
www.linuxformat.co.uk86 LXF55 JULY 2004

hen you cast your mind back to last month’s

tutorial, you’ll recall that we introduced you to

GIMP Perl, one of the four programming interfaces

available from The GIMP for creating plugins. Nearly

all GIMP plugins provide a user interface where users can set

options before processing. GIMP Perl provides a simplified GTK+

interface through the GIMP::Fu Perl module. This module offers a

variety of input options, all of which are accessible through the

register() function which we introduced briefly in the previous

article in this series.

Aside from the GIMP::Fu module, GIMP Perl also provides both

procedural and object-oriented interfaces into the GIMP function

library. This library – known more commonly as the Procedural

Database or PDB – is key to understanding how to making the

most of GIMP Perl.

In this months tutorial, we’ll take a detailed look at both

GIMP::Fu and the PDB while using the second of our two example

scripts – GFXLayerSave.pl - to demonstrate their use.

Building a better interface
GIMP::Fu is a wrapper around The GIMP’s C API that also provides

access to the GTK+ toolkit – the software which provides buttons,

menus and text input fields for GIMP and the GNOME desktop. In

a way, this is the closing a small circle of life for this software:

GTK+ began life as a tool specifically built for The GIMP, became

a software entity of its own used by many applications and even

GNOME, and now provides script language bindings that can be

used to create plugins for its original parent – The GIMP.

In last months article, we discussed the use of the 9th

argument to the register() call in a GIMP Perl script. This

argument is a parameter array with each element being another

array of values. The values define an input option for a user

interface feature such as a text entry field, a color selection

dialog or a set of radio buttons. The values also provide default

settings, valid ranges and various other options.

The first part of the register function is laid out like this:

register(
“function_name”,
“blurb”, “help”,
“author”, “copyright”,
“date”,
“menu path”,
“image types”,
[

[PF_TYPE, name, desc, default, extra_args],
[PF_TYPE, name, desc, default, extra_args],
...

],
....

Note that argument nine of this function is enclosed in brackets,

signifying an array. This example shows two elements in the

parameter array. Each element specifies a parameter type (PF_TYPE

in the example) followed by a name and description (both are

required). After the description come optional default settings and

any additional arguments specific to the parameter type.

The following list shows the set of possible parameter types

and what kind of user interface option they provide. Fig1 below

left shows a GIMP Perl dialog window with all possible parameter

types (except PF_CUSTOM) displayed.

File: scripts/pf_all.pl
shows the code that was used to generate Fig1.

As you can see from his simple pf_all.pl script, GIMP:Fu offers

a wide variety user interface options: PF_INT8, PF_INT16,
PF_INT32, PF_INT, PF_FLOAT, PF_STRING, PF_VALUE

These all provide text input fields, since Perl doesn’t

differentiate between strings and numeric values. Offering

different types that map to a single user interface type allows

other plugins to use the value in a language-appropriate way:

PF_COLOR
This provide users with the option of using a color selection

dialog to choose a colour.

PF_IMAGE and PF_DRAWABLE
Provide menus of the currently open images and drawables

(masks, channels or layer).

PF_TOGGLE, PF_BOOL
These provide a single button that will return either TRUE (if

selected) or FALSE (if not selected). The default value for this can

be TRUE, FALSE, 1, or 0. The description is also used for the

toggle-button label.

PF_SLIDER
Displays a horizontal scale. To set the range and step size append

an array in the form

[range_min, range_max, step_size, page_increment, page_size]

TUTORIAL GIMP

GIMP PROGRAMMING

On the

CD and DVD

PART 2 You can’t get far with GIMP Perl without knowing how to access The GIMP’s internal functions,
not to mention letting your user configure your script, says Michael J Hammel.

Writing GIMP Plugins in Perl

On the LXF website at http://www.linuxformat.co.uk/gimp/55.zip,
you will find the following files that are mentioned in the course of
this tutorial. The two main files were included on last month’s discs.
pf_all.pl
GFXLayerSave.pl.commented
GFXLayerSave.pl
GFXOffsets.pl.commented
GFXOffsets.pl
We will include these files on next month’s discs as well, for those
who do not have access to an Internet connection.

GIMP SCRIPTS

GIMP 1.2 and GIMP 2.0
both provide four native
programming interfaces:
C, Perl, Python and
Script-FU (a subset of
Scheme). The design of
The GIMP allows further
language extensions to be
added fairly easily. This
series on GIMP Perl will
not be the only language
covered in this column.
You can expect to see
more on both the Perl
and C interfaces in the
coming months.

TIP

Fig1 A GIMP Perl dialog
with all possible
PF_TYPEs used in the
parameter list of the
register() function call.

LXF55.tut_gimp_grb 20/5/04 3:55 pm Page 86

www.linuxformat.co.uk LXF55 JULY 2004 87

TUTORIAL GIMP

as an extra argument to the parameter array. Default values will

be substituted for missing entries, for example:

[PF_SLIDER, “alpha value”, “the alpha value”, 100, [0, 255, 1]]
which sets the min, max and step size and uses GTK+ defaults for

page increment and page size in the slider.

PF_SPINNER
Provides a spinner widget. Ranges are specified in the same

manner as the PF_SLIDER parameter type.

PF_RADIO
The extra argument field must refer to an array filled with Option-

Name = Option-Value> pairs. Gimp::Fu translates this to a series

of buttons, laid our horizontally, one for each pair. For example:

[PF_RADIO, “Hour”, “AM or PM”, 1, [AM => 1, PM => 2]]]
draws two buttons: AM and PM. If AM is selected, the callback will

receive a value of 1. If PM is selected, it will receive a value of 2.

PF_FONT
Provides a font selection option. This feature returns a X Logical

Font Descriptor (XLFD) to the callback. The default argument, if

specified, must also be a full XLFD specification or a warning will

be printed.

PF_BRUSH, PF_PATTERN, PF_GRADIENT
These provide access to brush, pattern and gradient selection

dialogs. The value returned can be used in the appropriate tool

selection function.

PF_CUSTOM
For scripts requiring a non-standard-widget. See the pod

documentation for details on how to use this.

PF_FILE
Provides a text field and button for browsing the file system. Its

use is primarily for selecting files but is not limited to this.

PF_TEXT
Like PF_STRING, but presents a multi-line field for text entry

along with buttons for saving the text, loading text from a file and

editing the text with the user defined default text editor.

The name field for a parameter entry is used as the label

displayed next to the widget (widgets are buttons, menus, and

essentially any other part of a window). The description field is

used in the PDB. A special case is the PF_TOGGLE type, which

uses the description field as the text for the toggle button.

The order of the parameter elements defines the order they will

be passed to your callback function. Remember that your callback

function is the one that does the real work and is referenced as the

last argument in the call to the register() function.

Some parameter element types include option arguments.

These option arguments (which are not actually optional if the

parameter type requires them) can be single values or arrays. For

example, the PF_RADIO type requires an associative array in the

option arguments field, with each element of that array

describing the label and value associated with a single radio

button. The PF_SLIDER parameter type also takes an array of

values defining range settings.

The simplicity of GIMP::Fu is that the entire user interface is

defined as a series of arrays inside a single array, all wrapped

inside a single function call. This simplicity comes at a price,

however. There is little flexibility in the layout of the user interface

– all components are aligned vertically in the plugin dialog. There

is little interactivity with the dialog as well. Callbacks for widgets

are not configurable, so interactivity is restricted to what GIMP

Perl has built in – you can’t, for example, allow a user to draw

shapes in a preview in a GIMP Perl plugin, while you can do this

with the C API.

Despite such restrictions, GIMP Perl still provides adequate

functionality for most scripts. Scripts are – after all – primarily

quick methods of repeating a series of steps that users find they

do often. Adobe Photoshop users might consider this similar to

the use of Actions, but scripting offers more flexibility than

Actions, while not being quite as flexible as compiled plugins.

Who to call and how to call ’em
With the dialog design firmly in mind, we can now look to how to

talk to The GIMP itself. There is a core set of features provided by

GIMP for plugins. This core set includes things like retrieving

information about layers, accessing tools from the Toolbox and

dealing with cut and paste. Beyond this core set, any plugin or

script that calls register() provides a function that will be added

to the PDB.

The GIMP’s plugin API is the Procedural Database, or PDB. The

PDB gives plugins written in any language access to both internal

functions of The GIMP as well as features provided by other

plugins. Any plugin that has registered its callback function can

have that function called by any other plugin.

To find a registered function name, you need you start with

the DB Browser. This is a dialog found via the Xtns>DB Browser

menu option in The GIMP’s Toolbox. This dialog offers a

searchable, scrolled list of functions on the left, and information

about the currently selected function on the right.

At the bottom left of this dialog is a text input field. Typing a

word – or even a few letters – here and hitting Enter will limit

the set of functions displayed in the scrolled list to any that

contain that string of characters. If you want to see the whole list,

clear the text field and hit Enter.

Clicking on a function in the list will bring up information

about that function on the right side of the dialog. Functions can

have input arguments – values a plugin will pass to it – and

output arguments that are returned to the calling program. They

are not required to have either, however. It possible to write a

function that runs the entire list of layers of all open images, for >>

The GIMP Perl function
name provided as the first
argument to the call to
register() is the name
under which your plugin
will be registered in the
GIMP database. If this
name doesn’t start with
‘perl_fu_’, ‘file_’, ‘plug_in_’
or ‘extension_’ then the
‘perl_fu_’ prefix will be
added. If you don’t want
this, prefix your function
name with a single ‘+’.

TIP

Fig2 The DB Browser shows what functions are available to plugins. Note the input and
output arguments, and the help text that describes these arguments.

LXF55.tut_gimp_grb 20/5/04 3:55 pm Page 87

www.linuxformat.co.uk88 LXF55 JULY 2004

example. Such a function would not need to be passed any

arguments as the set of images and set of layers for each image

are available from The GIMP’s core set of functions.

The DB Browser lists function names the way they are called

using the procedural interface. The only difference is that the PDB

lists function names with dashes between words in the name

while GIMP Perl requires you to use underscores instead. The

procedural method requires all arguments listed in the DB

Browser to be passed in the function call while the object-

oriented method allows you to leave out arguments that are

handled by the object. For example, the procedural call to

retrieve the id of the current floating selection would be

$float_id = gimp_image_floating_selection($image_id);
while the object-oriented method would attach this call to an

image object, allowing you to leave off the gimp_image_ prefix:

$float_id = $image_id->floating_selection();
where $image_id is the current image id and was passed to

your callback function as the first argument (and the current

drawable as the second argument) as long as you specified your

plugins menu location to be headed by <Image>. GIMP Perl is

smart enough to know that if the method requested doesn’t exist

for that object it can call the procedural version of that function

instead. Note that if you specify your plugin to fall under <Xtns>
instead, you will not be passed any image or drawable arguments.

Remember that the menu location for your plugin is a parameter

in your call to register(), as we discussed last month.

The real world, part II
With UI and API in hand, we can return to a real-world example

with more confidence. Remember last month we said there were

two scripts in this project: GFXOffsets.pl and GFXLayerSave.pl.

GFXOffsets was the more simple of the two, and we breezed

through it fairly quickly. Now, it’s time to look at the slightly more

complex GFXLayerSave.pl.

register (
“gfxlayersave”,
“Save each layer to a file”,
“Save each layer to a file”,
“Michael J. Hammel <mjhammel\@graphics-muse.org>”,
“Private License - Copyright 2004 Michael J. Hammel”,
“First release - February 2004”,
“<Image>/Filters/GFXMuse/GFXLayerSave”,
“*”,
[

[PF_STRING, “path”, “Where should the output be saved?”,
“/tmp”]

],
\&LayerSaveGFX_Run

);
The register function again places our plugin in the Image section

under the Filters/GFXMuse menu. Remember that plugins placed

under the Image menus get the active image id and active

drawable id passed as the first argument to the callback routine.

Our callback routine is called LayerSaveGFX_Run and we’ve

requested a single UI element – a text input field that we will use

as the directory to store the layers as separate images.

We’ve also given our plugin the name “gfxlayersave”, which

will be translated to perl-fu-gfxlayersave in the PDB. Other plugins

could call our plugin with this name, passing in the image, drawable

and path values. If called this way, our single callback, LayerSave
GFX_Run, would be be run with those arguments sans the UI.

The entrance into the callback routine assigns the input

values, in the order they are passed, to the variables $img,
$drawable, and $path. We need the image value for this script

– our goal is to find each layer in that image and save it as a

separate image file.

sub LayerSaveGFX_Run {

Grab the input parameters.
my ($img, $drawable, $path) = @_;

Next we do some error-checking on the supplied pathname. If

the directory does not exist, we use The GIMP’s internal message

dialog to tell the user that they made a mistake, then let the

plugin exit gracefully. The user will be able to see the message

even if our plugins dialog has closed.

if (! -d $path)
{

gimp_message(“$path does not exist.\nCreate it and try
again.”);

return;
}

Note that we can search for message in the DB Browser to find

out how to use this function. It takes a single text string as its only

argument. And because this function is not associated with any

specific GIMP image, it doesn’t have an image or drawable input

argument (see the DB Browser entry for gimp_message).

The image id passed in to the callback can now be used as

on object identifier. We first use it to retrieve the type of image –

RGB, INDEXED, and so forth. This is used to choose an

appropriate filename extension later on in the script. The

extension is pulled from an array we defined at the top of the

script, but which we include in the code shown next below for

clarity. The base type is returned as an integer so the array of

filename extensions is an ordinary array. If base_type() returned

a string, we could have used an associative array instead.

@EXTS = (“png”, “png”, “gif”);
...
my $imgtype = $img->base_type();
$ext = $EXTS[$imgtype];
my @layers = $img->get_layers();
my $count = scalar(@layers);

After the filename extension is set, we use the image object again

to retrieve an array of layers in the image. We’ll be running

through that array in a moment. We also save a count of the

number of layers retrieved.

TUTORIAL GIMP

<<

There is an additional
browser for PDB that
comes with GIMP Perl
called the PDB Explorer.
This dialog is essentially
the same as the DB
Browser but is Perl based.
It is little more informative
than the the DB Browser
though it does show
function names with
underscores instead of
dashes.

TIP

GFXLayerSave.pl registered its function as gfxlayersave, shown here as it is displayed in
the DB Browser, with its translated name and input arguments.

LXF55.tut_gimp_grb 20/5/04 3:55 pm Page 88

www.linuxformat.co.uk LXF55 JULY 2004 89

TUTORIAL GIMP

Gimp->progress_init(“GFXLayerSave is working...”);
my $progress_increment = 1 / $count;
my $progress = 0.0;

Before we begin our loop, we let the user know something is

about to happen. The call to Gimp->progress_init() uses the

global object Gimp. It is similar to the procedural version of this

call except we don’t have to specify the gdisplay argument (seed

the PDB entry for gimp-progress-init) since we just update the

active image window. A couple of progress-related variables are

set up, and we’re ready to enter our loop.

foreach (@layers)
{

$height = $_->drawable_height();
$width = $_->drawable_width();
$layername = $_->layer_get_name();
$hasalpha = $_->drawable_has_alpha();
$_->edit_copy();

The loop iterates over all the layers in the array filled by the call

to $img->get_layers(). Each layer object is assigned to the

special Perl variable $_, and we use that to retrieve the height,

width, and layer name as well as check to see if the layer has an

alpha channel (ie transparency). Finally, we make a copy of the

layer in The GIMP’s primary copy buffer.

Have you noticed that the object calls use the function names

from the PDB but without the usual gimp_ or image_ prefix?

This is just a shortcut that the object-based GIMP Perl interface

provides. If you use the procedural interface instead, you will need

to use the function names just as they are in the PDB, with

dashes changed to underscores. Our next few calls use the

procedural interface – we can mix both methods within a single

GIMP Perl script if we choose.

$newimage = gimp_image_new($width, $height, 0);
$layer = gimp_layer_new($newimage,$width,$height,0,

$layername,100,0);
if ($hasalpha) { gimp_layer_add_alpha($layer); }

gimp_image_add_layer($newimage,$layer,-1);
gimp_image_set_active_layer($newimage,$layer);

gimp_edit_clear(gimp_image_active_drawable
($newimage));
The above shows that we created a new image with the same

height and width as our layer and that is of type RGB (the 0
value). We added a layer to this image (gimp_image_new()
doesn’t add any layers!) that is fully opaque. If the layer from the

original image had transparency, we add it to our just created

layer. We then add the layer to the new image, make it the active

layer and clear it. Clearing it is necessary, because a layer is a

block of memory, and unless you specifically request it, (with

gimp_edit_clear) that block of memory might have garbage

image data in it.

$floatsel = $layer->edit_paste(1);
gimp_floating_sel_to_layer($floatsel);

$newimage->merge_visible_layers(0);
Remember the copy we made of the original layer a while back?

We now paste it using the new layer as the destination object.

This will create a floating selection, which we first need to make

into a new layer, and then merge with the first layer we created in

the new image.

$filename = $layername;
$filename =~ s/\s/_/g;
$filename =~ s/\//-/g;
$filename =~ s/\”//g;

$filename =~ s/\’//g;
$filename =~ s/\,/_/g;
Gimp::Fu::save_image($newimage, “$path/$filename.$ext”);

With an original image’s current layer copied into a layer in a new

image, we’re now ready to save it to a file. We clean up the

filename a bit, which was based on the layername. The

layername can have spaces and other cruft that we don’t want,

so all those =~ that pervade the above code are just a way of

changing the cruft to something more filename-friendly. Then we

use GIMP::Fu to save the image. This is a convenience function in

GIMP::Fu that makes it very easy to save images based on their

filename extension. Remember: we determined the filename

extension earlier – if the extension is .png, we save the file and

PNG, and so forth.

$progress += $progress_increment;
Gimp->progress_update ($progress);
$newimage->delete();
gimp_displays_flush();

}
gimp_message(“GFXLayerSave completed successfully.”);

The loop ends with an update to the progress bar in our current

image window (image windows are also known as Canvas

windows to avoid confusion with the often overused term

“image”). After that update we delete the newly created image

window which was used as a temporary holder for the copy of

our current layer. Then the GIMP windows are ‘flushed’, which

causes them to be updated to reflect any changes (there should

only be the progress update in this case).

After the loop completes, a final message window is displayed

letting the user know the layers have been saved to individual

files. All plugins should return 0 (zero) when they are complete

so that GIMP Perl will know to close the window and let The GIMP

clean up after itself internally.

This particular script has only the most simplistic user

interface. It makes no changes to any Canvas windows either. So

from a user perspective, it looks like it actually does very little.

This is why the progress updates and calls to gimp_message()
are so important. Other scripts will produce visible changes, so

the use of gimp_message() may not be as important.

One important note to remember for plugins that do make

changes to images: be sure to include a call to

gimp_undo_push_group_start() at the start of your callback

function and a call to gimp_undo_push_group_end() at the

end of this function. Doing so will allow the user to use Ctrl-Z
just once to undo whatever your plugin does, even if multiple

changes are made by the plugin. Since no changes were made to

any layers in this script, we didn’t waste any undo levels with calls

to these two functions.

There isn’t much to this script and it would be easy –

especially after reviewing the myriad of functions available in the

PDB – to extend this script to do much more clever things. But

this is a good start, and an easy way to see how to make use of

GIMP::Fu and the PDB (via the DB Browser) to get the most out of

scripting in The GIMP. LXF

To find more information on GIMP Perl, try Marc Lehman’s original
documentation at www.goof.com/pcg/marc/gimp.html. Information
on GIMP Perl for GIMP 2.0 is being laid out by Seth Burgess at
www.gimp.org/~sjburges/perl/gimp-perl-faq.html

FURTHER INFORMATION

A word about modifying
your script on the fly:
You can update your
script while The GIMP is
running as long as its
calling parameters (such
as the user interface)
don’t change. Just make
your updates to the
callback function and
drop the script back in
$HOME/.gimp-1.2/plugins
(for GIMP 1.2, GIMP 2.0
uses .gimp-2.0 instead).
You can then select it
from the menus
immediately to test your
changes. However, if the
script has not been
registered yet you must
restart GIMP before you
can use it.

TIP

LXF55.tut_gimp_grb 20/5/04 3:55 pm Page 89

