
www.linuxformat.co.uk80 GETTING STARTED – UBUNTU www.linuxformat.co.uk

PROGRAMMING

with Linux. If you find a language you like, the next
step is to buy a book about the topic and get into it
in more depth.

If you’re not familiar with basic programming
concepts, such as variables, functions and loops,
consult our Beginner’s Guide To Coding Terms, left.

The most basic form of programming is shell
scripting, so named because it uses the bash shell
as its command interpreter. Shell scripting is quite
ugly and limited in what it can do, but it is the
simplest form of programming available in Linux
and so is the best place to begin. If you have ever
written batch files in DOS, shell scripts will be
familiar to you.

Shell scripting allows you to run groups of
commands in the shell as if you were typing them by
hand. The upside of this is that you get to use all the
Linux command-line tools as if they were functions,
but the downside is that shell scripting has very, very
precise syntax that you must adhere to if your scripts
are to work. For example, unlike many other
languages, bash shell scripting does not allow you to
put whitespace (ie spaces, new lines and tabs) freely
in your code.

Let’s look at a very basic script. Open up a text
editor such as GEdit or Kate and type this script,
naming it first.sh:
#!/bin/sh
name=”A. Linux User”
echo $name;

The first line is known as the shebang, which is an

Code on Linux
Developing, hacking, code cutting or just plain old
programming – whatever you call it, you can do it on Linux.

MANY PEOPLE consider programming a
rather nerdy, obscure art that requires you
to tape your glasses together and wear

sandals. This couldn’t be further from the truth – in
fact it’s widely practised, and needs to be for open
source to flourish. People need access to the code
behind programs so they can learn and modify freely.

Although only a few thousand people know
enough about system internals to program the Linux
kernel, you still get professional quality tools to work
on your own projects. Whether you want to program
for fun, learn something new or work on a business
project, Linux can help you get to grips with a wide
range of languages and technologies at no cost.

WHAT’S ON OFFER
Although some might try to convince you otherwise,
there is no one true language for programming.
Instead, Linux is a polyglot environment where you
can choose the language that fits your needs from
its wide selection. Here are the most popular:
■ Shell scripting.
■ Perl.
■ PHP.
■ Python.
■ C/C++.
■ Java.
Most distros support the first five of those out of the
box, with Java support varying. Some distros –
notably SUSE – install Java as standard, whereas
others – notably Fedora – never install Java, leaving
you to download it from the website of Sun
Microsystems, its creator.

Each language has its own advantages and
disadvantages. For example, C++ creates very fast
programs, but is very complicated to use, whereas
PHP lets you program very quickly, but isn’t as
flexible as Perl.

Over these four pages we’ll be covering shell
scripting, Perl and PHP. Don’t expect to become a
master in any of these technologies – this is really
just a sampler to give you a taste of what you can do

Array Many variables grouped together into one
container variable.
Command interpreter Another name for the
command line, or the shell.
Concatenate To join two or more strings together to
make one string.
Exponentiation Raising one number to the power of
another, eg 10 to the power 3 is 1,000.
Function A discrete and re-usable block of code that
can be passed varying output parameters.
Loop Block of code that will run multiple times until a
condition is satisfied.
Parameter Variable passed into a function to
customise its execution.
Print To output a value – such as a static string or a
variable – to the screen.
String A group of characters forming a piece of text
(literally: “string of characters”).
Subroutine Another word for a function. Also
procedure and subprogram.
Syntax Group of rules that define how a
programming language needs to be written.
Variable A single data store in a program that is
capable of storing custom values during run-time.

A BEGINNER’S GUIDE
TO CODING TERMS

SHELL SCRIPTING

LXFS07.program 80LXFS07.program 80 7/7/06 18:32:477/7/06 18:32:47

www.linuxformat.co.uk GETTING STARTED – UBUNTU 81

Looking for a language to learn? Linux supports
all these and more.

Shell scripting

PHP

Python

Perl

Java

C/C++

M
or

e
po

w
er

fu
l

Easier to learn

PROGRAMMING

abbreviation of the ‘sharp’ and ‘bang’ names given
to the # and ! characters respectively. This specifies
which interpreter should be used for this shell script

– we have used /bin/sh. Nearly every Linux system
maps this to bash, so this sets up bash to interpret
our commands.

The next line sets the variable name to the string
value A. Linux User. Note that there is no space
either side of the assignment symbol – if you add
spacing here it simply won’t work. The final line uses
the echo command to print the value of the $name
variable, which as you can see has now acquired a
dollar sign prefix to signal that it’s a variable.

Once you’ve saved the script and gone back to
the shell, run these commands:
chmod u+x first.sh
./first.sh
This makes the script executable, then runs it. If
everything has worked, you should see our variable
name being printed out – simple enough.

ACCEPTING PARAMETERS
Any parameters you pass to your script are available
in numbered variables, starting from $1, with $0 set
to the name of the script that was run. You might
think there is little point having $0 because a
program will always know its name, but actually this
is very useful to have when a program is given
multiple names and you need to decide which one
the user ran before settings are applied. Along with
the numbered dollar variables you also get $#,
which contains the number of parameters passed in
(excluding $0).

We can use this along with a value comparison
to write a simple script that prints a name and age if
they are supplied.

Save this next script as second.sh:
#!/bin/sh
if [$# -ne 2]; then
 echo “You must supply two parameters.”
else
 echo “$1 is $2 years old.”
fi
Line two is now a conditional statement that only
evaluates to true if precisely two parameters have
been passed in to our script. The formatting is
confusing at first: you need if followed by a square
bracket, then $# (the number of parameters passed
in), -ne for ‘not equal’, then the value to check
against, followed by a closing square bracket and a
semi-colon. It’s ugly, but once you get the hang of it
you’ll be fine.

As with other languages, you first specify the
action to take if the condition evaluates to true, then
use an else statement to specify the action to take if
the condition evaluates to false. In our script, if two
parameters are not provided we print an error

message, otherwise we use $1 and $2 to print out a
short message about someone. To finish the
conditional statement, we use fi – the reverse of ‘if’.

Along with -ne there are various other numerical
comparisons, such as -eq for equals, -gt for greater
than, -ge for greater than or equal to, and -lt and

-le for less than and less than or equal to.
To test whether a file exists you can use -f, and

to test whether two strings are equal you can use =.
However, the majority of your bash scripting will
involve running external programs, and to do that
you need to find the backtick key on your keyboard.
This is usually to the left of the number 1 on the top
of your keyboard (above Tab) and looks like: `.

To execute an external program, just put the
command you want inside backticks and place its
return value into a variable. For example, if you want
to run the wc command to count the number of
words in a file, you would use name=`wc somefile.
txt`;. We can use this, along with the new -f file
check, to write a script that accepts a parameter,
checks whether the file exists, and if it does, counts
the number of words that it contains. Save this next
script as third.sh:
#!/bin/sh
if [$# -ne 1]; then
 echo “Please provide a parameter.”;
else
 if [-e $1]; then
 words=`wc -w $1 | cut -f 1 -d “ “`;
 echo “$1 has $words words.”;
 else
 echo “$1 does not exist!”;
 fi
fi

The magic here all happens in the words= line,
which executes quite a complex command. First it
runs wc -w $1, which runs the word counting

program wc and asks it to report only the number of
words (-w) rather than also counting the number of
letters and lines. However, some versions of wc will
also print out the name of the file it was counting,
and we don’t want that in our variable. So, the
output from wc is piped into the cut command,
which enables you to break text into fields.

In our code, cut is given the -d parameter along
with a pair of quotes with a space in between. This
defines the delimiter – what cut is using to define
individual feeds – as being a space. The -f 1
parameter means ‘we want the first field only’. So,
the complete cut command breaks our text string
up into individual words, then returns the first one –
exactly what we need.

The real power of shell scripting comes about
through some of the command-line Linux tools such
as sed and awk, which enable shell scripts to do
things that would otherwise be impossible. The
problem with this approach is that writing a complex
shell script requires mastery of a great number of
such tools, and its execution requires Linux to run
many different programs.

The solution was to take the functionality of all
these basic tools, extend them and roll them up in
to a new programming language called Perl, the
Practical Extraction and Reporting Language. Perl is
a bit of a mongrel programming language in that its
design was drawn from so many places that it looks
quite confused in places. That said, mastery of Perl
gains you the coveted title of Perlmonger, and firmly
places you in the ranks of the Linux elite.

Before you start, make sure you have Perl
installed. Most distros install it by default, but if you
type perl at the command line and get ‘command
not found’ you need to use your package manager
to install it.

A basic Perl script looks very much like a bash
shell script, but there are subtle differences. Save
this as first.pl:
#!/usr/bin/perl
$perl = “Great\n”;
print $perl;
Line one uses the same shebang as with a shell
script, but note that we’re now using /usr/bin/perl
as our interpreter rather than /bin/sh. Line two sets
the variable $perl, which has a dollar sign when
being set, plus spacing on either side of the equals
sign for readability – Perl has no problems handling
this. Also note that after the Great string comes \n,
which is known as an escape sequence. This
particular escape sequence represents a line break,
and without it Perl would not print a new line after
Great and the user’s command prompt would
appear on the same line.

ARRAY LOOPS
As you can see, Perl is a logical step up from shell
scripting. It’s harder but more powerful, and has
some truly mind-bending syntax that makes for
quick and easy programming. For example,
parameters being passed in to the script are stored

“Mastery of Perl gives you the coveted
title of Perlmonger and firmly places
you in the ranks of the Linux elite.”

PERL

LXFS07.program 81LXFS07.program 81 7/7/06 18:32:537/7/06 18:32:53

www.linuxformat.co.uk82 GETTING STARTED – UBUNTU

PROGRAMMING

in the ARGV array (argument values), and because
that variable is an array rather than a simple value
you need to use an @ symbol rather than a dollar
sign for it. So, to print out the first parameter passed
to your script, you would use this:
print @ARGV[0]

The 0 is important because Perl arrays are zero-
based, which means the first element is at position
0, the second is at position 1, and so on.

If you want to print out all the parameters passed
in to your script, you can use the foreach loop and
the magic $_ variable. The combination of these two
looks like black magic to outsiders, but we think you
will admit that it makes for easy programming – try
this out as second.pl:
#!/usr/bin/perl
foreach(@ARGV) {
 print “$_\n”;
}

The foreach loop goes through each item in an
array and, unless told otherwise, places its value into
the $_ variable. We can then print this out inside the
loop, along with a new line for easier reading thanks
to \n. If you want to place the array element into a
specific variable, you can use this:
#!/usr/bin/perl
foreach $val (@ARGV) {
 print “$val\n”;
}

To run this script, use ./second.pl First Second
Third Fourth.

SUPER SUBROUTINES
If you want to reuse code in Perl, your best bet is
subroutines. These are very easy to use, and by
default share variables with the rest of the script. For
example, we could modify our script so that it
accepted numbers as input and returned those
values squared.

Save this script as third.pl:
#!/usr/bin/perl
sub myfunc {
 return $_ ** 2;
}
foreach (@ARGV) {
 print myfunc . “\n”;
}

The loop now calls the myfunc subroutine, which
grabs the $_ and squares it using the exponentiation

operator, **. The result is returned from myfunc
using the imaginatively titled return keyword, then
the concatenation operator (a full stop) is used to
join the squared number with \n so that each
number gets a new line.

To run that script, use ./third.pl 1 2 3 4 5. If you
try running it with words rather than numbers you
will just get 0, because Perl cannot multiply a string
by a string.

In the example above you can see how the
myfunc subroutine has access to the variables in
the rest of the script, and if you play around with it
you’ll find that any variables set inside myfunc are
also available in the rest of the script. If you would
rather that myfunc had its own variables, you
should just use the my keyword. For instance, my
$number = 6 declared inside myfunc would only
be available inside the subroutine.

If you are feeling adventurous, you can also use
Perl with Apache through mod_perl (see http://
perl.apache.org), but most people just turn to PHP.

If you’re looking for a real
challenge, Linux comes complete
with C and C++ programming tools
that will enable you to create
everything from a basic
command-line temperature
converter to a database-enabled
graphical user interface.

Design graphical user
interfaces by dragging and
dropping what you want using
Qt Designer.

OR TRY: C

Perl has long been the mainstay of Linux script
programmers, although over the last five or so years
an increasing number of people have been moving
to Python for shell scripting. A similar movement has
been taking place on the web-scripting front,
although this time to PHP, a newer Java-like
language that is much easier to learn than Perl and
can be integrated very well with both Apache and
various database systems.

If you followed our Apache and PHP installation
instructions on page 74 you will already have these
two installed and ready to use. If not, go there now
and get them installed before you continue. Once
you have the phpinfo() script working you’re ready
to get started with some real programming.

Now that you’ve got everything, let’s get started.
Save the following code as first.php in your
/var/www/html directory (or in the public_html
directory for your user):
This is plain text.

So is this.

<?php
 $name = “J. Random Hacker”;
 echo “$name
”;
?>
Back in plain text again.

Now open up Firefox and load the location
http://localhost/first.php (or http://localhost/

~yourusername/first.php if you’re doing it the
alternative way) – you should see the page printed
out. The ability to embed PHP code freely inside
HTML is one of PHP’s primary benefits. The PHP
interpreter operates in HTML mode by default, and
just prints everything out, but as soon as you use
<?php it switches to PHP mode and executes

If you have Konqueror installed, loading man:/perlintro will bring up a concise Perl tutorial to help
get you started. See our Where To Go From Here box on the next page for more assistance.

PHP

LXFS07.program 82LXFS07.program 82 7/7/06 18:32:557/7/06 18:32:55

www.linuxformat.co.uk GETTING STARTED – UBUNTU 83

PROGRAMMING

everything up until the ?>, at which point it goes
back to HTML mode.

BADGER POPPING
PHP has arrays and loops in much the same way as
Perl, although there are noticeably fewer of those

‘magic’ short scripts involved. This next script creates
an array, uses a special function that takes off the
last item, then prints it all out – save it as second.
php in your HTML directory of choice.
<?php
 $adverbs = array(“Quickly”, “Merrily”, “Boldly”,

“Badger”);
 $not_adverb = array_pop($adverbs);
 echo “<p>$not_adverb isn’t
an adverb!</p>”;
 echo “<p>These are adverbs…
”;
 foreach($adverbs as $adverb) {
 print “$adverb”;
 }
 echo “</p>”;
?>

The array() line lets you specify elements to
place inside an array by separating each item with a
comma. This array, $adverbs, then gets passed into
the array_pop() function, which takes the last
element (“Badger”) off it and stores it in the $not_
adverb variable. That variable is then printed out,
and we go in to a foreach loop to print out the
remaining adverbs.

Unlike Perl, you must always specify where you
want elements to be stored inside a foreach
variable if you want to use them. In our example we
say $adverbs as $adverb, which means, ‘Loop
through the $adverbs array and place each
element into the $adverb element’. The HTML
inside and surrounding the loop handles bold, italics,
paragraphing and list formatting for us.

We’ve got just enough room here for one last
PHP example, so this time we’re going to write a
script that accepts a variable from the outside world,
checks it, and if successful redirects the user to
another page.

Save this as third.php:
<?php
 if (isset($_GET[“Password”])) {
 if ($_GET[“Password”] == “nsiucxk”) {
 header(“Location: secret.php”);
 exit;
 } else {
 echo “Oops - wrong password!”;
 }
 } else {
 echo “You need to specify a password!”;
 }
?>

This introduces two new functions, isset() and
header(), and the $_GET superglobal array.
$_GET is a variable set by PHP to contain an array
of all the variables that have been sent to the script
through the URL. The isset() function literally means
‘is a variable set’, and returns true if the variable
exists. So, line two of our code is a conditional
statement that checks whether the URL contained
the variable Password. If it did, we go on to check
whether that password was set to nsiucxk, and if
that condition is also true we use header() to tell
the web browser to load a different URL.

In this example, header() is used to tell the
browser to load secret.php, and it will do that.
However, despite being told to load another URL, the
browser will continue loading the current page in the
meantime, so to ensure nothing else gets printed
out once we’ve received the correct password we
use exit to terminate the script.

Although PHP is primarily used on the web, most
distros come with extra packages that allow PHP to
be used as a command-line interpreter for shell
scripting. Look for php-cli in your package manager –
once that is installed, you should be able to use
#!/usr/bin/php as your shebang line, or just run
scripts through the php command, such as
php myscript.php. ●

“Though PHP is primarily used on the
web, extra packages allow it to be used
as a command-line interpreter.”

Linux Format frequently runs tutorials on each of
these languages, highlighting new and interesting
techniques to take your learning to the next level.
If you prefer something weightier, there are a number
of good books out there:
■ SHELL PROGRAMMING:
Unix Shells By Example by Ellie Quigley
(Prentice Hall, ISBN: 0-13-147572-X).
Unix Shell Programming by Kochan and Wood
(Sams, ISBN: 0-672-32490-3).
■ PERL PROGRAMMING:
Anything by O’Reilly.
■ PHP PROGRAMMING:
PHP 5 Power Programming by Gutmans et al
(Prentice Hall, ISBN: 0-13-147149-X).
PHP and MySQL Web Development by Welling and
Thomson (Sams, ISBN: 0-672-32672-9).
The Web Programming CD Bookshelf
(O’Reilly, ISBN: 0-596-00510-5).
■ C AND C++ PROGRAMMING:
The C++ Programming Language by Bjarne Stroustrup
(Addison-Wesley, ISBN: 0-201-70073-5).
C++ GUI Programming With Qt 3 by Blanchette and
Summerfield (Prentice Hall, ISBN: 0-13-124072-2).

WHERE TO GO FROM HERE

“Badger is not an adverb,” he said badgeringly.

If you see this screen for your phpinfo() script, you’re ready to rock and roll.

LXFS07.program 83LXFS07.program 83 7/7/06 18:32:567/7/06 18:32:56

