
www.linuxformat.co.uk74 GETTING STARTED – UBUNTU

APACHE WEB SERVER

Running a web server
Apache is the most popular web server in the world – why not try it yourself?

ALTHOUGH EMAIL is a great way to avoid
talking to people face to face, it was the
world wide web that brought the internet

to the masses. Early web browsers were capable of
showing text and the odd picture, but since then
we’ve seen the homepage revolution, the
e-commerce revolution and now the blogging
revolution. Each upheaval has had a huge impact on
the way people use the web, and now, because
you’re running Linux, you can join the
in-crowd of people serving up knowledge to the
hungry public by running your own web server.

Although Windows dominates on the desktop, its
dominance doesn’t stretch to the server room.
Apache – a web server that came about as a set of
patches to the original NCSA web server – has gone
from being A Patchy Web Server (from whence
came its name) to being the number one web server
in the world. At the time of writing, Apache powers
nearly 70% of all web domains, compared with just
20% for Microsoft’s Internet Information Services, its
nearest competitor. And yet Apache also has a
history of being secure and stable, which gives the
lie to the “Windows gets hacked more because
more people use it” argument.

In these pages you’ll learn how to install and
configure a web server on your local machine, how
to secure it against the outside world and even how

to install the PHP scripting language so you can
create a dynamic website.

There are three main versions of Apache: 1.3.x,
2.0.x and 2.2. All are supported by the developers
(when bugs are found, they’ll fix them), all are
patched if security vulnerabilities are found, but it’s
Apache 2.2 that is recommended for use because it
is the most modern release. There is little difference

Use your package manager to search for Apache packages and install the ones you want. But avoid
the temptation to pick everything on offer, as that will make your site less secure.

in performance between it and the others when
running on Linux, so you can switch between them if
you must.

INSTALLING APACHE
Apache is usually split into several packages in your
package manager. The most important one is the

LXFS07.apache 74LXFS07.apache 74 10/7/06 11:08:1110/7/06 11:08:11

www.linuxformat.co.uk GETTING STARTED – UBUNTU 75

APACHE WEB SERVER

server itself, usually in a package called apache or
apache2. Most distributions also usually include
modules for Apache that add functionality, such as
mod_ssl (for secure e-commerce), mod_perl (to use
Perl scripts in your pages) and mod_php (to use
PHP scripts).

Although it’s tempting to install all of the
modules on offer, you should be cautious. Apache is
usually deployed as an outward-facing service and
the more modules you deploy, the more open
Apache is to attack by a malicious user. Install only
what you use. For more advice, see the Staying
Secure box on page 77.

Now you know what the packages do, go ahead
and select Apache itself. Your package manager may
prompt you to install other packages that Apache
needs, so do that too. If you have it as an option,
also select the mod_php package, as we’ll be using
that later.

Once Apache is installed, you can test it out
straight away. Open a terminal window and switch to
root by typing sudo /etc/init.d/apache2 start to
start Apache through its system startup script. It
should default to a test page. This is accessible

through your own IP address (on port 80 by default)
or you can just use localhost. To try this out, open
Firefox or any other web browser and enter http://
localhost. All being well you should see something
similar to the picture above right, which shows
Apache’s test page.

The final test is to make sure that PHP has been
installed correctly. To do this, start up your favourite

text editor and create the
file test.php. In there,
type the following:
<?php
 phpinfo();
?>

The phpinfo() line is a
special test function in
PHP that outputs
diagnostic information
about your PHP
installation. Save the file
in your home directory
and open a terminal. Use
su to switch to the root
account, then type mv
test.php /var/www/
html. That will move your
new PHP script into the
directory that Apache
uses to serve its web
pages. If the /var/www/
html directory doesn’t exist, you may need to look
elsewhere – another popular location is /var/www.

With the file moved, open up a web browser and
go to the URL http://localhost/test.php. If your
install has worked, you should see a screen full of
PHP information.

BASIC CONFIGURATION
Now that you have your Apache server up and
running, you might want to make changes to the way

it works. The basic configuration directory for Apache
is usually either /etc/httpd or /etc/apache
(depending on how your system is set up), but
beyond that distros vary greatly. Usually you can rely
on the main configuration file being called httpd.
conf or httpd2.conf, but this may be in /etc/httpd,
/etc/httpd/conf, or any number of similar paths.
Start by looking in /etc/httpd, and if httpd.conf
isn’t in there, try some of the subdirectories.

The configuration file format is made up of
sections and directives. A section starts with an
opening angle bracket (<), the section name, and a
closing angle bracket (>), then has a list of directives
that apply only to that section. The section ends with
another opening angle bracket, a slash (/), the
section name again, and a closing angle bracket. If
you’ve used HTML previously this format will be
quite familiar.

Directives are the configuration options
themselves. Any directive not inside a section is

“Although Microsoft dominates on the
desktop, the open source Apache is the
number one web server in the world.”

Success! This test page shows that your Apache installation has worked,
and that you’re ready to run your own website.

Although it might have seemed difficult, setting up your machine to serve web
pages is actually the easiest part of running a website. The hard part is making the
site good: creating an original, appropriate design, and adding content that people
want to read. We can’t help with the content – you need to write that yourself! –
but we can at least point you in the direction of Linux’s HTML editors so that you
can create a site worthy of your words.

The most popular web editor on Linux is called Quanta Plus, which is part of
the KDE desktop environment. Although it’s very powerful, Quanta is a bit of an
information overload – there are 13 different menu groups, four toolbars and
four tab groups in its default display, which usually scares people off! However,
when you get down to it Quanta is really little more than an advanced text editor
that helps you write HTML for a website through a series of pre-made code
snippets, buttons and wizards. Find out more about the aims and capabilities of
the project at http://quanta.kdewebdev.org.

If you’re not comfortable typing HTML, you can use Quanta’s Visual Page
Layout view (although Quanta isn’t the first thing we think of when we see VPL!)
to drag and drop content on to your pages. This is a fairly new feature to Quanta
and still needs some development (the undo function doesn’t work, for
example), but it’s enough to get newcomers started.

If Quanta isn’t your style, many distros come with alternatives, such as
Bluefish and Screem – although these are inevitably a let-down after you’ve
tried Quanta.

HOWTO… CREATE A WEBSITE

Quanta Plus is the most powerful
HTML editor on Earth and a competent web development tool. It is
pretty well established but its graphical features are still being perfected.

LXFS07.apache 75LXFS07.apache 75 10/7/06 11:08:1810/7/06 11:08:18

www.linuxformat.co.uk76 GETTING STARTED – UBUNTU

APACHE WEB SERVER

applied to the whole server, whereas directives inside
sections are only applied if the section is imported
as a whole. For example:
PidFile /var/run/httpd.pid
DocumentRoot /var/www/html
<IfModule mod_rewrite.c>
 RewriteEngine On
 RewriteRule ^proxy:.* - [F]
</IfModule>
The first two lines are directives that aren’t in any
section, and so are applied to the whole of Apache.
The first one, PidFile, dictates where Apache should
store its process ID file – a file that a) tells the OS
that Apache is running (and thus stops you from
launching another Apache without any complex
checking), and b) allows you to terminate Apache
without knowing its process ID (you can just use the
number stored in this file).

The second line is where Apache looks for its
default set of HTML files. You should recognise the
file path as being where we just stored our PHP
script. DocumentRoot is a commonly changed
directive, particularly when one server runs multiple
sites, each with their own DocumentRoot.

Moving on, you can see there’s a section
immediately after DocumentRoot that starts with

‘IfModule’. Like many sections in Apache, this is a
conditional section that only parses the directives
inside if the module mod_rewrite.c is loaded.
This is used because the next two directives only
work if the Rewrite module is installed; without it
they are meaningless.

THINGS TO CHANGE
There are five other popular directives that you
might want to change before putting your site up.
These are:
■ DirectoryIndex.
■ HostnameLookups.
■ KeepAlive.
■ Listen.
■ ServerAdmin.
Some Linux distributions may place these
directives into files other than httpd2.conf. If
you have a commonhttpd.conf file you should
try looking in there too.

The DirectoryIndex directive lists the files
that should be served if none is specified in the
URL. For example, if a visitor to your site requests
www.yoursite.com, does Apache serve
index.html, index.php or something else? To use

DirectoryIndex, type the list of filenames that you
consider default pages, separated by spaces:
DirectoryIndex index.html index.htm
index.php default.html default.htm default.php

Using this line, when Apache hasn’t been asked
for a specific page to serve it will try to serve
index.html. If the file doesn’t exist, it will try
index.htm, then index.php, default.html and so
on until one of the files does exist, and that’s what it
will serve. This means that using default.php for

the default page in directories is very inefficient:
Apache will try five other filenames first, wasting a lot
of CPU time. If none of the files is found, Apache will
just list the contents of the directory.

The HostnameLookups directive is usually

disabled by default, because no medium-sized
website can afford the performance hit it causes.
When a visitor comes to your site, Apache stores
their IP address, among other things. Enabling
HostnameLookups allows Apache to look at the IP
addresses as they come in and figure out what
domain they come from.

So, rather than seeing that someone at
212.119.50.36 came to your site, it might say that
someone from microsoft.ca visited – you get the
name of the company, plus the country they visited
from. This is great for analysing the profile of your
website’s visitors, but the extra work of resolving all
these domains is time-intensive, so many people try

to do it later on, during a quiet period.
That said, resolving domains later on
has a lower success rate because your
visitor is not likely to be online so the
domain lookup will fail for their IP.

The third directive, KeepAlive, can
both improve and hurt performance.
When a visitor requests a page from
your site, a new connection is created for
it. Apache receives the request, sends
the page and closes the connection. On
the client side, the HTML gets read and
interpreted. Let’s say the client notices it

needs five pictures and a CSS stylesheet in order to
display the page properly. It would open six more
connections to receive each of these.

Opening and closing internet connections is a
slow process, so KeepAlive was born. When a
connection is opened for a web page, that page is
transferred as normal. However, when the page has
been sent, Apache gives the user 15 seconds to
request other content over the connection. So,
having received the HTML page and discovered it
needs extra images, the client can request each of
those images over the same connection and save all
the extra opening and closing.

This is a huge speed boost for small- to medium-
sized sites, but it becomes a problem for larger sites.
Apache has a hard limit on the number of
connections it can use at a time – usually between

“HostnameLookups will look at the
IP address of a site visitor and figure out
what domain they came from.”

Once you have your main website online, you’re only a
small step away from allowing others to have their own
pages on your site. You need not grant them access to
your precious site, because Apache allows them to
serve up pages directly from their home directory.

To try this out for yourself, go to your home directory
and create the directory public_html. In there, create
the file hello.php and type this in:
<?php
 echo “Hello, world!”;
?>

Save the file, then open your web browser. Enter the
following URL into the location bar:
http://localhost/~paul/hello.php. You will of course
need to replace ‘paul’ with your username, but the tilde
beforehand tells Apache that this is a username and
that it should look in that user’s public_html directory
for the requested file.

If the request fails, you may need to grant users
access to public_html. To do that, open up a terminal
and type chmod o+r public_html. The o stands for
‘others’, and the +r means ‘allow reading’.

HOWTO… ADD USERS

The /etc/init.d/httpd script lets you
check your configuration, read server status
and also start and stop Apache.

LXFS07.apache 76LXFS07.apache 76 10/7/06 11:08:2110/7/06 11:08:21

www.linuxformat.co.uk GETTING STARTED – UBUNTU 77

APACHE WEB SERVER

If you’re interested in seeing the communication
between web client and web server, you can use the
Telnet tool to simulate a HTTP request and response.
Not all distros have this installed by default, so you
should check your package manager for the telnet
package before continuing.

To send an HTTP request to your server, open up a
terminal, type telnet localhost 80, and press Enter.
This will connect to the local computer on port 80,
which is the default Apache port.

Next, type GET / HTTP/1.0 and press Enter twice.
This requests the default page for your server, and
pressing Enter twice signals that your request is
complete and you’re waiting for the page. Apache
should respond almost immediately with the HTML for
that page, but if you scroll upwards in the output you
should see the HTTP headers that Apache sent back.
These usually include the size of the page, the name
of the server, the time and date, and more.

HOWTO… GET IN DEEPER

150 and 200. When using KeepAlive, the
15-second timer is reset each time a new request is
made over the connection, which means that once
the final image has been sent to the client there’s a
15-second gap where nothing is done before the
connection is closed. If you have thousands of
visitors coming to your site, holding connections
open for 15 seconds is a huge waste. In these
circumstances you should either cut the KeepAlive
timeout or just disable KeepAlive altogether.

The Listen directive is where you specify the port
number on which Apache should listen for requests.
By default this is port 80, which means that any
requests that come through on that port will be
routed to Apache for handling. Choosing a port
number below 1024 requires root-level privileges, so
many people who run a web server on machines
where root access isn’t available choose port 8000
or 8080.

If you want to change the port number, be
advised that although you can choose a port below
1024 if you have root access, you should be careful
that it doesn’t clash with other services. FTP usually
runs on port 21, SSH on port 22, SMTP on port 25,
IMAP on port 143 and so on – there are many
services assigned by default to use ports below
1024, and trying to change Apache to another sub-
1024 port may cause a clash. Instead, we’d advise
you to pick a port over 1024; you can usually choose
these with impunity.

Finally, the ServerAdmin directive lets you
define an email address that Apache will use for
error pages as a contact address. If you want to
receive emails from users who find error pages, you
should set this to something valid. If you would
rather not hear from users – and who does? – set
this to an email address that goes nowhere.

Although there are many other configuration
options that we haven’t covered here, you can get by
without most. If you want to get into more advanced
web serving – particularly if you want to host more
than one domain – you should be prepared to read
the lengthy Apache documentation, or invest some
money in a good Apache book. ●

The main Apache website.

As an internet-facing service, Apache is
vulnerable to attack from malicious visitors.
Although it is impossible to have a fully
secure system, there are a number of
measures you can take to minimise your
risk. Here are our top seven
recommendations for keeping secure
with Apache.

 1Install only what you need. There are
many modules available for Apache, but

each one that you add increases the
likelihood of someone successfully
attacking you. If you just want to serve plain
HTML pages, for example, why bother
having PHP installed?

2Update Apache regularly. Although
security is really something you should

closely monitor if you value your site, the
most important rule is to ensure that
Apache is kept up to date. It is generally
considered a secure server, but new Apache
security vulnerabilities are discovered
frequently. Fortunately, patches to solve
these problems are issued almost
immediately by the developers and are
usually made available inside the package
manager, and you should update to them
immediately. Even if you don’t think you
are directly affected, you may have a user
on your site who is – and that’s usually all
it takes.

3 Restrict sensitive server
information. By default, Apache sends

out its name, version number and module
information along with every request. This is
great for companies such as Netcraft that
want to gather and analyse this information,
but it’s also great for hackers that are
scanning for vulnerable Apache versions.
You can stop Apache from sending out all
this information by changing the
ServerTokens directive to Prod rather than
Full, and ServerSignature to Off.

4 Be careful of other users. If you want
to give other users access to your

Apache server for their own files, be aware
that scripting languages such as PHP and
Perl are capable of taking up an inordinate
amount of resources, accessing local
commands, and otherwise causing havoc if
your users are abusive.

5 Read your log files carefully.
Apache keeps logs of all requests in

access_log, and errors in error_log. Both
of these files are usually found in
/var/log/httpd. The access_log file is great
for letting you know which pages are
popular, but you can also use it to spot
people requesting unusual pages or
sending malformed requests – a sure sign
they are up to no good. The error_log file
is more helpful for spotting a bad
configuration on your system, but
occasionally you’ll find it listing a page
request for a page that doesn’t exist. This
might be pure chance, or it might be
someone trying to exploit your server –
look into it.

6 Keep track of announcements.
Security holes, updates, fixes and

workarounds are usually made public on
the main Apache site, http://httpd.
apache.org, but you can also check
www.apacheweek.com and
www.serverwatch.com to read technical
articles and news about Apache. If you
don’t, you can be assured that hackers do.

7 Have a recovery plan ready. If your
server is compromised – either through

a hole in one of your pages or through
Apache itself – you need to be ready to
respond. Can you afford to simply shut the
server down and start from scratch? Do you
have backups of key files? Will you be able
to tell if any important files have been
copied or modified? Sometimes leaving
the server running while it is
compromised is the best move, as it allows
you to watch the hacker return (which they
invariably do) so that you can see where
they connect from and what they are doing
on your system.

STAYING SECURE

LXFS07.apache 77LXFS07.apache 77 10/7/06 11:08:2210/7/06 11:08:22

