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Abstract

With Linux for the Sony PS3, the IBM QS2x blades
and the Toshiba Celleb platform having hit mainstream
Linux distributions, programming for the Cell BE is be-
coming increasingly interesting for developers of per-
formance computing. This talk is about the concepts of
the architecture and how to develop applications for it.

Most importantly, there will be an overview of new fea-
ture additions and latest developments, including:

• Preemptive scheduling on SPUs (finally!): While it
has been possible to run concurrent SPU programs
for some time, there was only a very limited ver-
sion of the scheduler implemented. Now we have
a full time-slicing scheduler with normal and real-
time priorities, SPU affinity and gang scheduling.

• Using SPUs for offloading kernel tasks: There are a
few compute intensive tasks like RAID-6 or IPsec
processing that can benefit from running partially
on an SPU. Interesting aspects of the implementa-
tion are how to balance kernel SPU threads against
user processing, how to efficiently communicate
with the SPU from the kernel and measurements
to see if it is actually worthwhile.

• Overlay programming: One significant limitation
of the SPU is the size of the local memory that is
used for both its code and data. Recent compil-
ers support overlays of code segments, a technique
widely known in the previous century but mostly
forgotten in Linux programming nowadays.

1 Background

The architecture of the Cell Broadband Engine
(Cell/B.E.) is unique in many ways. It combines a gen-
eral purpose PowerPC processor with eight highly op-
timized vector processing cores called the Synergistic

Processing Elements (SPEs) on a single chip. Despite
implementing two distinct instruction sets, they share
the design of their memory management units and can
access virtual memory in a cache-coherent way.

The Linux operating system runs on the PowerPC Pro-
cessing Element (PPE) only, not on the SPEs, but
the kernel and associated libraries allow users to run
special-purpose applications on the SPE as well, which
can interact with other applications running on the PPE.
This approach makes it possible to take advantage of the
wide range of applications available for Linux, while at
the same time utilize the performance gain provided by
the SPE design, which could not be achieved by just re-
compiling regular applications for a new architecture.

One key aspect of the SPE design is the way that mem-
ory access works. Instead of a cache memory that
speeds up memory accesses in most current designs,
data is always transferred explicitly between the lo-
cal on-chip SRAM and the virtually addressed system
memory. An SPE program resides in the local 256KiB
of memory, together with the data it is working on.
Every time it wants to work on some other data, the
SPE tells its Memory Flow Controller (MFC) to asyn-
chronously copy between the local memory and the vir-
tual address space.

The advantage of this approach is that a well-written
application practically never needs to wait for a mem-
ory access but can do all of these in the background.
The disadvantages include the limitation to 256KiB of
directly addressable memory that limit the set of appli-
cations that can be ported to the architecture, and the
relatively long time required for a context switch, which
needs to save and restore all of the local memory and
the state of ongoing memory transfers instead of just the
CPU registers.
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Figure 1: Stack of APIs for accessing SPEs

1.1 Linux port

Linux on PowerPC has a concept of platform types that
the kernel gets compiled for, there are for example sep-
arate platforms for IBM System p and the Apple Power
Macintosh series. Each platform has its own hardware
specific code, but it is possible to enable combinations
of platforms simultaneously. For the Cell/B.E., we ini-
tially added a platform named “cell” to the kernel, which
has the drivers for running on the bare metal, i.e. with-
out a hypervisor. Later, the code for both the Toshiba
Celleb platform and Sony’s PlayStation 3 platform were
added, because each of them have their own hypervisor
abstractions that are incompatible with each other and
with the hypervisor implementations from IBM. Most
of the code that operates on SPEs however is shared and
provides a common interface to user processes.

2 Programming interfaces

There is a variety of APIs available for using SPEs,
I’ll try to give an overview of what we have and what
they are used for. For historic reasons, the kernel and
toolchain refer to SPUs (Synergistic Processing Units)
instead of SPEs, of which they are strictly speaking a
subset. For practical purposes, these two terms can be
considered equivalent.

2.1 Kernel SPU base

There is a common interface for simple users of an
SPE in the kernel, the main purpose is to make it pos-
sible to implement the SPU file system (spufs). The
SPU base takes care of probing for available SPEs in
the system and mapping their registers into the ker-
nel address space. The interface is provided by the
include/asm-powerpc/spu.h file. Some of the reg-
isters are only accessible through hypervisor calls on
platforms where Linux runs virtualized, so accesses to
these registers get abstracted by indirect function calls
in the base.

A module that wants to use the SPU base needs to re-
quest a handle to a physical SPU and provide interrupt
handler callbacks that will be called in case of events
like page faults, stop events or error conditions.

The SPU file system is currently the only user of the
SPU base in the kernel, but some people have imple-
mented experimental other users, e.g. for acceleration
of device drivers with SPUs inside of the kernel. Do-
ing this is an easy way for prototyping kernel code, but
we are recommending the use of spufs even from inside
the kernel for code that you intend to have merged up-
stream. Note that as in-kernel interfaces, the API of the
SPU base is not stable and can change at any time. All
of its symbols are exported only to GPL-licensed users.

2.2 The SPU file system

The SPU file system provides the user interface for ac-
cessing SPUs from the kernel. Similar to procfs and
sysfs, it is a purely virtual file system and has no block
device as its backing. By convention, it gets mounted
world-writable to the /spu directory in the root file sys-
tem.

Directories in spufs represent SPU contexts, whose
properties are shown as regular files in them. Any in-
teraction with these contexts is done through file oper-
ation like read, write or mmap. At time of this writing,
there are 30 files that are present in the directory of an
SPU context, I will describe some of them as an exam-
ple later.

Two system calls have been introduced for use exclu-
sively together with spufs, spu_create and spu_run. The
spu_create system call creates an SPU context in the ker-
nel and returns an open file descriptor for the directory
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associated with it. The open file descriptor is signifi-
cant, because it is used as a measure to determine the
life time of the context, which is destroyed when the file
descriptor is closed.

Note the explicit difference between an SPU context and
a physical SPU. An SPU context has all the properties of
an actual SPU, but it may not be associated with one and
only exists in kernel memory. Similar to task switching,
SPU contexts get loaded into SPUs and removed from
them again by the kernel, and the number of SPU con-
texts can be larger than the number of available SPUs.

The second system call, spu_run, acts as a switch for a
Linux thread to transfer the flow of control from the PPE
to the SPE. As seen by the PPE, a thread calling spu_run
blocks in that system call for an indefinite amount of
time, during which the SPU context is loaded into an
SPU and executed there. An equivalent to spu_run on
the SPU itself is the stop-and-signal instruction, which
transfers control back to the PPE. Since an SPE does
not run signal handlers itself, any action on the SPE that
triggers a signal or others sending a signal to the thread
also cause it to stop on the SPE and resume running on
the PPE.

Files in a context include

mem The mem file represents the local memory of an
SPU context. It can be accessed as a linear file
using read/write/seek or mmap operation. It is
fully transparent to the user whether the context is
loaded into an SPU or saved to kernel memory, and
the memory map gets redirected to the right loca-
tion on a context switch. The most important use
of this file is for an object file to get loaded into
an SPU before it is run, but mem is also used fre-
quently by applications themselves.

regs The general purpose registers of an SPU can not
normally be accessed directly, but they can be in a
saved context in kernel memory. This file contains
a binary representation of the registers as an array
of 128-bit vector variables. While it is possible to
use read/write operations on the regs file in order
to set up a newly loaded program or for debugging
purposes, every access to it means that the context
gets saved into a kernel save area, which is an ex-
pensive operation.

wbox The wbox file represents one of three mail box
files that can be used for unidirectional communi-

cation between a PPE thread and a thread running
on the SPE. Similar to a FIFO, you can not seek in
this file, but only write data to it, which can be read
using a special blocking instruction on the SPE.

phys-id The phys-id does not represent a feature of a
physical SPU but rather presents an interface to get
auxiliary information from the kernel, in this case
the number of the SPU that a context is loaded into,
or -1 if it happens not to be loaded at all at the point
it is read. We will probably add more files with sta-
tistical information similar to this one, to give users
better analytical functions, e.g. with an implemen-
tation of top that knows about SPU utilization.

2.3 System call vs. direct register access

Many functions of spufs can be accessed through two
different ways. As described above, there are files rep-
resenting the registers of a physical SPU for each con-
text in spufs. Some of these files also allow the mmap()
operation that puts a register area into the address space
of a process.

Accessing the registers from user space through mmap
can significantly reduce the system call overhead for fre-
quent accesses, but it carries a number of disadvantages
that users need to worry about:

• When a thread attempts to read or write a regis-
ter of an SPU context running in another thread, a
page fault may need to be handled by the kernel.
If that context has been moved to the context save
area, e.g. as the result of preemptive scheduling,
the faulting thread will not make any progress un-
til the SPU context becomes running again. In this
case, direct access is significantly slower than indi-
rect access through file operations that are able to
modify the saved state.

• When a thread tries to access its own registers
while it gets unloaded, it may block indefinitely
and need to be killed from the outside.

• Not all of the files that can get mapped on one ker-
nel version can be on another one. When using
64k pages, some files can not be mapped due to
hardware restrictions, and some hypervisor imple-
mentations put different limitation on what can be
mapped. This makes it very hard to write portable
applications using direct mapping.
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• In concurrent access to the registers, e.g. two
threads writing simultaneously to the mailbox, the
user application needs to provide its own lock-
ing mechanisms, as the kernel can not guarantee
atomic accesses.

In general, application writers should use a library like
libspe2 to do the abstraction. This library contains func-
tions to access the registers with correct locking and
provides a flag that can be set to attempt using the di-
rect mapping or fall back to using the safe file system
access.

2.4 elfspe

For users that want to worry as little as possible about
the low-level interfaces of spufs, the elfspe helper is the
easiest solution. Elfspe is a program that takes an SPU
ELF executable and loads it into a newly created SPU
context in spufs. It is able to handle standard callbacks
from a C library on the SPU, which are needed e.g. to
implement printf on the SPU by running some of code
on the PPE.

By installing elfspe with the miscellaneous binary for-
mat kernel support, the kernel execve() implementa-
tion will know about SPU executables and use /sbin/
elfspe as the interpreter for them, just like it calls in-
terpreters for scripts that start with the well-known “#!”
sequence.

Many programs that use only the subset of library func-
tions provided by newlib, which is a C runtime library
for embedded systems, and fit into the limited local
memory of an SPE are instantly portable using elfspe.
Important functionalities that does not work with this
approach include:

shared libraries Any library that the executable needs
also has to be compiled for the SPE and its size
adds up to what needs to fit into the local memory.
All libraries are statically linked.

threads An application using elfspe is inherently
single-threaded. It can neither use multiple SPEs
nor multiple threads on one SPE.

IPC Inter-process communication is significantly lim-
ited by what is provided through newlib. Use of
system calls directly from an SPE is not easily

available with the current version of elfspe, and any
interface that requires shared memory requires spe-
cial adaptation to the SPU environment in order to
do explicit DMA.

2.5 libspe2

Libspe2 is an implementation of the operating-system-
independent “SPE Runtime Management Library” spec-
ification.1 This is what most applications are supposed
to be written for in order to get the best degree of porta-
bility. There was an earlier libspe 1.x, that is not actively
maintained anymore since the release of version 2.1.

Unlike elfspe, libspe2 requires users to maintain SPU
contexts in their own code, but it provides an abstrac-
tion from the low-level spufs details like file operations,
system calls and register access.

Typically, users want to have access to more than one
SPE from one application, which is typically done
through multithreading the program: each SPU context
gets its own thread that calls the spu_run system call
through libspe2. Often, there are additional threads that
do other work on the PPE, like communicating with the
running SPE threads or providing a GUI. In a program
where the PPE hands out tasks to the SPEs, libspe2 pro-
vides event handles that the user can call blocking func-
tions like epoll_wait() on to wait for SPEs request-
ing new data.

2.6 Middleware

There are multiple projects targeted at providing a layer
on top of libspe2 to add application-side scheduling of
jobs inside of an SPU context. These include the SPU
Runtime System (SPURS) from Sony, the Accelerator
Library Framework (ALF) from IBM and the MultiCore
Plus SDK from Mercury Computer Systems.

All these projects have in common that there is no pub-
lic documentation or source code available at this time,
but that will probably change in the time until the Linux
Symposium.

1http://www-306.ibm.com/chips/
techlib/techlib.nsf/techdocs/
1DFEF31B3211112587257242007883F3/$file/
cplibspe.pdf
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3 SPU scheduling

While spufs has had the concept of abstracting SPU con-
texts from physical SPUs from the start, there has not
been any proper scheduling for a long time. An ini-
tial implementation of a preemptive scheduler was first
merged in early 2006, but then disabled again as there
were too many problems with it.

After a lot of discussion, a new implementation of
the SPU scheduler from Christoph Hellwig has been
merged in the 2.6.20 kernel, initially only supporting
only SCHED_RR and SCHED_FIFO real-time priority
tasks to preempt other tasks, but later work was done
to add time slicing as well for regular SCHED_OTHER
threads.

Since SPU contexts do not directly correspond to Linux
threads, the scheduler is independent of the Linux pro-
cess scheduler. The most important difference is that a
context switch is performed by the kernel, running on
the PPE, not by the SPE, which the context is running
on.

The biggest complication when adding the scheduler is
that a number of interfaces expect a context to be in a
specific state. Accessing the general purpose registers
from GDB requires the context to be saved, while ac-
cessing the signal notification registers through mmap
requires the context to be running. The new scheduler
implementation is conceptually simpler than the first at-
tempt in that no longer attempts to schedule in a context
when it gets accessed by someone else, but rather waits
for the context to be run by means of another thread call-
ing spu_run.

Accessing one SPE from another one shows effects of
non-uniform memory access (NUMA) and application
writers typically want to keep a high locality between
threads running on different SPEs and the memory they
are accessing. The SPU code therefore has been able for
some time to honor node affinity settings done through
the NUMA API. When a thread is bound to a given CPU
while executing on the PPE, spufs will implicitly bind
the thread to an SPE on the same physical socket, to the
degree that relationship is described by the firmware.

This behavior has been kept with the new scheduler, but
has been extended by another aspect, affinity between
SPE cores on the same socket. Unlike the NUMA inter-
faces, we don’t bind to a specific core here, but describe

the relationship between SPU contexts. The spu_create
system call now gets an optional argument that lets the
user pass the file descriptor of an existing context. The
spufs scheduler will then attempt to move these contexts
to physical SPEs that are close on the chip and can com-
municate with lower overhead than distant ones.

Another related interface is the temporal affinity be-
tween threads. If the two threads that you want to com-
municate with each other don’t run at the same time,
the special affinity is pointless. A concept called gang
scheduling is applied here, with a gang being a container
of SPU contexts that are all loaded simultaneously. A
gang is created in spufs by passing a special flag to
spu_create, which then returns a descriptor to an empty
gang directory. All SPU contexts created inside of that
gang are guaranteed to be loaded at the same time.

In order to limit the number of expensive operations of
context switching an entire gang, we apply lazy context
switching to the contexts in a gang. This means we don’t
load any contexts into SPUs until all contexts in the gang
are waiting in spu_run to become running. Similarly,
when one of the threads stops, e.g. because of a page
fault, we don’t immediately unload the contexts but wait
until the end of the time slice. Also, like normal (non-
gang) contexts, the gang will not be removed from the
SPUs unless there is actually another thread waiting for
them to become available, independent of whether or
not any of the threads in the gang execute code at the
end of the time slice.

4 Using SPEs from the kernel

As mentioned earlier, the SPU base code in the kernel al-
lows any code to get access to SPE resources. However,
that interface has the disadvantage to remove the SPE
from the scheduling, so valuable processing power re-
mains unused while the kernel is not using the SPE. That
should be most of the time, since compute-intensive
tasks should not be done in kernel space if possible.

For tasks like IPsec, RAID6 or dmcrypt processing of-
fload, we usually want the SPE to be only blocked while
the disk or network is actually being accessed, otherwise
it should be available to user space.

Sebastian Siewior is working on code to make it possi-
ble to use the spufs scheduler from the kernel, with the
concrete goal of providing cryptoapi offload functions
for common algorithms.
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For this, the in-kernel equivalent of libspe is created,
with functions that directly do low-level accesses in-
stead of going through the file system layer. Still, the
SPU contexts are visible to user space applications, so
they can get statistic information about the kernel space
SPUs.

Most likely, there should be one kernel thread per SPU
context used by the kernel. It should also be possible
to have multiple unrelated functions that are offloaded
from the kernel in the same executable, so that when
the kernel needs one of them, it calls into the correct
location on the SPU. This requires some infrastructure
to link the SPU objects correctly into a single binary.
Since the kernel does not know about the SPU ELF file
format, we also need a new way of initially loading the
program into the SPU, e.g. by creating a save context
image as part of the kernel build process.

First experiments suggest that an SPE can do an AES
encryption about four times faster than a PPE. It will
need more work to see if that number can be improved
further, and how much of it is lost as communication
overhead when the SPE needs to synchronize with the
kernel. Another open question is whether it is more ef-
ficient for the kernel to synchronously wait for the SPE
or if it can do something else at the same time.

5 SPE overlays

One significant limitation of the SPE is the size that
is available for object code in the local memory. To
overcome that limitation, new binutils support overlay
to support overlaying ELF segments into concurrent re-
gions. In the most simple case, you can have two func-
tions that both have their own segment, with the two
segments occupying the same region. The size of the re-
gion is the maximum of either segment size, since they
both need to fit in the same space.

When a function in an overlay is called, the calling func-
tion first needs to call a stub that checks if the correct
overlay is currently loaded. If not, a DMA transfer is
initiated that loads the new overlay segment, overwrit-
ing the segment loaded into the overlay region before.
This makes it possible to even do function calls in dif-
ferent segments of the same region.

There can be any number of segments per region, and
the number of regions is only limited by the size of the

local storage. However, the task of choosing the optimal
configuration of which functions to go into what seg-
ment is up to the application developer. It gets specified
through a linker script that contains a list of OVERLAY
statements, each of them containing a list of segments
that go into an overlay.

It is only possible to overlay code and read-only data,
but not data that is written to, because overlay segments
only ever get loaded into the SPU, but never written back
to main memory.

6 Profiling SPE tasks

Support for profiling SPE tasks with the oprofile tool has
been implemented in the latest IBM Software Develop-
ment Kit for Cell. It is currently in the process of getting
merged into the mainline kernel and oprofile user space
packages.

It uses the debug facilities provided by the Cell/B.E.
hardware to get sample data about what each SPE is do-
ing, and then maps that to currently running SPU con-
texts. When the oprofile report tool runs, that data can
be mapped back to object files and finally to source code
lines that a developer can understand. So far, it behaves
like oprofile does for any Linux task, but there are a few
complications.

The kernel, in this case spufs, has by design no knowl-
edge about what program it is running, the user space
program can simply load anything into local storage. In
order for oprofile to work, a new “object-id” file was
added to spufs, which is used by libspe2 to tell opro-
file the location of the executable in the process address
space. This file is typically written when an application
is first started and does not have any relevance except
when profiling.

Oprofile uses the object-id in order to map the local store
addresses back to a file on the disk. This can either be
a plain SPU executable file, or a PowerPC ELF file that
embeds the SPU executable as a blob. This means that
every sample from oprofile has three values: The offset
in local store, the file it came from, and the offset in that
file at which the ELF executable starts.

To make things more complicated, oprofile also needs to
deal with overlays, which can have different code at the
same location in local storage at different times. In order
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to get these right, oprofile parses some of the ELF head-
ers of that file in kernel space when it is first loaded, and
locates an overlay table in SPE local storage with this
to find out which overlay was present for each sample it
took.

Another twist is self-modifying code on the SPE, which
happens to be used rather frequently, e.g. in order to do
system calls. Unfortunately, there is nothing that opro-
file can safely do about this.

7 Combined Debugger

One of the problems with earlier version of GDB for
SPU was that GDB can only operate on either the PPE
or the SPE. This has now been overcome by the work of
Ulrich Weigand on a combined PPE/SPE debugger.

A single GDB binary now understands both instruction
sets and knows how switch between the two. When
GDB looks at the state of a thread, it now checks if it
is in the process of executing the spu_run system call. If
not, it shows the state of the thread on the PPE side using
ptrace, otherwise it looks at the SPE registers through
spufs.

This can work because the SIGSTOP signal is handled
similarly in both cases. When gdb sends this signal to
a task running on the SPE, it returns from the spu_run
system call and suspends itself in the kernel. GDB can
then do anything to the context and when it sends a
SIGCONT, spu_run will be restarted with updated ar-
guments.
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