)

This Standard function activity compares two text values. At this node,
the process checks the Send Acknowledgement? item attribute to
determine whether to send an acknowledgement of the original
message that it received.

If the original message requires an acknowledgement, the Workflow
Engine sets the Send Acknowledgement? item attribute to Y when the
process is launched. In this case, the process continues from node 6 to
node 7. Otherwise, the process ends at node 10.

WF_STANDARD.COMPARE

Comparison

None

Send Acknowledgement?

To Agent Details (Node 7)

This function activity selects an inbound agent on the originating
system where the acknowledgement must be sent and retrieves the
agent details for that agent.

WF_STANDARD.GETACKAGENT

None

Compare Text

Acknowledge To Agent

Event Action

Event Filter

Prerequisite
Activities

Function

Result Type

Prerequisite
Activities

Item Attributes
Retrieved by
Activity

Function

Result Type

Prerequisite
Activities

Item Attributes
Set by Function

14 – 24 Oracle Workflow Guide

Send Acknowledgement Message (Node 8)

This event activity sends the Workflow Send Protocol
Acknowledgement message from an outbound agent on the local
system to the inbound agent identified at node 7.

Send

To Agent Details

Acknowledge Message, Event Key, Acknowledge
To Agent

End (Nodes 9 and 10)

This Standard function activity marks the end of the process.

WF_STANDARD.NOOP

None

None

Workflow Send Protocol Events

Workflow Send Protocol Event

You can raise this event from the Raise Event web page to send the
event message to an agent using the Workflow Event Protocol process
in the Workflow Send Protocol item type. This workflow process lets
you specify whether the message requires an acknowledgement from
the recipient, and whether you want to send an acknowledgement of a
message that you have received.

oracle.apps.wf.event.wf.send

None

Oracle Workflow provides two default subscriptions to the Workflow
Send Protocol event. The first subscription sends the event message to
the Workflow Event Protocol process in the Workflow Send Protocol
item type when the Workflow Send Protocol event is raised locally. A
subscription parameter specifies that the message requires an
acknowledgement. This subscription is enabled by default. You can add
an outbound agent and inbound agent to the subscription to specify

Event Action

Prerequisite
Activities

Item Attributes
Retrieved by
Activity

Function

Result Type

Prerequisite
Activities

Internal Name

Generate
Function

14 – 25Predefined Workflow Events

where you want the Workflow Event Protocol process to send the event
message. The following table lists the properties defined for this
subscription.

Subscription Property Value

System <local system>

Source Type Local

Event Filter oracle.apps.wf.event.wf.send

Status Enabled

Rule Data Key

Rule Function wf_rule.workflow_protocol

Workflow Item Type WFSNDPRT

Workflow Process Name WFEVPRTC

Parameters ACKREQ=Y

Table 14 – 15 (Page 1 of 1)

The second subscription sends the event message to the Workflow
Event Protocol process in the Workflow Send Protocol item type when
the Workflow Send Protocol event is received from an external source.
This subscription is enabled by default. You can optionally add an
outbound agent and inbound agent to the subscription to specify that
you want the Workflow Event Protocol process to send the event
message on to another agent. The following table lists the properties
defined for this subscription.

Subscription Property Value

System <local system>

Source Type External

Event Filter oracle.apps.wf.event.wf.send

Status Enabled

Rule Data Key

Rule Function wf_rule.workflow_protocol

Table 14 – 16 (Page 1 of 2)

14 – 26 Oracle Workflow Guide

ValueSubscription Property

Workflow Item Type WFSNDPRT

Workflow Process Name WFEVPRTC

Table 14 – 16 (Page 2 of 2)

Workflow Send Protocol Acknowledgement Event

Oracle Workflow sends this event back to the originating system when
an event message sent to or from the Workflow Event Protocol process
requires an acknowledgement.

oracle.apps.wf.event.wf.ack

None

Oracle Workflow provides one default subscription to the Workflow
Send Protocol Acknowledgement Event. This subscription sends the
event message to the Workflow Event Protocol process in the Workflow
Send Protocol item type when the Workflow Send Protocol
Acknowledgement event is received from an external source. This
subscription is enabled by default. The following table lists the
properties defined for this subscription.

Subscription Property Value

System <local system>

Source Type External

Event Filter oracle.apps.wf.event.wf.ack

Status Enabled

Rule Data Key

Rule Function wf_rule.workflow_protocol

Workflow Item Type WFSNDPRT

Workflow Process Name WFEVPRTC

Table 14 – 17 (Page 1 of 1)

Internal Name

Generate
Function

14 – 27Predefined Workflow Events

See Also

To Define an Event Subscription: page 13 – 45

14 – 28 Oracle Workflow Guide

C H A P T E R

15
T

15 – 1Demonstration Workflow Processes

Demonstration
Workflow Processes

his chapter describes the demonstration workflow processes
provided with Oracle Workflow. These demonstration processes
showcase many Oracle Workflow features.

�

15 – 2 Oracle Workflow Guide

Sample Workflow Processes

The following sample workflow processes are included with Oracle
Workflow. Each of these processes illustrates the integration of
different Oracle Workflow features. You can use any of these processes
to verify your installation of Oracle Workflow.

• Requisition Process—illustrates results–based branching, parallel
branching, subprocesses, timeouts, looping, and integration of
PL/SQL documents in a notification. See: Requisition Process:
page 15 – 5.

• Product Survey Process—illustrates the implementation of a
voting activity, integration of PL/SQL documents in a
notification, and the coordination of master/detail processes.
See: Product Survey Process: page 15 – 34.

• Document Review Process—illustrates document management
integration (functionality reserved for future use) and looping.
See: Document Process: page 15 – 49.

• Error Check Process—illustrates how to simulate Oracle Alert’s
periodic alert functionality in a workflow process and how to
use the Standard Wait activity. See: Error Check Process: page
15 – 54.

• Event System Demonstration Processes—illustrate sending and
receiving business events between two systems and using
external Java function activities. See: Event System
Demonstration: page 15 – 63.

Attention: If you are using the standalone version of Oracle
Workflow, the Workflow Configuration Assistant installs all of
the sample workflow processes listed above.

If you are using the version of Oracle Workflow embedded in
Oracle Applications, AutoUpgrade installs only the Document
Review and Error Check processes. These two sample
workflow processes do not require the creation of supporting
data models.

You can initiate these sample workflows from the Workflow
Demonstrations home page or the Launch Processes web page. You
can access the Workflow Demonstrations home page using the URL:

<webagent>/wf_demo.home

Note: You can also access the Workflow Demonstrations web
page from the Oracle Workflow home page. See: Accessing the
Oracle Workflow Home Page: page 9 – 2.

15 – 3Demonstration Workflow Processes

The Workflow Demonstrations home page displays your notifications
Worklist in the right–hand frame and in the left–hand frame lists links
that let you initiate each of the sample workflows from a different web
page.

See Also

Testing Workflow Definitions: page 12 – 2

Displaying the Process Diagram of a Sample Workflow

You can view the process diagram of a sample process in the Process
window of Oracle Workflow Builder.

� To Display a Sample Process in Oracle Workflow Builder

1. Choose Open from the File menu. Connect to your Oracle
Workflow database and select the item type you want.

Alternatively, you can connect to any of the sample workflow
definitions files, located in the Oracle Workflow wf/data/<language>
subdirectory on your PC.

15 – 4 Oracle Workflow Guide

2. Expand the data source, then the item type branch within that data
source.

3. Expand the Processes branch then double–click on a process
activity to display the process diagram in a Process window.

�

�

15 – 5Demonstration Workflow Processes

Requisition Process

The Requisition process is an example of a workflow process that is
initiated when you create a new requisition to purchase an item. The
Requisition process is based on two tables that store approval hierarchy
and spending authority information.

When you submit a requisition in this demonstration, the process sends
a notification to the next manager in the approval hierarchy to approve
the requisition. If the spending limit of the approving manager is less
than the requisition amount, the process forwards the requisition to the
next higher manager in the approval hierarchy until it finds a manager
with the appropriate spending limit to approve the requisition. Each
intermediate manager must approve the requisition to move it to the
next higher manager. Once a manager with the appropriate spending
limit approves the requisition, the process ends with a result of
Approve.

The process can end with a result of rejected if:

• Any manager rejects the requisition.

• The requisition amount is greater than the highest spending
limit.

• The requisition’s requestor does not have a manager.

You can set up and initiate this example process if you are using the
standalone version of Oracle Workflow. If you are using Oracle
Workflow embedded in Oracle Applications, you should consider this
process mainly as an example for explanation purposes and not for
demonstration use. The files necessary to set up and run this
demonstration are not provided with the version of Oracle Workflow
embedded in Oracle Applications.

Attention: For detailed information about runnable workflow
processes that are integrated with Oracle Applications or
Oracle Self–Service Web Applications, refer to the appropriate
Oracle Applications User’s Guide or online documentation.
See: Predefined Workflows Embedded in Oracle E–Business
Suite: page B – 2.

Attention: Oracle Self–Service Web Applications provides a
predefined Requisition Process that is different from the
version of the example process documented here. The example
process documented in this section is for demonstration
purposes only and not for production use.

This sample workflow is based on the demonstration data model. The
data model includes two tables with data: one table maintains an

�

�

15 – 6 Oracle Workflow Guide

employee approval hierarchy and the other maintains the spending
limit of each employee. These two tables make up the database
application that we use to approve a requisition. In addition, the data
model also includes a directory service that identifies the Oracle
Workflow users and roles in this sample implementation.

There are two ways you can initiate the Requisition process based on a
fictitious requisition: run a script or submit a requisition using a
web–based interface. Both methods require that you provide the name
of the employee who prepared the requisition, the requisition amount,
the requisition number, a requisition description, a requisition process
owner and the name of the workflow process to initiate.

This section describes the Requisition process in detail to give you an
understanding of what each activity in this workflow accomplishes.

Installing the Requisition Data Model

The Requisition data model is installed only with the standalone
version of Oracle Workflow. The data model is automatically installed
for you by the Workflow Configuration Assistant. The files used in the
installation are copied to the demo and demo/<language> subdirectories
of your Oracle Workflow server directory structure.

Attention: For the Requisition process demonstration to work
properly, you should perform the steps required to set up
Oracle Workflow after the installation See: Overview of Setting
Up: page 2 – 6.

The installation does the following:

• Calls the script wfdemou.sql to create a database account for each
of the users listed in the seed data table shown below. The script
creates public grants and synonyms so that these accounts have
full access to Oracle Workflow’s web–based user interface.

Attention: For security reasons, the installation process
automatically locks these user accounts after they are created.
Before you can begin using the accounts, you must unlock
them using a script called wfdemoul.sql. This script is located in
the wf/demo subdirectory within your Oracle Home. Connect
to the SYSTEM database account using SQL*Plus and run the
script using the following command:

sqlplus SYSTEM/<SYSTEM pwd> @wfdemoul

�

15 – 7Demonstration Workflow Processes

See your Oracle DBA if you need more information about the
SYSTEM account and password.

• Calls a script called wfdemoc.sql to create two tables with seed
data. These tables make up the demonstration database
application that is workflow–enabled:

– WF_REQDEMO_EMP_HIERARCHY—maintains the
employee approval hierarchy. The approval chain consists
of these employee user IDs listed in ascending order with
the employee having the most authority listed last: BLEWIS,
KWALKER, CDOUGLAS, and SPIERSON.

– WF_REQDEMO_EMP_AUTHORITY—maintains the
spending limit for each employee. The limit for each
employee follows the employee’s user ID: BLEWIS:500,
KWALKER:1000, CDOUGLAS:2000, and SPIERSON:3000.

• The script wfdemoc.sql also inserts seed data into the
WF_LOCAL_USERS, WF_LOCAL_ROLES,
WF_LOCAL_USER_ROLES tables. The following table shows
the users and roles that are seeded by the script.

User ADMIN
Role

MANAGERS
Role

WORKERS
Role

OTHERS
Role

SYSADMIN yes

WFADMIN yes

BLEWIS yes

KWALKER yes

CDOUGLAS yes yes

SPIERSON yes yes

Table 15 – 1 (Page 1 of 1)

Attention: Each user has an e–mail address of ’WFINVALID’
and each role has an e–mail address identical to its role name.
You can change the users’ and roles’ e–mail addresses to other
values by calling the Directory Service APIs SetAdHocUserAttr
or SetAdHocRoleAttr. Alternatively, if you want e–mail
notifications for all the users and roles to go to a single e–mail
inbox, you can specify a test e–mail address in the
configuration file of the Notification Mailer. See: To create a
configuration file for the Notification Mailer: page 2 – 58.

�

�

15 – 8 Oracle Workflow Guide

Attention: Also all users except BLEWIS have a Notification
Preference of ’MAILHTML’, which allows them, in addition to
viewing notifications from the Notifications Web page, to get
individual notifications via e–mail. BLEWIS has a Notification
Preference of ’SUMMARY’, which allows him, in addition to
viewing notifications from the Notifications Web page, to
receive a periodic e–mail summarizing all his currently open
notifications. Note that a Notification Mailer must be set up to
deliver e–mail notifications.

Attention: Your Oracle Workflow directory service views
must map to the WF_LOCAL_USERS, WF_LOCAL_ROLES
and WF_LOCAL_USER_ROLES tables to include the users and
roles of the Requisition data model. See: Setting Up an Oracle
Workflow Directory Service: page 2 – 21.

• Calls the scripts wfdemos.sql and wfdemob.sql to create the
PL/SQL spec and body for packages called WF_REQDEMO and
WF_DEMO. These packages contain:

– The PL/SQL stored procedures associated with the
demonstration home page.

– The PL/SQL stored procedures called by the function
activities used in the Requisition Process workflow.

– The PL/SQL procedure WF_REQDEMO.Create_Req called
by the Oracle Workflow web agent to generate the
web–based interface page for the Requisition process
demonstration.

• Runs the Workflow Resource Generator to load messages from
wfdemo.msg into the database. The messages are used by the
web–based interface page for the Requisition process
demonstration.

• Loads the Requisition Process workflow definition from
wfdemo.wft into the database. You can view this process in
Oracle Workflow Builder.

Initiating the Requisition Workflow

You can use any of the following methods to initiate the Requisition
workflow:

• Run the script wfrund.sql.

15 – 9Demonstration Workflow Processes

• Access the Requisition Demonstration web page from the
Workflow Demonstrations home page.

• Use the Launch Processes web page. See: Testing Workflow
Definitions: page 12 – 2.

You can also create your own custom end–user application interface to
let users create requisitions that automatically initiate the Requisition
process workflow. You must, however, customize the application
interface such that when a user saves the requisition to the application
database, the application calls a PL/SQL stored procedure similar to
WF_REQDEMO.StartProcess that initiates the Requisition process. See:
Sample StartProcess Function: page 15 – 23.

� To Run wfrund.sql

1. Enter the following command to run the script wfrund.sql in
SQL*PLUS:

sqlplus <username>/<password>@<alias> @wfrund.sql

<req_num> <req_desc> <req_amount> <requestor>

<req_process_owner> <process_int_name> <item_type>

Replace <username>/<password>@<alias> with the username,
password, and alias for the database account where you installed
the demonstration data model.

Replace <req_num> with the requisition number that uniquely
identifies the requisition.

Replace <req_desc> with an end–user defined description that
uniquely identifies the requisition.

Replace <req_amount> with the amount of the requisition,
<requestor> with the name of the requisition requestor (who
should be listed in the employee approval hierarchy),
<req_process_owner> with the name of the requisition process
owner (who should be listed in the employee approval hierarchy),
<process_int_name> with the internal name of the process
activity (in this case, REQUISITION_APPROVAL) and
<item_type> with the internal name of the item type that the
workflow process is associated with.

2. When this script completes, enter Commit at the SQL> prompt to
save the transaction before quitting from SQL*PLUS.

3. Based on the approval hierarchy, you can either log on as the
requisition requestor or the requestor’s manager to follow and
respond to the series of notification messages that move the process
to completion. See: Reviewing Notifications Via Electronic Mail:

�

15 – 10 Oracle Workflow Guide

page 10 – 2 and Viewing Notifications from a Web Browser: page
10 – 12.

You can also access the Workflow Monitor to view the status of the
workflow process. See: Using the Find Processes Web Page: page
11 – 9.

� To Use the Requisition Demonstration Web Page

1. Enter the following URL in a web browser to access the Workflow
Demonstration web page, then click on the Requisition Approval
link to display the Requisition Approval web page:

<webagent>/wf_demo.home

 <webagent> represents the base URL of the web agent configured
for Oracle Workflow in your Web server. See: Setting Global User
Preferences: page 2 – 14.

Alternatively, you can enter the following URL to directly display
the Requisition Approval web page:

<webagent>/wf_reqdemo.create_req

Attention: These are both secured pages, so if you have not
yet logged on as a valid workflow user in the current web
session, you will be prompted to do so before the page appears.

15 – 11Demonstration Workflow Processes

2. Enter a unique requisition number.

3. Specify a unique requisition description of 80 characters or less.

4. Enter a requisition amount. The amount should be a number
without formatting.

5. Use the poplist fields to specify a requisition requestor and process
owner. The names on these poplists are limited to the names of the
roles in the demonstration data model.

6. Following the requisition input fields is the Approval Hierarchy
and Spending Authority table and a description of how the
Requisition demonstration process works. The Approval
Hierarchy and Spending Authority table summarizes the contents
of the demonstration data model.

7. Choose Submit to initiate the Requisition process and to navigate to
the Requisition Created confirmation page.

8. In addition to telling you what roles you should log in as to view
the process’ notifications, the confirmation page also contains a
HTML link to the Workflow Monitor where you can choose View
Diagram to display the process diagram for the requisition you
submitted in ADMIN mode. See: Workflow Monitor: page 11 – 2.

15 – 12 Oracle Workflow Guide

9. Select the Process Timeouts HTML link to have the background
engine look for any timed out notifications and execute the next
activity expected to run in the case of a time out.

Two messages appear below this link informing you of when a
timeout may occur in the process.

10. Select the Create Requisition HTML link if you wish to enter and
submit another requisition in the Requisition Demonstration web
page.

The Requisition Item Type

The Requisition process is associated with an item type called
Requisition. Currently there are two workflow processes associated
with Requisition: Requisition Approval and Notify Approver.

If you examine the property page of Requisition, you see that it has a
persistence type of Temporary and persistence number of days of 0.
This means that the run time data associated with any work items for
this item type are eligible for purging as soon as they complete. You
also see that it calls a selector function named
WF_REQDEMO.SELECTOR. This selector function is an example
PL/SQL stored procedure that returns the name of the process to run
when more than one process exists for a given item type. The selector
function in this example returns REQUISITION_APPROVAL or
’Requisition Approval’ as the process to run.

The Requisition item type also has several attributes associated with it.
These attributes reference information in the demonstration application
tables. The attributes are used and maintained by function activities as
well as notification activities throughout the process. The following
table lists the Requisition item type attributes.

15 – 13Demonstration Workflow Processes

Display Name Description Type Length/Format/
Lookup Type

Forward From Username Username of the person
that the requisition is
forwarded from

Role

Forward To Username Username of the person
that the requisition is
forwarded to

Role

Requestor Username Username of the
requisition preparer

Role

Requisition Amount Requisition amount Number 9,999,999,999.99

Requisition Number Unique identifier of a
requisition

Text

Requisition Description Unique user identifier of
a requisition

Text 30

Requisition Process
Owner

Username of the
requisition owner

Role

Note Note Text

Monitor URL Monitor URL URL

Requisition Document Requisition Document is
generated by PL/SQL

Document

Reminder Requisition
Document

Reminder Requisition
Document is generated
by PL/SQL

Document

Table 15 – 2 (Page 1 of 1)

Summary of the Requisition Approval Process

To view the properties of the Requisition Approval process, select the
process in the navigator tree, then choose Properties from the Edit
menu. The Requisition process has a result type of Approval,
indicating that when the process completes, it has a result of Approve
or Reject (the lookup codes in the Approval lookup type associated
with the Standard item type). This process activity is also runnable,
indicating that it can be initiated as a top level process to run.

The Details property page of the process activity indicates that the
Requisition process has an error process assigned to it that is initiated
only when an error is encountered in the process. The error process is

15 – 14 Oracle Workflow Guide

associated with an item type called WFERROR and is called
DEFAULT_ERROR. For example, if you attempt to initiate the
Requisition Approval process with a requisition that is created by
someone who is not listed in the employee approval hierarchy, the
Workflow Engine would raise an error when it tries to execute the
Select Approver activity. This error would initiate
WFERROR/DEFAULT_ERROR, which is the Default Error Process.
See: Default Error Process: page 6 – 26.

When you display the Process window for the Requisition Approval
process, you see that the process consists of 12 unique activities, several
of which are reused to comprise the 15 activity nodes that appear in the
workflow diagram. To examine the activities of the process in more
detail, we have numbered each node for easy referencing below. The
numbers themselves are not part of the process diagram.

The Requisition workflow begins when you run a script called
wfrund.sql or submit a requisition using the Requisition Demonstration
web page. In both cases, you must provide a requisition requestor,
requisition number, requisition amount, requisition description, and
process owner. See: Initiating the Requisition Workflow: page 15 – 8.

The workflow begins at node 1 with the Start activity.

At node 2, the process attempts to select an approver for the
requisition. If an approver cannot be found for the requisition, the
requestor is notified and the process ends with the final process result
of Reject. If an approver is found, then the requestor is notified of who
that approver is and a function records in the application that the
requisition is being forwarded to the approver. Both of these activities
must complete before the approver is actually notified in node 8.

15 – 15Demonstration Workflow Processes

Node 8 is a subprocess that requests the approver to approve the
requisition by a specified period of time and if the approver does not
respond by that time, the subprocess performs a timeout activity to
keep sending a reminder to the approver until the approver responds.
If the approver rejects the requisition, the requisition gets updated as
rejected in node 9, and the requestor is notified in node 10. The process
ends at this point with a result of Reject.

If the approver approves the requisition, the process transitions to node
12 to verify that the requisition amount is within the approver’s
spending limit. If it is, the process approves the requisition in node 13,
and notifies the requestor in node 14. The process ends in this case
with a result of Approve.

Requisition Process Activities

Following is a description of each activity listed by the activity’s
display name. You can create all the components for an activity in the
graphical Oracle Workflow Builder except for the PL/SQL stored
procedures that the function activities call. Function activities can
execute functions external to the database by integration with Oracle
Advanced Queues or execute PL/SQL stored procedures which you
must create and store in the Oracle RDBMS. All the function activities
in the Requisition process execute PL/SQL stored procedures. The
naming convention for the PL/SQL stored procedures used in the
Requisition process is:

WF_REQDEMO.<PROCEDURE>

WF_REQDEMO is the name of the package that groups all the procedures
used by the Requisition process. <PROCEDURE> represents the name of
the procedure.

Several activities are described in greater depth to give you an idea of
how they are constructed. See: Example Function Activities: page
15 – 26 and Example Notification Activities: page 15 – 31.

Start (Node 1)

This is a Standard function activity that simply marks the start of the
process.

WF_STANDARD.NOOP

None

Function

Result Type

15 – 16 Oracle Workflow Guide

None

Select Approver (Node 2)

This function activity determines who the next approver is for the
requisition by checking the imaginary employee approval hierarchy
table. This activity also saves the name of the previous approver or the
name of the preparer if the requisition was never approved before. If
an approver is found, this procedure returns a value of ’T’, for True,
otherwise it returns a value of ’F’ for False.

WF_REQDEMO.SelectApprover

Boolean

None

Notify Requestor No Approver Available (Node 3)

This activity notifies the requisition preparer that no appropriate
approver could be found for the requisition. The message includes
’Send’ attributes that display the requisition number, requisition
description, requisition amount, and who the last approver was, if
there was any.

This activity occurs in process node 3. If you display the property page
of the node, you see that the activity is assigned to a performer whose
name is stored in an item type attribute named Requestor Username.

Requisition No Approver Found

None

Select Approver

Notify Requestor of Forward (Node 5)

This activity notifies the requisition preparer that the requisition was
forwarded for approval. The message includes ’Send’ attributes that
display the requisition number, requisition description, requisition
amount, name of the approver that the requisition is forwarded to,
name of the previous approver, if any, and the most recent comments
appended to the requisition.

If you display the property page of this node, you see that the activity
is assigned to a performer whose name is stored in an item type
attribute named Requestor Username.

Requisition Forward

Prerequisite
Activities

Function

Result Type

Prerequisite
Activities

Message

Result Type

Prerequisite
Activities

Message

15 – 17Demonstration Workflow Processes

None

Select Approver

Record Requisition Forward (Node 6)

Currently this activity does nothing, however, if you have a
Purchasing/Requisition application that you wish to integrate this
workflow into, you can customize this activity to execute a PL/SQL
stored procedure that updates your purchasing/requisition application
table to indicate that the requisition is being forwarded to the next
approver.

WF_REQDEMO.Forward_Req

None

Select Approver

And (Node 7)

This Standard function activity merges two or more parallel branches
in the flow only when the activities in all of those branches complete.

WF_STANDARD.ANDJOIN

None

Must have at least two separate activities that each
transition into this activity.

Notify Approver (Node 8)

This activity is a subprocess that notifies the approver that an action
needs to be taken to either approve or reject the requisition. To view
the subprocess, double–click on Notify Approver under the Processes
branch in the navigator tree. The subprocess sends a notification to the
approver and if the approver does not respond within a specified time,
sends another reminder notification to the approver to take action. See:
Summary of the Notify Approver Subprocess: page 15 – 19.

Approval

Select Approver

Reject Requisition (Node 9)

Currently this activity does nothing, however, if you have a
Purchasing/Requisition application that you wish to integrate this

Result Type

Prerequisite
Activities

Function

Result Type

Prerequisite
Activities

Function

Result Type

Prerequisite
Activities

Result Type

Prerequisite
Activities

15 – 18 Oracle Workflow Guide

workflow into, you can customize this activity to execute a PL/SQL
stored procedure that updates your purchasing/requisition application
table to indicate that the requisition is rejected.

WF_REQDEMO.Reject_Req

None

Select Approver, Notify Approver

Notify Requestor of Rejection (Node 10)

This activity notifies the requisition preparer that the requisition was
rejected. The message includes ’Send’ attributes that display the
requisition number, requisition description, requisition amount, name
of the manager that rejected the requisition, and comments from that
manager.

If you display the property page of this activity node, you see that the
activity is assigned to a performer whose name is stored in an item
type attribute named Requestor Username.

Requisition Rejected

None

Notify Approver

Verify Authority (Node 12)

This function activity verifies whether the current approver has
sufficient authority to approve the requisition. The procedure
compares the requisition amount with the approver’s approval limit
amount and returns a value of ’Y’ for Yes or ’N’ for No. If your
business rules are not sensitive to the amount that an approver can
approve, then you can remove this activity to customize the process.

WF_REQDEMO.VerifyAuthority

Yes/No

Select Approver and Notify Approver

Approve Requisition (Node 13)

Currently this activity does nothing, however, if you have a
Purchasing/Requisition application that you wish to integrate this
workflow into, you can customize this activity to execute a PL/SQL
stored procedure that updates your purchasing/requisition application
table to indicate that the requisition is approved.

Function

Result Type

Prerequisite
Activities

Message

Result Type

Prerequisite
Activities

Function

Result Type

Prerequisite
Activities

15 – 19Demonstration Workflow Processes

WF_REQDEMO.Approve_Req

None

Select Approver, Notify Approver, Verify
Authority

Notify Requestor of Approval (Node 14)

This activity notifies the requisition preparer that the requisition was
approved. The message includes ”Send” attributes that display the
requisition number, requisition description, requisition amount,
approver name, and comments from the approver.

If you display the property page of the activity node, you see that the
activity is assigned to a performer whose name is stored in an item
type attribute named Requestor Username.

Requisition Approved

None

Select Approver, Notify Approver, Verify
Authority

End (Nodes 4, 11, and 15)

This function activity marks the end of the process. Although the
activity itself does not have a result type, each node of this activity in
the process must have a process result assigned to it. The process
result is assigned in the property page of the activity node. Since the
Requisition process activity has a result type of Approval, each End
activity node must have a process result matching one of the lookup
codes in the Approval lookup type.

WF_STANDARD.NOOP

None

Start

Summary of the Notify Approver Subprocess

To view the properties of the Notify Approver subprocess, select its
process activity in the navigator tree, then choose Properties from the
Edit menu. The Notify Approver subprocess has a result type of
Approval, indicating that when the subprocess completes, it has a
result of Approve or Reject (based on the lookup codes in the Approval

Function

Result Type

Prerequisite
Activities

Message

Result Type

Prerequisite
Activities

Function

Result Type

Prerequisite
Activities

15 – 20 Oracle Workflow Guide

lookup type). It is not runnable, indicating that it cannot be initiated as
a top level process to run, but rather can only be run when called by
another higher level process as a subprocess.

When you display the Process window for the Notify Approver
subprocess, you see that the subprocess consists of 5 unique activities,
several of which are reused to comprise the 7 activity nodes that
appear in the workflow diagram. To examine the activities of the
process in more detail, we have numbered each node for easy
referencing below. The numbers themselves are not part of the process
diagram.

The subprocess begins at node 1 with the Start activity. At node 2, the
process notifies the approver to approve a requisition within a specified
period of time. If the approver approves the requisition, the
subprocess ends at node 6 and returns the result Approve to the top
level Requisition process. Similarly, if the approver rejects the
requisition, the subprocess ends at node 7 and returns the result Reject
to Requisition process.

If the approver does not respond by the due date, the subprocess takes
the <Timeout> transition to node 3 to send a reminder to the approver
to approve the requisition. Node 3 also has a timeout value assigned to
it, and if the approver does not respond to the reminder by that time,
the subprocess takes the next <Timeout> transition to loop back to
node 3 to send another reminder to the approver. This loop continues

15 – 21Demonstration Workflow Processes

until the approver approves or rejects the requisition, which would end
the subprocess at node 6 or 7, respectively.

Notify Approver Subprocess Activities

Following is a description of each activity in the Notify Approver
subprocess, listed by the activity’s display name.

Start (Node 1)

This is a Standard function activity that simply marks the start of the
subprocess.

WF_STANDARD.NOOP

None

None

Notify Requisition Approval Required (Node 2)

This activity notifies the approver that the requisition needs to be
approved or rejected. This activity must be completed within 5
minutes, otherwise it times out.

The message includes ’Send’ attributes that display the requisition
number, requisition description, requisition amount, previous approver
name, and preparer name for the requisition when the notification is
sent.

The message includes a special RESULT attribute and a ”Respond”
attribute. The RESULT attribute has a display name of Action and
prompts the approver to respond with a value of ’APPROVE’ or
’REJECT’ from the lookup type called Approval. The value that the
approver selects becomes the result that determines which activity
branch the Workflow Engine transitions to next.

The ”Respond” attribute is called Note and this attribute prompts the
approver for optional comments to include in the notification response.

If you display the property page of this activity node, you see that the
activity is assigned to a performer whose name is stored in an item
type attribute named Forward To Username.

Requisition Approval Required

Approval

Function

Result Type

Prerequisite
Activities

Message

Result Type

15 – 22 Oracle Workflow Guide

Select Approver

Reminder–Approval Needed (Node 3)

This activity occurs only if the Notify Requisition Approval Required
activity times out before being completed. This activity sends a
reminder notice to the approver that the requisition needs to be
approved or rejected.

The message includes ’Send’ attributes that display the requisition
number, requisition description, requisition amount, previous approver
name, and preparer name for the requisition when the notification is
sent.

The message includes a special RESULT attribute and a ”Respond”
attribute. The RESULT attribute has a display name of Action and
prompts the approver to respond with a value of ’APPROVE’ or
’REJECT’ from the lookup type called Approval. The value that the
approver selects becomes the result that determines which activity
branch the Workflow Engine transitions to next.

The ”Respond” attribute is called Note and this attribute prompts the
approver for optional comments to include in the notification response.

If you display the property page of this activity node, you see that the
activity is assigned to a performer whose name is stored in an item
type attribute named Forward To Username.

Requisition Approval Required Reminder

Approval

Select Approver, Notify Requisition Approval
Required

Or (Nodes 4 and 5)

This Standard function activity merges two or more parallel branches
in a flow as soon as an activity in any one of those branches complete.

WF_STANDARD.ORJOIN

None

None

End (Nodes 6 and 7)

This function activity marks the end of the subprocess. Although the
activity itself does not have a result type, each node of this activity in

Prerequisite
Activities

Message

Result Type

Prerequisite
Activities

Function

Result Type

Prerequisite
Activities

15 – 23Demonstration Workflow Processes

the subprocess must have a process result assigned to it. The process
result is assigned in the property page of the activity node. Since the
Notify Approver process activity has a result type of Approval, each
End activity node must have a process result matching one of the
lookup codes in the Approval lookup type.

WF_STANDARD.NOOP

None

Start

Sample StartProcess Function

Both wfrund.sql and the Requisition Demonstration web page call a
PL/SQL stored procedure named WF_REQDEMO.StartProcess to
initiate the Requisition process.

To examine StartProcess in more detail, we divide the procedure into
several sections and number each section with the notation 1⇒ for easy
referencing. The numbers and arrows themselves are not part of the
procedure.

1⇒ procedure StartProcess (RequisitionNumber in varchar2,

 RequisitionDesc in varchar2,

 RequisitionAmount in number,

 RequestorUsername in varchar2,

 ProcessOwner in varchar2,

 Workflowprocess in varchar2 default null,

 item_type in varchar2 default null) is

2⇒ ItemType varchar2(30) := nvl(item_type, ’WFDEMO’);

 ItemKey varchar2(30) := RequisitionNumber;

 ItemUserKey varchar2(30) := RequisitionDesc;

3⇒ begin

 wf_engine.CreateProcess (itemtype => ItemType,

 itemkey => ItemKey,

 process => WorkflowProcess);

4⇒ wf_engine.SetItemUserKey (itemtype => itemtype,

 itemkey => itemkey,

 userkey => ItemUserKey);

5⇒ wf_engine.SetItemAttrText (itemtype => itemtype,

 itemkey => itemkey,

 aname => ’REQUISITION_NUMBER’,

 avalue => RequisitionNumber);

Function

Result Type

Prerequisite
Activities

15 – 24 Oracle Workflow Guide

6⇒ wf_engine.SetItemAttrText (itemtype => itemtype,

 itemkey => itemkey,

 aname => ’REQUISITION_DESCRIPTION’,

 avalue => ItemUserKey);

7⇒ wf_engine.SetItemAttrNumber (itemtype => itemtype,

 itemkey => itemkey,

 aname => ’REQUISITION_AMOUNT’,

 avalue => RequisitionAmount);

8⇒ wf_engine.SetItemAttrText (itemtype => itemtype,

 itemkey => itemkey,

 aname => ’REQUESTOR_USERNAME’,

 avalue => RequestorUsername);

9⇒ wf_engine.SetItemAttrText (itemtype => itemtype,

 itemkey => itemkey,

 aname => ’FORWARD_TO_USERNAME’,

 avalue => RequestorUsername);

10⇒ wf_engine.SetItemAttrText (itemtype => itemtype,

 itemkey => itemkey,

 aname => ’REQUISITION_PROCESS_OWNER’,

 avalue => ProcessOwner);

11⇒ wf_engine.SetItemAttrText (itemtype => itemtype,

 itemkey => itemkey,

 aname => ’MONITOR_URL’,

 avalue => wf_monitor.GetUrl

 (wfa_html.base_url, itemtype,

 itemkey, ’NO’));

12⇒ wf_engine.SetItemAttrText (itemtype => itemtype,

 itemkey => itemkey,

 aname => ’REQ_DOCUMENT’,

 avalue => ’PLSQL:

 wf_reqdemo.create_req_document/’

 ||ItemType||’:’||ItemKey);

13⇒ wf_engine.SetItemAttrText (itemtype => itemtype,

 itemkey => itemkey,

 aname => ’REM_DOCUMENT’,

 avalue => ’PLSQL:wf_reqdemo.

 reminder_req_document/’

 ||ItemType||’:’||ItemKey);

14⇒ wf_engine.SetItemOwner (itemtype => itemtype,

 itemkey => itemkey,

 owner => ProcessOwner);

15⇒ wf_engine.StartProcess (itemtype => itemtype,

 itemkey => itemkey);

15 – 25Demonstration Workflow Processes

16⇒ end StartProcess;

1⇒ This section represents the specification of the procedure, which
includes the list of parameters that must be passed to StartProcess. It
uses the same parameter values that you pass to the wfrund.sql script or
to the field values entered in the Requisition Demonstration web page
(WF_REQDEMO.Create_Req).

2⇒ The declarative part of the procedure body begins in this section.
StartProcess consists of calls to various Workflow Engine PL/SQL APIs.
See: Workflow Engine APIs: page 8 – 19.

Since all of these APIs require an item type and item key input, we
define ItemType and ItemKey as local arguments. The argument
ItemType is defined as ’WFDEMO’, which is the internal name for the
Requisition item type. The argument ItemKey is the value of the
RequisitionNumber parameter that is passed to the StartProcess
procedure.

3⇒ The executable part of the procedure body begins here. This
section calls the CreateProcess Workflow Engine API. This API creates a
new runtime instance of the Requisition process, whose internal name
is ’WFDEMO’, and is identified by the item type and item key that is
supplied. See: CreateProcess: page 8 – 21.

Note: If you do not pass a value for <process_int_name>
to the wfrund.sql script, the selector function for the Requisition
item type determines what process to run.

4⇒ This section calls the SetItemUserKey Workflow Engine API to
mark the new runtime instance of the Requisition process with an
end–user key. The end–user key makes it easier for users to query and
identify the process instance when it is displayed. See:
SetItemUserKey: page 8 – 23.

5, 6, 7, 8, 9, 10, 11, 12, and 13⇒ These sections call either the
SetItemAttributeText or SetItemAttributeNumber Workflow Engine APIs to
set values for the item type attributes defined for this process. The
attributes are REQUISITION_NUMBER, REQUISITION_DESCRIPTION,
REQUISITION_AMOUNT, REQUESTOR_NAME,
FORWARD_TO_USERNAME, REQUISITION_PROCESS_OWNER,
MONITOR_URL, REQ_DOCUMENT, and REM_DOCUMENT,
respectively. See: SetItemAttribute: page 8 – 48.

14⇒ This section calls the SetItemOwner Workflow Engine API to
mark the new runtime instance of the Requisition process with a
process owner user name. Users can query for process instances by
process owner. See: SetItemOwner: page 8 – 26.

Result Type

PL/SQL Stored
Procedure

15 – 26 Oracle Workflow Guide

15⇒ This section calls the Oracle Workflow Engine StartProcess API to
invoke the Requisition process for the item type and item key specified.
See: StartProcess: page 8 – 28.

Example Function Activities

In general, a function activity must have the following information
specified in its Activity property page:

• Internal name for the activity.

• Display name for the activity.

• Result type for the activity, which can be none or the name of a
predefined lookup type.

• Name of the PL/SQL stored procedure that the activity calls.

Also, the PL/SQL stored procedure that a function activity calls must
comply with a specific API. See: Standard API for PL/SQL Procedures
Called by Function Activities: page 7 – 3.

You can view the scripts that create the WF_REQDEMO stored procedure
package used by the Requisition process in the demo subdirectory of the
Oracle Workflow directory structure on your server.

Example: Select Approver

The Select Approver function activity calls a PL/SQL stored procedure
named WF_REQDEMO.SelectApprover that determines who the next
approver is based on the employee approval hierarchy in the
demonstration data model.

This activity expects a response of ’T’ if an approver is found or ’F’ if
an approver is not found. The possible responses are defined in a
lookup type called Boolean, associated with the Standard item type.

The PL/SQL stored procedure that this function activity calls is
described in detail below. Each section in the procedure is numbered
with the notation 1⇒ for easy referencing.

 procedure SelectApprover (itemtype in varchar2,

 itemkey in varchar2,

 actid in number,

15 – 27Demonstration Workflow Processes

 funcmode in varchar2,

 resultout out varchar2) is

1⇒ l_forward_from_username varchar2(30);

 l_forward_to_username varchar2(30);

2⇒ begin

 if (funcmode = ’RUN’) then

 l_forward_to_username := wf_engine.GetItemAttrText (

 itemtype => itemtype,

 itemkey => itemkey,

 aname => ’FORWARD_TO_USERNAME’);

3⇒ if (l_forward_to_username is null) then

 l_forward_to_username := wf_engine.GetItemAttrText (

 itemtype => itemtype,

 itemkey => itemkey,

 aname => ’REQUESTOR_USERNAME’);

 end if;

4⇒ l_forward_from_username := l_forward_to_username;

5⇒ wf_engine.SetItemAttrText (itemtype => itemtype;

 itemkey => itemkey,

 aname => ’FORWARD_FROM_USERNAME’;

 avalue => l_forward_from_username);

6⇒ l_forward_to_username := wf_reqdemo.GetManager(

 l_forward_from_username);

7⇒ wf_engine.SetItemAttrText (itemtype => itemtype;

 itemkey => itemkey,

 aname => ’FORWARD_TO_USERNAME’;

 avalue => l_forward_to_username);

8⇒ if (l_forward_to_username is null) then

 resultout :=’COMPLETE:F’;

 else

 resultout :=’COMPLETE:T’;

 end if;

9⇒ end if;

10⇒ if (funcmode = ’CANCEL’) then

 resultout :=’COMPLETE’;

 return;

 end if;

11⇒ if (funcmode = ’TIMEOUT’) then

 resultout :=’COMPLETE’;

 return;

 end if;

12⇒ exception

 when others then

15 – 28 Oracle Workflow Guide

 wf_core.context(’WF_REQDEMO’,’SelectorApprover’,itemtype,

 itemkey,actid,funcmode);

 raise;

13⇒ end SelectApprover;

1⇒ The local arguments l_forward_from_username, and
l_forward_to_username are declared in this section.

2⇒ If the value of funcmode is RUN, then retrieve the name of the last
person that this requisition was forwarded to for approval by assigning
l_forward_to_username to the value of the
FORWARD_TO_USERNAME item type attribute, determined by calling
the Workflow Engine API GetItemAttrText. See: GetItemAttribute: page
8 – 57.

3⇒ If the value of l_forward_to_username is null, then it means
that the requisition has never been forwarded for approval. In this
case, assign it the value of the REQUESTOR_USERNAME item type
attribute, determined by calling the Workflow Engine API
GetItemAttrText.

4⇒ Assign l_forward_from_username to the value of
l_forward_to_username.

5⇒ This section assigns the value of l_forward_from_username to
the FORWARD_FROM_USERNAME item type attribute by calling the
Workflow Engine SetItemAttrText API.

6⇒ This section calls the function GetManager to return the manager of
the previous approver stored in l_forward_from_username, from
the WF_REQDEMO_EMP_HIERARCHY table and assigns that
manager’s name to l_forward_to_username.

7⇒ This section assigns the value of l_forward_to_username to the
FORWARD_TO_USERNAME item type attribute by calling the Workflow
Engine SetItemAttrText API.

8⇒ If l_forward_to_username is null, meaning there is no manager
above the previous approver in the hierarchy, then assign resultout
to be COMPLETE:F. Otherwise, assign resultout to be
COMPLETE:T.

9⇒ This ends the check on funcmode =’ RUN’.

10⇒ If the value of funcmode is CANCEL, then assign resultout to
be COMPLETE.

11⇒ If the value of funcmode is TIMEOUT, then assign resultout to
be COMPLETE.

Result Type

PL/SQL Stored
Procedure

15 – 29Demonstration Workflow Processes

12⇒ This section calls WF_CORE.CONTEXT if an exception occurs.

13⇒ The SelectApprover procedure ends.

Example: Verify Authority

The Verify Authority function activity calls a PL/SQL stored procedure
named WF_REQDEMO.VerifyAuthority to verify whether the
requisition amount is within the approver’s spending limit. This
activity is also another example of an automated function activity that
returns a result based on a business rule that you implement as a stored
procedure.

This activity expects a result of ’Yes’ or ’No’ when the procedure
completes to indicate whether the approver has the authority to
approve the requisition. These result values are defined in the lookup
type called Yes/No, associated with the Standard item type.

The PL/SQL stored procedure that this function activity calls is
described in detail below. Each section in the procedure is numbered
with the notation 1⇒ for easy referencing. We also use the convention
’l_’ to identify local arguments used within the procedure.

 procedure VerifyAuthority (itemtype in varchar2,

 itemkey in varchar2,

 actid in number,

 funcmode in varchar2,

 resultout out varchar2) is

1⇒ l_forward_to_username varchar2(30);

 l_requisition_amount number;

 l_spending_limit number;

2⇒ begin

 if (funcmode = ’RUN’) then

 l_requisition_amount := wf_engine.GetItemAttrNumber (

 itemtype => itemtype,

 itemkey => itemkey,

 aname => ’REQUISITION_AMOUNT’);

3⇒ l_forward_to_username := wf_engine.GetItemAttrText (

 itemtype => itemtype,

 itemkey => itemkey,

 aname => ’FORWARD_TO_USERNAME’);

4⇒ if (wf_reqdemo.checkSpendingLimit(l_forward_to_username,

 l_requisition_amount)) then

15 – 30 Oracle Workflow Guide

 resultout :=’COMPLETE:Y’;

 else

 resultout :=’COMPLETE:N’;

 end if;

 end if;

5⇒ if (funcmode = ’CANCEL’) then

 resultout :=’COMPLETE:’;

 return;

 end if;

6⇒ if (funcmode = ’TIMEOUT’) then

 resultout :=’COMPLETE:’;

 return;

 end if;

7⇒ exception

 when others then

 wf_core.context(’WF_REQDEMO’, ’VerifyAuthority’, itemtype,

 itemkey, actid, funcmode);

 raise;

8⇒ end VerifyAuthority;

1⇒ The local arguments l_forward_to_username,
l_requisition_amount, and l_spending_limit are declared in
this section.

2⇒ If the value of funcmode is equal to RUN, then assign
l_requisition_amount to the value of the REQUISITION_AMOUNT
item type attribute, determined by calling the Workflow Engine API
GetItemAttrNumber. See: GetItemAttribute: page 8 – 57.

3⇒ This section assigns l_forward_to_username to the value of
the FORWARD_TO_USERNAME item type attribute, determined by calling
the Workflow Engine API GetItemAttrText.

4⇒ This section calls the function CheckSpendingLimit for the current
approver to determine whether the requisition amount is less than or
equal to the approver’s spending limit. If the requisition amount is less
than or equal to the value in l_spending_limit, meaning the
approver has authority to approve, then assign resultout to be
COMPLETE:Y. Otherwise, assign resultout to be COMPLETE:N.

5⇒ If the value of funcmode is CANCEL, then assign resultout to
be COMPLETE:.

6⇒ If the value of funcmode is TIMEOUT, then assign resultout to
be COMPLETE:.

Result Type

Message

15 – 31Demonstration Workflow Processes

7⇒ This section calls WF_CORE.CONTEXT if an exception occurs.

8⇒ The VerifyAuthority procedure ends.

Example Notification Activity

The Requisition process contains several notification activities that send
informative messages to users. The Notify Approver subprocess,
however, also includes notification activities that request a response
from a user.

A notification activity requires the following information be defined in
its Activity property page:

• Internal name for the activity.

• Display name for the activity.

• Result type for the activity, which can be none or the name of a
predefined lookup type.

• Name of a predefined message that the notification sends out.

Example: Notify Requisition Approval Required

The Notify Requisition Approval Required activity sends a message
called Requisition Approval Required to an approving manager. The
message requests that the manager approve or reject a requisition and
provides details about the requisition within the body of the message.

The manager’s response determines the activity that the process
transitions to next. The possible responses, ’APPROVE’ or ’REJECT’
are defined in a lookup type called Approval. These values are defined
by the message’s special Result attribute, whose display name is
Action. These values are also the possible results of the notification
activity, as defined by the Result Type field in the Activity property
page.

The content of the notification is defined in the message called
Requisition Approval Required:

Requisition &REQUISITION_NUMBER,
&REQUISITION_DESCRIPTION for
&REQUISITION_AMOUNT requires your
approval

Subject

Process Node
Properties

15 – 32 Oracle Workflow Guide

&REQ_DOCUMENT

Message attributes, preceded by an ampersand ’&’ in the subject line
and body of the message, are token substituted with runtime values
when the notification is sent. However, in order for token substitution
to occur properly, all message attributes referenced in the subject line
and body of the message have to be defined with a source of ’Send’.

In this example, the message body contains a single message attribute
called REQ_DOCUMENT. REQ_DOCUMENT is a PL/SQL Document–type
attribute that references an item type attribute of the same name.
When you initiate the Requisition process and the Workflow Engine
runs the StartProcess procedure, it calls SetItemAttrText() to set the
REQ_DOCUMENT item attribute to the following value:

’PLSQL:wf_reqdemo.create_req_document/’||ItemType||’:

’||ItemKey

This value calls the PL/SQL function
wf_reqdemo.create_req_document with itemtype and itemkey
concatenated as an argument. The function parses this string and
creates a PL/SQL document for the specified itemtype:itemkey.

This message also contains a special result message attribute called
Action and a ’Respond’ message attribute called Note.

The result message attribute is defined in the Result tab of the
message’s property page. The result attribute prompts the approver to
respond with a value from a list of possible values provided by the
lookup type specified. The response, in turn, becomes the result of the
Notify Requisition Approval Required activity. In this case, the
possible response values are ’APPROVE’ or ’REJECT’, as defined by
the Approval lookup type. This result determines which activity the
process transitions to next.

The ’Respond’ message attribute Note is of type ’Text’. This attribute
prompts the approver to enter optional comments when responding to
the notification.

Note: To view the content of any message, double–click on the
message in the navigator tree or select the message and choose
Properties from the Edit menu.

If you display the properties of the Notify Requisition Approval
Required activity node in the Notify Approver subprocess diagram you
should see that this node is set to Normal because it is neither the start
nor end activity in the process.

Body

15 – 33Demonstration Workflow Processes

You should also see that the Performer is set to the Forward To
Username item type attribute, indicating that the notification gets sent
to the user whose name is stored in the item type attribute called
’Forward To Username’. The value of ’Forward To Username’
is determined earlier in the Requisition process by the activity called
Select Approver.

�

15 – 34 Oracle Workflow Guide

Product Survey Process

You can initiate a sample workflow process that sends a survey to elicit
individual responses from a group. There are two different survey
processes that you can initiate. Each survey process implements the
survey method differently. However, both survey processes are based
on a table that stores survey responses and a sequence that creates
unique survey IDs.

You can initiate this example process if you are using the standalone
version of Oracle Workflow. If you are using Oracle Workflow
embedded in Oracle Applications, you should consider this process
mainly as an example for explanation purposes and not for
demonstration use. The files necessary to set up and run this
demonstration are not provided with the version of Oracle Workflow
embedded in Oracle Applications.

Attention: For detailed information about runnable workflow
processes that are integrated with Oracle Applications or
Oracle Self–Service Web Applications, refer to the appropriate
Oracle Applications User’s Guide or online documentation.
See: Predefined Workflows Embedded in Oracle E–Business
Suite: page B – 2.

You can initiate a Product Survey process from the Oracle Workflow
Launch Processes web page or from the Workflow Demonstrations web
page. When you initiate a Product Survey process, you must specify a
survey requestor role, a survey participant role, a survey name, a
timeout in number of minutes, and the process name to run. You can
select one of two different process names:

• Survey – Single Process—Initiates a single process to send a
survey to all participants in the role.

• Survey – Master/Detail Process—Initiates a master process that
identifies all participants in a role and then spawns a detail
survey process for each participant. Each detail survey process
sends a personalized survey to a single participant.

When you choose Single Process, the process sends a notification with
Expand Roles enabled to the survey participants role. This causes the
notification system to send an individual copy of the survey to each
user in that group role. A post–notification function associated with
the survey notification activity validates the responses and writes them
to a table once the notification times out or all responses are received.
The process then sends an FYI notification to the survey participants
with the results of the survey. The process ends without a result.

�

15 – 35Demonstration Workflow Processes

When you choose Master/Detail Process, a master process determines
all the participant users in the survey role and creates a detail work
item for each user. The master process then waits until all detail work
items complete before continuing. The detail work item is a detail
process that sends a survey notification to a single user. A
post–notification function associated with the survey notification
activity in the detail process validates the response received and writes
it to a table. Once all detail work items time out or all detail responses
are received, the Workflow Engine returns control to the master
process. An FYI notification in the master process then sends the
results of the survey to all the survey participants. The process ends
without a result.

Installing the Product Survey Data Model

The Product Survey data model is installed only with the standalone
version of Oracle Workflow. The data model is automatically installed
for you by the Workflow Configuration Assistant. The files used in the
installation are copied to the demo and demo/<language> subdirectories
of your Oracle Workflow server directory structure.

Attention: For the Product Survey process demonstration to
work properly, you should perform the steps required to set up
Oracle Workflow after the installation. See: Overview of
Setting Up: page 2 – 6.

The installation does the following:

• Calls a script called wfsrvc.sql to create a table called
WF_SURVEY_DEMO and a sequence called
WF_SURVEYDEMO_S. The Product Survey process updates the
table WF_SURVEY_DEMO with information from each survey
participant’s response.

• Calls the scripts wfsrvs.sql and wfsrvb.sql to create the PL/SQL
spec and body for a package called WF_SURVEYDEMO. This
package contains:

– The PL/SQL stored procedures called by the function
activities used in the Product Survey workflow.

– The PL/SQL procedure WF_SURVEYDEMO.Create_Survey
called by the Oracle Workflow web agent to generate the
web–based interface page for the Product Survey
demonstration.

�

�

15 – 36 Oracle Workflow Guide

• Loads the Product Survey workflow definition from wfsrv.wft
into the database. You can view this process in Oracle Workflow
Builder.

• The data model for the Product Survey process also relies on the
demonstration directory service used by the sample Requisition
process. See: Installing the Requisition Data Model: page 15 – 7.

Attention: For security reasons, the installation process
automatically locks the database accounts for the users in the
demonstration directory service after they are created. Before
you can begin using the accounts, you must unlock them using
a script called wfdemoul.sql. See: Installing the Requisition Data
Model: page 15 – 7.

Initiating the Product Survey Workflow

You can use either of the following methods to initiate the Product
Survey workflow:

• Access the Product Survey web page from the Workflow
Demonstrations home page. See: To Use the Product Survey
Web Page: page 15 – 36.

• Use the Launch Processes web page. See: Testing Workflow
Definitions: page 12 – 2.

� To Use the Product Survey Web Page

1. Enter the following URL in a web browser to access the Workflow
Demonstration web page, then click on the Product Survey link to
display the Product Survey web page:

<webagent>/wf_demo.home

 <webagent> represents the base URL of the web agent configured
for Oracle Workflow in your Web server. See: Setting Global User
Preferences: page 2 – 14.

Alternatively, you can enter the following URL to directly display
the Product Survey web page:

<webagent>/wf_surveydemo.create_survey

Attention: These are both secured pages, so if you have not
yet logged on as a valid workflow user in the current web
session, you will be prompted to do so before the page appears.

15 – 37Demonstration Workflow Processes

2. Select a role name as the survey requestor.

3. Select a role name that represents the survey participants

4. Enter a name for your survey.

5. Specify a timeout value in minutes.

6. Check the type of survey process you wish to initiate:

• Use a single process to send a survey to all participants in the
role.

• Use a master process to loop through all role participants
creating a detail work item for each participant. Each detail
work item sends a survey to one participant.

7. Choose Submit to initiate the Product Survey process and to
navigate to the Survey Created confirmation page.

15 – 38 Oracle Workflow Guide

8. In addition to telling you what roles you should log in as to view
the process’ notifications, the confirmation page also contains a
HTML link to the Workflow Monitor Activities List where you can
choose View Diagram to display the process diagram for the
survey you submitted in ADMIN mode. See: Workflow Monitor:
page 11 – 2.

9. Select the Process Timeouts HTML link to have the background
engine look for any timed out notifications and execute the next
activity expected to run in the case of a time out.

10. Select the Create Survey HTML link if you wish to enter and
submit another survey in the Product Survey web page.

The Product Survey Item Type

The Survey – Single Process and Survey – Master/Detail Process are
both associated with an item type called Product Survey. This item
type identifies all product survey workflow processes available.
Currently there are three workflow processes that support the two
survey implementations:

• Survey – Single Process

• Survey – Master/Detail Process

• Detail Survey Process.

If you examine the property page of Product Survey, you see that it has
a persistence type of Temporary and persistence number of days of 0.

15 – 39Demonstration Workflow Processes

This means that the run time data associated with any item instances
for this item type are eligible for purging as soon as they complete.
There is no Selector function specified because the process to start is
specified when you initiate the Product Survey from the web–based
interface.

The Product Survey item type also has several associated attributes.
These attributes record information provided when you initiate a
Product Survey. The attributes are used and maintained by function
activities as well as notification activities throughout each process. The
following table lists the Product Survey item type attributes.

Display
Name

Description Type Length/Format/Lookup
Type

Document
ID

Document ID (Defaults to
item key)

Text 30

Survey
Name

Survey name (Defaults to
user key)

Text 80

Survey
Participants

Survey participants role Role

Individual
Participant

Role used by Detail Survey
Process as recipient for sur-
vey notification

Role

Timeout in
Minutes

Dynamic timeout period for
survey response

Number

Table 15 – 3 (Page 1 of 1)

Summary of the Survey – Single Process

To view the properties of Survey – Single Process, select the process in
the navigator tree, then choose Properties from the Edit menu. The
Survey – Single Process is runnable, which means you can initiate it as
a top level process to run.

The Details property page of the process activity indicates that Survey
– Single Process has an associated error item type and error process
called WFERROR and DEFAULT_ERROR, respectively. The
DEFAULT_ERROR process of item type WFERROR is initiated
automatically when an error is encountered in Survey – Single Process.

15 – 40 Oracle Workflow Guide

Currently the DEFAULT_ERROR process notifies the administrator of
the error and provides options to retry, abort, or continue the process in
error.

When you display the Process window for Survey – Single Process, you
see that the process consists of four unique activities. To examine the
activities of the process in more detail, we have numbered each node
for easy referencing below. The numbers themselves are not part of the
process diagram.

The Survey – Single Process workflow begins when you submit a
survey using the Product Survey web page accessible from the
Workflow Demonstrations home page. You must provide a survey
requestor role, survey participant role, survey name, a timeout value in
minutes, and check ”Use a single process to send a survey to all
participants in the role.”

Note: If you choose to initiate the survey process from the
Launch Processes web page, you should select ”Survey – Single
Process” as the process name.

The workflow begins at node 1 with the Start activity.

At node 2, the process sends the survey to the participant role asking
the role to rank the product and specify additional comments.

When the Workflow Engine receives all responses or the survey request
times out, (based on the timeout period in minutes provided at
initiation of the workflow), the process transitions to node 3 where the
process sends a notification with the results of the survey to the
participant role. The process ends at this point.

15 – 41Demonstration Workflow Processes

Survey – Single Process Activities

Start (Node 1)

This is a Standard function activity that simply marks the start of the
process.

• Function—WF_STANDARD.NOOP

• Result Type—None

• Required—Yes

• Prerequisite Activities—None

• Item Attributes Set by Function—None

• Item Attributes Retrieved by Function—None

Issue Survey (Node 2)

This activity notifies the Survey Participant role members that their
input is required for a product survey. The message includes two
‘Send’ attributes that display the Survey name and the timeout period
in minutes.

The message also includes two ‘Respond’ attributes that request a
ranking and comments.

If you display the property page of this node, you see that the activity
is assigned to a performer whose name is stored in an item attribute
named Survey Participants. You will also see that the Timeout
associated with this activity is stored in an item attribute named
Timeout in Minutes.

• Message—Survey

• Result Type—None

• Required—Yes

• Prerequisite Activities—None

• Expand Roles—Yes

• Notification
Function—PLSQL:WF_SURVEYDEMO.PROCESS_SURVEY

Survey Results FYI (Node 3)

This activity notifies the survey participants of the results of the survey.
The message includes two “Send” attributes that display the Survey

15 – 42 Oracle Workflow Guide

name and the Result Script. Result Script is of type PL/SQL Document
and generates a PL/SQL document that summarizes the survey results.

If you display the property page of the node, you see that the activity is
assigned to a performer whose name is stored in an item attribute
named Survey Participants.

• Message—Survey results

• Result Type—None

• Required—No

• Prerequisite Activities—Issue Survey

• Expand Roles—Yes

• Notification Function—None

End (Node 4)

This is a Standard function activity that simply marks the end of the
process.

• Function—WF_STANDARD.NOOP

• Result Type—None

• Required—Yes

• Prerequisite Activities—None

• Item Attributes Set by Function—None

• Item Attributes Retrieved by Function—None

Summary of the Survey – Master/Detail Process

To view the properties of Survey – Master/Detail Process, select the
process in the navigator tree, then choose Properties from the Edit
menu. The Survey – Master/Detail Process is runnable, indicating that
you can initiate it as a top level process to run.

The Details property page of the process activity indicates that Survey
– Master/Detail Process has an associated error item type and error
process called WFERROR and DEFAULT_ERROR, respectively. The
DEFAULT_ERROR process of item type WFERROR is initiated
automatically when an error is encountered in Survey – Master/Detail
Process. Currently the DEFAULT_ERROR process notifies the

15 – 43Demonstration Workflow Processes

administrator of the error and provides options to retry, abort, or
continue the process in error.

When you display the Process window for Survey – Master/Detail
Process, you see that the process consists of five unique activities. To
examine the activities of the process in more detail, we have numbered
each node for easy referencing below. The numbers themselves are not
part of the process diagram.

The Survey – Master/Detail Process workflow begins when you submit
a survey using the Product Survey web page accessible from the
Workflow Demonstrations home page. You must provide a survey
requestor role, survey participant role, survey name, a timeout value in
minutes, and check ”Use a master process to loop through all role
participants creating a detail work item for each participant. Each
detail work item sends a survey to one participant.”

Note: If you choose to initiate the survey process from the
Launch Processes web page, you should select ”Survey –
Master/Detail Process” as the process name.

The workflow begins at node 1 with the Start activity.

At node 2, the process determines the individual users that are
members of the survey participants role and starts a detail work item
to send a survey to each user.

At node 3, the process waits for all of the detail work items to complete
before continuing.

When all detail work items are complete the process transitions to node
4 where the process sends a notification with the results of the survey
to the participant role. The process ends at this point.

15 – 44 Oracle Workflow Guide

Survey – Master/Detail Process Activities

Start (Node 1)

This is a Standard function activity that simply marks the start of the
process.

• Function—WF_STANDARD.NOOP

• Result Type—None

• Required—Yes

• Prerequisite Activities—None

• Item Attributes Set by Function—None

• Item Attributes Retrieved by Function—None

Start individual requests (Node 2)

This function activity starts a detail work item for each member of the
Survey Participants role, thus creating an individual survey for each
user. The function copies all relevant item attribute values from the
Survey – Master/Detail Process to each Detail Survey Process work
item. In addition, the Master/Detail Process item key is set as the
parent item for each Detail Survey Process work item.

• Function—WF_SURVEYDEMO.START_CHILDREN

• Result Type—None

• Required—Yes

• Prerequisite Activities—None

• Item Attributes Retrieved by Function—USERKEY,
TIMEOUT_MINUTES

• Item Attributes Set by Function—for each Detail Survey Process
work item: USERKEY, TIMEOUT_MINUTES

Wait For Flow (Node 3)

This is a standard function activity that is used here to pause the flow
until the corresponding detail processes complete a specified activity.

• Function—WF_STANDARD.WAITFORFLOW

• Result Type—None

• Required—Yes

15 – 45Demonstration Workflow Processes

• Prerequisite Activities—Start individual requests

• Activity Attributes Retrieved by Function

– Continuation Activity Label: Constant, CONTINUEFLOW

– Continuation Flow: Constant, Detail

• Item Attributes Set by Function—None

• Item Attributes Retrieved by Function—None

Survey Results FYI (Node 4)

This activity notifies the survey participants of the results of the survey.
The message includes two ‘Send’ attributes that display the Survey
name and the Result Script. Result Script is of type PL/SQL Document
and generates a PL/SQL document that summarizes the survey results.

If you display the property page of the node, you see that the activity is
assigned to a performer whose name is stored in an item attribute
named Survey Participants.

• Message—Survey results

• Result Type—None

• Required—No

• Prerequisite Activities—Wait For Flow

• Expand Roles—Yes

• Notification Function—None

End (Node 5)

This is a Standard function activity that simply marks the end of the
process.

• Function—WF_STANDARD.NOOP

• Result Type—None

• Required—Yes

• Prerequisite Activities—None

• Item Attributes Set by Function—None

• Item Attributes Retrieved by Function—None

15 – 46 Oracle Workflow Guide

Summary of the Detail Survey Process

To view the properties of Detail Survey Process, select the process in
the navigator tree, then choose Properties from the Edit menu. The
Detail Survey Process is not runnable, indicating that you cannot
initiate it as a top level process to run, but instead it must be called by a
higher level process.

The Details property page of the process activity indicates that Detail
Survey Process does not have an associated error item type and error
process. If an error is encountered, the error process initiated will be
determined by the error item type and error process associated with
the parent process of the detail work item, Survey – Master/Detail
Process.

When you display the Process window for Detail Survey Process, you
see that the process consists of four unique activities. To examine the
activities of the process in more detail, we have numbered each node
for easy referencing below. The numbers themselves are not part of the
process diagram.

The Detail Survey Process workflow begins when the parent process
Survey – Master/Detail Process creates a detail work item from the
Start Individual Requests activity.

The workflow begins at node 1 with the Start activity.

At node 2, the process sends the survey to an individual role asking for
product ranking and comments.

When responses from all detail work items are received or all survey
requests time out, (based on the timeout period in minutes provided at
initiation of the workflow), the process transitions to node 3 where the
process continues the flow of the parent process, Survey –
Master/Detail Process. The process ends at this point.

15 – 47Demonstration Workflow Processes

Detail Survey Process Activities

Start (Node 1)

This is a Standard function activity that simply marks the start of the
process.

• Function—WF_STANDARD.NOOP

• Result Type—None

• Required—Yes

• Prerequisite Activities—None

• Item Attributes Set by Function—None

• Item Attributes Retrieved by Function—None

Issue Survey (Node 2)

This activity notifies the individual role that a response is required for a
product survey. The message includes two ‘Send’ attributes that
display the Survey name and the timeout period in minutes.

The message also includes two ‘Respond’ attributes that request a
product ranking and comments.

If you display the property page of the node, you see that the activity is
assigned to a performer whose name is stored in an item attribute
named Individual Participant. You will also see that the Timeout
associated with this activity is stored in an item attribute named
Timeout in Minutes.

• Message—Survey

• Result Type—None

• Required—Yes

• Prerequisite Activities—None

• Expand Roles—No

• Notification
Function—PLSQL:WF_SURVEYDEMO.PROCESS_SURVEY

Continue Flow (Node 3)

This is a standard function activity that is used here to mark the
position in the detail process where, upon completion, the
corresponding halted master process will continue.

15 – 48 Oracle Workflow Guide

• Function—WF_STANDARD.CONTINUEFLOW

• Result Type—None

• Required—Yes

• Prerequisite Activities—Issue Survey

• Activity Attributes Retrieved by Function

– Waiting Activity Label: Constant, WAITFORFLOW

– Waiting Flow: Constant, Master

• Item Attributes Set by Function—None

• Item Attributes Retrieved by Function—None

End (Node 4)

This is a Standard function activity that simply marks the end of the
process.

• Function—WF_STANDARD.NOOP

• Result Type—None

• Required—Yes

• Prerequisite Activities—None

• Item Attributes Set by Function—None

• Item Attributes Retrieved by Function—None

�

15 – 49Demonstration Workflow Processes

Document Review Process

Attention: Document management functionality is reserved
for future use. This description of the Document Review
Process is provided for reference only.

The Document Review Process requests approvers to review and
approve attached documents by integrating notifications with a
document management system. Any user participating in the Oracle
Workflow administration role can initiate the Document Review
process from the Oracle Workflow Launch Processes web page or from
the Workflow Demonstrations web page. You must provide the
following item attribute values to launch the process: Item Key, User
Key, Process Owner, Send Document, Document Owner, and
Document Reviewer.

The process definition of the Document Review Process is
automatically installed for you by the Workflow Configuration
Assistant for the standalone version of Oracle Workflow or by
AutoUpgrade for the version of Oracle Workflow embedded in Oracle
Applications.

When you submit a Document Review request in this demonstration,
the process sends a notification to the designated reviewer to approve a
document and, optionally, allows the reviewer to provide an alternate
document in response. If the reviewer approves the document, the
process ends with a result of Approve. If the reviewer rejects the
document, the requestor has the option to resubmit the document for
approval. If the requestor chooses to resubmit the document for
approval, the process loops back to send the Review Document
notification. Otherwise, the process ends with a result of Reject.

See Also

Sample Workflow Processes: page 15 – 2

Testing Workflow Definitions: page 12 – 2

The Document Management Item Type

The Document Review process is associated with an item type called
Document Management. This item type identifies all demonstration
workflow processes associated with document management system

15 – 50 Oracle Workflow Guide

integration. Currently there is only one workflow process associated
with Document Management: Document Review.

If you examine the property page of Document Management, you see
that it has a persistence type of Temporary and persistence number of
days of 0. This means that the run time data associated with any work
items for this item type are eligible for purging as soon as they
complete. The item type does not have a Selector function because the
process to start is specified when you initiate the Document
Management process from the web–based interface.

The Document Management item type also has several associated
attributes. These attributes record information provided when you
initiate a Document Management process. The attributes are used and
maintained by function activities as well as notification activities
throughout each process. The following table lists the Document
Management item type attributes.

Display
Name

Description Type Length/Format/
Lookup Type

Send
Document

Document sent for review Document frame target – New
Window

Document
Owner

Owner of the document sent
for review

Role

Document
Reviewer

Document reviewer role Role

Comments Comments entered by review-
er

Text

Response
Document

Document provided with edits
after review

Document frame target – New
Window

Table 15 – 4 (Page 1 of 1)

Summary of the Document Review Process

To view the properties of the Document Review process, select the
process in the navigator tree, then choose Properties from the Edit
menu. The Document Review process has a result type of Approval,
indicating that when the process completes, it has a result of Approve
or Reject (the lookup codes in the Approval lookup type associated
with the Standard item type). This process activity is also runnable,
indicating that you can initiate it as a top level process to run.

15 – 51Demonstration Workflow Processes

The Details property page of the process activity indicates that
Document Review has an associated error item type and error process
called WFERROR and DEFAULT_ERROR, respectively. The
DEFAULT_ERROR process of item type WFERROR is initiated
automatically when an error is encountered in Document Review.
Currently the DEFAULT_ERROR process notifies the administrator of
the error and provides options to retry, abort, or continue the process in
error.

When you display the Process window for the Document Review
process, you see that the process consists of six activity nodes. To
examine the activities of the process in more detail, we have numbered
each node for easy referencing below. The numbers themselves are not
part of the process diagram.

The workflow begins at node 1 with the Start activity.

At node 2, Review Document, the process sends a notification to the
Document Reviewer requesting review and approval of the Send
Document. If the reviewer approves the document, the process
transitions to node 3, Document Approved, and notifies the requestor
of the approval. The process ends in this case with a result of Approve.
If the reviewer rejects the document, the process transitions to node 5,
Document Rejected, and notifies the requestor of the rejection. The
requestor has the option of resubmitting the document for approval or
accepting the result. If the document is resubmitted, the process
transitions back to node 2, Review Document. If the requestor accepts
the result the process ends with a result of Reject.

15 – 52 Oracle Workflow Guide

Document Review Process Activities

Start (Node 1)

This is a Standard function activity that simply marks the start of the
process.

• Function—WF_STANDARD.NOOP

• Result Type—None

• Required—Yes

• Prerequisite Activities—None

• Activity Attributes Retrieved by Function—None

• Item Attributes Set by Function—None

• Item Attributes Retrieved by Function—None

Review Document (Node 2)

This is a notification activity that sends a message to the document
reviewer requesting approval and, optionally, a document with edits in
return. The message includes two “Send” attributes, one that displays
the Document Owner and the other a document attribute that appears
in the notification as an attachment. When the attachment icon is
selected, the document appears in a new window. The message also
includes two “Respond” attributes that request Comments and a
Response Document.

• Message—Document Send

• Result Type—Approval

• Required—Yes

• Prerequisite Activities—None

• Activity Attributes Retrieved by Notification—None

Document Approved (Node 3)

This is a notification activity that sends a message to the document
review requestor stating that his/her document is approved. The
message includes five “Send” attributes that display the Document
Owner, Document Reviewer, a link to the Send Document, Comments
from the reviewer, and an optional Response Document attachment.
When the Response Document attachment is selected, the document
appears in a new window.

15 – 53Demonstration Workflow Processes

• Message—Document Response—Approved

• Result Type—Approval

• Required—Yes

• Prerequisite Activities—Review Document

• Activity Attributes Retrieved by Notification—None

End (Nodes 4 and 6)

This is a Standard function activity that simply marks the end of the
process.

• Function—WF_STANDARD.NOOP

• Result Type—None

• Required—Yes

• Prerequisite Activities—None

• Activity Attributes Retrieved by Function—None

• Item Attributes Set by Function—None

• Item Attributes Retrieved by Function—None

Document Rejected (Node 5)

This is a notification that sends a message to the document review
requestor stating that his/her document is rejected. The message
includes four “Send” attributes that display the Document Owner,
Document Reviewer, a link to the Send Document, and an optional
Response Document attachment. When the attachment icon is
selected, the document appears in a new window. The message also
includes a single “Respond” attribute that displays Comments from the
reviewer and prompts for Comments from the requestor if the
document review request is resubmitted.

• Message—Document Response – Rejected

• Result Type—Yes/No

• Required—Yes

• Prerequisite Activities—Review Document

• Activity Attributes Retrieved by Notification—None

15 – 54 Oracle Workflow Guide

Error Check Process

The Error Check Process scans the Oracle Workflow item activity
statuses table for activities in error. The main purpose of this process is
to illustrate how you can use Oracle Workflow to design a workflow
process that has the same functionality as an Oracle Alert periodic
alert. You can initiate the Error Check Process to scan for database
exceptions at a specified frequency.

The process definition of the Error Check Process is automatically
installed for you by the Workflow Configuration Assistant for the
standalone version of Oracle Workflow or by AutoUpgrade for the
version of Oracle Workflow embedded in Oracle Applications.

When you launch the Error Check process in this demonstration, the
process executes a function that scans the Workflow item activity
statuses table looking for activities in error. If it finds errors, the
process sends a notification listing the errors to the designated alert
recipient. The process either continues or ends depending on whether
the Error Check process is set to run only once or to run at a specified
frequency. If you specify the process to run at a particular frequency,
the process waits the necessary period of time and then scans the
Workflow item activity statuses table again. The wait/scan loop
continues until a specified end date is reached and the process ends.

You can initiate the Error Check process from the Launch Processes
web page or from the Workflow Demonstrations web page. You must
provide the Item Key, User Key, Process Owner, Alert Recipient, Start
date of the process, End date of the process, and the Frequency (day of
week, day of month, time of day, days, or Once only) with which you
want to check for errors.

See Also

Sample Workflow Processes: page 15 – 2

Testing Workflow Definitions: page 12 – 2

The Periodic Alert Item Type

The Error Check process is associated with an item type called Periodic
Alert. This item type identifies all processes associated with
implementing periodic alert functionality through Oracle Workflow.

15 – 55Demonstration Workflow Processes

Currently there are two workflow processes associated with Periodic
Alert: Error Check and User Defined Alert Action.

If you examine the property page of Periodic Alert, you see that it has a
persistence type of Temporary and persistence number of days of 0.
This means that the run time data associated with any item instances
for this item type are eligible for purging as soon as they complete. A
Selector function is not specified because the process to start is
specified when you initiate a Periodic Alert process from the
web–based interface.

The Periodic Alert item type also has several associated attributes.
These attributes record information provided when you initiate a
Periodic Alert process. The attributes are used and maintained by
function activities as well as notification activities throughout each
process. The following table lists the Periodic Alert item type attributes.

Display Name Description Type Length/Format/Lookup
Type

Alert
Recipient

Role to notify when alert excep-
tion is detected

Role

Start date Date to start alert check (default
is today)

Date DD–MON–YYYY
HH24:MI:SS

End date Date to end alert check (default
is 12/31/2010 12:12:12 PM)

Date DD–MON–YYYY
HH24:MI:SS

Frequency Frequency to check the alert Lookup Wait Mode

Frequency –
day of month

Day of month required when
Frequency is Day of Month

Lookup Day of Month

Frequency –
day of week

Day of week required when Fre-
quency is Day of Week

Lookup Day of Week

Frequency –
time of day

Time optional, but used by Wait
activity for any Frequency value

Date HH24:MI

Frequency –
days

Number of days required when
Frequency is Relative Time

Number

Once Only Perform Alert Once Only Lookup Yes/No

Table 15 – 5 (Page 1 of 1)

15 – 56 Oracle Workflow Guide

Summary of the Error Check Process

To view the properties of the Error Check process, select the process in
the navigator tree, then choose Properties from the Edit menu. The
Error Check process is runnable, indicating that you can initiate it as a
top level process to run.

The Details property page of the process activity indicates that Error
Check has an associated error item type and error process called
WFERROR and DEFAULT_ERROR, respectively. The
DEFAULT_ERROR process of item type WFERROR is initiated
automatically when an error is encountered in Error Check. Currently
the DEFAULT_ERROR process notifies the administrator of the error
and provides options to retry, abort, or continue the process in error.

When you display the process window for the Error Check process,
you see that the process consists of six unique activities, several of
which are reused to comprise the nine activity nodes that appear in the
workflow diagram. To examine the activities of the process in more
detail, we have numbered each node for easy referencing below. The
numbers themselves are not part of the process diagram.

The Error Check workflow begins when you initiate the process from
the Launch Processes web–based interface. You must provide the Item
Key, User Key, Process Owner, Alert Recipient, Start date of the
process, End date of the process, and the Frequency (day of week, day
of month, time of day, days, or Once only) with which you want to
check for errors.

The workflow begins at node 1 with the Start activity.

At node 2, the process pauses and waits until the Start Date. Once the
wait time has elapsed, the process executes node 3, a function activity
that scans the Workflow item activity statuses table for errors. If the
function activity finds no errors, the process executes node 4 which
pauses the process for some period of time based on the frequency you
specify when you launch the process. Once this frequency–based wait
time elapses, the process scans the status table for errors again.
Otherwise, if it finds any errors, the process executes node 5, a process
activity that sends a notification of the errors to the alert recipient. The
process then executes node 6 to evaluate whether the Error Check
process is to be run only once. If the process should only be run once,
the process ends at node 7, otherwise the process returns to node 4, the
frequency–based Wait activity.

While the set of activities between nodes 2 through 5 are being
executed, the process also takes a parallel transition to node 8, another
Wait activity that serves to keep the work item scan loop going until

15 – 57Demonstration Workflow Processes

the specified End Date is encountered. Once the end date is reached,
the process ends at node 9.

Error Check Process Activities

Start (Node 1)

This is a Standard function activity that simply marks the start of the
process.

• Function—WF_STANDARD.NOOP

• Result Type—None

• Required—Yes

• Prerequisite Activities—None

• Activity Attributes Retrieved by Function—None

• Item Attributes Set by Function—None

• Item Attributes Retrieved by Function—None

Wait (Node 2)

This is a Standard function activity that pauses the process for the time
you specify.

To use a Wait activity in a process, you must set up at least one
background engine to evaluate whether the wait period has elapsed so
that it can complete the Wait activity.

• Function—WF_STANDARD.WAIT

• Result Type—None

15 – 58 Oracle Workflow Guide

• Required—Yes

• Prerequisite Activities—None

• Activity Attributes Retrieved by Function

– Wait Mode: Constant, Absolute Date

– Absolute Date: Item Attribute, Start date

• Item Attributes Set by Function—None

• Item Attributes Retrieved by Function—None

Check Alert (Node 3)

This is a function activity that scans for rows in the Workflow item
activity statuses table looking for activities with a status of ERROR.

• Function—WF_ALERT.CHECKALERT

• Result Type—Boolean

• Required—Yes

• Prerequisite Activities—None

• Activity Attributes Retrieved by Function—None

• Item Attributes Created by Function—LAST_CHECKED

• Item Attributes Retrieved by Function—LAST_CHECKED

• Item Attributes Set by Function—LAST_CHECKED

Wait (Node 4)

This is a Standard function activity that pauses the process for the time
you specify.

To use a Wait activity in a process, you must set up at least one
background engine to evaluate whether the wait period has elapsed so
that it can complete the Wait activity.

• Function—WF_STANDARD.WAIT

• Result Type—None

• Required—Yes

• Prerequisite Activities—None

• Activity Attributes Retrieved by Function

– Wait Mode: Item Attribute, Frequency

15 – 59Demonstration Workflow Processes

– Absolute Date: Item Attribute, Start date

– Day of Month: Item Attribute, Day of Month

– Day of Week: Item Attribute, Day of Week

– Relative Time: Item Attribute, Frequency—days

– Time of Day: Item Attribute, Frequency—time of day

• Item Attributes Set by Function—None

• Item Attributes Retrieved by Function—None

User Defined Alert Action (Node 5)

This activity is a subprocess that performs a series of activities
whenever an alert exception is detected. To view the subprocess,
double–click on User Defined Alert Action under the Processes branch
in the navigator tree. Currently, the subprocess sends a notification of
the errors detected to the alert recipient.

• Result Type—None

• Required—Yes

• Prerequisite Activities—None

• Activity Attributes Retrieved by Function—None

Once Only (Node 6)

This is a standard function activity that compares one value to another.

• Function—WF_STANDARD.COMPARE

• Result Type—Comparison

• Required—Yes

• Prerequisite Activities—None

• Activity Attributes Retrieved by Function

– Test Value: Item Attribute, Once Only

– Reference Value: Constant, Y

• Item Attributes Set by Function—None

• Item Attributes Retrieved by Function—None

15 – 60 Oracle Workflow Guide

End (Nodes 7 and 9)

This is a Standard function activity that simply marks the end of the
process.

• Function—WF_STANDARD.NOOP

• Result Type—None

• Required—Yes

• Prerequisite Activities—None

• Activity Attributes Retrieved by Function—None

• Item Attributes Set by Function—None

• Item Attributes Retrieved by Function—None

Wait (Node 8)

This is a Standard function activity that pauses the process for the time
you specify.

To use a Wait activity in a process, you must set up at least one
background engine to evaluate whether the wait period has elapsed so
that it can complete the Wait activity.

• Function—WF_STANDARD.WAIT

• Result Type—None

• Required—Yes

• Prerequisite Activities—None

• Activity Attributes Retrieved by Function

– Wait Mode: Constant, Absolute Date

– Absolute Date: Item Attribute, End date

• Item Attributes Set by Function—None

• Item Attributes Retrieved by Function—None

Summary of the User Defined Alert Action Process

To view the properties of the User Defined Alert Action process, select
the process in the navigator tree, then choose Properties from the Edit
menu. The User Defined Alert Action process is not runnable,

15 – 61Demonstration Workflow Processes

indicating that you cannot initiate it as a top level process to run, but
instead it must be called by a higher level process.

The Details property page of the process activity indicates that this
process activity does not have an associated error item type and error
process. If an error is encountered, the error process initiated will be
determined by the error item type and error process associated with
the parent process, Error Check.

When you display the process window for the User Defined Alert
Action process, you see that the process consists of three unique
activities. To examine the activities of the process in more detail, we
have numbered each node for easy referencing below. The numbers
themselves are not part of the process diagram.

The User Defined Alert Action process is initiated as a subprocess by
the Error Check process.

The workflow begins at node 1 with the Start activity. At node 2, the
process sends a notification listing the errors found to the alert
recipient. The process ends at this point.

User Defined Alert Action Process Activities

Start (Node 1)

This is a Standard function activity that simply marks the start of the
process.

• Function—WF_STANDARD.NOOP

• Result Type—None

• Required—Yes

• Prerequisite Activities—None

• Activity Attributes Retrieved by Function—None

15 – 62 Oracle Workflow Guide

• Item Attributes Set by Function—None

• Item Attributes Retrieved by Function—None

Notify Alert Recipient (Node 2)

This is a notification activity that sends an error report to the
designated alert recipient.

The message includes one Send attribute, Error Report, which is a
PL/SQL document attribute whose value is generated by the PLSQL
procedure WF_ALERT.ErrorReport.

• Message—Exception detected FYI

• Result Type—None

• Required—No

• Prerequisite Activities—None

End (Node 3)

This is a Standard function activity that simply marks the end of the
process.

• Function—WF_STANDARD.NOOP

• Result Type—None

• Required—Yes

• Prerequisite Activities—None

• Activity Attributes Retrieved by Function—None

• Item Attributes Set by Function—None

• Item Attributes Retrieved by Function—None

�

15 – 63Demonstration Workflow Processes

Event System Demonstration

The Event System Demonstration is an example of using events to
transmit business documents between two systems. You initiate the
demonstration process by entering a purchase order on one system.
Oracle Workflow generates a purchase order XML document and sends
this document to a second system. The second system processes the
purchase order and sends back to the first system three XML
documents representing a purchase order acknowledgement, an
advanced shipment notice, and an invoice.

You can initiate this example process if you are using the standalone
version of Oracle Workflow. If you are using Oracle Workflow
embedded in Oracle Applications, you should consider this process
mainly as an example for explanation purposes and not for
demonstration use. The files necessary to set up and run this
demonstration are not provided with the version of Oracle Workflow
embedded in Oracle Applications.

Attention: For detailed information about runnable workflow
processes that are integrated with Oracle Applications or
Oracle Self–Service Web Applications, refer to the appropriate
Oracle Applications User’s Guide or online documentation.
See: Predefined Workflows Embedded in Oracle E–Business
Suite: page B – 2.

Before running the Event System Demonstration, you must set up a
Buyer system and a Supplier system to use in the demonstration.

Note: You can either set up two separate systems, or you can
use the same system as both the Buyer and the Supplier.

Then you can initiate an Event System Demonstration process on the
Buyer system from the Workflow Demonstrations web page. When you
initiate the process, you must specify an order number, item number,
item description, deliver date, total amount, and order requestor role
for the purchase order.

When you submit the purchase order, the order information is inserted
into a database table and a purchase order event is raised with the
order number as the event key. Raising the purchase order event
triggers two subscriptions to this event that have the source type Local.
The first subscription adds a correlation ID to the event message. The
correlation ID consists of the prefix PO followed by the event key (the
order number).

Because the second subscription to this event requires the complete
event data, the Event Manager runs the Generate function for the event
to produce a valid purchase order XML document. The second

15 – 64 Oracle Workflow Guide

subscription sends the event to the Buyer: Top Level PO process in the
Event System Demonstration item type. The Workflow Engine creates a
new instance of this process with the correlation ID as the item key.

During the purchase order processing in the Buyer: Top Level PO
process, a standard external Java function activity retrieves the name of
the order requestor from the purchase order XML document, so that
the process can send notifications to the requestor. The purchase order
event message is sent to the Supplier system, and then the process
waits to receive responses from the supplier.

When the purchase order event arrives at the Supplier system, two
subscriptions to this event with the source type External are triggered.
The first subscription changes the correlation ID in the event message
to consist of the prefix SO followed by the event key (the order
number). The second subscription sends the event to the Supplier: Top
Level Order process in the Event System Demonstration item type. The
Workflow Engine creates a new instance of this process with the new
correlation ID as the item key.

During the purchase order processing in the Supplier: Top Level Order
process, standard external Java function activities retrieve the item
number and item description from the purchase order XML document.
The process sends event messages containing the following XML
documents back to the Buyer system:

• purchase order acknowledgement

• advanced shipment notice

• invoice

On the Buyer system, these events trigger subscriptions with the source
type External. For each event, there are two subscriptions: one that
adds a correlation ID consisting of the prefix PO followed by the event
key (the order number), and another that sends the event message to
the Buyer: Top Level PO process, using the correlation ID to match the
message with the running process to which it belongs. The process
receives the event messages and notifies the order requestor when each
one arrives. After all three response documents have been received, the
process completes.

Installing the Event System Demonstration Data Model

The Event System data model is installed only with the standalone
version of Oracle Workflow. The data model is automatically installed
for you by the Workflow Configuration Assistant. The files used in the

�

�

15 – 65Demonstration Workflow Processes

installation are copied to the demo and demo/<language> subdirectories
of your Oracle Workflow server directory structure.

Attention: For the Event System Demonstration to work
properly, you should perform the steps required to set up
Oracle Workflow after the installation See: Overview of Setting
Up: page 2 – 6.

The installation does the following:

• Calls a script called wfevdemc.sql to create two tables called
WF_EVENTDEMO_ITEMS and WF_EVENTDEMO_PO. The
table WF_EVENTDEMO_ITEMS contains the items that can be
selected for the purchase order. The Event System
Demonstration process updates the table WF_EVENTDEMO_PO
with information from the purchase order.

• Calls the scripts wfevdems.sql and wfevdemb.sql to create the
PL/SQL spec and body for a package called WF_EVENTDEMO.
This package contains:

– The PL/SQL stored procedures called by the function
activities used in the Event System Demonstration
workflow.

– The PL/SQL procedures WF_EVENTDEMO.Create_Order
and WF_EVENTDEMO.Track_Order called by the Oracle
Workflow web agent to generate the web–based interface
pages for the Event System Demonstration process
demonstration.

• Loads the Event System Demonstration workflow definition
from wfevdeme.wft into the database. You can view this process
in the Oracle Workflow Builder.

• The data model for the Event System Demonstration process
also includes the same demonstration directory service that is
used by the sample Requisition process. See: Installing the
Requisition Data Model: page 15 – 7.

Attention: For security reasons, the installation process
automatically locks the database accounts for the users in the
demonstration directory service after they are created. Before
you can begin using the accounts, you must unlock them using
a script called wfdemoul.sql. See: Installing the Requisition Data
Model: page 15 – 7.

15 – 66 Oracle Workflow Guide

Initiating the Event System Demonstration Workflow

The Event System Demonstration requires two Workflow–enabled
systems, a Buyer system and a Supplier system. You can either set up
two separate systems, or you can use the same system as both the
Buyer and the Supplier. Before you can run the Event System
Demonstration, you must set up the system or systems that you want
to use. See: To Set Up the Event System Demonstration Workflow: page
15 – 66.

After the systems are set up, you can initiate the Event System
Demonstration workflow using the Events: Buyer Workbench
demonstration web page on the Buyer system. Then use the Events:
Track Order demonstration web page on the Supplier system to
continue processing the Event System Demonstration workflow. See: To
Initiate the Event System Demonstration Workflow from the Buyer
Workbench: page 15 – 67 and To Continue the Event System
Demonstration Workflow on the Supplier System: page 15 – 69.

� To Set Up the Event System Demonstration Workflow

1. If you are using two separate installations of Oracle Workflow,
designate one of the installations as the Buyer system and the other
as the Supplier system.

2. If you are using two separate installations of Oracle Workflow, sign
the two systems up with each other to exchange event messages.
See: Signing Up Systems: page 13 – 67.

3. If you are using two separate installations of Oracle Workflow, on
the Buyer system, locate the predefined subscription to the
demo.oracle.apps.wf.po.create event with the source type Local
and the phase 2. Edit this subscription by selecting the standard
WF_IN agent on the Supplier system as the To agent. See: To Define
an Event Subscription: page 13 – 45.

4. If you are using two separate installations of Oracle Workflow, on
the Supplier system, locate the predefined subscription to the
demo.oracle.apps.wf.po.create event with the source type
External and the phase 2. Edit this subscription by selecting the
standard WF_IN agent on the Buyer system as the To agent. See: To
Define an Event Subscription: page 13 – 45.

5. Ensure that the Java Function Activity Agent is running on your
systems. See: Setting Up the Java Function Activity Agent: page
2 – 86.

�

15 – 67Demonstration Workflow Processes

6. Optionally schedule a background engine to run every 10 to 30
seconds on your systems. See: Setting Up Background Engines:
page 2 – 43.

You can also run the background engine manually during the
demonstration by choosing the Process Order link on the Events:
Track Order page.

� To Initiate the Event System Demonstration Workflow from the
Buyer Workbench

1. On the Buyer system, enter the following URL in a web browser to
access the Workflow Demonstration web page:

<webagent>/wf_demo.home

<webagent> represents the base URL of the web agent configured
for Oracle Workflow in your Web server. See: Setting Global User
Preferences: page 2 – 14.

Choose the Events: Buyer Workbench link to display the Buyer
Workbench web page.

Alternatively, you can enter the following URL to directly display
the Buyer Workbench web page:

<webagent>/wf_eventdemo.create_order

Attention: These are both secured pages, so if you have not
yet logged on as a valid workflow user in the current web
session, you will be prompted to do so before the page appears.

15 – 68 Oracle Workflow Guide

2. Enter a unique order number for the purchase order. The order
number becomes the event key for the B2B Purchase Order event
that is raised.

3. Select an item number.

4. Enter an item description of 40 characters or less.

5. Enter a deliver date in the format DD–MON–YYYY.

6. Enter the total amount for the purchase order. The amount should
be a number without formatting.

7. Select a role name as the order requestor.

8. Choose the Submit button to submit the purchase order and
display the Events: Track Order page. You can also choose the
Cancel button to return to the Workflow Demonstrations page
without submitting the purchase order.

15 – 69Demonstration Workflow Processes

9. In the Events: Track Order page, choose the Queue Messages link
to display the Event System Local Queues page and review the
messages on the Business Event System queues. See: Reviewing
Local Queues: page 13 – 72.

10. Choose the Workflow Monitor link to view the progress of the
Buyer: Top Level PO workflow process in the Workflow Monitor.
See: Workflow Monitor: page 11 – 2.

11. Choose the Process Order link to run the background engine and
process the deferred activity so that the buyer workflow can
continue processing the purchase order.

� To Continue the Event System Demonstration Workflow on the
Supplier System

1. On the Supplier system, enter the following URL in a web browser
to access the Workflow Demonstration web page:

<webagent>/wf_demo.home

<webagent> represents the base URL of the web agent configured
for Oracle Workflow in your Web server. See: Setting Global User
Preferences: page 2 – 14.

Choose the Events: Track Order link to display the Events: Track
Order web page.

Alternatively, you can enter the following URL to directly display
the Buyer Workbench web page:

<webagent>/wf_eventdemo.track_order

�

15 – 70 Oracle Workflow Guide

Attention: These are both secured pages, so if you have not
yet logged on as a valid workflow user in the current web
session, you will be prompted to do so before the page appears.

2. Select the order number for your purchase order and choose the
Submit button.

3. In the Events: Track Order page that appears, choose the Queue
Messages link to display the Event System Local Queues page and
review the messages on the Business Event System queues. See:
Reviewing Local Queues: page 13 – 72.

15 – 71Demonstration Workflow Processes

4. Choose the Workflow Monitor link to view the progress of the
Supplier: Top Level Order process in the Workflow Monitor. See:
Workflow Monitor: page 11 – 2.

5. Choose the Process Order link to run the background engine and
continue processing the purchase order. Perform this step twice to
process both deferred activities in the supplier workflow.

The Event System Demonstration Item Type

The Event System demonstration is associated with an item type called
Event System Demonstration. Currently there are eleven workflow
processes associated with Event System Demonstration:

• Buyer: Top Level PO

• Buyer: Send PO to Supplier

• Buyer: Receive Supplier PO Acknowledgement

• Buyer: Advanced Shipment Notice

• Buyer: Receive Supplier Invoicing

• Supplier: Top Level Order

• Supplier: Get Order Details

• Supplier: Credit Check

• Supplier: Stock Check

• Supplier: Advanced Shipment Notice

• Supplier: Send Supplier Invoice

To view the details of the Event System Demonstration item type in the
Workflow Builder, choose Open from the File menu. Then connect to
the database and select the Event System Demonstration item type, or
connect to a file called wfevdeme.wft in the
<ORACLE_HOME>\wf\Data\<language> subdirectory on your file system.

If you examine the property page of Event System Demonstration, you
see that it has a persistence type of Temporary and persistence number
of days of 0. This means that the runtime data associated with any
work items for this item type are eligible for purging as soon as they
complete.

The Event System Demonstration item type also has several attributes
associated with it. These attributes reference information in the
Workflow application tables. The attributes are used and maintained

15 – 72 Oracle Workflow Guide

by function, notification, and event activities throughout the process.
The following table lists the Event System Demonstration item type
attributes.

Display Name Description Type Length/Format/
Lookup Type/
Default Value

Event Name The internal name of the
original event

Text

Event Key The event key that
uniquely identifies the
specific instance of the
original event

Text

Event Message The event message for the
original event

Event

Purchase Order Status The purchase order status Text CREATED

PO Acknowledge Event The name of the purchase
order acknowledgement
event

Text

PO Acknowledge Event
Key

The event key that
uniquely identifies the
specific instance of the
purchase order
acknowledgement event

Text

PO ASN Event The name of the
advanced shipment
notice event

Text

PO ASN Event Key The event key that
uniquely identifies the
specific instance of the
advanced shipment
notice event

Text

PO ASN Event Message The advanced shipment
notice event message

Event

Order Requestor The name of the person
who requested the order

Text BLEWIS

To Agent/System 1 The inbound agent on the
Buyer system that
receives the event
message, in the format
<agent>@<system>

Text

Table 15 – 6 (Page 1 of 2)

15 – 73Demonstration Workflow Processes

Length/Format/
Lookup Type/
Default Value

TypeDescriptionDisplay Name

From Agent/System 1 The outbound agent on
the Buyer system that
sends the event message,
in the format
<agent>@<system>

Text

To Agent/System 2 The inbound agent on the
Supplier system that
receives the event
message, in the format
<agent>@<system>

Text

From Agent/System 2 The outbound agent on
the Supplier system that
sends the event message,
in the format
<agent>@<system>

Text

Item Number The item number Text

Item Description The item description Text

Subscription GUID The globally unique
identifier of the
subscription

Text

Table 15 – 6 (Page 2 of 2)

Summary of the Buyer: Top Level PO Process

To view the properties of the Buyer: Top Level PO process, select the
process in the navigator tree, then choose Properties from the Edit
menu. This process activity is runnable, indicating that it can be
initiated as a top level process to run.

When you display the Process window for the Buyer: Top Level PO
process, you see that the process consists of nine unique activities. To
examine the activities of the process in more detail, we have numbered
each node for easy referencing below. The numbers themselves are not
part of the process diagram.

15 – 74 Oracle Workflow Guide

The Buyer: Top Level PO workflow begins when you submit a
purchase order from the Buyer Workbench demonstration page, raising
the B2B Purchase Order event. Predefined subscriptions add a
correlation ID consisting of the prefix PO followed by the event key (the
order number), and send the event to the Buyer: Top Level PO process.
See: To Initiate the Event System Demonstration Workflow from the
Buyer Workbench: page 15 – 67.

The process begins at node 1 with the Buyer: Receive Create PO Event
activity. The process finds a supplier for the purchase order and
retrieves the agent details for the intended outbound and inbound
agents to send the purchase order to the supplier.

Node 4 is a subprocess that retrieves the name of the order requestor
from the purchase order event message, sends the purchase order to
the supplier, and notifies the order requestor that the purchase order
has been sent to the supplier.

Node 5 is a subprocess that waits to receive a purchase order
acknowledgement event message from the supplier. If the
acknowledgement is not received within a specified period of time, the
subprocess performs a timeout activity to keep notifying the order
requestor that the supplier has not responded until the
acknowledgement is received. When the acknowledgement is received,
the subprocess notifies the order requestor of the acknowledgement.

After the purchase order acknowledgement is received, the top level
process waits to receive an advanced shipment notice and an invoice
from the supplier. Node 6 is a subprocess that receives the advanced
shipment notice and notifies the order requestor that the order has been
shipped. Node 7 is a subprocess that receives the invoice and notifies

15 – 75Demonstration Workflow Processes

the order requestor that the invoice has arrived. After both of these
subprocesses complete, the process ends.

Buyer: Top Level PO Process Activities

Following is a description of each activity in the process, listed by the
activity’s display name.

Buyer: Receive Create PO Event (Node 1)

This event activity receives the B2B Purchase Order event message that
is sent to the Buyer: Top Level PO process by the Event Manager to
start a new item.

Receive

demo.oracle.wf.b2b.po.create

None

Event Name, Event Key, Event Message

Find Supplier (Node 2)

Currently this activity does nothing. It represents a point in the process
where you can integrate a function that locates a supplier for the
purchase order, based on the item being ordered or other criteria.

WF_EVENTDEMO.FINDSUPPLIER

None

Buyer: Receive Create PO Event

Get Agent Details (Node 3)

This function activity retrieves the agent details from the subscription
that sent the event message to the workflow process. The activity
retrieves details for the outbound agent on the Buyer system that
should send the message and the inbound agent on the Supplier system
that should receive the message.

WF_STANDARD.GETAGENTS

Boolean

Event Action

Event Filter

Prerequisite
Activities

Item Attributes
Set by Activity

Function

Result Type

Prerequisite
Activities

Function

Result Type

15 – 76 Oracle Workflow Guide

Find Supplier

Subscription GUID

From Agent/System1, To Agent/System2

Buyer: Send PO to Supplier Process (Node 4)

This activity is a subprocess that retrieves the name of the order
requestor from the purchase order event message, sends the purchase
order to the supplier, and notifies the order requestor that the purchase
order has been sent to the supplier. To view the subprocess,
double–click on Buyer: Send PO to Supplier under the Processes branch
in the navigator tree. See: Summary of the Buyer: Send to PO
Subprocess: page 15 – 78.

None

Get Agent Details

Buyer: Receive Supplier PO Acknowledgement (Node 5)

This activity is a subprocess that waits to receive a purchase order
acknowledgement event message from the supplier. If the
acknowledgement is not received within a specified period of time, the
subprocess performs a timeout activity to keep notifying the order
requestor that the supplier has not responded until the
acknowledgement is received. When the acknowledgement is received,
the subprocess notifies the order requestor of the acknowledgement.

To view the subprocess, double–click on Buyer: Receive Supplier PO
Acknowledgement under the Processes branch in the navigator tree.
See: Summary of the Buyer: Receive Supplier PO Acknowledgement
Subprocess: page 15 – 80.

None

Buyer: Send PO to Supplier

Prerequisite
Activities

Item Attributes
Retrieved by
Function

Item Attributes
Set by Function

Result Type

Prerequisite
Activities

Result Type

Prerequisite
Activities

15 – 77Demonstration Workflow Processes

Buyer: Advanced Shipment Notice Process (Node 6)

This activity is a subprocess that receives an advanced shipment notice
from the supplier and notifies the order requestor that the order has
been shipped. To view the subprocess, double–click on Buyer:
Advanced Shipment Notice under the Processes branch in the
navigator tree. See: Summary of the Buyer: Advanced Shipment Notice
Subprocess: page 15 – 83.

None

Buyer:Receive Supplier PO Acknowledgement

Buyer: Receive Supplier Invoicing (Node 7)

This activity is a subprocess that receives an invoice from the supplier
and notifies the order requestor that the invoice has arrived. To view
the subprocess, double–click on Buyer: Receive Supplier Invoicing
under the Processes branch in the navigator tree. See: Summary of the
Buyer: Receive Supplier Invoicing Subprocess: page 15 – 85.

None

Buyer:Receive Supplier PO Acknowledgement

And (Node 8)

This Standard function activity merges two or more parallel branches
in the flow only when the activities in all of those branches complete.

WF_STANDARD.ANDJOIN

None

Buyer: Advanced Shipment Notice, Buyer: Receive
Supplier Invoicing

End (Node 9)

This Standard function activity marks the end of the process.

WF_STANDARD.NOOP

None

And

Result Type

Prerequisite
Activities

Result Type

Prerequisite
Activities

Function

Result Type

Prerequisite
Activities

Function

Result Type

Prerequisite
Activities

15 – 78 Oracle Workflow Guide

Summary of the Buyer: Send PO to Supplier Subprocess

To view the properties of the Buyer: Send PO to Supplier subprocess,
select its process activity in the navigator tree, then choose Properties
from the Edit menu. This process activity is not runnable, indicating
that it cannot be initiated as a top level process to run but must be
called from a higher level process.

When you display the Process window for the Buyer: Send PO to
Supplier subprocess, you see that the subprocess consists of five unique
activities. To examine the activities of the process in more detail, we
have numbered each node for easy referencing below. The numbers
themselves are not part of the process diagram.

The subprocess begins at node 1 with the Start activity. At node 2, the
process retrieves the name of the order requestor from the purchase
order event message. Then the process sends the purchase order to the
supplier and notifies the order requestor that the purchase order has
been sent. The subprocess ends at this point.

Buyer: Send PO to Supplier Subprocess Activities

Following is a description of each activity in the subprocess, listed by
the activity’s display name.

Start (Node 1)

This Standard function activity marks the start of the process.

WF_STANDARD.NOOP

None

None

Function

Result Type

Prerequisite
Activities

15 – 79Demonstration Workflow Processes

XML Get Tag Value (Node 2)

This Standard external Java function activity retrieves the value of a
particular XML tag set in the event message. At this node, the process
retrieves the name of the order requestor from the purchase order
event message.

oracle.apps.fnd.wf.XMLGetTagValue

None

Start

Event Message

Order Requestor

Buyer: Send PO to Supplier (Node 3)

This event activity sends the purchase order event message to the
supplier, using the outbound agent on the Buyer system and the
inbound agent on the Supplier system identified by the Get Agent
Details activity in the Buyer: Top Level PO process.

Send

XML Get Tag Value

Event Message, From Agent/System1,
To Agent/System2

PO Sent to Supplier (Node 4)

This activity notifies the order requestor that the purchase order has
been sent to the supplier. The message includes a ’Send’ attribute that
displays the purchase order number when the notification is sent.

If you display the property page of this activity node, you see that the
activity is assigned to a performer whose name is stored in the item
type attribute named Order Requestor.

PO Sent to Supplier

None

Function

Result Type

Prerequisite
Activities

Item Attributes
Retrieved by
Function

Item Attributes
Set by Function

Event Action

Prerequisite
Activities

Item Attributes
Retrieved by
Activity

Message

Result Type

15 – 80 Oracle Workflow Guide

Buyer: Send PO to Supplier

End (Node 5)

This Standard function activity marks the end of the process.

WF_STANDARD.NOOP

None

PO Sent to Supplier

Summary of the Buyer: Receive Supplier PO Acknowledgement Subprocess

To view the properties of the Buyer: Receive Supplier PO
Acknowledgement subprocess, select its process activity in the
navigator tree, then choose Properties from the Edit menu. This process
activity is not runnable, indicating that it cannot be initiated as a top
level process to run but must be called from a higher level process.

When you display the Process window for the Buyer: Receive Supplier
PO Acknowledgement subprocess, you see that the subprocess consists
of five unique activities. To examine the activities of the process in
more detail, we have numbered each node for easy referencing below.
The numbers themselves are not part of the process diagram.

Prerequisite
Activities

Function

Result Type

Prerequisite
Activities

15 – 81Demonstration Workflow Processes

The subprocess begins at node 1 with the Start activity. At node 2, the
process waits to receive a purchase order acknowledgement event
message from the supplier. If the acknowledgement is not received
within a specified period of time, the subprocess performs a timeout
activity to keep notifying the order requestor that the supplier has not
responded until the acknowledgement is received. When the
acknowledgement is received, the subprocess notifies the order
requestor of the acknowledgement. The subprocess ends at this point.

Buyer: Receive Supplier PO Acknowledgement Subprocess Activities

Following is a description of each activity in the subprocess, listed by
the activity’s display name.

Start (Node 1)

This Standard function activity marks the start of the process.

WF_STANDARD.NOOP

None

None

Function

Result Type

Prerequisite
Activities

15 – 82 Oracle Workflow Guide

Buyer: Receive PO Ack Event (Node 2)

This event activity waits to receive the B2B Purchase Order
Acknowledgement event message from the supplier. The activity must
be completed within one day; otherwise it times out.

Receive

demo.oracle.wf.b2b.po.ack

Start

Event Name, Event Key, Event Message

PO Not Acknowledged by Supplier (Node 3)

This activity occurs only if the Buyer: Receive PO Ack Event activity
times out before being completed. This activity notifies the order
requestor that the supplier has not yet acknowledged the purchase
order. The message includes a ’Send’ attribute that displays the
purchase order number when the notification is sent.

If you display the property page of this activity node, you see that the
activity is assigned to a performer whose name is stored in the item
type attribute named Order Requestor.

PO Not Acknowledged

None

Buyer: Receive PO Ack Event

PO Acknowledged by Supplier (Node 4)

This activity notifies the order requestor that the purchase order has
been acknowledged by the supplier. The message includes a ’Send’
attribute that displays the purchase order number when the notification
is sent.

If you display the property page of this activity node, you see that the
activity is assigned to a performer whose name is stored in the item
type attribute named Order Requestor.

PO Acknowledged

None

Event Action

Event Filter

Prerequisite
Activities

Item Attributes
Set by Activity

Message

Result Type

Prerequisite
Activities

Message

Result Type

15 – 83Demonstration Workflow Processes

Buyer: Receive PO Ack Event

End (Node 5)

This Standard function activity marks the end of the process.

WF_STANDARD.NOOP

None

PO Acknowledged by Supplier

Summary of the Buyer: Advanced Shipment Notice Subprocess

To view the properties of the Buyer: Advanced Shipment Notice
subprocess, select its process activity in the navigator tree, then choose
Properties from the Edit menu. This process activity is not runnable,
indicating that it cannot be initiated as a top level process to run but
must be called from a higher level process.

When you display the Process window for the Buyer: Advanced
Shipment Notice subprocess, you see that the subprocess consists of
four unique activities. To examine the activities of the process in more
detail, we have numbered each node for easy referencing below. The
numbers themselves are not part of the process diagram.

The subprocess begins at node 1 with the Start activity. At node 2, the
process waits to receive an advanced shipment notice from the
supplier. When the advanced shipment notice is received, the process
notifies the order requestor that the order has been shipped. The
subprocess ends at this point.

Prerequisite
Activities

Function

Result Type

Prerequisite
Activities

15 – 84 Oracle Workflow Guide

Buyer: Advanced Shipment Notice Subprocess Activities

Following is a description of each activity in the subprocess, listed by
the activity’s display name.

Start (Node 1)

This Standard function activity marks the start of the process.

WF_STANDARD.NOOP

None

None

Buyer: Purchase Order ASN (Node 2)

This event activity waits to receive the B2B Advanced Shipment Notice
event message from the supplier.

Receive

demo.oracle.wf.b2b.po.asn

Start

Event Name, Event Key, Event Message

Your Order has been Shipped (Node 3)

This activity notifies the order requestor that the purchase order
advanced shipment notice has been received, indicating that the order
has been shipped by the supplier. The message includes a ’Send’
attribute that displays the purchase order number when the notification
is sent.

If you display the property page of this activity node, you see that the
activity is assigned to a performer whose name is stored in the item
type attribute named Order Requestor.

PO Advanced Shipment Notice

None

Buyer: Purchase Order ASN

Function

Result Type

Prerequisite
Activities

Event Action

Event Filter

Prerequisite
Activities

Item Attributes
Set by Activity

Message

Result Type

Prerequisite
Activities

15 – 85Demonstration Workflow Processes

End (Node 4)

This Standard function activity marks the end of the process.

WF_STANDARD.NOOP

None

Your Order has been Shipped

Summary of the Buyer: Receive Supplier Invoicing Subprocess

To view the properties of the Buyer: Receive Supplier Invoicing
subprocess, select its process activity in the navigator tree, then choose
Properties from the Edit menu. This process activity is not runnable,
indicating that it cannot be initiated as a top level process to run but
must be called from a higher level process.

When you display the Process window for the Buyer: Receive Supplier
Invoicing subprocess, you see that the subprocess consists of four
unique activities. To examine the activities of the process in more
detail, we have numbered each node for easy referencing below. The
numbers themselves are not part of the process diagram.

The subprocess begins at node 1 with the Start activity. At node 2, the
process waits to receive an invoice from the supplier. When the invoice
is received, the process notifies the order requestor that the invoice has
arrived. The subprocess ends at this point.

Function

Result Type

Prerequisite
Activities

15 – 86 Oracle Workflow Guide

Buyer: Receive Supplier Invoicing Subprocess Activities

Following is a description of each activity in the subprocess, listed by
the activity’s display name.

Start (Node 1)

This Standard function activity marks the start of the process.

WF_STANDARD.NOOP

None

None

Buyer: Receive Supplier Invoice (Node 2)

This event activity waits to receive the B2B Invoice event message from
the supplier.

Receive

demo.oracle.wf.b2b.po.invoice

Start

Event Name, Event Key, Event Message

Invoice for Order Has Arrived (Node 3)

This activity notifies the order requestor that the invoice for the
purchase order has been received from the supplier. The message
includes a ’Send’ attribute that displays the purchase order number
when the notification is sent.

If you display the property page of this activity node, you see that the
activity is assigned to a performer whose name is stored in the item
type attribute named Order Requestor.

Supplier PO Invoice

None

Buyer: Receive Supplier Invoice

Function

Result Type

Prerequisite
Activities

Event Action

Event Filter

Prerequisite
Activities

Item Attributes
Set by Activity

Message

Result Type

Prerequisite
Activities

15 – 87Demonstration Workflow Processes

End (Node 4)

This Standard function activity marks the end of the process.

WF_STANDARD.NOOP

None

Invoice for Order Has Arrived

Summary of the Supplier: Top Level Order Process

To view the properties of the Supplier: Top Level Order process, select
the process in the navigator tree, then choose Properties from the Edit
menu. This process activity is runnable, indicating that it can be
initiated as a top level process to run.

When you display the Process window for the Supplier: Top Level
Order process, you see that the process consists of ten unique activities.
To examine the activities of the process in more detail, we have
numbered each node for easy referencing below. The numbers
themselves are not part of the process diagram.

The Supplier: Top Level Order workflow begins when the Supplier
system receives the B2B Purchase Order event from the Buyer system.
Predefined subscriptions change the correlation ID to consist of the
prefix SO followed by the event key (the order number), and send the
event to the Supplier: Top Level Order process.

Function

Result Type

Prerequisite
Activities

15 – 88 Oracle Workflow Guide

The process begins by receiving a purchase order either at node 1 or at
node 2, depending on the source of the purchase order.

Node 3 is a subprocess that retrieves the agent details for the intended
outbound and inbound agents to send responses to the buyer, as well
as retrieving the item number and item description.

Node 4 is a subprocess that performs a credit check if the total cost of
the order is greater than 2000. Node 5 is a subprocess that performs a
stock check to determine if the ordered item is in stock. When both the
credit check and the stock check are complete, the process sends an
acknowledgement of the purchase order to the buyer.

Node 8 is a subprocess that checks the shipping details for the order
and then sends an advanced shipment notice to the buyer. Node 9 is a
subprocess that creates an invoice and sends the invoice to the buyer.
After sending the invoice, the process ends.

Supplier: Top Level Order Process Activities

Following is a description of each activity in the process, listed by the
activity’s display name.

Supplier: Receive External Order (Node 1)

This event activity receives the B2B Purchase Order event message that
is sent to the Supplier: Top Level Order process by the Event Manager
when the event is received from the buyer.

Receive

demo.oracle.wf.b2b.po.create

None

Event Name, Event Key, Event Message

Supplier: Receive iStore Order (Node 2)

This event activity receives a purchase order event message that is sent
when an order is placed through the supplier’s iStore application.
Currently this event is not defined. The activity represents a point in
the process where you can integrate the reception of purchase orders
from another source.

Event Action

Event Filter

Prerequisite
Activities

Item Attributes
Set by Activity

15 – 89Demonstration Workflow Processes

Receive

demo.oracle.wf.istore.po.create

None

Event Name, Event Key, Event Message

Supplier: Get Order Details (Node 3)

This activity is a subprocess that retrieves the agent details for the
intended outbound and inbound agents to send responses to the buyer,
as well as retrieving the item number and item description of the
ordered item.

To view the subprocess, double–click on Supplier: Get Order Details
under the Processes branch in the navigator tree. See: Summary of the
Supplier: Get Order Details Subprocess: page 15 – 91.

None

Supplier: Receive External Order or Supplier:
Receive iStore Order

Supplier: Credit Check (Node 4)

This activity is a subprocess that performs a credit check if the total
cost of the order is greater than $2000.

To view the subprocess, double–click on Supplier: Credit Check under
the Processes branch in the navigator tree. See: Summary of the
Supplier: Credit Check Subprocess: page 15 – 94.

None

Supplier: Get Order Details

Supplier: Stock Check (Node 5)

This activity is a subprocess that performs a stock check to determine if
the ordered item is in stock.

To view the subprocess, double–click on Supplier: Stock Check under
the Processes branch in the navigator tree. See: Summary of the
Supplier: Stock Check Subprocess: page 15 – 96.

Event Action

Event Filter

Prerequisite
Activities

Item Attributes
Set by Activity

Result Type

Prerequisite
Activities

Result Type

Prerequisite
Activities

15 – 90 Oracle Workflow Guide

None

Supplier: Get Order Details

And (Node 6)

This Standard function activity merges two or more parallel branches
in the flow only when the activities in all of those branches complete.

WF_STANDARD.ANDJOIN

None

Supplier: Credit Check, Supplier: Stock Check

Supplier: Send Order Acknowledgement (Node 7)

This event activity sends the B2B Purchase Order Acknowledgement
event message to the buyer, using the outbound agent on the Supplier
system and the inbound agent on the Buyer system identified by the
Get Agent Details activity in the Supplier: Get Order Details
subprocess.

Send

And

Event Message, From Agent/System2,
To Agent/System1

Supplier: Advanced Shipment Notice (Node 8)

This activity is a subprocess that checks the shipping details for the
order and then sends an advanced shipment notice to the buyer.

To view the subprocess, double–click on Supplier: Advanced Shipment
Notice under the Processes branch in the navigator tree. See: Summary
of the Supplier: Advanced Shipment Notice Subprocess: page 15 – 98.

None

Supplier: Send Order Acknowledgement

Result Type

Prerequisite
Activities

Function

Result Type

Prerequisite
Activities

Event Action

Prerequisite
Activities

Item Attributes
Retrieved by
Activity

Result Type

Prerequisite
Activities

15 – 91Demonstration Workflow Processes

Supplier: Send Supplier Invoice (Node 9)

This activity is a subprocess that creates an invoice for the purchase
order and sends the invoice to the buyer.

To view the subprocess, double–click on Supplier: Send Supplier
Invoice under the Processes branch in the navigator tree. See: Summary
of the Supplier: Send Supplier Invoice Subprocess: page 15 – 100.

None

Supplier: Advanced Shipment Notice

End (Node 10)

This Standard function activity marks the end of the process.

WF_STANDARD.NOOP

None

Supplier: Send Supplier Invoice

Summary of the Supplier: Get Order Details Subprocess

To view the properties of the Supplier: Get Order Details subprocess,
select its process activity in the navigator tree, then choose Properties
from the Edit menu. This process activity is not runnable, indicating
that it cannot be initiated as a top level process to run but must be
called from a higher level process.

When you display the Process window for the Supplier: Get Order
Details subprocess, you see that the subprocess consists of five unique
activities, one of which is reused to make up the six activity nodes that
appear in the workflow diagram. To examine the activities of the
process in more detail, we have numbered each node for easy
referencing below. The numbers themselves are not part of the process
diagram.

Result Type

Prerequisite
Activities

Function

Result Type

Prerequisite
Activities

15 – 92 Oracle Workflow Guide

The subprocess begins at node 1 with the Start activity. At node 2, the
process retrieves the agent details for the intended outbound and
inbound agents to send responses to the buyer. Next, the process
retrieves the item number and item description of the ordered item
from the purchase order. When both the item number and item
description have been retrieved, the subprocess ends.

Supplier: Get Order Details Subprocess Activities

Following is a description of each activity in the subprocess, listed by
the activity’s display name.

Start (Node 1)

This Standard function activity marks the start of the process.

WF_STANDARD.NOOP

None

None

Get Agent Details (Node 2)

This function activity retrieves the agent details from the subscription
that sent the event message to the workflow process. The activity

Function

Result Type

Prerequisite
Activities

15 – 93Demonstration Workflow Processes

retrieves details for the outbound agent on the Supplier system that
should send the response messages and the inbound agent on the
Buyer system that should receive the response messages.

WF_STANDARD.GETAGENTS

Boolean

Start

Subscription GUID

From Agent/System2, To Agent/System1

XML Get Tag Value (Node 3)

This Standard external Java function activity retrieves the value of a
particular XML tag set in the event message. At this node, the process
retrieves the item number from the purchase order event message.

oracle.apps.fnd.wf.XMLGetTagValue

None

Get Agent Details

Event Message

Item Number

XML Get Tag Value (Node 4)

This Standard external Java function activity retrieves the value of a
particular XML tag set in the event message. At this node, the process
retrieves the item description from the purchase order event message.

oracle.apps.fnd.wf.XMLGetTagValue

None

Get Agent Details

Function

Result Type

Prerequisite
Activities

Item Attributes
Retrieved by
Function

Item Attributes
Set by Function

Function

Result Type

Prerequisite
Activities

Item Attributes
Retrieved by
Function

Item Attributes
Set by Function

Function

Result Type

Prerequisite
Activities

15 – 94 Oracle Workflow Guide

Event Message

Item Description

And (Node 5)

This Standard function activity merges two or more parallel branches
in the flow only when the activities in all of those branches complete.

WF_STANDARD.ANDJOIN

None

XML Get Tag Value (node 3), XML Get Tag Value
(node 4)

End (Node 6)

This Standard function activity marks the end of the process.

WF_STANDARD.NOOP

None

And

Summary of the Supplier: Credit Check Subprocess

To view the properties of the Supplier: Credit Check subprocess, select
its process activity in the navigator tree, then choose Properties from
the Edit menu. This process activity is not runnable, indicating that it
cannot be initiated as a top level process to run but must be called from
a higher level process.

When you display the Process window for the Supplier: Credit Check
subprocess, you see that the subprocess consists of four unique
activities. To examine the activities of the process in more detail, we
have numbered each node for easy referencing below. The numbers
themselves are not part of the process diagram.

Item Attributes
Retrieved by
Function

Item Attributes
Set by Function

Function

Result Type

Prerequisite
Activities

Function

Result Type

Prerequisite
Activities

15 – 95Demonstration Workflow Processes

The subprocess begins at node 1 with the Start activity. At node 2, the
process checks whether the total cost of the order is greater than 2000.
If the total cost is equal to or less than 2000, the process ends at this
point. If the total cost is greater than 2000, the process initiates a credit
check on the buyer and then ends.

Supplier: Credit Check Subprocess Activities

Following is a description of each activity in the subprocess, listed by
the activity’s display name.

Start (Node 1)

This Standard function activity marks the start of the process.

WF_STANDARD.NOOP

None

None

Function

Result Type

Prerequisite
Activities

15 – 96 Oracle Workflow Guide

XML Compare Tag Value (Number) (Node 2)

This Standard external Java function activity compares the value of a
particular XML tag set in the event message with a test value. At this
node, the process compares the total cost from the purchase order
event message with the test value 2000.

oracle.apps.fnd.wf.XMLCompareTag

Comparison

Start

Event Message

Credit Check (Node 3)

This activity occurs only if the total cost of the purchase order is greater
than 2000. This event activity raises a credit check event. Currently this
event is not defined. The activity represents a point in the process
where you can integrate a credit check.

Raise

XML Compare Tag Value (Number)

Event Key

End (Node 4)

This Standard function activity marks the end of the process.

WF_STANDARD.NOOP

None

XML Compare Tag Value (Number)

Summary of the Supplier: Stock Check Subprocess

To view the properties of the Supplier: Stock Check subprocess, select
its process activity in the navigator tree, then choose Properties from
the Edit menu. This process activity is not runnable, indicating that it

Function

Result Type

Prerequisite
Activities

Item Attributes
Retrieved by
Function

Event Action

Prerequisite
Activities

Item Attributes
Retrieved by
Activity

Function

Result Type

Prerequisite
Activities

15 – 97Demonstration Workflow Processes

cannot be initiated as a top level process to run but must be called from
a higher level process.

When you display the Process window for the Supplier: Stock Check
subprocess, you see that the subprocess consists of three unique
activities. To examine the activities of the process in more detail, we
have numbered each node for easy referencing below. The numbers
themselves are not part of the process diagram.

The subprocess begins at node 1 with the Start activity. At node 2, the
process performs a stock check to determine if the ordered item is in
stock. The subprocess ends at this point.

Supplier: Stock Check Subprocess Activities

Following is a description of each activity in the subprocess, listed by
the activity’s display name.

Start (Node 1)

This Standard function activity marks the start of the process.

WF_STANDARD.NOOP

None

None

Function

Result Type

Prerequisite
Activities

15 – 98 Oracle Workflow Guide

Stock Check (Node 2)

Currently, this activity does nothing. It represents a point in the process
where you can integrate a function that performs a stock check.

WF_EVENTDEMO.STOCKCHECK

None

Start

End (Node 3)

This Standard function activity marks the end of the process.

WF_STANDARD.NOOP

None

Stock Check

Summary of the Supplier: Advanced Shipment Notice Subprocess

To view the properties of the Supplier: Advanced Shipment Notice
subprocess, select its process activity in the navigator tree, then choose
Properties from the Edit menu. This process activity is not runnable,
indicating that it cannot be initiated as a top level process to run but
must be called from a higher level process.

When you display the Process window for the Supplier: Advanced
Shipment Notice subprocess, you see that the subprocess consists of
four unique activities. To examine the activities of the process in more
detail, we have numbered each node for easy referencing below. The
numbers themselves are not part of the process diagram.

Function

Result Type

Prerequisite
Activities

Function

Result Type

Prerequisite
Activities

15 – 99Demonstration Workflow Processes

The subprocess begins at node 1 with the Start activity. At node 2, the
process checks the shipping details for the purchase order. Then the
process sends an advanced shipment notice to the buyer. The
subprocess ends at this point.

Supplier: Advanced Shipment Notice Subprocess Activities

Following is a description of each activity in the subprocess, listed by
the activity’s display name.

Start (Node 1)

This Standard function activity marks the start of the process.

WF_STANDARD.NOOP

None

None

Check Shipping Details (Node 2)

Currently, this activity does nothing. It represents a point in the process
where you can integrate a function that checks the shipping details for
the purchase order.

WF_EVENTDEMO.CHECKSHIPPING

None

Start

Function

Result Type

Prerequisite
Activities

Function

Result Type

Prerequisite
Activities

15 – 100 Oracle Workflow Guide

Supplier: Send ASN (Node 3)

This event activity sends the B2B Advanced Shipment Notice event
message to the buyer, using the outbound agent on the Supplier system
and the inbound agent on the Buyer system identified by the Get Agent
Details activity in the Supplier: Get Order Details subprocess.

Send

Check Shipping Details

Event Message, From Agent/System2,
To Agent/System1

End (Node 4)

This Standard function activity marks the end of the process.

WF_STANDARD.NOOP

None

Supplier: Send ASN

Summary of the Supplier: Send Supplier Invoice Subprocess

To view the properties of the Supplier: Send Supplier Invoice
subprocess, select its process activity in the navigator tree, then choose
Properties from the Edit menu. This process activity is not runnable,
indicating that it cannot be initiated as a top level process to run but
must be called from a higher level process.

When you display the Process window for the Supplier: Send Supplier
Invoice subprocess, you see that the subprocess consists of four unique
activities. To examine the activities of the process in more detail, we
have numbered each node for easy referencing below. The numbers
themselves are not part of the process diagram.

Event Action

Prerequisite
Activities

Item Attributes
Retrieved by
Activity

Function

Result Type

Prerequisite
Activities

15 – 101Demonstration Workflow Processes

The subprocess begins at node 1 with the Start activity. At node 2, the
process creates an invoice for the items ordered in the purchase order.
Then the process sends the invoice to the buyer. The subprocess ends at
this point.

Supplier: Send Supplier Invoice Subprocess Activities

Following is a description of each activity in the subprocess, listed by
the activity’s display name.

Start (Node 1)

This Standard function activity marks the start of the process.

WF_STANDARD.NOOP

None

None

Create Invoice (Node 2)

Currently, this activity does nothing. It represents a point in the process
where you can integrate a function that creates an invoice for the items
ordered in the purchase order.

WF_EVENTDEMO.CREATEINVOICE

None

Start

Function

Result Type

Prerequisite
Activities

Function

Result Type

Prerequisite
Activities

15 – 102 Oracle Workflow Guide

Supplier: Send Invoice (Node 3)

This event activity sends the B2B Invoice event message to the buyer,
using the outbound agent on the Supplier system and the inbound
agent on the Buyer system identified by the Get Agent Details activity
in the Supplier: Get Order Details subprocess.

Send

Create Invoice

Event Message, Event Key, From Agent/System2,
To Agent/System1

End (Node 4)

This Standard function activity marks the end of the process.

WF_STANDARD.NOOP

None

Supplier: Send Invoice

B2B Purchase Order Event

This event is raised on the Buyer system when you submit a purchase
order from the Buyer Workbench demonstration page.

demo.oracle.wf.b2b.po.create

wf_eventdemo.generatexml

Oracle Workflow provides four default subscriptions to the B2B
Purchase Order event. The first subscription adds a correlation ID to
the event message when the B2B Purchase Order event is raised locally.
The correlation ID consists of the prefix PO followed by the event key
(the order number). This subscription is enabled by default. The
following table lists the properties defined for this subscription.

Event Action

Prerequisite
Activities

Item Attributes
Retrieved by
Activity

Function

Result Type

Prerequisite
Activities

Internal Name

Generate
Function

15 – 103Demonstration Workflow Processes

Subscription Property Value

System <local system>

Source Type Local

Event Filter demo.oracle.wf.b2b.po.create

Phase 1

Status Enabled

Rule Data Key

Rule Function wf_eventdemo.derivecorrelationid

Table 15 – 7 (Page 1 of 1)

The second subscription sends the event message to the Buyer: Top
Level PO process in the Event System Demonstration item type when
the B2B Purchase Order event is raised locally. This subscription is
enabled by default. The following table lists the properties defined for
this subscription.

Subscription Property Value

System <local system>

Source Type Local

Event Filter demo.oracle.wf.b2b.po.create

Phase 2

Status Enabled

Rule Data Message

Rule Function wf_rule.workflow_protocol

Workflow Item Type WFEVDEME

Workflow Process Name RCVPOCRT

Out Agent WF_OUT@<local system>

To Agent WF_IN@<local system>

Table 15 – 8 (Page 1 of 1)

The third subscription modifies the correlation ID in the event message
when the B2B Purchase Order event is received from an external

15 – 104 Oracle Workflow Guide

source. The correlation ID consists of the prefix SO followed by the
event key (the order number). This subscription is enabled by default.
The following table lists the properties defined for this subscription.

Subscription Property Value

System <local system>

Source Type External

Event Filter demo.oracle.wf.b2b.po.create

Phase 1

Status Enabled

Rule Data Key

Rule Function wf_eventdemo.derivecorrelationid

Table 15 – 9 (Page 1 of 1)

The fourth subscription sends the event message to the Supplier: Top
Level Order process in the Event System Demonstration item type
when the B2B Purchase Order event is received from an external
source. This subscription is enabled by default. The following table lists
the properties defined for this subscription.

Subscription Property Value

System <local system>

Source Type External

Event Filter demo.oracle.wf.b2b.po.create

Phase 2

Status Enabled

Rule Data Key

Rule Function wf_rule.workflow_protocol

Workflow Item Type WFEVDEME

Workflow Process Name SUPPORCV

Table 15 – 10 (Page 1 of 2)

15 – 105Demonstration Workflow Processes

ValueSubscription Property

Out Agent WF_OUT@<local system>

To Agent WF_IN@<local system>

Table 15 – 10 (Page 2 of 2)

B2B Purchase Order Acknowledgement Event

This event is sent from the Supplier system to the Buyer system as a
purchase order acknowledgement after the B2B Purchase Order event
is received and processed.

demo.oracle.wf.b2b.po.ack

None

Oracle Workflow provides two default subscriptions to the B2B
Purchase Order Acknowledgement event. The first subscription adds a
correlation ID to the event message when the B2B Purchase Order
Acknowledgement event is received from an external source. The
correlation ID consists of the prefix PO followed by the event key (the
order number). This subscription is enabled by default. The following
table lists the properties defined for this subscription.

Subscription Property Value

System <local system>

Source Type External

Event Filter demo.oracle.wf.b2b.po.ack

Phase 1

Status Enabled

Rule Data Key

Rule Function wf_eventdemo.derivecorrelationid

Table 15 – 11 (Page 1 of 1)

The second subscription sends the event message to the Buyer: Top
Level PO process in the Event System Demonstration item type when

Internal Name

Generate
Function

15 – 106 Oracle Workflow Guide

the B2B Purchase Order Acknowledgement event is received from an
external source. The subscription is enabled by default. The following
table lists the properties defined for this subscription.

Subscription Property Value

System <local system>

Source Type External

Event Filter demo.oracle.wf.b2b.po.ack

Phase 2

Status Enabled

Rule Data Key

Workflow Item Type WFEVDEME

Workflow Process Name RCVPOCRT

Table 15 – 12 (Page 1 of 1)

B2B Advanced Shipment Notice Event

This event is sent from the Supplier system to the Buyer system as an
advanced shipment notice after the B2B Purchase Order event is
received and processed.

demo.oracle.wf.b2b.po.asn

None

Oracle Workflow provides two default subscriptions to the B2B
Advanced Shipment Notice event. The first subscription adds a
correlation ID to the event message when the B2B Advanced Shipment
Notice event is received from an external source. The correlation ID
consists of the prefix PO followed by the event key (the order number).
This subscription is enabled by default. The following table lists the
properties defined for this subscription.

Internal Name

Generate
Function

15 – 107Demonstration Workflow Processes

Subscription Property Value

System <local system>

Source Type External

Event Filter demo.oracle.wf.b2b.po.asn

Phase 1

Status Enabled

Rule Data Key

Rule Function wf_eventdemo.derivecorrelationid

Table 15 – 13 (Page 1 of 1)

The second subscription sends the event message to the Buyer: Top
Level PO process in the Event System Demonstration item type when
the B2B Advanced Shipment Notice event is received from an external
source. The subscription is enabled by default. The following table lists
the properties defined for this subscription.

Subscription Property Value

System <local system>

Source Type External

Event Filter demo.oracle.wf.b2b.po.asn

Phase 2

Status Enabled

Rule Data Key

Workflow Item Type WFEVDEME

Workflow Process Name RCVPOCRT

Table 15 – 14 (Page 1 of 1)

B2B Invoice Event

This event is sent from the Supplier system to the Buyer system as an
invoice after the B2B Purchase Order event is received and processed.

15 – 108 Oracle Workflow Guide

demo.oracle.wf.b2b.po.invoice

None

Oracle Workflow provides two default subscriptions to the B2B Invoice
event. The first subscription adds a correlation ID to the event message
when the B2B Invoice event is received from an external source. The
correlation ID consists of the prefix PO followed by the event key (the
order number). This subscription is enabled by default. The following
table lists the properties defined for this subscription.

Subscription Property Value

System <local system>

Source Type External

Event Filter demo.oracle.wf.b2b.po.invoice

Phase 1

Status Enabled

Rule Data Key

Rule Function wf_eventdemo.derivecorrelationid

Table 15 – 15 (Page 1 of 1)

The second subscription sends the event message to the Buyer: Top
Level PO process in the Event System Demonstration item type when
the B2B Invoice event is received from an external source. The
subscription is enabled by default. The following table lists the
properties defined for this subscription.

Subscription Property Value

System <local system>

Source Type External

Event Filter demo.oracle.wf.b2b.po.invoice

Phase 2

Status Enabled

Rule Data Key

Table 15 – 16 (Page 1 of 2)

Internal Name

Generate
Function

15 – 109Demonstration Workflow Processes

ValueSubscription Property

Workflow Item Type WFEVDEME

Workflow Process Name RCVPOCRT

Table 15 – 16 (Page 2 of 2)

15 – 110 Oracle Workflow Guide

C H A P T E R

16
T

16 – 1Workflow Administration Scripts

Workflow
Administration Scripts

his chapter describes the SQL scripts that workflow
administrators can run against an Oracle Workflow server installation.

16 – 2 Oracle Workflow Guide

Miscellaneous SQL Scripts

You can use any of the following administrative scripts to help set up
and maintain various features in Oracle Workflow. For the standalone
version of Oracle Workflow, the scripts are located on your server in
the Oracle Workflow admin/sql subdirectory. For the version of Oracle
Workflow embedded in Oracle Applications, the scripts are located in
the sql subdirectory under $FND_TOP.

• Update translation tables—WFNLADD.sql: page 16 – 5.

• Enable/disable a language—wfnlena.sql: page 16 – 12

• Run a workflow process—wfrun.sql: page 16 – 15.

• Start a background engine—wfbkg.sql: page 16 – 6.

• Show activities deferred for the next background engine
execution—wfbkgchk.sql: page 16 – 7.

• Display a status report for an item

– wfstatus.sql: page 16 – 16.

– wfstat.sql: page 16 – 16.

• Show a notification’s status—wfntfsh.sql: page 16 – 12.

• Reset the protection level for objects—wfprot.sql: page 16 – 12.

• Handle errored activities—wfretry.sql: page 16 – 13.

• Check for version and process definition errors

– wfverchk.sql: page 16 – 17.

– wfverupd.sql: page 16 – 17.

– wfstdchk.sql: page 16 – 16.

• Check for invalid hanging foreign keys—wfrefchk.sql: page
16 – 13.

• Check the directory service data model—wfdirchk.sql: page
16 – 10.

• Clean up Workflow Queues in the system tables—wfqclean.sql:
page 16 – 13.

• Change the internal name of a workflow object

Note: Generally, you cannot update the internal name of a
workflow object in Oracle Workflow Builder. However, if you
load your process definition to a database, you can use one of
these scripts to update a workflow object’s internal name if no

16 – 3Workflow Administration Scripts

runtime data exists for the object. You should only use these
scripts to correct errors in an object’s internal name during
design time. Do not use these scripts to rename objects that are
involved in running instances of processes.

– wfchact.sql: page 16 – 7.

– wfchacta.sql: page 16 – 7.

– wfchita.sql: page 16 – 8.

– wfchitt.sql: page 16 – 8.

– wfchluc.sql: page 16 – 8.

– wfchlut.sql: page 16 – 9.

– wfchmsg.sql: page 16 – 9.

– wfchmsga.sql: page 16 – 9.

• Remove data from Oracle Workflow tables

– wfrmall.sql: page 16 – 14.

– wfrmitms.sql: page 16 – 15.

– wfrmitt.sql: page 16 – 15.

– wfrmtype.sql: page 16 – 15.

– wfrmita.sql: page 16 – 14.

Note: In Oracle Applications, a standard concurrent program
called ”Purge Obsolete Workflow Runtime Data” is also
available. See: FNDWFPR: page 16 – 5.

If you are using the standalone version of Oracle Workflow
available with Oracle9i Release 2, you can use the standalone
Oracle Workflow Manager component available through Oracle
Enterprise Manager to submit and manage Workflow purge
database jobs. For more information, please refer to the Oracle
Workflow Manager online help.

• Purge and repopulate the outbound message queue for the
Notification Mailer—wfmqupd.sql: page 16 – 12.

Warning: This script should only be used when Oracle
Support determines it to be necessary. Do not run this script
unless directed by Oracle Support.

• Display the version of the Oracle Workflow server—wfver.sql:
page 16 – 16.

• Stop the Java Function Activity Agent—wfjvstop.sql: page
16 – 11.

16 – 4 Oracle Workflow Guide

• Enqueue an event message on a queue using an override
agent—wfevtenq.sql: page 16 – 10.

• Run a listener to monitor an agent for inbound event
messages—wfagtlst.sql: page 16 – 6.

Note: In Oracle Applications, a standard concurrent program
called ”Workflow Agent Listener” is also available. See:
FNDWFLST: page 16 – 4.

If you are using the standalone version of Oracle Workflow
available with Oracle9i Release 2, you can use the standalone
Oracle Workflow Manager component available through Oracle
Enterprise Manager to submit and manage Workflow agent
listener database jobs. For more information, please refer to the
Oracle Workflow Manager online help.

FNDWFLST

For Oracle Workflow embedded in Oracle Applications, use the
standard concurrent program FNDWFLST ”Workflow Agent Listener”
to monitor an agent for inbound event messages.

Navigate to the Submit Requests form in Oracle Applications to submit
the Workflow Agent Listener concurrent program. When you install
and set up Oracle Applications and Oracle Workflow, your system
administrator needs to add this concurrent program to a request
security group for the responsibility that you want to run this program
from. See: Overview of Concurrent Programs and Requests, Oracle
Applications System Administrator’s Guide and Submitting a Request,
Oracle Applications User’s Guide.

You must supply the name of the agent that you want to monitor as a
parameter for the Workflow Agent Listener concurrent program.

Note: If you are using the version of Oracle Workflow
embedded in Oracle Applications and you have implemented
Oracle Applications Manager, you can use Oracle Workflow
Manager to submit and manage the Workflow Agent Listener
concurrent program. For more information, please refer to the
Oracle Applications Manager online help.

16 – 5Workflow Administration Scripts

FNDWFPR

For Oracle Workflow embedded in Oracle Applications, use the
standard concurrent program FNDWFPR ”Purge Obsolete Workflow
Runtime Data” to purge old data from the Oracle Workflow runtime
tables regularly.

Navigate to the Submit Requests form in Oracle Applications to submit
the Purge Obsolete Workflow Runtime Data concurrent program.
When you install and set up Oracle Applications and Oracle Workflow,
your system administrator needs to add this concurrent program to a
request security group for the responsibility that you want to run this
program from. See: Overview of Concurrent Programs and Requests,
Oracle Applications System Administrator’s Guide and Submitting a
Request, Oracle Applications User’s Guide.

You can supply the following parameters for the Purge Obsolete
Workflow Runtime Data concurrent program:

• Item Type—The item type to purge. Leaving this field blank
defaults to purging the runtime data for all item types.

• Item Key—The item key to purge. Leaving this field blank
defaults to purging the runtime data for all item keys.

• Age—Minimum age of data to purge, in days.

• Persistence Type—The persistence type to be purged, either
’TEMP’ for Temporary or ’PERM’ for Permanent. The default is
’TEMP’.

Note: If you are using the version of Oracle Workflow
embedded in Oracle Applications and you have implemented
Oracle Applications Manager, you can use Oracle Workflow
Manager to submit and manage the Purge Obsolete Workflow
Runtime Data concurrent program. For more information,
please refer to the Oracle Applications Manager online help.

WFNLADD.sql

If you enable a new language in your Oracle installation, use
WFNLADD.sql to add the missing rows for that language to the Oracle
Workflow translation tables. See: Creating the WF_LANGUAGES
View: page 2 – 38 and wfnlena.sql: page 16 – 12.

Use the script as follows:

sqlplus <user/pwd> @WFNLADD

16 – 6 Oracle Workflow Guide

Wfagtlst.sql

Use wfagtlst.sql to run a listener to monitor an agent for inbound event
messages. When a message is received, the Event Manager searches for
and executes any active subscriptions by the local system to the event
with a source type of External, and also any active subscriptions by the
local system to the Any event with a source type of External.

Use the script as follows:

sqlplus <user/pwd> @wfagtlst <agent_name>

Replace <agent_name> with the internal name of the agent that you
want to monitor for inbound event messages.

Note: You should use this script primarily for debugging
purposes.

See Also

Listen: page 8 – 270

Wfbkg.sql

If you are using the standalone version of Oracle Workflow, you can
use wfbkg.sql to start a background engine. This script calls the
WF_ENGINE Background API to run a background engine for the
indicated number of minutes. On completing its current set of eligible
activities to process, the background process waits for the specified
number of seconds before launching another background engine. This
cycle continues until the indicated number of minutes have elapsed.

Use the script as follows:

sqlplus <user/pwd> @wfbkg <minutes> <seconds>

Replace <minutes> with the number of minutes you want the
background engine to run, and replace <seconds> with the number of
seconds you want the background engine to wait between queries.

See Also

Background: page 8 – 41

Setting up Background Workflow Engines: page 2 – 43

16 – 7Workflow Administration Scripts

Wfbkgchk.sql

Use wfbkgchk.sql to get a list of all activities waiting to be processed by
the background engine the next time it runs.

Use the script as follows:

sqlplus <user/pwd> @wfbkgchk

See Also

Background: page 8 – 41

Setting up Background Workflow Engines: page 2 – 43

Wfchact.sql

Use wfchact.sql to change the internal name of an activity and update
all references to the activity. See: Change the internal name of a
workflow object: page 16 – 2.

Use the script as follows:

sqlplus <user/pwd> @wfchact <act_type> <old_act> <new_act>

Replace <act_type> with the item type that the activity you wish to
update is associated with, replace <old_act> with the current internal
name of the activity, and replace <new_act> with the new internal name
of the activity.

Wfchacta.sql

Use wfchacta.sql to change the internal name of an activity attribute
and update all references to the activity attribute. See: Change the
internal name of a workflow object: page 16 – 2.

Use the script as follows:

sqlplus <user/pwd> @wfchacta <act_type> <old_acta> <new_acta>

Replace <act_type> with the item type that the activity attribute you
wish to update is associated with, replace <old_acta> with the current
internal name of the activity attribute, and replace <new_acta> with the
new internal name of the activity attribute.

16 – 8 Oracle Workflow Guide

Wfchita.sql

Use wfchita.sql to change the internal name of an item attribute and
update all references to the item attribute. See: Change the internal
name of a workflow object: page 16 – 2.

Use the script as follows:

sqlplus <user/pwd> @wfchita <item_type> <old_attr> <new_attr>

Replace <item_type> with the item type that the item attribute you
wish to update is associated with, replace <old_attr> with the current
internal name of the item attribute, and replace <new_acta> with the
new internal name of the item attribute.

Wfchitt.sql

Use wfchitt.sql to change the internal name of an item type and update
all references to the item type. See: Change the internal name of a
workflow object: page 16 – 2.

Use the script as follows:

sqlplus <user/pwd> @wfchitt <old_type> <new_type>

Replace <old_type> with the current internal name of the item attribute,
and replace <new_type> with the new internal name of the item
attribute.

Wfchluc.sql

Use wfchluc.sql to change the internal name of a lookup code and
update all references to the lookup code. See: Change the internal
name of a workflow object: page 16 – 2.

Use the script as follows:

sqlplus <user/pwd> @wfchluc <lookup_type> <old_luc> <new_luc>

Replace <lookup_type> with the lookup type of the lookup code you
wish to update, replace <old_luc> with the current internal name of the
lookup code, and replace <new_luc> with the new internal name of the
lookup code.

16 – 9Workflow Administration Scripts

Wfchlut.sql

Use wfchlut.sql to change the internal name of a lookup type and
update all references to the lookup type. See: Change the internal name
of a workflow object: page 16 – 2.

Use the script as follows:

sqlplus <user/pwd> @wfchlut <old_lut> <new_lut>

Replace <old_lut> with the current internal name of the lookup type,
replace <new_lut> with the new internal name of the lookup type.

Wfchmsg.sql

Use wfchmsg.sql to change the internal name of a message and update
all references to the message. See: Change the internal name of a
workflow object: page 16 – 2.

Use the script as follows:

sqlplus <user/pwd> @wfchmsg <msg_type> <old_msg> <new_msg>

Replace <msg_type> with the item type of the message you wish to
update, replace <old_msg> with the current internal name of the
message, replace <new_msg> with the new internal name of the message.

Wfchmsga.sql

Use wfchmsga.sql to change the internal name of a message attribute.
This script does not update the message subject/body references to the
message attribute. You must manually update the message attribute
references. See: Change the internal name of a workflow object: page
16 – 2.

Use the script as follows:

sqlplus <user/pwd> @wfchmsga <msg_type> <msg_name> <old_attr>

<new_attr>

Replace <msg_type> with the item type of the message attribute you
wish to update, replace <msg_name> with the internal name of the
message that the message attribute belongs to, replace <old_attr> with
the current internal name of the message attribute, and replace
<new_attr> with the new internal name of the message attribute.

16 – 10 Oracle Workflow Guide

Wfdirchk.sql

Use wfdirchk.sql to check for the following conditions in your
directory service data model:

• Invalid internal names that contain the characters ’#’, ’:’, or ’/’ in
WF_USERS.

• Invalid compound names in WF_USERS or WF_ROLES.

• Duplicate names in WF_USERS or WF_ROLES.

• Multiple names in WF_USERS or WF_ROLES linked to the same
row in the original repository.

• Missing display names in WF_USERS or WF_ROLES.

• Invalid Notification Preference or null e–mail address if the
Notification Preference is MAILTEXT, MAILHTML, or
SUMMARY in WF_USERS or WF_ROLES.

• Invalid Status in WF_USERS.

• Rows in WF_USERS that do not have a corresponding row in
WF_ROLES.

• Invalid internal names in WF_ROLES that contain the characters
’#’ or ’/’ or have a length greater than 30 characters.

• Invalid user/role foreign key in WF_USER_ROLES.

• Missing user/role in WF_USER_ROLES (every user must
participate in its own role).

• Duplicate rows in WF_USER_ROLES.

Wfdirchk.sql should return no rows to ensure that your directory
service data model is correct.

Use the script as follows:

sqlplus <user/pwd> @wfdirchk

Wfevtenq.sql

Use wfevtenq.sql to enqueue an event message on a local queue using
an override agent. This script constructs an event message using the
event name, event key, event data, From Agent, and To Agent you
specify. Then the event message is enqueued on the queue associated
with the override agent you specify, which can be different than the
From Agent listed inside the event message. If no override agent is

16 – 11Workflow Administration Scripts

specified, the event message is enqueued on the message’s From Agent
by default.

Note: This script can only enqueue an event message onto a
queue for an agent on the local system.

Use the script as follows:

sqlplus <user/pwd> @wfevtenq <overrideagent> <overridesystem>

<fromagent> <fromsystem> <toagent> <tosystem> <eventname>

<eventkey> <message>

Replace the variables with your parameters as follows:

• <overrideagent>—The agent on whose queue you want to
enqueue the event message

• <overridesystem>—The system where the override agent is
located

• <fromagent>—The From Agent that you want to list in the event
message

• <fromsystem>—The system where the From Agent is located

• <toagent>—The To Agent that receives the event message

• <tosystem>—The system where the To Agent is located

• <eventname>—The internal name of the event

• <eventkey>—The event key that uniquely identifies the instance
of the event

• <message>—The event data

Wfjvstop.sql

Use wfjvstop.sql to stop the Java Function Activity Agent by placing a
stop message on the ’Outbound’ queue.

Use the script as follows:

sqlplus <user/pwd> @wfjvstop

�

16 – 12 Oracle Workflow Guide

Wfmqupd.sql

Use wfmqupd.sql to purge the outbound message queue for the
Notification Mailer and repopulate the queue from the
WF_NOTIFICATIONS table.

Use the script as follows:

sqlplus <user/pwd> @wfmqupd

Warning: This script should only be used when Oracle
Support determines it to be necessary. Do not run this script
unless directed by Oracle Support.

Wfnlena.sql

If you define a new language in your Oracle installation, use
wfnlena.sql to enable or disable that language in Oracle Workflow. See:
WFNLADD.sql: page 16 – 5.

Use the script as follows:

sqlplus <user/pwd> @wfnlena <language_code> <enable_flag>

Replace <language_code> with a valid language code, and replace
<enable_flag> with Y to enable and N to disable the specified language.

Wfntfsh.sql

Use wfntfsh.sql to display status information about a particular
notification, given its notification ID.

Use the script as follows:

sqlplus <user/pwd> @wfntfsh <notification_id>

Wfprot.sql

Use wfprot.sql to reset the protection level of all objects associated with
a specified item type.

Attention: If you reset the protection level for all objects in an
item type, then none of those objects in the item type will be
customizable by users operating at an access level higher than
the new protection level.

�

16 – 13Workflow Administration Scripts

Use the script as follows:

sqlplus <user/pwd> @wfprot <item_type> <protection_level>

Replace <Item_type> with the item type that you want to reset the
protection level for, and replace <protection_level> with the new
protection level.

Wfqclean.sql

Use wfqclean.sql to clean up Workflow queues in the system tables.

Attention: This script is only necessary if you are using a
version of Oracle8 prior to 8.1.5 and you drop your user or
tablespace without previously dropping the workflow queues
using wfqued.sql. The wfqued.sql script is located in the
Oracle Workflow sql subdirectory. The DROP USER
CASCADE and DROP TABLESPACE INCLUDING
CONTENTS commands in these prior versions of Oracle8 leave
queue data in your system tables that result in an ORA–600
error when you recreate the queues. To avoid this case, you
should always run wfqued.sql to drop the queues prior to
dropping the user or tablespace.

Use the wfqclean.sql script as follows:

sqlplus system/manager @wfqclean <un>

Replace <un> with username of the schema that experiences the
ORA–600 error.

Wfrefchk.sql

Use wfrefchk.sql to check for invalid workflow data that is missing
primary key data for a foreign key.

sqlplus <user/pwd> @wferfchk

Wfretry.sql

Use wfretry.sql to display a list of activities that have encountered an
error for a given process instance and then specify whether to skip,
retry, or reset any one of those errored activities.

�

16 – 14 Oracle Workflow Guide

Use the script as follows:

sqlplus <user/pwd> @wfretry <item_type> <item_key>

Provide an item type and item key to uniquely identify an item or
process instance. The script first returns the list of errored activities by
label name. The script then prompts you for the label name of an
activity that you wish to skip, retry, or reset. If you choose skip, then
you must also specify the result that you want the skipped activity to
have.

Attention: This script calls the WF_ENGINE HandleError
API, so you can actually specify the label name of any activity
associated with the specified item type and item key to
perform a rollback. See: HandleError: page 8 – 77.

Wfrmall.sql

Use wfrmall.sql to delete all data in all Oracle Workflow runtime and
design time tables.

Use the script as follows:

sqlplus <user/pwd> @wfrmall

Warning: This script deletes ALL workflow definitions. Do
not use this script unless you are absolutely sure you want to
remove all workflow data from your runtime and design time
tables.

Once you run this script, you should also reload the workflow
definitions for the Standard, System:Mailer, and System:Error
item types stored in the files wfstd.wft, wfmail.wft, and
wferror.wft, respectively.

Wfrmita.sql

Use wfrmita.sql to delete all workflow data for a specified item type
attribute. This script prompts you for the item type and the name of
the attribute to delete. Alternatively, you can use Oracle Workflow
Builder to delete an item type attribute from a workflow definition
stored in a file or a database.

Use the script as follows:

sqlplus <user/pwd> @wfrmita

16 – 15Workflow Administration Scripts

Wfrmitms.sql

Use wfrmitms.sql to delete status information in Oracle Workflow
runtime tables for a particular item. This script prompts you to choose
between deleting all data associated with a specified item type and
item key or deleting only data for the completed activities of the
specified item type and item key.

Use the script as follows:

sqlplus <user/pwd> @wfrmitms <item_type> <item_key>

Wfrmitt.sql

Use wfrmitt.sql to delete all data in all Oracle Workflow design time
and runtime tables for a particular item type. This script prompts you
for an item type from a list of valid item types.

Use the script as follows:

sqlplus <user/pwd> @wfrmitt

Warning: This script deletes ALL workflow data for a
specified item type.

Wfrmtype.sql

Use wfrmtype.sql to delete runtime data associated with a given item
type. This script prompts you for an item type to purge from a list of
valid item types, then asks you to choose between deleting all runtime
data associated with the specified item type or deleting only runtime
data for the completed activities and items of the specified item type.

Use the script as follows:

sqlplus <user/pwd> @wfrmtype

Wfrun.sql

Use wfrun.sql to create and start a specified process.

Use the script as follows:

16 – 16 Oracle Workflow Guide

sqlplus <user/pwd> @wfrun <item_type> <item_key> <process_name>

Wfstat.sql

Use wfstat.sql to display a developer status report for an indicated
item. The output is 132 characters per line.

Use the script as follows:

sqlplus <user/pwd> @wfstat <item_type> <item_key>

Wfstatus.sql

Use wfstatus.sql to display an end user status report for an indicated
item. The output is 132 characters per line.

Use the script as follows:

sqlplus <user/pwd> @wfstatus <item_type> <item_key>

Wfstdchk.sql

Use wfstdchk.sql to check and report any problems found in the Oracle
Workflow data model. For example, this script will report any function
activities that reference invalid functions and scan the tables of each
workflow process definition object to verify that each row has a valid
internal name and display name.

Use the script as follows:

sqlplus <user/pwd> @wfstdchk

Wfver.sql

Use wfver.sql to display the version of the Oracle Workflow server, the
status and version of the Oracle Workflow PL/SQL packages, and the
version of the Oracle Workflow views installed.

Use the script as follows:

sqlplus <user/pwd> @wfver

16 – 17Workflow Administration Scripts

Wfverchk.sql

Use wfverchk.sql if you suspect that problems arising in your
workflow process are due to multiple versions of an activity being
active simultaneously. This script identifies errors in versions of
activities that cause multiple versions to appear to be active at once.

Use the script as follows:

sqlplus <user/pwd> @wfverchk

Wfverupd.sql

Use wfverupd.sql to correct problems arising in your workflow process
that are due to multiple versions of an activity being active
simultaneously. This script identifies and corrects errors in versions of
activities that cause multiple versions to appear to be active at once.

Use the script as follows:

sqlplus <user/pwd> @wfverupd

16 – 18 Oracle Workflow Guide

A P P E N D I X

A

T

A – 1Oracle Workflow Builder Menus and Toolbars

Oracle Workflow
Builder Menus and
Toolbars

his appendix provides you with a description of the menus and
toolbars in Oracle Workflow Builder.

A – 2 Oracle Workflow Guide

Oracle Workflow Builder Menus
The Oracle Workflow Builder main menu bar includes the following
menus:

• File

• Edit

• View

• Window

• Help

File Menu

The File menu lets you perform several actions.

New—Creates a new workspace for you to define an item type.

Quick Start Wizard—Creates a framework from which you can
begin designing a workflow process definition. See: Quick Start
Wizard Overview: page 3 – 18.

Open...—Opens a data store by prompting you to connect to a
database or a file. See: Opening and Saving Item Types: page
3 – 12.

Close Store—Closes the selected data store. This menu option is
available only if the Navigator is the active window.

Save—Saves changes to the currently connected database or file.
See: Opening and Saving Item Types: page 3 – 12.

Save As—Save changes to the file or database you specify with an
optional effective date.

Create Shortcut—Creates a shortcut icon on your desktop of the
current Oracle Workflow Builder session. Prompts for a shortcut
name. The shortcut runs Oracle Workflow Builder and
automatically connects to the data store that was selected at the
time you created the shortcut, loading in the item types and
opening the process windows that were loaded and open at the
time. If the data store is a database, the shortcut prompts for the
database password before starting Oracle Workflow Builder. This
feature is available only when you run Oracle Workflow Builder in
Microsoft Windows 95 or Windows NT 4.0 or higher. Earlier
versions of Microsoft Windows NT do not support the concept of
shortcuts. See: Creating a Shortcut Icon for a Workflow Process:
page 5 – 22.

Verify—Validates all process definitions in the current data store.
Use Refresh to display the latest verification report of the process.
See: To Validate a Process: page 5 – 21

A – 3Oracle Workflow Builder Menus and Toolbars

Print Diagram—Prints the process diagram displayed in the active
process window. See: To Print a Process: page 5 – 20.

Show/Hide Item Types...—Displays the Show Item Types window
to determine which item types in the current data store to show or
hide in the navigator tree.

Load Roles from Database—Loads the Oracle Workflow directory
service roles from the current database store into Oracle Workflow
Builder and makes them viewable from the Directory Service
branch in the navigator tree as well as from any property page
poplist field that references roles. This menu option is available
only if the current data store is a database. See: Roles: page 5 – 24.

Exit—Exits Oracle Workflow Builder.

Edit Menu

The Edit menu varies depending on whether you select the Navigator
window or a process window. The following menu options appear
only when you select the Navigator window and apply only to the
Navigator window:

New—Creates a new item type, function activity, process activity,
notification activity, event activity, message, lookup type, lookup
code, or attribute by displaying its property page(s).

Copy—Copies the selected object in the navigator tree.

Paste—Pastes the object from the clipboard into the selected branch
of the navigator tree.

Delete—Deletes the selected object from the navigator tree.

Find—Displays the Search window so you can enter search criteria
to find an object in the navigator tree. See: To Find an Object in the
Navigator Tree: page 3 – 6.

Find Again—Finds an object in the navigator tree using the same
criteria defined previously in the Search window.

Properties—Shows the property pages of the selected object.

Process Details—Opens the process window of the selected
process activity.

Move Attribute—Reorders the attributes listed in the current
branch of the navigator tree by moving the selected attribute up or
down the list.

The following menu options appear only when you select a process
window and apply only to the selected process window:

A – 4 Oracle Workflow Guide

Delete Selection—Deletes the selected object(s) from the process
window.

Properties—Shows the property pages of the selected activity
node.

Copy Diagram—Copies the process diagram displayed in the
active process window to the clipboard. See: To Copy a Process
Diagram to the Clipboard: page 5 – 20

View Menu

The View menu lets you alter the display of Oracle Workflow Builder.

Font—Displays the Fonts property page. Use the property page to
change the font settings of the text that appear in the Navigator
and process windows. Changes apply to all future sessions of
Oracle Workflow Builder. See: Modifying Fonts in Oracle
Workflow Builder: 5 – 21.

Log –> Show—Toggles between displaying and hiding the Log
window. The Message Log window displays messages from the
Workflow Builder that are not error–related.

Log –> Detailed—Toggles the debug mode of Oracle Workflow
Builder on and off. When you check Detailed, you turn the debug
mode on and cause Oracle Workflow Builder to write more
extensive messages to the Log window. You should not check
Detailed unless instructed to do so by your Oracle customer
support representative, as this mode significantly slows down the
Oracle Workflow Builder.

Log –>To File—Writes all future content of the Message Log
window to a file. Select Log Show from the View menu to
determine the location and name of the log file.

Log –> Bring to Front—Brings the Message Log window to the
front as the active window.

Grid Snap—Toggles grid snap on or off for all process windows.

Show Label in Designer submenu—A submenu of options that let
you control the information displayed in an activity’s label.
Choose either Instance Label, Internal Name, Display Name,
Performer, or Comment.

Show Label in Designer –> Instance Label—Uses the node label
as the label for each activity node in a process diagram. This
setting persists for all process diagrams and for all sessions of
Oracle Workflow Builder until you specifically make a change.

Show Label in Designer –> Internal Name—Uses the internal
name of an activity as the label for each activity node in a process

A – 5Oracle Workflow Builder Menus and Toolbars

diagram. This setting persists for all process diagrams and for all
sessions of Oracle Workflow Builder until you specifically make a
change.

Show Label in Designer –> Display Name—Uses the display
name of an activity as the label for each activity node in a process
diagram. This setting persists for all process diagrams and for all
sessions of Oracle Workflow Builder until you specifically make a
change.

Show Label in Designer –> Performer—Uses the activity’s
performer as the label for each activity node in a process diagram.
Function and process activities that do not have performers do not
have a label. This setting persists for all process diagrams and for
all sessions of Oracle Workflow Builder until you specifically make
a change.

Show Label –> Comment—Uses the activity’s comment as the
label for each activity node in a process diagram. Activities that do
not have a comment do not have a label. This setting persists for
all process diagrams and for all sessions of Oracle Workflow
Builder until you specifically make a change.

Developer Mode—Toggles the display between standard
presentation mode and developer mode. In developer mode, all
icons revert to the default icon for the specific object type/subtype,
subprocess icons are distinct from top level process icons, and in
the navigator tree, objects are shown and sorted by internal name.
Note that attributes are shown by internal name but are not sorted.

If the Navigator window is the active window, then the following
menu option also appears:

Split Window—Splits the Navigator window horizontally or
vertically.

If a process window is the active window, then the following menu
options also appear:

Overview—Displays the process Overview window. See: To
Display a Process Overview: page 5 – 19.

Show Process in Navigator—For the current process displayed in
the process diagram window, this menu option locates its
corresponding process activity in the Navigator window.

Show Overlay Image—Toggles the display to either show or hide
the overlay image for an icon, if it has one. For example, the Start
and End activities in a process have a green arrow and red arrow
overlay image, respectively.

A – 6 Oracle Workflow Guide

Window Menu

The Windows menu displays the names of all open application
windows. Select a window name to make that window active. The
following menu choices are also available:

Cascade—Displays any open windows in a ”cascaded”
(overlapping) fashion.

Tile—Displays any open windows in a ”tiled” (non–overlapping)
fashion.

Help Menu

The Help menu lets you invoke help about using Oracle Workflow.

Contents—Displays help on how to use Oracle Workflow.

About Oracle Workflow...—Displays the current version and
access level of Oracle Workflow Builder. You can also edit your
access level in the Access Level field and apply your change by
choosing OK.

A – 7Oracle Workflow Builder Menus and Toolbars

Oracle Workflow Builder Toolbars
Oracle Workflow Builder displays a toolbar in both the Navigator
window and Process window.

Navigator Toolbar

The Navigator toolbar includes the following buttons which apply only
to objects selected from the navigator tree:

New Store—Creates a new data store branch in the

navigator tree.

Open—Displays the Open window to open stored item

types from a file or database.

Save—Saves any changes in the selected data store to the

currently connected database or file. Displays the Open window to
let you connect to a database or file if the selected data store is not
connected to a database or file.

Delete—Deletes the selected object.

Properties—Shows the property pages of the selected

object.

Copy—Copies the selected object.

Paste—Pastes the copied object into the current object

branch.

Verify—Validates the process definition.

Developer Mode—Toggles between Developer and

Presentation display.

Find—Displays the Search window to specify the search

criteria to locate an object in the navigator tree.

Quick Start Wizard—Runs the Quick Start Wizard to begin

creating a workflow process definition.

A – 8 Oracle Workflow Guide

Help—Displays help on how to use Oracle Workflow.

New Object—Creates a new object depending on the

object branch you select (item type, Processes, Notifications,
Functions, Messages, or Lookup Types) by displaying the property
page for that object type.

Process Window Toolbar

The process window toolbar includes the following buttons which
apply only to objects selected the current process window:

Open—Displays the Open window to open stored item

types from a file or database.

Save—Saves any changes in the selected data store to the

currently connected database or file. Displays the Open window to
let you connect to a database or file if the selected data store is not
connected to a database or file.

Print Diagram—Prints the current process diagram.

New Process—Displays the process activity node property

page for you to create a new process activity.

New Notification—Displays the notification activity node

property page for you to create a new notification activity.

New Function—Displays the function activity node

property page for you to create a new function activity.

New Event—Displays the event activity node property

page for you to create a new event activity.

Delete Selection—Deletes the selected object.

Properties—Shows the property pages of the selected

object.

Developer Mode—Toggles between Developer and

Presentation display.

A – 9Oracle Workflow Builder Menus and Toolbars

Find—Displays the process Overview window.

Show Instance Labels—Displays the instance label of the

node as the node activity label in the Process window.

Show Internal Names—Displays the internal name of the

node as the node activity label in the Process window.

Show Display Names—Displays the display name of the

node as the node activity label in the Process window.

Show Comments—Displays the comments of the node as

the node activity label in the Process window.

Show Performers—Displays the performer of the node as

the node activity label in the Process window.

Help—Displays help on how to use Oracle Workflow.

A – 10 Oracle Workflow Guide

A P P E N D I X

B

T

B – 1Oracle Workflow Implementation in Other Oracle
Products

Oracle Workflow
Implementation in
Other Oracle Products

his appendix lists embedded workflows and Business Event
System implementation in Oracle E–Business Suite and the Oracle9i
platform, as well as Oracle’s support policy towards the customization
of these workflows, events, and subscriptions.

B – 2 Oracle Workflow Guide

Predefined Workflows Embedded in Oracle E–Business Suite
You can use Oracle Workflow to customize the predefined workflow
processes listed below. A full description of each workflow is
documented in its respective product’s User’s Guide or Configuration
Guide, if one is available.

Note: Some Oracle Applications products use the Account
Generator feature to dynamically create accounting flexfield
combinations. The Account Generator has generic predefined
workflow functions that each Oracle Application product uses
in its own predefined Account Generator process. The
Account Generator processes for each product are not listed in
this section, but are documented in more detail in each
respective product’s User’s Guide. A general discussion of the
Account Generator feature is also available in the Oracle
Applications Flexfields Guide.

See Also

Oracle Support Policy for Predefined Workflows, Events, and
Subscriptions: page B – 20

Application Implementation Wizard

Application Implementation Wizard provides a set of workflow
processes that guide you through the setup and implementation of
Oracle Applications. The Application Implementation Wizard helps
you through the tasks and interdependencies of configuring Oracle
Applications for your installation. To make your implementation job
easier, the Application Implementation Wizard logically groups similar
setup tasks.

The sequence of steps that the Wizard takes you through are contingent
on the application modules you install. This obviates running
duplicate setup steps when implementing multiple application
modules.

The details and usage of the workflow processes can be obtained from
the Application Implementation Wizard User’s Guide.

Oracle Application Object Library

Oracle Application Object Library provides a set of standard function
activities that you can use to incorporate concurrent manager
processing into any Oracle Applications workflow process. The
standard function activities are associated with the Concurrent

B – 3Oracle Workflow Implementation in Other Oracle
Products

Manager Functions item type. See: Concurrent Manager Standard
Activities: page 6 – 22.

Oracle Business Intelligence System

BIS Management by Exceptions Process—This generic workflow
process is a template for BIS customers to use as part of their
Performance Management Framework. When actual performance does
not meet expected performance, this process sends a basic corrective
action notification with an embedded report URL. All other processes
under the OBIS Corrective Action item type are similar to this generic
process.

Oracle Internet Expenses

AP Expense Report Process—Oracle Internet Expenses uses the AP
Expense Report workflow process to process the manager approval
and accounting review of expense reports entered in Internet Expenses.
The AP Expense Report process begins when a user submits an expense
report, and finishes when an expense report is rejected, or when a
manager has approved and accounting has reviewed an expense
report. If approved and reviewed, the workflow process makes the
expense report available for the Payables Invoice Import program. The
AP Expense Report process notifies employees at key event points
during the manager approval and accounting review processes.

AP Credit Card Process—The AP Credit Card workflow process
notifies employees and managers of payments made to employees and
payments made to credit card issuers for charges to travel and
entertainment (T&E) credit cards. It also sends notifications to
employees and managers for any outstanding credit card transactions
that have not been submitted on an expense report, or have been
submitted on an expense report but the expense report has not
completed the AP Expense Report process. The payment notifications
are generated when payments are made in Oracle Payables; the
outstanding charges notifications are sent when you run the Credit
Card Outstanding Charges Report program from Oracle Payables.

Procurement Cards

The following procurement card workflow processes enable your
self–service employees to verify and approve procurement card
transactions.

AP Procurement Card Employee Verification Workflow Process—The
AP Procurement Card Employee Verification Workflow process notifies
and confirms procurement card transactions with card holders. This
workflow process is initiated when you submit the Distribute

B – 4 Oracle Workflow Guide

Employee Card Transaction Verifications program from Oracle
Payables. The process notifies an employee of transactions charged to
the employee’s procurement card, and optionally requires the
employee’s manual verification.

AP Procurement Card Manager Approval Transaction Process—The
AP Procurement Card Manager Approval Transaction workflow
process notifies and confirms verified procurement card transactions
with a card holder’s manager. This workflow process is initiated when
you submit the Distribute Manager Card Transactions Approvals
program from Oracle Payables. The AP Procurement Card Employee
Verification Workflow process must first complete for transactions
before the manager workflow process is used. The process notifies
managers, and optionally requires their manual approval, of
procurement card transactions incurred by employees.

Oracle Self–Service Human Resources

Candidate Offer Approval Process—Submits an offer made using the
Candidate Offers option in Line Manager Direct Access to the
appropriate managers in the approval hierarchy. When the last
approver in the hierarchy approves the offer, the workflow notifies
Human Resources to print, sign and post the offer letter to the
candidate and waits for the candidate’s response. Once the candidate
responds to the offer, the originating manager is notified and the
workflow completes. The workflow keeps the originating manager
informed of the offer status throughout the process.

Career Management Reviews Process—Sends notifications to reviews
for Appraisals and Assessments.

360 Appraisals Process—Sends a notification to a set of people
informing them that they should perform an appraisal as part of a
group.

Other Processes—Oracle Self–Service HR includes processes that allow
employees and mangers to view, update, and display approved
personal details on the Web, including:

• Basic Details (Name, Marital status, and so on)

• Addresses

• Phone Numbers

• Contact Persons

• Resume

• Qualifications

• Personal Competence Profile

B – 5Oracle Workflow Implementation in Other Oracle
Products

• School and College Attendances

• Work Choices

Oracle Self–Service HR also includes processes to allow employees to
enroll in a class and apply for a job.

Oracle Self–Service Purchasing

Receipt Confirmation Process—Sends receipt notifications to
requestors, informing them that they should have received their order.
This process is also known as the PO Confirm Receipt workflow.

Requisition Approval Process—Submits a requisition created from
Web Requisitions to the appropriate managers for approval and
updates the status of the requisition.

Oracle Internet Time

PA Timecard Approval Process—This process is initiated when an
employee submits a timecard in Oracle Internet Time. The workflow
can be configured to either automatically approve all timecards or
route the timecard through a pre–determined approval process. The
approval process sends notifications to managers and employees,
ensures timecards adhere to company policy, and checks manager
approval levels. The status of submitted timecards can be monitored
throughout the approval process.

Oracle Web Suppliers

Supplier Self–Service Registration Approval Process—Oracle Web
Suppliers allows a guest to log on and register as a supplier contact for
a company. This process routes a notification to the appropriate
account approver to verify and approve the registration. If the
approver approves the registration, the Supplier Web User account is
activated. If the account approver rejects the registration, the account
is deactivated.

Oracle Configure To Order

CTO Change Order—Sends a notification to the planner in the
shipping organization detailing the changes made to an ATO order. It is
started when a change to the order quantity, schedule ship date,
request date, or schedule arrival date is made and a discrete job
reservation or a flow schedule exists for the order. It is also started
anytime a configuration change or order line cancellation is made, even
if a reservation does not exist.

B – 6 Oracle Workflow Guide

Oracle Demand Planning

MSD Demand Planning Cycle Process—The MSD Demand Planning
Cycle manages all background processing during a Demand Planning
cycle. It is made up of four stages, each of which initiates a specific
Workflow process to govern a task that is performed during that stage.
Each stage is initiated from the Demand Planning Administrator page.
Notifying the administrator and user community of relevant processing
status as the workflow progresses through its many stages is a central
benefit.

The Demand Planning processing cycle is made up of the following
four stages, which correspond to processes:

• Downloading data from the Planning Server—Manages the
transfer and transformation of data from the Demand Planning
Server to the Express Server Demand Planning Engine for
analytic processing.

• Forecasting and distributing data to demand planners—Runs a
forecast engine and makes data available to the community of
demand planners.

• Collecting and consolidating data from demand planners—
Collects submitted data from demand planners and consolidates
data in the Demand Planning Engine.

• Uploading the consolidated data to the Planning Server—
Transfers transformed data back to the Planning Server.

Oracle Engineering

Engineering Change Orders Process—Submits an engineering change
order to the appropriate people for approval.

Oracle General Ledger

Journal Approval Process—You can require journal batches to be
approved before posting. Create an approval hierarchy and define
authorization limits for each user. The Journal Approval process is
initiated when you try to post a journal batch. The process
automatically routes journals to the appropriate user for approval,
based on the approval hierarchy.

AutoAllocations Process—When you generate step–down
AutoAllocations, the workflow process initiates the AutoAllocation
process and validates and generates the Mass Allocation and Recurring
Journal batches that are defined in the AutoAllocation. The workflow
process also determines whether journal approval is required for each

B – 7Oracle Workflow Implementation in Other Oracle
Products

generated journal batch, submits the batches to the appropriate users
for approval if required, and notifies the appropriate users of the
approval results. If an error occurs during the AutoAllocation process,
the designated user or users can choose to roll back the AutoAllocation
process, which reverses any posted journals.

Global Intercompany System—The Global Intercompany System
(formerly CENTRA) is an enhanced feature for Release 11i, and has
been backported to Release 11. It provides an environment for multiple
companies to exchange intercompany transactions. The workflow
process notifies the receiver company when a sender company initiates
an intercompany transaction and requires approval from the receiver,
or when the sender company recalls or reverses an intercompany
transaction. The workflow process notifies the sender company when a
receiver company approves or rejects an intercompany transaction that
the sender had initiated. In addition, a threshold amount can be set to
limit the volume of notifications. The workflow process is initiated
when the sender submits, recalls, or reverses an intercompany
transaction, or when the receiver rejects or accepts an intercompany
transaction.

Oracle Grants Accounting

Grants Accounting Workflow Process—The Grants Accounting
Workflow process notifies key members that an installment has been
activated or that a report is due. The Budget Subprocess notifies the
budget approver or award manager that a budget has been submitted
for approval.

The workflow process is initiated at the following points:

• installment is activated

• report is due

• budget is submitted

• budget is approved/baselined

Oracle Grants Proposal

Proposal Approval Process—The Proposal Approval Process is
initiated when a proposal is submitted for approval.

Notifications are sent to approvers and the workflow process waits for
the response from each approver before proceeding to the next
approver in the hierarchical proposal approval map.

The proposal is approved if all approvers approve the proposal. The
proposal is rejected if any approvers reject it. The person submitting the

B – 8 Oracle Workflow Guide

proposal for approval is notified of the approval status at every stage
during the approval process.

Notify Approval Subprocess—The Notify Approval Subprocess is
initiated during the Proposal Approval Process when the next
approver in the hierarchical approval map is selected.

The Notify Approval Subprocess notifies the approver that a proposal
is pending for approval. The approver can approve or reject the
proposal.

If the approver fails to approve or reject the proposal within a given
time frame, the approver receives periodic reminders. Organizations
can set the timeout, which defines the time frame in which the
reminders are sent. By default, the timeout is not set.

Notify Proposal Members Process—The Notify Proposal Members
Process sends notifications to personnel on the proposal.

Oracle Labor Distribution

Effort Report Notification Process—Workflow functionality in Labor
Distribution automatically routes effort reports throughout the
organization and delivers electronic notifications to users regarding
effort reports that require their attention or processes that are
completed.

The Effort Report Notification workflow process includes the following
subprocesses:

• approval

• notification

The Effort Report Notification workflow process is initiated in Labor
Distribution when an effort report is created.

Notification is sent to approvers of the effort report. When the effort
report is approved, the effort report is sent to a supervisor for
certification. The creator of the effort report can monitor the status of
the effort report.

Distribution Adjustment Approval Notification Process—Workflow
functionality in Labor Distribution automatically routes distribution
adjustments approval notifications throughout the organization and
delivers electronic notifications to users regarding distribution
adjustments that require their attention or processes that are
completed. The process is initiated when a distribution batch is
submitted.

Oracle Public Sector Budgeting

Distribute Worksheet Workflow Process—The Distribute Worksheet
Workflow Process distributes worksheets and notifies users that a

B – 9Oracle Workflow Implementation in Other Oracle
Products

worksheet has been distributed. The process is initiated when
distributing a worksheet.

Submit Worksheet Workflow Process—The Submit Worksheet
Workflow Process submits worksheets. Based on user–defined
parameters, the process performs constraint validations, worksheet
operations, copying, and merging. The process moves worksheets from
one budget stage to the next and routes the worksheets through an
approval process for required approvals. The process also freezes and
unfreezes worksheets. Notifications are sent to users who initiate a
process and to approvers.

The process is initiated at the following points:

• validating a worksheet constraint

• freezing a worksheet

• unfreezing a worksheet

• moving a worksheet to the next stage

• copying a worksheet

• merging a worksheet

• submitting a worksheet

Distribute Budget Revision Workflow Process—The Distribute
Budget Revision Workflow Process distributes budget revisions and
notifies users that budget revisions have been distributed. The process
is initiated when distributing a budget revision.

Submit Budget Revisions Workflow Process—The Submit Budget
Revisions Workflow Process submits budget revisions. Based on
user–defined parameters, the process performs constraint validations
and other budget revision operations. The Submit Budget Revisions
process routes budget revisions through an approval process and
updates the status and baseline values for budget revisions. The
process also performs funds reservation and posts revisions to General
Ledger. The process freezes and unfreezes budget revisions.
Notifications are sent to users who initiate a process and to approvers.

The process is initiated at the following points:

• validating a budget revision constraint

• freezing a budget revision

• unfreezing a budget revision

• submitting a budget revision

Oracle Federal Human Resources

GHR Personnel Action Process—Enables the routing of the Request
for Personnel Action (RPA) Form for data entry, signature, and review

B – 10 Oracle Workflow Guide

before the final approval and update to the database. Based on the
agency’s practices, the user can route the RPA to an individual,
groupbox, or routing list within the routing group. As the RPA is
routed, the system maintains a history of actions. By referring to the
history, users can learn what action was taken, by whom, and on what
date.

GHR Position Description Process—Enables the routing of the
Position Description form for data entry, signature, review and
classification. Based on the agency’s practices, the user can route the
Position Description form to an individual, groupbox, or routing list
within the routing group. As the Position Description form is routed,
the system maintains a history of actions. By referring to the history,
users can learn what action was taken, by whom, and on what date.

GHR Within Grade Increase Process—Enables the automatic
processing of Within Grade Increase(WGI) actions without any manual
intervention. The default WGI process automatically notifies the
Personnel Office of the WGI approval and requires no response. WGI
process can be configured during implementation in many ways based
on the agency’s practices.

Oracle Human Resources

Task Flow Item Type—Oracle Human Resources provides a predefined
workflow item type called HR Task Flow that you can use to set up
your task flows. The HR Task Flow item type includes a function
activity for every HR application window that is allowed to be
incorporated into a task flow. You can use these predefined function
activities to model a workflow process for each task flow. Moreover,
each function activity includes activity attributes that you can set to
create button labels and position buttons on its corresponding
application window.

The HR Task Flow item type provides you with an alternative to using
forms to set up and maintain your task flows. By integrating with
Oracle Workflow, you can use the graphical Oracle Workflow Builder
to help you design and diagram the sequence of your windows.

Oracle Order Management

Order and Line Runnable Processes and Functional Subprocesses—
Oracle Order Management provides seeded order and line runnable
processes and functional subprocesses. Order Header workflow data is
defined under the item type OM Order Header (OEOH). Seeded
header runnable processes are provided to support the processing of
standard Orders and Returns with approvals. Booking and Close Order

B – 11Oracle Workflow Implementation in Other Oracle
Products

functional subprocesses are also seeded. Order Line workflow data is
defined under the item type OM Order Line (OEOL). Oracle Order
Management comes seeded with line–level runnable processes to
support the processing of standard items, configurations, service items,
drop–shipments, and other items. Functional subprocesses to schedule,
ship, fulfill, invoice interface, and close order lines are also seeded.
Additionally, you can configure custom processes to meet your specific
business requirements using the seeded functional subprocesses and
custom activities. You can use these seeded and custom runnable
processes for order processing by assigning them to specific order and
line transaction types.

Change Order Notification Process—Sends a change order notification
from certain application forms. The recipient and message content are
set dynamically when you select a responsibility and provide content.
Uses the item type OM Change Order (OECHORD).

COGS Process—Generates a cost of goods sold account using the item
type Generate Cost of Goods Sold Account (OECOGS).

Oracle Payables

AP Open Interface Import Process—Automates verification and
validation of data in the Open Interface tables. For example, this
process can be modified to validate all accounting code combinations
in the Open Interface tables. Notification of any invalid code
combinations can be sent to a specified user for correction. Optionally
the process can be set up to override any invalid code combinations
with a designated default value. You can use Oracle Workflow to
include additional workflow rules that meet the specific requirements
of a business. Once an invoice has passed this process it is ready to be
imported into the Oracle Payables application tables. To initiate the
Open Interface Import process, submit Payables Open Interface
Workflow from the Submit Requests window.

For more information about related workflows in Oracle Internet
Expenses, including expense reports and procurement cards, see Oracle
Internet Expenses: page B – 3.

Oracle Advanced Supply Chain Planning

Advanced Planning Exception Message Process—Sends notifications
to suppliers, customer contacts, or internal personnel that inform them
of advanced planning exceptions and lets the recipients initiate
appropriate action to correct the planning exception.

Allocated ATP Process—Sends notification to planners if there was any
stealing between different supply sources to satisfy an Order Promising
request or if the Order Scheduling process failed.

B – 12 Oracle Workflow Guide

Oracle Projects

Project Approval and Status Change Process—Routes a project and
notifies appropriate users of any project status change. For example,
you can submit the project for approval, or notify appropriate people
upon project closure. You select which workflow to use for the
appropriate status change, as well as determining the person(s) to route
the project to.

Budget Approval Process—Routes a project budget for approval and
baseline. You select which workflow to use for the budget type, as well
as determining the person(s) to route the budget to.

Step Down Allocations Process—Automates the execution of
step–down auto allocation sets to create allocation runs, generate the
allocation transactions, release the allocation transactions (or require
approval before the process proceeds), distribute costs, and update
project summary amounts.

Oracle Project Manufacturing

Indirect/Capital Project Definition Process—This process is part of the
Project Manufacturing Project Definition process navigator flow. This
process guides users through all the necessary sequence of steps for
setting up an Indirect– or Capital–type project for use in Oracle Project
Manufacturing.

Contract Project Definition Process—This process is part of the Project
Manufacturing Project Definition process navigator flow. This process
guides users through all the necessary sequence of steps for setting up
a Contract–type project for use in Oracle Project Manufacturing.

Oracle Process Manufacturing

Quality Control Sample Creation Notification Process—Notifies and
prompts a valid user who is associated with certain parameters of
transactions such as Organization, Warehouse, or Item, to create
samples for quality assurance in the Product Development Module of
Oracle Process Manufacturing. Specific inventory transactions in
Oracle Process Manufacturing initiate this workflow process. The user
can create a quality control sample by invoking the Sample Creation
form directly from the notification.

Quality Control Sample Acceptance Process—Spawns detail processes
that notify quality control analysts to perform tests on a newly created
sample and manages the testing results for final sample acceptance.
This workflow is initiated when a sample is created in the Product
Development Module of Oracle Process Manufacturing. This

B – 13Oracle Workflow Implementation in Other Oracle
Products

workflow is a master process that determines the number of tests to be
performed on the sample based on predefined specifications and
spawns a matching number of Quality Control Assay Testing detail
processes to notify the analysts to perform the tests. The master
process waits until all the detail processes complete before sending a
notification with the sample disposition to the sample approver. The
notification allows the approver to view the results directly from the
Result form and enter a final disposition on the sample. The process
then completes by notifying the inventory approver of the final sample
disposition.

Quality Control Assay Testing Process—Notifies quality control
analysts to perform tests on a newly created sample. This process is
initiated by the Quality Control Sample Acceptance process. It sends a
notification to the analyst who needs to perform the tests. The analyst
can respond to the notification by directly opening the Result form
from the notification to enter the results of the tests.

Item Activation Process—Notifies an approver to approve an item
once it is created in Oracle Process Manufacturing. The item is made
inactive until the approver approves it.

Lot Expire and Lot Retest Process—Notifies appropriate roles
associated with an item when a lot or sublot of that item expires or is
ready for retesting.

Process Manufacturing Intelligence

Process Manufacturing Inventory Turns Process—Sends notifications
to the designated responsibilities whenever the actual values of the
inventory turn do not fall within the targeted values defined in the
Inventory Turn Report. The Inventory Turn Report is part of Process
Manufacturing BIS.

Oracle Purchasing

Procurement Workflow—The Procurement Workflow is a lights–out,
hands–off transaction processing system that is truly flexible and
extensible to all members of your supply chain. It is one of the key
enablers in the shift towards more strategic sourcing and procurement
activities. It consists of the Document Approval, Automatic Document
Creation, Change Orders, Account Generation, Send Notifications,
Price/Sales Catalog Notification, and Receipt Confirmation (used only
by Self–Service Purchasing) workflow processes.

Document Approval Process—Performs all approval related activities
in Oracle Purchasing. These include, but are not limited to, document
submission, approval, forwarding, approval notifications, and rejection.

B – 14 Oracle Workflow Guide

This includes the PO Approval workflow process for approving
purchase orders and the PO Requisition Approval workflow process
for approving requisitions.

Automatic Document Creation Process—Automatically creates
standard purchase orders or releases against blanket agreements using
approved purchase requisition lines, if the requisition lines have the
required sourcing information. This process is also known as the PO
Create Documents workflow.

Change Orders Process—Allows you to control which changes require
a manual reapproval and which will be automatically reapproved. All
reapproved documents, either manual or automatic, will result in the
document revision being incremented. This process is part of the PO
Approval workflow.

Send Notifications Process—Looks for documents that are incomplete,
rejected, or in need of reapproval, and sends notifications regarding the
document’s status to the appropriate people. This is also known as the
PO Send Notifications for Purchasing Documents workflow.

Price/Sales Catalog Notification Process—Sends a notification to the
buyer when the price/sales catalog information sent through the
Purchasing Documents Open Interface includes price increases that
exceed a price tolerance that you set. This process is also known as the
PO Catalog Price Tolerance Exceeded Notifications workflow.

Oracle Receivables

Credit Memo Request Approval Process – Routes a credit memo
request for approval using an organization’s internal management
hierarchy or approval limits defined in Oracle Receivables. If the
request is approved, a credit memo is automatically created in Oracle
Receivables. Otherwise, the process notifies the requestor with an
explanation of why it was not approved.

You initiate the Credit Memo Request workflow from iReceivables.
iReceivables is a web–based, self–service application that enables
registered users to access their Receivables account information using a
standard web browser. When an iReceivables user chooses the Dispute
a Bill function, Receivables places the specified amount in dispute and
initiates the Credit Memo Request process to route the request for
approval.

Oracle Service

Service Request Process—Routes a service request to individuals in
the organization for resolution. Customize the process to select and

B – 15Oracle Workflow Implementation in Other Oracle
Products

notify service personnel, as well as to transfer and escalate service
requests automatically based on your organization’s service rules and
guidelines.

Service Request Actions and Dispatch Process—Routes a service
request action to individuals in the organization for resolution and in
addition, notify with instructions, appropriate service personnel who
need to be dispatched to a field site. Customize the process to manage,
transfer or escalate dispatch requests.

Field Service Dispatch Process—Inserts or updates service request
data into the interface table and sends a notification to the field service
engineer with dispatch information. This process is used by Oracle
Mobile Field Service.

Oracle Training Administration

OTA Workflow Process—Includes workflows for Self–Service Oracle
Training Administration and for Training Administration through
Order Management.

• Self–Service Oracle Training Administration:

– Checks to see if an existing event is full, then notifies
student of enrollment or placement on waiting list.

– If enrollment cancellation occurs to close to the event, cost
transfer takes place, charging the customer for the
enrollment.

– When Oracle Training Administration is set to create order
lines automatically, notifies event owner when it cannot find
the Transfer From or Transfer To values.

– Notifies enrollment request creator of changes to enrollment
status.

– Notifies enrollee and supervisor of enrollment cancellation.

• Training Administration through Order Management:

– Enables invoicing from the order line only after the student
has completed the course.

– Notifies student of event or enrollment cancellation.

– Notifies event owner of enrollment cancellation, and can
enroll students from the waiting list.

– Notifies event owner when the maximum number of event
attendees has increased.

– Notifies event owner when a customer has switched
enrollments from one event to another.

B – 16 Oracle Workflow Guide

Oracle Workflow Business Event System Implementation in Oracle
E–Business Suite

The products listed below leverage the Oracle Workflow Business
Event System for business process integration. A full description of
each feature is documented in its respective product’s User’s Guide or
Configuration Guide, if one is available.

See Also

Oracle Support Policy for Predefined Workflows, Events, and
Subscriptions: page B – 20

Oracle Payables

E–mail Remittance Advice Program – When you confirm a payment
batch or create a Quick payment, the Business Event System initiates
this program which automatically sends an e–mail to each supplier that
has a remittance advice e–mail address defined.

Oracle XML Gateway

Oracle XML Gateway leverages the Oracle Workflow Business Event
System to publish and subscribe to application business events of
interest to automatically trigger message creation or consumption.
Seeded Workflow functions are provided for use in Workflow processes
to interact directly with the XML Gateway Execution Engine to
generate outbound or to consume inbound messages. The outbound
messages generated by the Execution Engine are made available to the
downstream Workflow activity for processing. The Execution Engine
consumes the inbound messages passed to it by a Workflow process.

Two item types are delivered with the XML Gateway: the XML
Gateway Standard Item Type and the XML Gateway Error Processing
Item Type.

XML Gateway Standard Item Type – The XML Gateway Standard
Item Type includes the Raise Document Delivery Event, which is used
to raise a business event from an existing Workflow process. This
allows you to seamlessly integrate your existing Workflow process with
Oracle XML Gateway to create an outbound XML message. The
functions included with the XML Gateway Standard Item Type are
Consume XML Document, Generate XML Document, Generate Trading
Partner XML Document, Send Document, Transform XML, and
Transaction Delivery Required.

B – 17Oracle Workflow Implementation in Other Oracle
Products

Configure the seeded events and event subscriptions delivered by the
Oracle E–Business Suite for pre–built XML messages in support of
Business–to–Business or Application–to–Application integration.

XML Gateway Error Processing Item Type – The XML Gateway Error
Processing Item Type contains error handling processes to manage
errors detected by the Oracle Workflow Business Event System or
Oracle XML Gateway. The error processes are: Default Error Process,
ECX Engine Notification Process, ECX Main Error Process, ECX Main
Inbound Error Process, ECX Main Outbound Error Process, Error
Handling for Inbound Messages, and Error Handling for Outbound
Messages.

The XML Gateway Error Processing Item Type supports two event
activities: Receive Error and Receive Send Notification Event. The
Receive Error event is used by the XML Gateway to indicate that the
XML Gateway execution engine has detected an error. The Receive
Send Notification Event is used to indicate that the execution engine
has identified a need to send a notification for errors related to an
inbound process.

Oracle Workflow error handling provides active error notification to
the XML Gateway System Administrator or Trading Partner with
support for the Workflow retry and reprocess features. The functions
provided by the XML Gateway Error Processing Item Type are: ECX
Reprocess Inbound, ECX Resend Outbound Message, Get ECX In Error
Details, Get ECX Out Error Details, Get System Administrator Role,
and Get Trading Partner Role.

For more information, see: Oracle XML Gateway User’s Guide.

B – 18 Oracle Workflow Guide

Oracle Workflow Implementation in the Oracle9i Platform

The products listed below leverage Oracle Workflow for business
process definition and integration. A full description of each feature is
documented in its respective product’s User’s Guide or Configuration
Guide, if one is available.

See Also

Oracle Support Policy for Predefined Workflows, Events, and
Subscriptions: page B – 20

Oracle Warehouse Builder

Oracle Warehouse Builder includes a Workflow Deployment Wizard
that lets you deploy extract, transform, and load mappings to Oracle
Workflow as functions within an item type. You can then use Oracle
Workflow Builder to define the sequence of these functions as a
workflow process. In designing the process, you can specify job
dependencies between the mappings to ensure that jobs run in the
proper order. You can then run the process from Oracle Workflow or
schedule the process to run using Oracle Enterprise Manager.

By defining jobs as a workflow process, you can automate the entire
schedule for a set of jobs. When you run the process, Oracle Workflow
manages the jobs so that they run in the sequence defined in the
process. If an exception occurs, Oracle Workflow terminates the
process. This approach minimizes the manual intervention required to
manage warehouse load and refresh jobs.

For more information, see: Managing Dependencies Using Oracle
Workflow, Oracle Warehouse Builder User’s Guide.

Oracle9iAS InterConnect

The Oracle Workflow Business Event System enables Oracle9iAS
InterConnect and Oracle Workflow to work together to provide a
complete business process driven integration solution. With Oracle9iAS
InterConnect and Oracle Workflow, you can define business
collaborations across two or more applications to implement the
business processes for an organization.

Simple business process definitions can be implicitly captured in the
messaging defined through Oracle9iAS InterConnect core functionality.
For more complex business processes, Oracle9iAS InterConnect
leverages the robust design time and runtime Oracle Workflow

B – 19Oracle Workflow Implementation in Other Oracle
Products

business process definition and execution support to make the
processes explicit and manageable. For example, Oracle Workflow
allows you to model error management for exceptions, human
interaction such as approvals, message junctions including both
message fan–in and fan–out, stateful routing, and composite services
involving communication across several applications.

The Oracle9iAS InterConnect iStudio design tool automatically
generates Oracle Workflow business event and subscription definitions
corresponding to common view events and procedures. You can launch
the Oracle Workflow home page from iStudio to review these
definitions.

The iStudio tool also deploys process bundles as Oracle Workflow item
type definitions. These item types include starter workflow processes
with Oracle Workflow event activities that correspond to Publish,
Subscribe, Invoke, and Implement activities defined in iStudio. You can
then launch Oracle Workflow Builder from iStudio to complete the
workflow process definition by specifying the sequence of the event
activities and optionally adding other activities such as notifications or
functions.

For example, iStudio might generate a workflow process with two
event activities, one that receives a CreatePO event and another that
sends an AcceptPO event. You can then use Oracle Workflow Builder
to define the business process that controls the execution of these
activities. For instance, add a notification activity to send an e–mail
requesting approval after the CreatePO event is received and before the
AcceptPO is event is sent.

At runtime, Oracle9iAS InterConnect and Oracle Workflow
communicate with each other through the Oracle Workflow Business
Event System, leveraging the Oracle Advanced Queuing messaging
infrastructure, to execute business processes defined across multiple
applications.

For more information, see: Oracle9iAS InterConnect and Oracle
Workflow, Oracle9iAS InterConnect User Guide.

B – 20 Oracle Workflow Guide

Oracle Support Policy for Predefined Workflows, Events, and
Subscriptions

Oracle Workflow is embedded in Oracle Applications and is used by its
modules to automate and streamline business processes. You can use
Oracle Workflow Builder to easily modify an existing business process
without changing its application’s code. Oracle Workflow also allows
you to extend your workflow processes as your business rules change
and mature. Additionally, you can use the Event Manager to modify
event and subscription definitions without changing application code.

Before you use Oracle Workflow to customize any predefined
workflow process, event, or subscription, you should familiarize
yourself with the following customization guidelines to ensure
standard and safe design and development practices. By following
these guidelines, you will be able to supply important information to
Oracle Support Services in helping you resolve any issues that arise
from your customizations.

Customization Guidelines

1. Verify that all setup steps have been completed as documented in
the Oracle Workflow Guide, and the product–specific User’s
Guides.

2. Test the unmodified seeded workflow, event, or subscription on a
test database and ensure that it runs successfully with the setup
and data specific to your environment.

3. Refer to the product–specific User’s Guide and any documentation
update, available on MetaLink, for the specific workflow, event, or
subscription of interest. These documentation sources specifically
mention what should NOT be modified. Oracle Support Services
will not support modifications to any object that is specifically
documented as not modifiable.

4. Gradually build in customizations step–by–step, and test the
customized workflow or subscription after each step.

5. When creating PL/SQL procedures, conform to the standard
PL/SQL API templates documented in the Oracle Workflow Guide.
Be sure to handle exceptions in the event of an error so you can
track down the procedure where the error has occurred.

6. Do not implement the customized workflow, event, or subscription
in production without fully ensuring that it works successfully on a
test database, which is a replica of your production setup.

B – 21Oracle Workflow Implementation in Other Oracle
Products

Resolving Customization Issues

If you encounter a problem when customizing a seeded workflow,
event, or subscription, you should:

• Provide the Support analyst with the modified Workflow
definition file or event or subscription definition, and where
possible, identify the exact step where the problem occurred.

• Provide the Support analyst with results of running the
unmodified seeded Workflow or subscription.

What Is NOT Supported

The following types of customizations are not supported:

1. Modifying a workflow object that has a protection level that is less
than 100.

2. Altering a workflow object’s protection level if its original
protection level is less than 100.

3. Modifying your access level to an unauthorized level of less than
100 for the purpose of modifying workflow objects that are
protected at levels less than 100.

4. Customizations that are explicitly documented as being
UNSUPPORTED in the seeded workflow’s product–specific User’s
Guide or documentation update notes. This includes modifying
processes, attributes, function activities, event activities,
notifications, lookup types, messages, events, or subscriptions that
are specifically documented as not to be modified.

5. Manual modifications of Workflow tables with a prefix of WF_ or
FND_ unless it is documented in the Oracle Workflow Guide or is
required by Oracle Support Services.

What Is Supported

The following types of customizations are supported:

1. Any customization that is stated as Required in the seeded
workflow’s, event’s, or subscription’s product–specific User’s
Guide or documentation update notes.

2. Customization examples documented in the product–specific
User’s Guide or documentation update notes. Any issues that

B – 22 Oracle Workflow Guide

arise are fully supported to resolution, to the extent that the
customization example was followed as documented. Any
deviation from what is documented amounts to a custom
development issue that needs further evaluation. See number 3
below.

3. Customizations that are not explicitly stated as unsupported
customizations, as required customizations, or as supported
customization examples are supported to the extent that the
customer must first isolate the problem following the
Customization Guidelines discussed earlier. If upon evaluation,
Oracle Support Services deems that the isolated problem stems
from an Oracle product, Oracle will supply a solution. Otherwise,
it is the responsibility of the customer to correct the custom
development issue.

A P P E N D I X

C
T

C – 1Oracle Workflow Performance Concepts

Oracle Workflow
Performance Concepts

his appendix describes concepts and techniques that you can use
for performance gain when running Oracle Workflow.

C – 2 Oracle Workflow Guide

Oracle Workflow Performance Concepts
The performance of Oracle Workflow depends on several different
factors. You can enhance performance in your workflow process design
through effective use of synchronous, asynchronous, and forced
synchronous processes, item attributes, message attributes,
subprocesses, and deferred activities. You can also use partitioning and
purging techniques to address performance issues associated with large
quantities of runtime data.

See Also

The Oracle Applications Tuning Handbook by Andy Tremayne and Steve
Mayze (Oracle Press, ISBN 0–07–212549–7)

Oracle Database Concepts

Designing Workflow Processes for Performance

You can enhance the performance of your workflow processes through
effective process design.

Synchronous, Asynchronous, and Forced Synchronous Workflows

When designing a workflow process, you must decide whether you
want it to be executed as a synchronous, asynchronous, or forced
synchronous process. The process design impacts the amount of time it
takes for the Workflow Engine to return control to the calling
application that initiates the process.

• Synchronous—A synchronous process contains only activities
that can be executed immediately, so that the Workflow Engine
executes the process without interruption from start to finish.
The Workflow Engine does not return control to the calling
application until it completes the process. With a synchronous
process, you can immediately check for process results that were
written to item attributes or directly to the database. However,
the user must wait for the process to complete. If the process
takes a long time, the application may appear to hang. In this
case, you should change the process to an asynchronous process.

• Asynchronous—An asynchronous process is a process that the
Workflow Engine cannot complete immediately because it
contains activities that interrupt the flow. Examples of activities
that force an asynchronous process include deferred activities,

C – 3Oracle Workflow Performance Concepts

notifications with responses, blocking activities, and wait
activities. Rather than waiting indefinitely when it encounters
one of these activities, the Workflow Engine sets the audit tables
appropriately and returns control to the calling application. The
workflow process is left in an unfinished state until it is started
again, usually by the Notification System, Business Event
System, or the background engine. With an asynchronous
process, the user does not have to wait for the process to
complete to continue using the application. However, the results
of the process are not available until the process is completed at
a later time.

• Forced synchronous—A forced synchronous process completes
in a single SQL session from start to finish and never inserts into
or updates any database tables. As a result, the execution speed
of a forced synchronous process is significantly faster than a
typical synchronous process. The process results are available
immediately upon completion. However, no audit trail is
recorded. You may want to use a forced synchronous process if
your application needs to generate a specific result quickly and
recording an audit trail is not a concern. To create a forced
synchronous process, you must set the item key of your process
to #SYNCH and follow certain restrictions in designing your
process, such as not including any notification activities.

See Also

Overview of the Workflow Engine: page 8 – 3

Synchronous, Asynchronous, and Forced Synchronous Processes: page
8 – 14

Item Attributes

Item attributes act as global variables that can be referenced or updated
by any activity within a workflow process. The number of item
attributes directly affects the startup time for work items, because the
Workflow Engine creates runtime copies of all item attributes when a
new work item is created. For this reason, item attributes should be
kept to a minimum.

Item attributes should be used for:

• Storing working information for the work item.

• Token replacement for messages. For messages where the
number of lines may vary, such as in repeating groups, do not
create individual item attributes for each line. Instead, use item

C – 4 Oracle Workflow Guide

and message attributes of type Document to combine the lines
together.

• Storing primary key values so that functions can look up all
necessary values from the database.

• Temporary placeholders to set activity attributes dynamically.
For example, the performer of a notification may only be known
at runtime, so you can reference an item attribute and seed the
desired value just before executing the notification.

Item attributes should reference static values or values that are not in
the database so that there are no concerns about keeping the values
synchronized. (Primary key values, however, do not change.) Do not
implement every column within a table as an item attribute.

Item attribute types that can help you reduce the number of attributes
you need include the following:

• Document—The attribute value is an attached document, which
enables a complex structure to be rendered inline, or attached to
notifications. You can specify the following types of documents:

– PL/SQL document—A document representing data from
the database as a character string, generated from a PL/SQL
procedure.

– PL/SQL CLOB document—A document representing data
from the database as a character large object (CLOB),
generated from a PL/SQL procedure.

• Role—The attribute value is the internal name of a role. If a
message attribute of type role is included in a notification
message, the attribute automatically resolves to the role’s display
name, eliminating the need for you to maintain separate
attributes for the role’s internal and display names. Also, when
you view the notification from a web browser, the role display
name is a hypertext link to the e–mail address for that role.

Whenever multiple item attributes will be created, or multiple item
attribute values will be set during workflow processing, use the array
versions of the Add Item Attribute and Set Item Attribute workflow
engine APIs (AddItemAttributeArray and SetItemAttributeArray,
respectively). These APIs will significantly decrease the number of
calls to Workflow Engine APIs, which can have a measurable impact on
performance during batch processing. See: AddItemAttributeArray:
page 8 – 46 and SetItemAttributeArray: page 8 – 53.

See Also

Item Type Attributes: page 4 – 2

C – 5Oracle Workflow Performance Concepts

Attribute Types: page 4 – 3

Message Attributes

To enhance performance, message attributes should be kept to a
minimum. For messages where the number of lines may vary, such as
in repeating groups, do not create individual item and message
attributes for each line (LINE_INFO1, LINE_INFO2, etc.). Instead, use
item and message attributes of type Document to combine the lines
together.

See Also

Attribute Types: page 4 – 3

Send and Respond Message Attributes: page 4 – 24

Subprocesses

When you design a workflow process, you can group a collection of
activities together in a process activity which represents a subprocess
within the main process. Using subprocesses judiciously can help make
workflow diagrams clearer and easier to read and can simplify
workflow monitoring and maintenance. However, subprocesses also
result in additional DML operations and additional state information
stored in Workflow tables. Consequently, you should avoid
unnecessary use of subprocesses when there is no functional benefit.

For example, the following two processes, Process 1 and Process 2, are
functionally identical, both performing a function called Function 1.
However, they result in different numbers of state rows being stored in
Workflow tables.

Process 1 contains a Start activity, a Subprocess activity, and an End
activity. The subprocess contains a Start activity, the Function 1 activity,
and an End activity. This process stores 7 state rows in Workflow
tables.

C – 6 Oracle Workflow Guide

Process 2 simply contains a Start activity, the Function 1 activity, and an
End activity. This process stores only 4 state rows in Workflow tables.

Because more rows are stored in Workflow tables, the kind of design
shown in the Process 1 diagram will result in slower workflow
throughput and a need to purge Workflow runtime tables more
frequently than what should be necessary with the Process 2 design.

Note: This guideline is not meant to imply that subprocesses
should not be used at all. Collapsing all subprocesses can make
workflow diagrams unreadable and difficult to maintain. This
recommendation merely highlights that unnecessary overuse of
subprocesses can have a negative performance impact.

See Also

To Create a Process Activity: page 4 – 57

C – 7Oracle Workflow Performance Concepts

Deferring Activities

The simplest and most effective way to improve the online user’s
response time is to defer function activities. You may want to defer
activities that require a large amount of processing resource or time to
complete. Oracle Workflow lets you manage the load on the Workflow
Engine and the response time for the user by setting up supplemental
engines to run these costly activities as background tasks. In these
cases, the costly activity is deferred by the Workflow Engine and run
later by a background engine.

When an activity is deferred, the main Workflow Engine can then
continue to the next available activity, which may occur on some other
parallel branch of the process. If no other activity is available to be
executed, the Workflow Engine returns control immediately to the
calling application. The user remains unaware that processing is still
taking place, rendering a faster execution time.

To defer an activity, set the activity’s cost above the default threshold
cost at design time. The threshold cost is a PL/SQL package variable
with a default value of 50 hundredths of a second. Set a cost above this
threshold for all activities that you don’t want the user to wait for.

At runtime, the Workflow Engine defers any thread to the background
as soon as it encounters an activity with a cost higher than the
threshold. Then the background engine later identifies the process as
deferred and continues its execution.

In addition to deferred activities, background engines also handle
timed out activitites and stuck processes. You can run as many
background engines as you want. You must have at least one
background engine that can check for timed out activities, one that can
process deferred activities, and one that can handle stuck processes. At
a minimum, you need to set up one background engine that can handle
both timed out and deferred activities as well as stuck processes.

Generally, you should run a separate background engine to check for
stuck processes at less frequent intervals than the background engine
that you run for deferred activities, normally not more often than once
a day. Run the background engine to check for stuck processes when
the load on the system is low.

See Also

Deferred Processing: page 8 – 9

Setting Up Background Workflow Engines: page 2 – 43

To Set Engine Thresholds: page 2 – 47

C – 8 Oracle Workflow Guide

Managing Runtime Data for Performance

When the Workflow Engine executes any type of workflow other than
forced synchronous processes, status information is stored in runtime
tables. The amount of data stored in these tables will grow depending
on the complexity and number of workflows being executed.

Performance issues associated with large quantities of runtime data can
be addressed by:

• Partitioning

• Purging

Partitioning for Performance

Partitioning addresses key issues in supporting very large tables and
indexes by letting you decompose them into smaller and more
manageable pieces called partitions. SQL queries and DML statements
do not need to be modified in order to access partitioned tables.
However, once partitions are defined, DDL statements can access and
manipulate individual partitions rather than entire tables or indexes. In
this way, partitioning can simplify the manageability of large database
objects. Also, partitioning is entirely transparent to applications.

You can optionally run a script to partition certain Workflow tables that
store runtime status data. This step is highly recommended for
performance gain. Before running the script, you should ensure that
you have backed up the tables that will be partitioned and that you
have allowed sufficient free space and time for the script to run. For the
version of Oracle Workflow embedded in Oracle Applications, the
script is called wfupartb.sql and is located in the admin/sql
subdiretory under $FND_TOP. For the standalone version of Oracle
Workflow, the script is called wfupart.sql and is located in the
wf/admin/sql subdirectory in your Oracle Home. See: Partitioning
Workflow Tables: page 2 – 12.

Purging for Performance

You can use the Workflow purge APIs to purge obsolete runtime data
for completed items and processes, and to purge information for
obsolete activity versions that are no longer in use. You may want to
periodically purge this obsolete data from your system to increase
performance. The Workflow purge APIs are defined in the PL/SQL
package called WF_PURGE.

The availability of runtime data for purging depends on the persistence
type of the item type. The persistence type controls how long a status
audit trail is maintained for each instance of the item type.

C – 9Oracle Workflow Performance Concepts

• If you set an item type’s Persistence to Permanent, the runtime
status information is maintained indefinitely until you
specifically purge the information by calling the procedure
WF_PURGE.TotalPerm().

• If you set an item type’s Persistence to Temporary, you must also
specify the number of days of persistence (’n’). The status audit
trail for each instance of a Temporary item type is maintained for
at least ’n’ days of persistence after its completion date. After
the ’n’ days of persistence, you can then use any of the
WF_PURGE APIs to purge the item type’s runtime status
information. See: WF_PURGE: page 8 – 111.

• If you set an item type’s Persistence to Synchronous, Oracle
Workflow expects instances of that item type to be run as forced
synchronous processes with an item key of #SYNCH. Forced
synchronous processes complete in a single SQL session from
start to finish and never insert into or update any database
tables. Since no runtime status information is maintained, you do
not normally need to perform any purging for a process with the
Synchronous persistence type. However, if you run the process
with a unique item key in asynchronous mode for testing or
debugging purposes, Oracle Workflow does maintain runtime
status information for that process instance. You can purge this
information by changing the item type’s Persistence to
Temporary and running any of the WF_PURGE APIs. Then
change the item type’s Persistence back to Synchronous. See:
Synchronous, Asynchronous, and Forced Synchronous Processes:
page 8 – 14.

Additionally, the administration script wfrmtype.sql is provided to
delete runtime data for a particular item type. This script prompts you
for an item type to purge from a list of valid item types, then asks you
to choose between deleting all runtime data associated with the
specified item type or deleting only runtime data for the completed
activities and items of the specified item type. See: Wfrmtype.sql: page
16 – 15.

See Also

WF_PURGE: page 8 – 111

Persistence Type: page 4 – 4

C – 10 Oracle Workflow Guide

Glossary – 1

Glossary

Access Level A numeric value ranging from 0
to 1000. Every workflow user operates at a
specific access level. The access level
defines whether the user can modify certain
workflow data. You can only modify data
that is protected at a level equal to or
higher than your access level.

Activity A unit of work performed during a
business process.

Activity Attribute A parameter that has been
externalized for a function activity that
controls how the function activity operates.
You define an activity attribute by
displaying the activity’s Attributes
properties page in the Activities window.
You assign a value to an activity attribute
by displaying the activity node’s Attribute
Values properties page in the Process
window.

Agent A named point of communication
within a system.

Attribute See Activity Attribute, Item Type
Attribute, or Message Attribute.

Background Engines A supplemental
Workflow Engine that processes deferred or
timed out activities.

Business Event See Event.

Cost A relative value that you can assign to a
function or notification activity to inform
the Workflow Engine how much processing
is required to complete the activity. Assign
a higher cost to longer running, complex
activities. The Workflow Engine can be set
to operate with a threshold cost. Any
activity with a cost above the Workflow
Engine threshold cost gets set to
’DEFERRED’ and is not processed. A
background engine can be set up to poll for
and process deferred activities.

Directory Services A mapping of Oracle
Workflow users and roles to a site’s
directory repository.

Event An occurrence in an internet or intranet
application or program that might be
significant to other objects in a system or to
external agents.

Event Activity A business event modelled as
an activity so that it can be included in a
workflow process.

Event Data A set of additional details
describing an event. The event data can be
structured as an XML document. Together,
the event name, event key, and event data
fully communicate what occurred in the
event.

Glossary – 2 Oracle Workflow Guide

Event Key A string that uniquely identifies an
instance of an event. Together, the event
name, event key, and event data fully
communicate what occurred in the event.

Event Message A standard Workflow
structure for communicating business
events, defined by the datatype
WF_EVENT_T. The event message contains
the event data as well as several header
properties, including the event name, event
key, addressing attributes, and error
information.

Event Subscription A registration indicating
that a particular event is significant to a
system and specifying the processing to
perform when the triggering event occurs.
Subscription processing can include calling
custom code, sending the event message to
a workflow process, or sending the event
message to an agent.

External Functions Programs that are
executed outside of the Oracle database
server.

External Java Functions Java programs that
are executed outside of the Oracle database
server by the Java Function Activity Agent.

Function A PL/SQL stored procedure that
can define business rules, perform
automated tasks within an application, or
retrieve application information. The
stored procedure accepts standard
arguments and returns a completion result.

Function Activity An automated unit of work
that is defined by a PL/SQL stored
procedure.

Item A specific process, document, or
transaction that is managed by a workflow
process. For example, the item managed by
the Requisition Approval Process workflow
is a specific requisition created by Oracle
Internet Commerce’s Web Requisitions
page.

Item Attribute See Item Type Attribute.

Item Type A grouping of all items of a
particular category that share the same set
of item attributes. For example, PO
Requisition is an item type used to group
all requisitions created by Oracle Internet
Commerce’s Web Requisitions page. Item
type is also used as a high level grouping
for processes.

Item Type Attribute A feature associated with
a particular item type, also known as an
item attribute. An item type attribute is
defined as a variable whose value can be
looked up and set by the application that
maintains the item. An item type attribute
and its value is available to all activities in a
process.

Lookup Code An internal name of a value
defined in a lookup type.

Lookup Type A predefined list of values.
Each value in a lookup type has an internal
and a display name.

Message The information that is sent by a
notification activity. A message must be
defined before it can be associated with a
notification activity. A message contains a
subject, a priority, a body, and possibly one
or more message attributes.

Glossary – 3

Message Attribute A variable that you define
for a particular message to either provide
information or prompt for a response when
the message is sent in a notification. You
can use a predefine item type attribute as a
message attribute. Defined as a ’Send’
source, a message attribute gets replaced
with a runtime value when the message is
sent. Defined as a ’Respond’ source, a
message attribute prompts a user for a
response when the message is sent.

Node An instance of an activity in a process
diagram as shown in the Process window.

Notification An instance of a message
delivered to a user.

Notification Activity A unit of work that
requires human intervention. A
notification activity sends a message to a
user containing the information necessary
to complete the work.

Notification Mailer A concurrent program
that sends e–mail notifications to users via
a mail application, and processes e–mail
responses.

Notification Web Page A Web page that you
can view from any Web browser to query
and respond to workflow notifications.

Performer A user or role assigned to perform
a human activity (notification). Notification
activities that are included in a process
must be assigned to a performer.

Process A set of activities that need to be
performed to accomplish a business goal.

Process Definition A workflow process as
defined in Oracle Workflow Builder.

Process Activity A process modelled as an
activity so that it can be referenced by other
processes.

Protection Level A numeric value ranging
from 0 to 1000 that represents who the data
is protected from for modification. When
workflow data is defined, it can either be
set to customizable (1000), meaning anyone
can modify it or it can be assigned a
protection level that is equal to the access
level of the user defining the data. In the
latter case, only users operating at an access
level equal to or lower than the data’s
protection level can modify the data.

Result Code The internal name of a result
value, as defined by the result type.

Result Type The name of the lookup type that
contains an activity’s possible result values.

Result Value The value returned by a
completed activity.

Role One or more users grouped by a
common responsibility or position.

Subscription See Event Subscription.

System A logically isolated software
environment such as a host machine or
database instance.

Timeout The amount of time during which a
notification activity must be performed
before the Workflow Engine transitions to
an error process or an alternate activity if
one is defined.

Transition The relationship that defines the
completion of one activity and the
activation of another activity within a
process. In a process diagram, the arrow
drawn between two activities represents a
transition.

Workflow Definitions Loader A concurrent
program that lets you upload and
download workflow definitions between a
flat file and a database.

Glossary – 4 Oracle Workflow Guide

Workflow Engine The Oracle Workflow
component that implements a workflow
process definition. The Workflow Engine
manages the state of all activities for an
item, automatically executes functions and
sends notifications, maintains a history of
completed activities, and detects error
conditions and starts error processes. The
Workflow Engine is implemented in server
PL/SQL and activated when a call to an
engine API is made.

Index – 1

Index

Symbols
&#NID, 4–12, 4–13, 4–15, 4–32
#FROM_ROLE attribute, 4–25
#HIDE_REASSIGN attribute, 4–25

A
AbortProcess(), 8–36
Access Level, 2–102

default, 2–105
Access level indicator, 4–17
Access property page, 4–17
Access protection

See also Access level; Protection level
preserving customizations, 4–18

AccessCheck(), 8–230
ACCOUNT parameter, 2–59
Acknowledge Ping event, 14–8
ACTID, 7–5, 7–14
Actions, for subscriptions, 13–37
Activities, 3–10, 4–42

accessing from different data stores, 5–7, 6–2
Concurrent Manager, 6–22
copy, 4–60
cost, 4–47
create, 4–48, 4–50, 4–54, 4–57
deferred, 4–47
effective date, 4–59
error process, 4–59
event, 4–42, 4–45
External Java functions, 2–86

for an error process, 6–26
function, 4–42, 4–44
icons, 2–85, 4–49, 4–52, 4–54, 4–58, 4–62
in a loop, 4–60
in the Buyer: Advanced Shipment Notice

process, 15–84
in the Buyer: Receive Supplier Invoicing

process, 15–86
in the Buyer: Receive Supplier PO

Acknowledgement process, 15–81
in the Buyer: Send PO to Supplier process,

15–78
in the Buyer: Top Level PO process, 15–75
in the Detail Ping process, 13–82
in the Master Ping process, 13–80
in the Notify Approver subprocess, 15–21
in the Requisition process, 15–15
in the Supplier: Advanced Shipment Notice

process, 15–99
in the Supplier: Credit Check process, 15–95
in the Supplier: Get Order Details process,

15–92
in the Supplier: Send Supplier Invoice

process, 15–101
in the Supplier: Stock Check process, 15–97
in the Supplier: Top Level Order process,

15–88
in the Workflow Event Protocol process,

14–21
joining branches, 5–4
notification, 4–42, 4–43
optional details, 4–59
process, 4–42, 4–46
processing cost, 8–9
result type, 4–48, 4–52, 4–58

Index – 2 Oracle Workflow Guide

Standard, 4–42, 6–2
statuses, 8–3
System: Error, 4–42
timing out, 5–10
version number, 4–60

Activities(), 8–114
Activity attributes

See also Function activity attributes
setting values for, 5–12

Activity nodes
in the Buyer: Advanced Shipment Notice

process, 15–84
in the Buyer: Receive Supplier Invoicing

process, 15–86
in the Buyer: Receive Supplier PO

Acknowledgement process, 15–81
in the Buyer: Send PO to Supplier process,

15–78
in the Buyer: Top Level PO process, 15–75
in the Detail Ping process, 13–82
in the Master Ping process, 13–80
in the Notify Approver subprocess, 15–21
in the Requisition process, 15–15
in the Supplier: Advanced Shipment Notice

process, 15–99
in the Supplier: Credit Check process, 15–95
in the Supplier: Get Order Details process,

15–92
in the Supplier: Send Supplier Invoice

process, 15–101
in the Supplier: Stock Check process, 15–97
in the Supplier: Top Level Order process,

15–88
in the Workflow Event Protocol process,

14–21
Ad hoc users and roles, 5–24

APIs, 8–121
AddAttr(), 8–216
AddCorrelation(), 8–294
AddItemAttr(), 8–43
addItemAttrDate(), 8–43
AddItemAttrDateArray(), 8–46
addItemAttrNumber(), 8–43
AddItemAttrNumberArray(), 8–46
addItemAttrText(), 8–43

AddItemAttrTextArray(), 8–46
AddParameterToList, 8–253
AddParameterToList(), 8–275
AddParameterToListPos(), 8–276
Address, 8–253
AddUsersToAdHocRole(), 8–138
AdHocDirectory(), 8–118
Administrator privileges, 2–16
Advanced Queues integration, 8–162
Advanced Queuing, 13–2
Agent, datatype, 8–237
Agent Created event, 14–4
Agent Deleted event, 14–5
Agent Updated event, 14–4
Agents, 13–22

defining, 13–29
deleting, 13–33
direction, 13–22
finding, 13–32
pinging, 13–77
protocol, 13–23
queue handlers, 13–25
queues, 13–24
scheduling listeners, 13–56
scheduling propagations, 13–61
updating, 13–33

Agents web page, 13–29, 13–33
ALLOW_FORWARDED_RESPONSE

parameter, 2–61
And activity, 6–2
Any event, 14–10
Any transitions, 5–2
APIs, 8–3
AQ message payload, 8–163
Arrows, 5–2
Assign activity, 6–14
AssignActivity(), 8–74
Asynchronous processes, 8–14, C – 2
Attribute, token substitution, 4–41
Attribute types

attribute, 4–11
date, 4–10, 4–35
document, 4–11, 4–14, 4–36

Index – 3

event, 4–11, 4–36
form, 4–10, 4–13, 4–36
lookup, 4–10, 4–35
number, 4–10, 4–35
role, 4–11, 4–36
text, 4–10, 4–35
URL, 4–10, 4–12, 4–35

Attribute–type attributes, 4–4
Attributes

copy, 4–16
type, 4–3, 4–10, 4–35

AUTOCLOSE_FYI parameter, 2–61
Automatic Notification Handler, 10–25
Automatic replication, of Event Manager

objects, 13–71
Automatic responses, 10–25
Automatic routing, 10–25

B
B2B Advanced Shipment Notice event, 15–106
B2B Invoice event, 15–107
B2B Purchase Order Acknowledgement event,

15–105
B2B Purchase Order event, 15–102
Background engine, scripts, 16–7
Background Engines

about, 2–43
scripts, 16–6
starting, 2–44
submitting, 2–45

Background(), 8–41
BeginActivity(), 8–67
Block activity, 6–5
Business Event System, 1–3

checking setup, 13–53
managing business events, 13–2
overview, 8–235
Ping/Acknowledge example, 13–77
predefined events, 14–2
setting up, 2–96

Business Event System Replication APIs, 8–300

Business events, 13–4
in Workflow processes, 8–17

Buyer Workbench, web page, 15–67
Buyer: Advanced Shipment Notice process,

summary, 15–83
Buyer: Receive Supplier Invoicing process,

summary, 15–85
Buyer: Receive Supplier PO Acknowledgement

process, summary, 15–80
Buyer: Send PO to Supplier process, summary,

15–78
Buyer: Top Level PO process, summary, 15–73

C
Callback functions, 7–13

command, 7–15
for item types, 4–5

Cancel(), 8–209
CancelGroup(), 8–210
Check Setup web page, 13–53, 13–58, 13–62
Checking

activity versions, 16–17
background engines, 16–7
directory service data model, 16–10
foreign/primary key references, 16–13
workflow data model, 16–16

CLEAR(), 8–102
ClearMsgStack(), 8–180
Close(), 8–215
Compare Date activity, 6–3
Compare Event Property activity, 6–16
Compare Execution Time activity, 6–3
Compare Number activity, 6–3
Compare Text activity, 6–3
compareTo(), 8–100
Comparison activities, 6–3
CompleteActivity(), 8–69
CompleteActivityInternalName(), 8–72
Concurrent Manager activities, 6–22
Concurrent Manager Functions item type, 6–22
Concurrent program

FNDWFLST, 16–4

Index – 4 Oracle Workflow Guide

FNDWFPR, 16–5
Concurrent programs

Notification Mailer, 2–48, 2–56
Purge Obsolete Workflow Runtime Data,

8–119
Workflow Agent Listener, 8–272
Workflow Background Process, 2–45
Workflow Definitions Loader, 2–109
Workflow Resource Generator, 8–105

CONNECT parameter, 2–58
Constants, WFAttribute class, 8–90
Content, 8–252
Content–attached checkbox, 4–37
CONTEXT(), 8–108
Continue Flow activity, 6–12
Coordinating master/detail activities, 6–11
Cost threshold, 4–47
CreateAdHocRole(), 8–136
CreateAdHocUser(), 8–134
CreateForkProcess(), 8–38
CreateMsg(), 8–181
CreateProcess(), 8–21
Custom logos, in web pages, 2–84
Customization Level, 2–105

for activities, 4–8, 4–11, 4–20, 4–32, 4–50,
4–53, 4–56, 4–58, 4–63

D
Data types, wf_payload_t, 8–163
Database links

checking, 13–55
creating, 2–96

Datatypes
example, 8–255
for the Business Event System, 8–236
WF_AGENT_T, 8–237
WF_EVENT_T, 8–242
WF_PARAMETER_LIST_T, 8–241
WF_PARAMETER_T, 8–239

Date–type attributes, 4–3
DBA Studio, 2–96
DEBUG parameter, 2–62

Default Error Process, 6–28
Default Event Error Process, 6–34
Default transitions, 5–2
DEFAULT_ERROR, 6–28
DEFAULT_EVENT_ERROR, 6–34
Default_Rule(), 8–281
Defer Thread activity, 6–6
Deferred activities, 2–43, 4–47

performance, C – 7
Deferred processing

for event subscriptions, 13–41
for workflow processes, 2–43, 8–9, C – 7

DeferredQueue function, 8–177
Delete

all workflow data, 16–14
data for an item type, 16–15
item type attributes, 16–14
runtime data for an item type, 16–15, C – 9
workflow status information, 16–15

Demonstration, directory service, 15–7
Dequeue, queue handler, 7–24
DequeueEventDetail(), 8–170
DequeueException(), 8–176
DequeueOutbound(), 8–167
Detail Notification web page, 10–19
Detail Ping process, summary, 13–81
Detail process, 6–12
Detail Survey process

activities, 15–47
summary, 15–46

Diagram arrows, 5–2
Direct Response e–mail, 10–3
DIRECT_RESPONSE parameter, 2–60
Directory repository, 2–21
Directory Service

in Navigator tree, 3–4
view from Builder, 5–26

Directory services, 2–21
checking the data model, 2–27, 16–10
integrating with local workflow users, 2–28
integrating with native Oracle users, 2–27
integrating with Oracle HR, 2–27
synchronization, 2–30, 8–144

Index – 5

Directory Services APIs, 8–121
DISCARD parameter, 2–63
Dispatch mode, 13–43
Document integration, 4–3, 4–11, 4–36, 7–17
Document Management, item type, 15–49
Document Management APIs, 8–185
Document management integration, 4–3, 4–6
Document message attributes, attached vs

embedded, 4–37
Document Review process, 15–49

activities, 15–52
summary, 15–50

Document Type Definitions
Business Event System, 8–300
WF_AGENTS, 8–311
WF_EVENT_GROUPS, 8–305
WF_EVENT_SUBSCRIPTIONS, 8–314
WF_EVENTS, 8–302
WF_SYSTEMS, 8–308

Document–type attributes, 4–3
Documents, 4–6
Dynamic priority, 5–11
Dynamic timeouts, 5–10

E
E–mail notifications, 1–5, 2–48

and HTML attachments, 2–4
example direct response instructions, 10–7
modifying mail templates, 2–69
requirements, 2–4
summaries, 10–24
templates for, 2–48, 10–3
with HTML attachments, 10–2

Edit menu, A – 3
Effective date, 3–16
Effective dates, 3–14, 3–16, 4–59, 8–11
Effectivity, dates of, 3–7
END activities, 5–4
End Activity, 6–8
Engine thresholds, 2–47
Enqueue, queue handler, 7–23

Enqueue(), 8–269
EnqueueInbound(), 8–165
Environment variables

WF_ACCESS_LEVEL, 2–102, 2–106
WF_RESOURCES, 2–42

Error activities, 6–26
Error Check process, 15–54

activities, 15–57
summary, 15–56

Error handling
for event subscriptions, 13–44
for process activities, 8–77
for workflow processes, 8–10

Error process, 4–59, 6–26
Error(), 8–284
Error_Rule(), 8–288
Errored activities, retrying, 16–13
Event activities, 4–45

create, 4–54
Workflow Engine, 8–17

Event activity attributes, 4–56
Event activity details, 5–12
Event APIs, 8–260
Event Created event, 14–2
Event data, 7–21, 13–5, 13–36
Event data URL, 8–50
Event Deleted event, 14–3
Event Function APIs, 8–290
Event Group Creation event, 14–3
Event Group Deleted event, 14–3
Event Group Updated event, 14–3
Event groups, 13–4

defining, 13–8
Event Manager, 13–3
Event messages

datatype, 8–242
enqueuing, 16–10

Event nodes, 5–12
Event Rule APIs, 8–279
Event subscriptions, 13–34

rule functions, 7–25
Event Subscriptions web page, 13–52
Event System Demonstration

data model, 15–64

Index – 6 Oracle Workflow Guide

initiating, 15–66
overview, 15–63
setting up, 15–66

Event System Demonstration process,
installing, 15–64

Event System Local Queues web page, 13–73
Event Updated event, 14–2
Event(), 8–75
Event–type attributes, 4–4
Events, 13–4

defining, 13–5
deleting, 13–15
finding, 13–14
predefined, 14–2
raising, 13–4, 13–65
sending to agents, 13–39
sending to workflow processes, 13–38
updating, 13–15

Events web page, 13–5, 13–8, 13–15, 13–45
Events: Buyer Workbench, web page, 15–67
Events: Track Order, web page, 15–69
Example function activity

Select Approver, 15–26
Verify Authority, 15–29

Example process
Event System Demonstration, 15–63
Requisition, 15–5

Execute Concurrent Program activity, 6–22
execute(), 8–89
External document integration, 4–6
External Java function activities, 2–86, 8–5,

8–82

F
FAILCOMMAND parameter, 2–62
File menu, A – 2
Find Agent web page, 13–32
Find Event web page, 13–14, 13–50
Find Notifications web page, 10–15
Find System web page, 13–19
FND_FNDWFIAS, 11–8

FND_FNDWFNOT, 10–14
FNDWFLST, 8–272

concurrent program, 16–4
FNDWFPR, 8–119

concurrent program, 16–5
Fonts

modifying, 5–21
setting, 5–21

Forced synchronous processes, 8–14, C – 2
Form–type attributes, 4–3
FORWARD mode, 8–13
Forward(), 8–194, 8–205
Frame target, URL attributes, 4–37
FROM parameter, 2–59
FROM_ROLE attribute, 4–25
FUNCMODE, 7–5, 7–6
Function activities, 4–44

create, 4–50
standard Java API, 7–8
standard PL/SQL API, 7–3

Function activity attributes, 4–8, 4–53
Functions, 3–10

See also PL/SQL procedures
Future–dated events, 13–41

G
Generate function, 13–5
Generate()

WF_AGENTS_PKG, 8–312
WF_EVENT_FUNCTIONS_PKG, 8–296
WF_EVENT_GROUPS_PKG, 8–306
WF_EVENT_SUBSCRIPTIONS_PKG, 8–315
WF_EVENTS_PKG, 8–303
WF_SYSTEMS_PKG, 8–309

Get Event Property activity, 6–15
Get Monitor URL activity, 6–14
GET_ERROR(), 8–103
get_launch_attach_url(), 8–187
get_launch_document_url(), 8–186
get_open_dm_select_window(), 8–188, 8–189
get_pref(), 8–148
GetAccessKey(), 8–150

Index – 7

getActivityAttr(), 8–85
GetActivityAttrClob(), 8–66
GetActivityAttrDate(), 8–64
GetActivityAttrEvent(), 8–64
GetActivityAttrInfo(), 8–63
GetActivityAttrNumber(), 8–64
GetActivityAttrText(), 8–64
GetActivityLabel(), 8–25
GetAdvancedEnvelopeURL(), 8–155
GetAttrDate(), 8–223
GetAttrDoc(), 8–225
GetAttrInfo(), 8–219
GetAttrNumber(), 8–223
GetAttrText(), 8–223
GetBody(), 8–227
getCorrelationID, 8–246
GetDiagramURL(), 8–151
GetEnvelopeURL(), 8–153
getErrorMessage, 8–248
getErrorStack, 8–248
getErrorSubscription, 8–247
getEventData, 8–247
getEventKey, 8–247
getEventName, 8–246
getFormat(), 8–97
getFromAgent, 8–247
GetInfo(), 8–220
getItemAttr(), 8–87
GetItemAttrClob(), 8–60
GetItemAttrDate(), 8–57
GetItemAttrDocument(), 8–59
GetItemAttrEvent(), 8–57
getItemAttributes(), 8–61
GetItemAttrInfo(), 8–62
GetItemAttrNumber(), 8–57
GetItemAttrText(), 8–57
getItemTypes(), 8–56
GetItemUserKey(), 8–24
GetMessageHandle(), 8–175
getName

WF_AGENT_T, 8–237

WF_PARAMETER_T, 8–239
WFAttribute, 8–94

getNotificationAttributes(), 8–233
getNotifications(), 8–232
getParameterList, 8–246
getPriority, 8–245
getProcessStatus(), 8–81
getReceiveDate, 8–246
GetRoleDisplayName(), 8–131
GetRoleInfo(), 8–125
GetRoleInfo2(), 8–126
GetRoleName(), 8–130
GetRoleUsers(), 8–123
getSendDate, 8–245
GetShortBody(), 8–228
GetShortText(), 8–222
GetSubject(), 8–226
getSystem, 8–237
GetText(), 8–221
getToAgent, 8–247
getType(), 8–96
GetUserName(), 8–129
GetUserRoles(), 8–124
getValue

WF_PARAMETER_T, 8–239
WFAttribute, 8–95

GetValueForParameter, 8–253
GetValueForParameter(), 8–277
GetValueForParameterPos(), 8–278
getValueType(), 8–98
Global Preferences, web page, 2–14
Global variables, 4–2

H
HandleError(), 8–77
Hardware requirements, 2–2
Help menu, A – 6
Hidden item types, 3–4
HIDE_REASSIGN attribute, 4–25
Home page, 9–2
HTML_MAIL_TEMPLATE parameter, 2–65

Index – 8 Oracle Workflow Guide

HTMLAGENT parameter, 2–62

I
Icons, 2–85

viewing, 4–49, 4–52, 4–54, 4–58
IDLE parameter, 2–61
InboundQueue function, 8–178
Init.ora parameters, 13–54
Initialize, 8–245
Initiating a workflow process, 15–8, 15–36,

15–66
Internal names

updating activity, 16–7
updating activity attributes, 16–7
updating item attributes, 16–8
updating item types, 16–8
updating lookup codes, 16–8
updating lookup types, 16–9
updating message attributes, 16–9
updating messages, 16–9

IsPerformer(), 8–127
Item attributes, external document integration,

4–6
Item type attributes, 4–2, 4–8, 8–12

arrays, 8–13
Event System Demonstration, 15–71
performance, C – 3
Requisition, 15–12
Workflow Send Protocol, 14–18

Item types, 3–9, 4–2
callback function, 4–5
Concurrent Manager Functions, 6–22
context reset, 7–13
copy, 4–15
creation, 4–7
Event System Demonstration, 15–71
loading, 3–12, 3–13
persistence type, 4–4, C – 8
Requisition, 15–12
saving, 3–12
selector functions, 4–5, 7–13
Standard, 6–2
System: Error, 6–26

System: Mailer, 2–69
Workflow Agent Ping/Acknowledge, 13–78
Workflow Send Protocol, 14–18

ITEMKEY, 7–4, 7–14
Items(), 8–113
ItemStatus(), 8–80
ITEMTYPE, 7–4, 7–14

J
Java API, for function activities, 7–8
Java APIs, 8–5
Java Function Activity Agent, 2–86

starting, 2–86
stopping, 2–95, 16–11

Java interface, 8–5
Java monitor tool, 11–2
Java Runtime Environment, 2–5
JavaScript, support in a Web browser, 2–4
Joining activities, 5–4

L
Launch Process activity, 6–6
LaunchProcess(), 8–30
LDAP, 2–30
LDAP APIs, 2–34, 8–144
List of values, in a web interface, 10–24, 13–22
Listen(), 8–270
Listeners

deleting, 13–61
for inbound agents, 13–56
running, 16–6
scheduling, 13–58
updating, 13–61

Load balancing, 6–9
loadActivityAttributes(), 8–84
Loader program. See Workflow Definitions

Loader
Loading item types, 3–13
loadItemAttributes(), 8–83
Local system, 13–17
LOG parameter, 2–62

Index – 9

Log(), 8–283
Login Server, 2–32
Lookup codes, copy, 4–22
Lookup types, 3–9, 4–19

copy, 4–22
creation, 4–20

Lookup–type attributes, 4–3
Loop Counter activity, 6–7
Loop Reset, 5–3
Loops, 4–60, 7–6, 8–10

M
MAPI–compliant mail application, 2–55
Master Ping Process, summary, 13–79
Master process, 6–12
Master/copy systems, 13–72
Master/Detail coordination activities, 6–11

notes on usage, 6–13
Menus, Oracle Workflow Builder, A – 2
Message attributes, 4–23, 4–24, 4–33, 4–34,

15–32
#FROM_ROLE, 4–25
#HIDE_REASSIGN, 4–25
for Workflow Cancelled Mail message, 2–78
for Workflow Closed Mail message, 2–81
for Workflow Invalid Mail message, 2–79
for Workflow Open FYI Mail message, 2–77
for Workflow Open Mail (Direct) message,

2–73
for Workflow Open Mail (Templated)

message, 2–70
for Workflow Open Mail for Outlook

Express message, 2–75
for Workflow Summary Mail message, 2–82
for Workflow URL Attachment message,

2–77
for Workflow Warning Mail message, 2–82
formatted table, 4–26
performance, C – 5
Respond, 4–25, 4–35, 4–39
Send, 4–24, 4–35
source, 4–24, 4–35

Message function, WF_NOTIFICATION(),
4–26

Message propagation, setting up, 13–53
Message templates, for e–mail notifications,

2–69
Messages, 3–9

body, 4–31, 15–31
copy, 4–41
creation, 4–29
overriding default priority, 5–11
subject, 4–30, 15–31
viewing, 15–32

Messages window, 4–23
MIME support, 2–49
Mod_osso, 2–32
Monitoring

Workflow Monitor, 11–2
workitems, 1–5

Multi–consumer queues, 13–40
Multilingual support, 16–5, 16–12

N
Naming conventions, PL/SQL stored

procedures, 15–15
Navigator Toolbar, A – 7
Navigator tree, finding objects in, 3–6
NewAgent(), 8–267
NLS codeset, 2–65
NLS support

in a web session, 2–39
in e–mail notifications, 2–39
in Oracle Workflow Builder, 2–38

Node activities, dynamic priority, 5–11
NODE parameter, 2–59
Nodes

adding to a process, 5–6
start and end, 5–8

NOOP activity, 6–7
Notification, status, 16–12
Notification access keys, 10–3
Notification activities, 4–43

coupling with custom functions, 4–49, 8–13
create, 4–48

Index – 10 Oracle Workflow Guide

Notify Requisition Approval Required,
15–31

Notification APIs, 8–192, 8–197
Notification functions, 4–49, 8–13
Notification history, 4–26
Notification ID token, 4–12, 4–13, 4–15, 4–32
Notification IDs, 10–3
Notification Mailer

about, 2–48
configuration file, 2–58
MIME support, 2–49
notification preference, 2–49
required folders, 2–63
response processing, 2–67
script to restart, 2–67
shutdown, 2–48
starting, 2–56
starting for MAPI–compliant applications,

2–57
starting for UNIX Sendmail, 2–55

Notification method, 10–2
Notification preference, 9–8
Notification preferences, 2–20, 2–49
Notification summaries, via e–mail, 10–24
Notification System, 2–48, 8–192
Notification templates, for e–mail notifications,

2–69
Notification Web page, 1–5

reassigning notifications, 10–22
Notifications, 10–2

dependence on directory services, 10–2
forwarding, 8–194
hiding the Reassign button, 4–25
HTML–formatted e–mail, 10–9
identifying the responder, 8–211
load balancing, 6–9
plain text e–mail using direct response, 10–6
plain text e–mail using templated response,

10–5
plain text e–mail with attachments, 10–11
reassign in Notification Web page, 10–22
reassign via e–mail, 10–12
responding with Notification Web page,

10–22

setting the From Role, 4–25
timed out, 8–195
transferring, 8–195
via e–mail, 2–48, 10–2
via Notification Web page, 10–13

Notifications Worklist. See Worklist web page
Notifications(), 8–115
Notify activity, 6–9
Notify Approver, example notification

activities, 15–31
Notify Approver subprocess, summary, 15–19
Notify Requisition Approval Required, 15–31
Number–type attributes, 4–3

O
OMBAQ_TEXT_MSG, 8–257
On Revisit, 8–11
OpenNotificationsExist(), 8–214
Or activity, 6–2
Oracle Advanced Queues integration, 8–162
Oracle Advanced Queuing, 13–2
Oracle Applications Manager, 1–5
Oracle DBA Studio, 2–96
Oracle HTTP Server, 2–32

identifying the Workflow web agent, 2–17
Workflow server requirements, 2–4

Oracle Internet Directory, 2–30
Oracle Message Broker, 2–100
Oracle Net Services, 2–2
Oracle Workflow, implementation issues, 2–6
Oracle Workflow Builder, 1–3

Loader functionality, 3–15
overview, 3–2
requirements, 2–2
save modes, 3–15, 4–17
starting from command line, 3–17

Oracle Workflow home page, 9–2
Oracle Workflow Manager, 1–5
Oracle Workflow views, 8–157
Oracle9i Application Server, Workflow server

requirements, 2–4
Oracle9iAS Single Sign–On, 2–32

Index – 11

OutboundQueue function, 8–179

P
Parameter, datatype, 8–239
Parameter list, datatype, 8–241
Parameters(), 8–291
Partitioning Workflow tables, 2–12, C – 8
Payload, for Advanced Queues messages,

8–163
Performance

concepts, C – 2
deferred activities, C – 7
item attributes, C – 3
message attributes, C – 5
partitioning Workflow tables, C – 8
purging, C – 8
subprocesses, C – 5
synchronous and asynchronous workflows,

C – 2
Periodic Alert, item type, 15–54
Persistence, 4–4, C – 8
Phase numbers, 13–36, 13–42
Ping Agent event, 14–8
Pinging agents, 13–77
PL/SQL, 1–4

document, 7–17
PL/SQL APIs

for a ’PL/SQL CLOB’ document, 7–17
for a ’PL/SQL’ document, 7–17
for a Queue Handler, 7–23
for a selector or callback function, 7–13
for an Event Data Generate Function, 7–21
for an Event Subscription Rule Function,

7–25
for function activities, 7–3

PL/SQL CLOB, document, 7–17, 7–19
PL/SQL documents, 4–6
PL/SQL stored procedures

creating, 15–15
naming conventions, 15–15
scripts, 15–15

Post–notification functions, 4–43, 8–13

Predefined events, 14–2
Preferred notification method, 10–2
Preserving customizations, for an activity, 4–18
Process activities, 4–46

create, 4–57
Process definition, modifying, 3–11
Process diagram

adding nodes, 5–6
drawing, 5–2, 5–6

PROCESS parameter, 2–63
Process rollback, 8–77
Process window, 5–2

editing, 5–2
Process Window Toolbar, A – 8
Processes

activity transitions, 5–2
copying to clipboard, 5–20
creation, 3–7
editing, 3–10, 3–12
loops, 7–6, 8–10
overview, 5–19
printing, 5–20
starting, 5–4
verify, 5–21

ProcessInboundQueue(), 8–174
Product Survey, web page, 15–36
Product Survey item type, 15–38
Product Survey process, 15–34

initiating, 15–36
installing, 15–35

Propagation, setting up, 13–53
Propagations

deleting, 13–65
for outbound agents, 13–61
scheduling, 13–62
updating, 13–65

Protection level, 2–103
reset, 16–12

Protection level locking. See Access protection
Protocols, 13–23
Purge

outbound notification message queue, 16–12
performance, C – 8
runtime data, 16–5

Index – 12 Oracle Workflow Guide

Workflow Purge APIs, 8–111
Purge Obsolete Workflow Runtime Data

concurrent program, 8–119
PurgeEvent(), 8–172
PurgeItemType(), 8–173

Q
Queue handlers, 7–23, 13–25

WF_EVENT_OMB_QH, 2–100
Queue tables, 2–97
Queues

assigned to agents, 13–24
checking, 13–56
reviewing, 13–72
setting up, 2–97

R
Raise Event web page, 13–66
RAISE(), 8–105
Raise(), 8–261
Raising events, 13–4, 13–65
Reassign notifications

hiding the Reassign button, 4–25
in Notification Web page, 10–22
via e–mail, 10–12

Reassign web page, 10–22
Receive date, for event messages, 8–270
Receive()

WF_AGENTS_PKG, 8–313
WF_EVENT_FUNCTIONS_PKG, 8–298
WF_EVENT_GROUPS_PKG, 8–307
WF_EVENT_SUBSCRIPTIONS_PKG, 8–316
WF_EVENTS_PKG, 8–304
WF_SYSTEMS_PKG, 8–310

RemoveUsersFromAdHocRole, 8–143
Replication APIs, Business Event System,

8–300
REPLYTO parameter, 2–62
Requirements, hardware and software, 2–2
Requisition, data model, 15–6

Requisition Demonstration, web page, 15–8
Requisition process, 15–5

example function activities, 15–26
initiating, 15–8
installing, 15–6
summary, 15–13

Reset process. See Rollback
RESET_FAILED parameter, 2–65
RESET_NLS parameter, 2–65
Respond attributes, 2–70, 2–72, 2–75, 2–79
RESPOND mode, 8–13
Respond to notification

HTML–formatted e–mail, 10–9
plain text e–mail using direct response, 10–6
plain text e–mail using templated response,

10–5
plain text e–mail with attachments, 10–11
via Notification Web page, 10–13

Respond(), 8–194, 8–211
Responder, 8–211
Responder(), 8–212
Response methods, direct vs. templated, 2–60
Response processing, by Notification Mailer,

2–67
Responses, processing, 8–194
RESULT, 7–5, 7–15
Result type

for activities, 4–48, 4–52, 4–58
for voting activities, 4–62

ResumeProcess(), 8–34
Retry Error, 6–32
RETRY_ONLY, 6–32
Role

administrator, 2–16
property page, 5–26

Role Resolution activity, 6–9
Role–type attributes, 4–4
Roles, 5–24

ad hoc, 5–24
loading into the Workflow Builder, 5–25
tab page, 5–24
view from Builder, 5–26

Rollback, of process, 8–77
Routing, automatic, 10–25

Index – 13

Routing rules
deleting, 10–32
for a role, 10–27
listing, 10–26
overriding, 10–31
updating, 10–32

Rule functions, 7–25
for event subscriptions, 13–37

Runtime data, C – 8

S
Sample workflow processes, 15–2
Savepoints, 7–3, 7–8, 8–4
Schedule_changes(), 8–147
Seed event group, 14–6
Select Approver function activity, 15–26
Selector functions, 4–5, 7–13
Send date, for event messages, 8–265
Send(), 8–192, 8–199, 8–265
SEND_ACCESS_KEY parameter, 2–66
SendGroup(), 8–192, 8–203
Set Event Property activity, 6–15
set_document_id_html(), 8–190
SetAdHocRoleAttr(), 8–142
SetAdHocRoleExpiration(), 8–140
SetAdHocRoleStatus(), 8–133
SetAdHocUserAttr(), 8–141
SetAdHocUserExpiration(), 8–139
SetAdHocUserStatus(), 8–132
SetAttrDate(), 8–217
SetAttrNumber(), 8–217
SetAttrText(), 8–217
setCorrelationID, 8–249
SetDispatchMode(), 8–274
SetErrorInfo(), 8–273
setErrorMessage, 8–251
setErrorStack, 8–252
setErrorSubscription, 8–251
setEventData, 8–250

setEventKey, 8–250
setEventName, 8–250
setFromAgent, 8–251
SetItemAttrDate(), 8–48
SetItemAttrDateArray(), 8–53
SetItemAttrDocument(), 8–51
SetItemAttrEvent(), 8–48
SetItemAttrNumber(), 8–48
SetItemAttrNumberArray(), 8–53
SetItemAttrText(), 8–48
SetItemAttrTextArray(), 8–53
setItemAttrValue(), 8–88
SetItemOwner(), 8–26
SetItemParent API, 6–12
SetItemParent(), 8–79
SetItemUserKey(), 8–23
SetMsgAttr(), 8–183
SetMsgResult(), 8–184
setName

WF_AGENT_T, 8–238
WF_PARAMETER_T, 8–240

setParameterList, 8–249
SetParametersIntoParameterList(), 8–289
setPriority, 8–248
setReceiveDate, 8–249
setSendDate, 8–248
setSystem, 8–238
setToAgent, 8–251
setValue, 8–240
Shortcuts, 5–22
Shutdown files, 2–62
SHUTDOWN parameter, 2–62
Single sign–on, 2–30, 2–32
Single–consumer queues, 13–40
Software requirements, 2–2
Source types, 13–35
Standard activities, 6–2
Standard APIs

for ”PL/SQL CLOB” documents, 7–17, 7–19
for ”PL/SQL” documents, 7–17
for a Queue Handler, 7–23

Index – 14 Oracle Workflow Guide

for an Event Data Generate Function, 7–21
for an Event Subscription Rule Function,

7–25
for function activities, 7–3, 7–8
for selector/callback functions, 7–13

Standard error process, 6–26
Standard item type, 6–2
START activities, 5–4
Start activity, 6–8
StartForkProcess(), 8–40
StartProcess function, for sample Requisition

process, 15–23
StartProcess(), 8–28
Status report

developer, 16–16
end user, 16–16

Stuck processes, 2–43
Submit Concurrent Program activity, 6–23
Subprocesses

performance, C – 5
timing out, 5–10

Subscription Created event, 14–5
Subscription Deleted event, 14–5
Subscription Updated event, 14–5
SubscriptionParameters(), 8–293
Subscriptions, 13–34

deferring, 13–41
defining, 13–45
deleting, 13–52
finding, 13–50
predefined, 14–2
updating, 13–52

Success(), 8–286
SUMMARYONLY parameter, 2–59
Supplier: Advanced Shipment Notice process,

summary, 15–98
Supplier: Credit Check process, summary,

15–94
Supplier: Get Order Details process, summary,

15–91
Supplier: Send Supplier Invoice process,

summary, 15–100
Supplier: Stock Check process, summary, 15–96

Supplier: Top Level Order process, summary,
15–87

Survey–Master/Detail process
activities, 15–44
summary, 15–42

Survey–Single Process, activities, 15–41
Survey–Single process, summary, 15–39
SuspendProcess(), 8–32
Synch_all(), 8–146
Synch_changes(), 8–145
Synchronization, with Oracle Internet

Directory, 2–30, 2–34, 8–144
Synchronize Event Systems event, 14–5
Synchronous processes, 8–14, C – 2
System Created event, 14–4
System Deleted event, 14–4
System identifier, 13–68
System Identifier web page, 13–68
System integration, 13–2
System Signup event, 14–9
System Signup web page, 13–69
System Updated event, 14–4
System: Error item type, 6–26
System: Mailer item type, 2–69
Systems, 13–17

defining, 13–18
deleting, 13–21
finding, 13–19
local, 13–17
master/copy, 13–72
signing up, 13–67, 13–69
synchronizing, 13–70
updating, 13–21

Systems web page, 13–18, 13–21

T
Tag files, 2–63
TAGFILE parameter, 2–63
TCP/IP drivers, 2–2
Templated Response e–mail, 10–3
Test harness, 12–2
Test(), 8–268

Index – 15

TEST_ADDRESS parameter, 2–62
TestContext(), 8–229
Text–type attributes, 4–3
Timed out processes, 2–43, C – 7
Timeout transitions, 5–2, 5–3
Timeouts, 5–10

dynamic, 5–10
Token substitution

attributes, 4–41
of document–type message attributes, 4–14

TOKEN(), 8–104
Toolbars, Oracle Workflow Builder, A – 7
toString(), 8–99
Total(), 8–116
TotalPERM(), 8–117
TRANSFER mode, 8–13
Transfer(), 8–195, 8–207
Transitions, 5–2

Any, 5–2
creating, 5–18
Default, 5–2
editing, 5–18
Timeout, 5–2

TRANSLATE(), 8–110
Translation, 2–38

U
Unexpected event, 14–12
UNIX Sendmail, 2–55
UNPROCESS parameter, 2–63
Upgrading workflow definitions, 8–12
URL attributes, frame target, 4–37
URL message attributes, attached vs

embedded, 4–37
URL–type attributes, 4–3
URLs

for event data, 8–50
for Event System Demonstration web pages,

15–67, 15–69
for Find Notifications Routing Rules web

page, 10–27

for Find Notifications web page, 10–13
for Find Processes web page, 11–8
for Notifications Routing Rules web page,

10–26
for Oracle Workflow home page, 9–2
for Product Survey web page, 15–36
for Requisition Demonstration web page,

15–10
for the Workflow Monitor, 11–7
for Worklist web page, 10–13

User Defined Alert Action process
activities, 15–61
summary, 15–60

User Entry Has Changed event, 14–15
User Preferences, web page, 9–6
User preferences, 2–14

document management home, 2–20, 9–8
language and territory, 2–19, 9–7
notification preference, 2–20, 9–8

User–defined datatypes, for the Business Event
System, 8–236

UserActive(), 8–128
Users, ad hoc, 5–24

V
Vacation forwarding, 10–25
value(), 8–93
Verify Authority function activity, 15–29
Version, 8–11, 16–16

of Oracle Workflow, 2–9
Version compatibility, 2–9
Version number, for activities, 4–60
Versioning, 3–7
View menu, A – 4
View notifications

e–mail summary, 10–24
electronic mail, 10–2
Notification Web page, 10–13
web browser, 10–12

Views, Oracle Workflow, 8–157
Vote Yes/No activity, 6–10
VoteCount(), 8–213
Voting activities

processing, 8–195

Index – 16 Oracle Workflow Guide

result type, 4–62
Voting activity, 4–61

W
Wait activity, 6–4
Wait for Concurrent Program activity, 6–24
Wait for Flow activity, 6–12
Warning(), 8–285
Web agent, for Oracle Workflow, 2–17
Web home page, 9–2
Web notifications, requirements, 2–4
WF_ACCESS_LEVEL, 2–102, 2–106
WF_AGENT_T, 8–237
WF_AGENTS Document Type Definition,

8–311
WF_AGENTS_PKG.Generate, 8–312
WF_AGENTS_PKG.Receive, 8–313
WF_DEFERRED agent, 13–25
WF_DEFERRED queue, 2–97
WF_ENGINE.BACKROUND, 2–44
WF_ERROR agent, 13–25
WF_ERROR queue, 2–97
WF_ERROR_QH, 13–25
WF_EVENT_FUNCTIONS_PKG.Generate(),

8–296
WF_EVENT_FUNCTIONS_PKG.Receive(),

8–298
WF_EVENT_GROUPS Document Type

Definition, 8–305
WF_EVENT_GROUPS_PKG.Generate, 8–306
WF_EVENT_GROUPS_PKG.Receive, 8–307
WF_EVENT_OMB_QH, 13–25

attribute mapping, 8–257
setting up, 2–100

WF_EVENT_QH, 13–25
WF_EVENT_SUBSCRIPTIONS Document

Type Definition, 8–314
WF_EVENT_SUBSCRIPTIONS_PKG.Generate,

8–315
WF_EVENT_SUBSCRIPTIONS_PKG.Receive,

8–316

WF_EVENT_T, 8–242
mapping attributes to OMBAQ_TEXT_MSG,

8–257
WF_EVENTS Document Type Definition,

8–302
WF_EVENTS_PKG.Generate, 8–303
WF_EVENTS_PKG.Receive, 8–304
WF_IN agent, 13–25
WF_IN queue, 2–97
WF_ITEM_ACTIVITY_STATUSES_V, 8–157
WF_ITEMS_V, 8–161
WF_LANGUAGES view, 2–38
WF_LOCAL_* tables, 2–21
WF_NOTIFICATION() message function, 4–26
WF_NOTIFICATION_ATTR_RESP_V, 8–159
WF_OUT agent, 13–25
WF_OUT queue, 2–97
WF_PARAMETER_LIST_T, 8–241
WF_PARAMETER_T, 8–239
wf_payload_t, 8–163
WF_PURGE, 8–111
WF_REQDEMO.SelectApprover, 15–26
WF_REQDEMO.StartProcess, 15–8
WF_REQDEMO.VerifyAuthority, 15–18, 15–29
WF_RESOURCES, environment variable, 2–42
WF_ROLES, view, 2–24
WF_RUNNABLE_PROCESSES_V, 8–160
WF_SYSTEMS Document Type Definition,

8–308
WF_SYSTEMS_PKG.Generate, 8–309
WF_SYSTEMS_PKG.Receive, 8–310
WF_USER_ROLES, view, 2–25
WF_USERS, view, 2–22
Wfagtlst.sql, 16–6
WFAttribute class, 8–90
WFAttribute(), 8–92
Wfbkg.sql, 16–6
Wfbkgchk.sql, 16–7
Wfchact.sql, 16–7
Wfchacta.sql, 16–7
Wfchita.sql, 16–8
Wfchitt.sql, 16–8

Index – 17

Wfchluc.sql, 16–8
Wfchlut.sql, 16–9
Wfchmsg.sql, 16–9
Wfchmsga.sql, 16–9
Wfdirchk.sql, 16–10
wfdircsv.sql, 2–28
wfdirhrv.sql, 2–27
wfdirouv.sql, 2–27
wfevquec.sql, 2–99
wfevqued.sql, 2–99
Wfevtenq.sql, 16–10
WFFunctionAPI class, 8–82
wfjvlsnr.bat, 2–87
wfjvlsnr.csh, 2–87
Wfjvstop.sql, 16–11
WFLOAD, 2–109
wfload, 2–108
wfmail.cfg, 2–58
Wfmqupd.sql, 16–12
WFNLADD.sql, 16–5
WFNLENA.sql, 16–12
Wfntfsh.sql, 16–12
Wfprot.sql, 16–12
Wfqclean.sql, 16–13
Wfquhndob.pls, 2–100
Wfquhndos.pls, 2–100
Wfrefchk.sql, 16–13
wfresgen, 8–105
Wfretry.sql, 16–13
Wfrmall.sql, 16–14
Wfrmita.sql, 16–14
Wfrmitms.sql, 16–15
Wfrmitt.sql, 16–15
Wfrmtype.sql, 16–15, C – 9
Wfrun.sql, 16–15
WFRUND.SQL, 15–8
Wfstat.sql, 16–16
Wfstatus.sql, 16–16
Wfstdchk.sql, 16–16
Wftypes.sql, 8–236
Wfupart.sql, 2–12

Wfupartb.sql, 2–12
Wfver.sql, 16–16
Wfverchk.sql, 16–17
Wfverupd.sql, 16–17
wfxload, 2–114, 2–117
wfxload.bat, 2–114, 2–117
Windows menu, A – 6
WorkCount(), 8–231
Workflow administrator, 2–16
Workflow Agent Listener, 16–4
Workflow Agent Listener concurrent program,

8–272
Workflow Agent Ping/Acknowledge, 13–77

item type, 13–78
item type attributes, 13–78

Workflow Builder menus, A – 2
Workflow Cancelled Mail message template,

2–78
Workflow Closed Mail message template, 2–81
Workflow Core APIs, 8–101
Workflow definitions

loading, 1–4
source control, 3–12
testing, 12–2
transferring, 2–107

Workflow Definitions Loader, 1–4, 2–107,
2–108

concurrent program, 2–109
Workflow Demonstrations home page, 15–2
Workflow Designer. See Oracle Workflow

Builder
Workflow diagrams, displaying, 15–3
Workflow Directory Service APIs, 8–121
Workflow Engine, 1–3

calling after activity completion, 8–8
calling for activity initiation, 8–3
CANCEL mode, 8–11
core APIs, 8–101, 8–111
cost threshold, 4–47
deferred activities, 8–9
directory services, 8–121
error processing, 8–10
Java APIs, 8–5, 8–19
looping, 8–10

Index – 18 Oracle Workflow Guide

master/detail processes, 8–79
PL/SQL APIs, 8–19
RUN mode, 8–11
threshold cost, 2–47, 8–9

Workflow Engine APIs, 8–3
Workflow Event Protocol process, summary,

14–20
Workflow Invalid Mail message template, 2–79
Workflow LDAP APIs, 2–34, 8–144
Workflow Monitor, 11–2

Administration buttons, 11–6
Detail Tab window, 11–4
Process Diagram window, 11–3
Process title, 11–3
setup, 2–84

Workflow Monitor APIs, 8–149
Workflow Notification APIs. See Notification

APIs
Workflow Open Mail (Direct) message

template, 2–71
Workflow Open Mail (Templated) message

template, 2–69
Workflow Open Mail for Outlook Express

message template, 2–74
Workflow Open Mail message template, 2–76
Workflow Preferences API, 8–148
Workflow processes

creating and starting, 16–15
monitoring, 11–2
samples, 15–2

Workflow Purge APIs, 8–111
Workflow Queue APIs, 8–162
Workflow queues, cleaning, 16–13
Workflow Resource Generator, 8–105

concurrent program, 8–106

Workflow roles, 2–21
Workflow Send Protocol

item type, 14–18
sample workflow process, 14–17

Workflow Send Protocol Acknowledgement
event, 14–26

Workflow Send Protocol event, 14–24
Workflow Server, requirements, 2–3
Workflow Summary Mail message template,

2–82
Workflow URL Attachment message template,

2–77
Workflow users, 2–21
Workflow Views, 8–157
Workflow Warning Mail message template,

2–82
Workflow web pages, modifying template,

2–84
Workflow XML Loader, 2–112
Workflow_Protocol(), 8–287
Workitems. See Items
Worklist web page, 10–17
WriteMsg(), 8–182
WriteToClob(), 8–234

X
XML Compare Tag Value (Date) activity, 6–19
XML Compare Tag Value (Number) activity,

6–19
XML Compare Tag Value (Text) activity, 6–19
XML Compare Tag Value activities, 6–19
XML Get Tag Value activity, 6–18
XML Transform activity, 6–20

Reader’s Comment Form

Oracle Workflow Guide Volume 2, Release 2.6.2
A95277–03

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness
of this publication. Your input is an important part of the information we use for revision.

• Did you find any errors?

• Is the information clearly presented?

• Do you need more information? If so, where?

• Are the examples correct? Do you need more examples?

• What features did you like most about this manual? What did you like least about it?

If you find any errors or have any other suggestions for improvement, please indicate the topic, chapter,
and page number below:

Please send your comments to:

Oracle Applications Documentation Manager
Oracle Corporation
500 Oracle Parkway
Redwood Shores, CA 94065 USA
Phone: (650) 506–7000 Fax: (650) 506–7200

If you would like a reply, please give your name, address, and telephone number below:

Thank you for helping us improve our documentation.

	Contents
	Preface
	Audience for This Guide
	How To Use This Guide
	Other Information Sources
	Do Not Use Database Tools to Modify Oracle Applications Data
	About Oracle
	Your Feedback

	1 Overview of Oracle Workflow
	Introduction to Oracle Workflow
	Major Features and Definitions

	Workflow Processes

	2 Setting Up Oracle Workflow
	Oracle Workflow Hardware and Software Requirements
	Overview of Setting Up
	Overview of Required Setup Steps for the Standalone Version of Oracle Workflow
	Overview of Required Setup Steps for the Version of Oracle Workflow Embedded in Oracle Applications
	Optional Setup Steps
	Other Workflow Features
	Identifying the Version of Your Oracle Workflow Server
	Setup Flowchart
	Setup Checklist
	Setup Steps

	Overview of Oracle Workflow Access Protection
	Setting Up a Default Access Level

	Using the Workflow Definitions Loader
	Using the Workflow XML Loader

	3 Defining a Workflow Process
	Overview of Oracle Workflow Builder
	The Navigator Tree Structure
	Viewing the Navigator Tree

	Creating Process Definitions in Oracle Workflow Builder
	Opening and Saving Item Types
	Quick Start Wizard Overview
	Using Oracle Workflow Builder with Different Server Versions

	Item Type Definition Web Page

	4 Defining Workflow Process Components
	Workflow Process Components
	Item Types
	Allowing Access to an Object
	Lookup Types
	Messages
	Activities
	Voting Activity

	Deleting Objects in Oracle Workflow Builder
	Modifying Objects in Oracle Workflow Builder
	Workflow Objects That Support Versioning
	Workflow Objects That Do Not Support Versioning

	5 Defining a Workflow Process Diagram
	Process Window
	Modifying Fonts in Oracle Workflow Builder
	Creating a Shortcut Icon for a Workflow Process

	Roles

	6 Predefined Workflow Activities
	Standard Activities
	And/Or Activities
	Comparison Activities
	Compare Execution Time Activity
	Wait Activity
	Block Activity
	Defer Thread Activity
	Launch Process Activity
	Noop Activity
	Loop Counter Activity
	Start Activity
	End Activity
	Role Resolution Activity
	Notify Activity
	Vote Yes/No Activity
	Master/Detail Coordination Activities
	Assign Activity
	Get Monitor URL Activity
	Get Event Property Activity
	Set Event Property Activity
	Compare Event Property Activity
	XML Get Tag Value Activity
	XML Compare Tag Value Activities
	XML Transform Activity

	Concurrent Manager Standard Activities
	Execute Concurrent Program Activity
	Submit Concurrent Program Activity
	Wait for Concurrent Program Activity

	Default Error Process
	System: Error Item Type and Item Attributes
	Default Error Process
	Retry–only Process
	Default Event Error Process

	7 Defining Procedures and Functions for Oracle Workflow
	Defining Procedures and Functions for Oracle Workflow
	Standard API for PL/SQL Procedures Called by Function Activities
	Standard API for Java Procedures Called by Function Activities
	Standard API for an Item Type Selector or Callback Function
	Standard APIs for ”PL/SQL” and ”PL/SQL CLOB” Documents
	”PL/SQL” Documents
	”PL/SQL CLOB” Documents

	Standard API for an Event Data Generate Function
	Standard APIs for a Queue Handler
	Enqueue
	Dequeue

	Standard API for an Event Subscription Rule Function

	8 Oracle Workflow APIs
	Oracle Workflow Procedures and Functions
	Overview of the Workflow Engine
	Oracle Workflow Java Interface
	Additional Workflow Engine Features

	Workflow Engine APIs
	CreateProcess
	SetItemUserKey
	GetItemUserKey
	GetActivityLabel
	SetItemOwner
	StartProcess
	LaunchProcess
	SuspendProcess
	ResumeProcess
	AbortProcess
	CreateForkProcess
	StartForkProcess
	Background
	AddItemAttribute
	AddItemAttributeArray
	SetItemAttribute
	SetItemAttrDocument
	SetItemAttributeArray
	getItemTypes
	GetItemAttribute
	GetItemAttrDocument
	GetItemAttrClob
	getItemAttributes
	GetItemAttrInfo
	GetActivityAttrInfo
	GetActivityAttribute
	GetActivityAttrClob
	BeginActivity
	CompleteActivity
	CompleteActivityInternalName
	AssignActivity
	Event
	HandleError
	SetItemParent
	ItemStatus
	getProcessStatus

	Workflow Function APIs
	loadItemAttributes
	loadActivityAttributes
	getActivityAttr
	getItemAttr
	setItemAttrValue
	execute

	Workflow Attribute APIs
	WFAttribute
	value
	getName
	getValue
	getType
	getFormat
	getValueType
	toString
	compareTo

	Workflow Core APIs
	CLEAR
	GET_ERROR
	TOKEN
	RAISE
	CONTEXT
	TRANSLATE

	Workflow Purge APIs
	Items
	Activities
	Notifications
	Total
	TotalPERM
	AdHocDirectory
	Purge Obsolete Workflow Runtime Data Concurrent Program

	Workflow Directory Service APIs
	GetRoleUsers
	GetUserRoles
	GetRoleInfo
	GetRoleInfo2
	IsPerformer
	UserActive
	GetUserName
	GetRoleName
	GetRoleDisplayName
	SetAdHocUserStatus
	SetAdHocRoleStatus
	CreateAdHocUser
	CreateAdHocRole
	AddUsersToAdHocRole
	SetAdHocUserExpiration
	SetAdHocRoleExpiration
	SetAdHocUserAttr
	SetAdHocRoleAttr
	RemoveUsersFromAdHocRole

	Workflow LDAP APIs
	Synch_changes
	Synch_all
	Schedule_changes

	Workflow Preferences API
	get_pref

	Workflow Monitor APIs
	GetAccessKey
	GetDiagramURL
	GetEnvelopeURL
	GetAdvancedEnvelopeURL

	Oracle Workflow Views
	WF_ITEM_ACTIVITY_STATUSES_V
	WF_NOTIFICATION_ATTR_RESP_V
	WF_RUNNABLE_PROCESSES_V
	WF_ITEMS_V

	Workflow Queue APIs
	EnqueueInbound
	DequeueOutbound
	DequeueEventDetail
	PurgeEvent
	PurgeItemType
	ProcessInboundQueue
	GetMessageHandle
	DequeueException
	DeferredQueue
	InboundQueue
	OutboundQueue
	ClearMsgStack
	CreateMsg
	WriteMsg
	SetMsgAttr
	SetMsgResult

	Document Management APIs
	get_launch_document_url
	get_launch_attach_url
	get_open_dm_display_window
	get_open_dm_attach_window
	set_document_id_html

	Overview of the Oracle Workflow Notification System
	Notification Model

	Notification APIs
	Send
	SendGroup
	Forward
	Transfer
	Cancel
	CancelGroup
	Respond
	Responder
	VoteCount
	OpenNotificationsExist
	Close
	AddAttr
	SetAttribute
	GetAttrInfo
	GetInfo
	GetText
	GetShortText
	GetAttribute
	GetAttrDoc
	GetSubject
	GetBody
	GetShortBody
	TestContext
	AccessCheck
	WorkCount
	getNotifications
	getNotificationAttributes
	WriteToClob

	Overview of the Oracle Workflow Business Event System
	Business Event System Datatypes
	Agent Structure
	getName
	getSystem
	setName
	setSystem
	Parameter Structure
	getName
	getValue
	setName
	setValue
	Parameter List Structure
	Event Message Structure
	Initialize
	getPriority
	getSendDate
	getReceiveDate
	getCorrelationID
	getParameterList
	getEventName
	getEventKey
	getEventData
	getFromAgent
	getToAgent
	getErrorSubscription
	getErrorMessage
	getErrorStack
	setPriority
	setSendDate
	setReceiveDate
	setCorrelationID
	setParameterList
	setEventName
	setEventKey
	setEventData
	setFromAgent
	setToAgent
	setErrorSubscription
	setErrorMessage
	setErrorStack
	Content
	Address
	AddParameterToList
	GetValueForParameter
	Example for Using Abstract Datatypes
	Mapping Between WF_EVENT_T and OMBAQ_TEXT_MSG

	Event APIs
	Raise
	Send
	NewAgent
	Test
	Enqueue
	Listen
	Workflow Agent Listener Concurrent Program
	SetErrorInfo
	SetDispatchMode
	AddParameterToList
	AddParameterToListPos
	GetValueForParameter
	GetValueForParameterPos

	Event Subscription Rule Function APIs
	Default_Rule
	Log
	Error
	Warning
	Success
	Workflow_Protocol
	Error_Rule
	SetParametersIntoParameterList

	Event Function APIs
	Parameters
	SubscriptionParameters
	AddCorrelation
	Generate
	Receive

	Business Event System Replication APIs
	WF_EVENTS Document Type Definition
	WF_EVENTS_PKG.Generate
	WF_EVENTS_PKG.Receive
	WF_EVENT_GROUPS Document Type Definition
	WF_EVENT_GROUPS_PKG.Generate
	WF_EVENT_GROUPS_PKG.Receive
	WF_SYSTEMS Document Type Definition
	WF_SYSTEMS_PKG.Generate
	WF_SYSTEMS_PKG.Receive
	WF_AGENTS Document Type Definition
	WF_AGENTS_PKG.Generate
	WF_AGENTS_PKG.Receive
	WF_EVENT_SUBSCRIPTIONS Document Type Definition
	WF_EVENT_SUBSCRIPTIONS_PKG.Generate
	WF_EVENT_SUBSCRIPTIONS_PKG.Receive

	9 Oracle Workflow Home Page
	Accessing the Oracle Workflow Home Page
	Setting User Preferences

	10 Viewing Notifications and Processing Responses
	Overview of Notification Handling
	Reviewing Notifications via Electronic Mail
	Viewing Notifications from a Web Browser
	Reviewing a Summary of Your Notifications via Electronic Mail
	Defining Rules for Automatic Notification Processing

	11 Monitoring Workflow Processes
	Overview of Workflow Monitoring
	Workflow Monitor
	Workflow Monitor Access

	12 Testing a Workflow Definition
	Testing Workflow Definitions

	13 Managing Business Events
	Managing Business Events
	Events
	Systems
	Agents
	Event Subscriptions
	Setting Up Message Propagation
	Raising Events
	Signing Up Systems
	Synchronizing Systems
	Reviewing Local Queues

	Workflow Agent Ping/Acknowledge
	The Workflow Agent Ping/Acknowledge Item Type
	Summary of the Master Ping Process
	Master Ping Process Activities
	Summary of the Detail Ping Process
	Detail Ping Process Activities

	14 Predefined Workflow Events
	Predefined Workflow Events
	Event Definition Events
	Event Group Definition Events
	System Definition Events
	Agent Definition Events
	Event Subscription Definition Events
	Synchronize Event Systems Event
	Seed Event Group
	Ping Agent Events
	System Signup Event
	Any Event
	Unexpected Event
	User Entry Has Changed Event

	Workflow Send Protocol
	The Workflow Send Protocol Item Type
	Summary of the Workflow Event Protocol Process
	Workflow Event Protocol Process Activities
	Workflow Send Protocol Events

	15 Demonstration Workflow Processes
	Sample Workflow Processes
	Displaying the Process Diagram of a Sample Workflow

	Requisition Process
	Installing the Requisition Data Model
	Initiating the Requisition Workflow
	The Requisition Item Type
	Summary of the Requisition Approval Process
	Requisition Process Activities
	Summary of the Notify Approver Subprocess
	Notify Approver Subprocess Activities
	Sample StartProcess Function
	Example Function Activities
	Example: Select Approver
	Example: Verify Authority
	Example Notification Activity
	Example: Notify Requisition Approval Required

	Product Survey Process
	Installing the Product Survey Data Model
	Initiating the Product Survey Workflow
	The Product Survey Item Type
	Summary of the Survey – Single Process
	Survey – Single Process Activities
	Summary of the Survey – Master/Detail Process
	Survey – Master/Detail Process Activities
	Summary of the Detail Survey Process
	Detail Survey Process Activities

	Document Review Process
	The Document Management Item Type
	Summary of the Document Review Process
	Document Review Process Activities

	Error Check Process
	The Periodic Alert Item Type
	Summary of the Error Check Process
	Error Check Process Activities
	Summary of the User Defined Alert Action Process
	User Defined Alert Action Process Activities

	Event System Demonstration
	Installing the Event System Demonstration Data Model
	Initiating the Event System Demonstration Workflow
	The Event System Demonstration Item Type
	Summary of the Buyer: Top Level PO Process
	Buyer: Top Level PO Process Activities
	Summary of the Buyer: Send PO to Supplier Subprocess
	Buyer: Send PO to Supplier Subprocess Activities
	Summary of the Buyer: Receive Supplier PO Acknowledgement Subprocess
	Buyer: Receive Supplier PO Acknowledgement Subprocess Activities
	Summary of the Buyer: Advanced Shipment Notice Subprocess
	Buyer: Advanced Shipment Notice Subprocess Activities
	Summary of the Buyer: Receive Supplier Invoicing Subprocess
	Buyer: Receive Supplier Invoicing Subprocess Activities
	Summary of the Supplier: Top Level Order Process
	Supplier: Top Level Order Process Activities
	Summary of the Supplier: Get Order Details Subprocess
	Supplier: Get Order Details Subprocess Activities
	Summary of the Supplier: Credit Check Subprocess
	Supplier: Credit Check Subprocess Activities
	Summary of the Supplier: Stock Check Subprocess
	Supplier: Stock Check Subprocess Activities
	Summary of the Supplier: Advanced Shipment Notice Subprocess
	Supplier: Advanced Shipment Notice Subprocess Activities
	Summary of the Supplier: Send Supplier Invoice Subprocess
	Supplier: Send Supplier Invoice Subprocess Activities
	B2B Purchase Order Event
	B2B Purchase Order Acknowledgement Event
	B2B Advanced Shipment Notice Event
	B2B Invoice Event

	16 Workflow Administration Scripts
	Miscellaneous SQL Scripts
	FNDWFLST
	FNDWFPR
	WFNLADD.sql
	Wfagtlst.sql
	Wfbkg.sql
	Wfbkgchk.sql
	Wfchact.sql
	Wfchacta.sql
	Wfchita.sql
	Wfchitt.sql
	Wfchluc.sql
	Wfchlut.sql
	Wfchmsg.sql
	Wfchmsga.sql
	Wfdirchk.sql
	Wfevtenq.sql
	Wfjvstop.sql
	Wfmqupd.sql
	Wfnlena.sql
	Wfntfsh.sql
	Wfprot.sql
	Wfqclean.sql
	Wfrefchk.sql
	Wfretry.sql
	Wfrmall.sql
	Wfrmita.sql
	Wfrmitms.sql
	Wfrmitt.sql
	Wfrmtype.sql
	Wfrun.sql
	Wfstat.sql
	Wfstatus.sql
	Wfstdchk.sql
	Wfver.sql
	Wfverchk.sql
	Wfverupd.sql

	A Oracle Workflow Builder Menus and Toolbars
	Oracle Workflow Builder Menus
	Oracle Workflow Builder Toolbars

	B Oracle Workflow Implementation in Other Oracle Products
	Predefined Workflows Embedded in Oracle E–Business Suite
	Oracle Workflow Business Event System Implementation in Oracle E– Business Suite
	Oracle Workflow Implementation in the Oracle9i Platform
	Oracle Support Policy for Predefined Workflows, Events, and Subscriptions
	Customization Guidelines
	Resolving Customization Issues
	What Is NOT Supported
	What Is Supported

	C Oracle Workflow Performance Concepts
	Oracle Workflow Performance Concepts
	Designing Workflow Processes for Performance
	Managing Runtime Data for Performance

	Glossary
	Index

