
Proceedings of the
Linux Symposium

June 27th–30th, 2007
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc.
Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

Cool Hand Linux R© – Handheld Thermal Extensions

Len Brown
Intel Open Source Technology Center

len.brown@intel.com

Harinarayanan Seshadri
Intel Ultra-Mobile Group

harinarayanan.seshadri@intel.com

Abstract

Linux has traditionally been centered around processor
performance and power consumption. Thermal manage-
ment has been a secondary concern—occasionally used
for fan speed control, sometimes for processor throt-
tling, and once in a rare while for an emergency thermal
shutdown.

Handheld devices change the rules. Skin temperature
is a dominant metric, the processor may be a minority
player in heat generation, and there are no fans.

This paper describes extensions to Linux thermal man-
agement to meet the challenges of handheld devices.

1 Handhelds Thermal Challenges

The new generation handheld computing devices are ex-
ploding with new usage models like navigation, info-
tainment, health, and UMPC. “Internet on the Go” is a
common feature set the handheld devices must provide
for all these new usage models. This requires handheld
devices to be high-performance.

High-performance handhelds have magnified power and
thermal challenges as compared to notebooks.

• Notebooks today are infrequently designed to sit
in your lap. Most of them are designed to sit on
a table, and many actually require free air flow
from beneath the case. Users demand that hand-
held computers be cool enough that their hand does
not sweat. Thus, there are strict skin temperature
limits on handhelds.

• Notebooks typically have fans. Handhelds typi-
cally do not have fans.

• Handheld form factors are physically smaller than
a typical notebook, and thus the thermal dissipation
within the platform is limited.

• The CPU is the dominant heat generator on most
notebooks. But for handhelds, the CPU may be a
minor contributor as compared to other devices.

2 ACPI Thermal Capabilities

Linux notebooks today use a combination of ACPI and
native-device thermal control.

The ACPI specification [ACPI] mandates that if a note-
book has both active and passive cooling capability, then
the platform must expose them to the OS via ACPI. The
reasoning behind this is that the OS should be involved
in the cooling policy decision when deciding between
active versus passive cooling.

But a large number of notebooks implement thermal
control “behind the scenes” and don’t inform or involve
ACPI or the OS at all. Generally this means that they
control the fan(s) via chipset or embedded controller;
but in some cases, they go further, and also implement
thermal throttling in violation of the ACPI spec.

2.1 Linux will not use the ACPI 3.0 Thermal Ex-
tensions

ACPI 3.0 added a number of thermal extensions—
collectively called the “3.0 Thermal Model.” These ex-
tensions include the ability to relate the relative contri-
butions of multiple devices to multiple thermal zones.
These relative contributions are measured at system
design-time, and encoded in an ACPI thermal relation-
ship table for use by the OS in balancing the multiple
contributors to thermal load. This is a sophisticated so-
lution requiring thorough measurements by the system
designer, as well as knowledge on the part of the OS
about relative performance tradeoffs.

The handheld effort described in this paper does not
need the ACPI 3.0 thermal extensions. Indeed, no Linux

• 75 •

76 • Cool Hand Linux – Handheld Thermal Extensions

notebook has yet materialized that needs those exten-
sions.

So when the BIOS AML uses _OSI and asks Linux if it
supports the “3.0 Thermal Model,” Linux will continue
to answer “no,” for the immediate future.

2.2 How the ACPI 2.0 Thermal Model works

ACPI defines a concept of thermal zones. A thermal
zone is effectively a thermometer with associated trip
points and devices.

A single CRT trip point provokes a critical system shut-
down. A single HOT trip point provokes a system
suspend-to-disk. A single PSV trip point activates the
OS’s passive cooling algorithm. One or more ACx trip
points control fans for active cooling. Each active trip
point may be associated with one or multiple fans, or
with multiple speeds of the same fan.

When a PSV trip point fires, the Linux processor_

thermal driver receives the event and immediately re-
quests the Linux cpufreq subsystem to enter the deep-
est available processor performance state (P-state). As
P-states reduce voltage along with frequency, they are
more power-efficient than simple clock throttling (T-
states), which lower frequency only.

The processor thermal throttling algorithm then period-
ically polls the thermal zone for temperature, and throt-
tles the clock accordingly. When the system has cooled
and the algorithm has run its course, the processor is
un-throttled, and cpufreq is again allowed to control P-
states.

2.3 Why is the ACPI 2.0 Thermal Model not suffi-
cient?

It can’t hurt to implement ACPI’s CRT trip point for
critical system shutdown—but that isn’t really the focus
here.

The HOT trip point doesn’t really make sense, since on
a handheld, shutdown and hibernate to disk (if one even
exists) are likely to be synonymous.

Active trip points are of no use on systems which have
no fans.

CPU WLAN

WWAN

Mem

Graphics

_TZ1 (Skin)
 _TMP
 _CRT
 _TZD
 CPU, WLAN, WWAN, MEM
 _PLD (top)

_TZ0 (CPU)
 _TMP
 _CRT
 _PSV
 _PSL
 CPU

_TZ5 (Comms)
 _TMP
 _CRT
 _TZD
 WLAN
 WWAN

_TZ3 (MEM)
 _TMP
 _CRT
 _TZD
 MEM

_TZ4 (Skin)
 _TMP
 _CRT
 _TZD
 ...
 _PLD (bottom)

_TZ2 (GRAPHICS)
 _TMP
 _CRT
 _TZD
 GRAPHICS

Figure 1: Example Sensor-to-Thermal-Zone Mapping

That leaves the single PSV trip point. ACPI 2.0 can as-
sociate (only) a processor throttling device with a trip
point. Yes, handhelds have processors, but the proces-
sor isn’t expected to always be the dominant contributor
to thermal footprint on handhelds like it often is on note-
books.

ACPI 2.0 includes the _TZD method to associate de-
vices with thermal zones. However, ACPI doesn’t say
anything about how to throttle non-processor devices—
so that must be handled by native device drivers.

2.4 So why use ACPI at all?

Inexpensive thermal sensors do not know how to gener-
ate events. They are effectively just thermometers that
need to be polled. However, using the CPU to poll
the sensors would be keeping a relatively power-hungry
component busy on a relatively trivial task. The solu-
tion is to poll the sensors from a low-power embedded
controller (EC).

The EC is always running. It polls all the sensors and
is responsible for interrupting the main processor with
events. ACPI defines a standard EC, and so it is easy
to re-use that implementation. Of course, it would be
an equally valid solution to use a native device driver
to talk to an on-board microcontroller that handles the
low-level polling.

2007 Linux Symposium, Volume One • 77

Thermal Management
Policy Control Application

User

Kernel

AML

Interrupt

Platform

Thermal Driver
Notify Handler

_Qxx:
 Notify(TZx)

TZx:
 _TMP

acpi_intr()

Embedded ControllerT

Figure 2: Thermal Event Delivery via ACPI

2.5 Mapping Platform Sensors to ACPI Thermal
Zones

Figure 1 shows an example of mapping platform sensors
to the ACPI Thermal zones. Four different scenarios are
illustrated in the figure:

• Sensors that are built into the CPU.

• Sensors that are associated with a single non-
processor device, such as DRAM or graphics.

• Sensors that are associated with cluster of compo-
nents, for example, Wireless LAN (WLAN) and
Wireless WAN (WWAN).

• Skin sensors that indicate overall platform temper-
ature.

2.6 How to use ACPI for Handheld Thermal Events

For the CPU, Linux can continue to handle a single
ACPI passive trip point with an in-kernel processor ther-
mal throttling algorithm.

For critical thermal events, Linux can continue to handle
a single ACPI critical trip point with a system shutdown.

Thermal Management
Policy Control Application

User

Kernel

Platform

Native Temperature
Sensor Driver

Temperature
Sensor

native_intr()Interrupt

Figure 3: Thermal Event Delivery via native driver

However, for the non-processor thermal zones, a single
passive trip point is insufficient. For those we will use
ACPI’s concept of “temperature change events.”

When the EC decides that the temperature has changed
by a meaningful amount—either up or down—it sends
a temperature change event to the thermal zone object.

If the thermal zone is associated with a processor, then
the kernel can invoke its traditional processor thermal
throttling algorithm.

As shown in Figure 2, for non-processor thermal zones,
the thermal driver will query the temperature of the
zone, and send a netlink message to user-space identi-
fying the zone and the current temperature.

Figure 3 shows the same event delivered by a native plat-
form, sensor-specific sensor driver.

3 Proposed Handheld Thermal Solution

Multiple works ([LORCH], [VAHDAT]) focus on low-
power OS requirements and low-power platform design.
While low-power optimizations have a positive impact
on thermals, this only addresses thermal issues at a com-
ponent level. To address the platform-level thermal is-
sues, we need to look at the thermal problem in a more
complete platform perspective. This requires support
from OS, user applications, etc.

3.1 Design Philosophy

• Thermal monitoring will be done using inexpen-
sive thermal sensors—polled by a low-power EC.

78 • Cool Hand Linux – Handheld Thermal Extensions

ACPI
Thermal Driver

Native Sensor Driver

sysfs sensor I/F.

Thermal Management
Policy Control Application

User

Kernel

Platform hardware, BIOS, firmware

Platform

ACPI
Processor Driver

Thermal sysfs I/F

Native
Device Driver

sysfs throttle I/F.

Figure 4: Thermal Zone Driver Stack Architecture

• Thermal management policy decisions will be
made from user space, as the user has a compre-
hensive view of the platform.

• The kernel provides only the mechanism to deliver
thermal events to user space, and the mechanism
for user space to communicate its throttling deci-
sions to native device drivers.

Figure 4 shows the thermal control software stack. The
thermal management policy control application sits on
top. It receives netlink messages from the kernel ther-
mal zone driver. It then implements device-specific ther-
mal throttling via sysfs. Native device drivers supply
the throttling controls in sysfs and implement device-
specific throttling functions.

3.2 Thermal Zone module

The thermal zone module has two components—a ther-
mal zone sysfs driver and thermal zone sensor driver.
The thermal zone sysfs driver is platform-independent,
and handles all the sysfs interaction. The thermal zone
sensor driver is platform-dependent. It works closely
with the platform BIOS and sensor driver, and has
knowledge of sensor information in the platform.

3.2.1 Thermal sysfs driver

The thermal sysfs driver exports two inter-
faces (thermal_control_register() and
thermal_control_deregister()) to compo-
nent drivers, which the component drivers can call to
register their control capability to the thermal zone
sysfs driver.

The thermal sysfs driver also exports two
interfaces—thermal_sensor_register() and
thermal_sensor_deregister()—to the platform-
specific sensor drivers, where the sensor drivers can use
this interface to register their sensor capability.

This driver is responsible for all thermal sysfs entries.
It interacts with all the platform specific thermal sensor
drivers and component drivers to populate the sysfs en-
tries.

The thermal zone driver also provides a notification-of-
temperature service to a component driver. The ther-
mal zone sensor driver as part of registration exposes its
sensing and thermal zone capability.

3.2.2 Thermal Zone sensor driver

The thermal zone sensor driver provides all the
platform-specific sensor information to the thermal

2007 Linux Symposium, Volume One • 79

sysfs driver. It is platform-specific in that it has prior
information about the sensors present in the platform.

The thermal zone driver directly maps the ACPI 2.0
thermal zone definition, as shown in Figure 1. The ther-
mal zone sensor driver also handles the interrupt notifi-
cation from the sensor trips and delivers it to user space
through netlink socket.

3.3 Component Throttle driver

All the component drivers participating in the given
thermal zone can register with the thermal driver, each
providing the set of thermal ops it can support. The ther-
mal driver will redirect all the control requests to the
appropriate component drivers when the user programs
the throttling level. Its is up to the component driver to
implement the thermal control.

For example, a component driver associated with
DRAM would slow down the DRAM clock on throttling
requests.

3.4 Thermal Zone Sysfs Property

Table 1 shows the directory structure exposing each
thermal zone sysfs property to user space.

The intent is that any combination of ACPI and native
thermal zones may exist on a platform, but the generic
sysfs interface looks the same for all of them. Thus,
the syntax of the files borrows heavily from the Linux
hwmon sub-system.1

Each thermal zone provides its current temperature and
an indicator that can be used by user-space to see if the
current temperature has changed since the last read.

If a critical trip point is present, its value is indicated
here, as well as an alarm indicator showing whether it
has fired.

If a passive trip point is present, its value is indicated
here, as well as an alarm indicator showing whether it
has fired.

There are symbolic links to the device nodes of the de-
vices associated with the thermal zone. Those devices
will export their throttling controls under their device
nodes.

1Documentation/hwmon/sysfs-interface defines
the names of the sysfs files, except for the passive files, which are
new.

Thermal Managment
Algorithim

Event
Handler

Sysfs
Interface

User InterfaceUser
Policy

Figure 5: Thermal Policy Control Application

3.5 Throttling Sysfs Properties

Devices that support throttling will have two addi-
tional properties associated with the device nodes:
throttling and throttling_max.

A value of 0 means maximum performance, though no
throttling. A value of throttling_max means maxi-
mum power savings in the deepest throttling state avail-
able before device state is lost.

3.6 Netlink Socket Kobject event notification

Events will be passed from the kernel to user-space us-
ing the Linux netlink facility. Interrupts from the sen-
sor or EC are delivered to user-space through a netlink
socket.

3.7 Policy Control Application

Figure 5 shows a thermal policy control application.

The control application interacts with the user, via GUI
or configuration files, etc., such that it can understand
both the dependencies within the system, and the de-
sired current operating point of the system.

The thermal management module can monitor the plat-
form and component temperature through the sysfs in-
terface, which is a simple wrapper around the sysfs
layer. The application receives temperature change

80 • Cool Hand Linux – Handheld Thermal Extensions

sysfs ACPI Description R/W
temp1_input _TMP Current temperature RO
temp1_alarm Temperature change occurred RW
temp1_crit _CRT Critical alarm temperature RO
temp1_crit_alarm Critical alarm occurred RW
temp1_passive _PSV Passive alarm temperature RO
temp1_passive_alarm Passive alarm occurred RW
<device_name1> Link to device1 associated with zone RO
<device_name2> Link to device2 associated with zone RO
. RO

Table 1: Thermal Zone sysfs entries

events via netlink, so it can track temperature trends.
When it decides to implement throttling, it accesses the
appropriate native device’s sysfs entries via the sysfs in-
terface.

The thermal throttling algorithms implemented inter-
nally to the policy control application are beyond the
scope of this paper.

3.8 Possible ACPI extensions

This proposal does make use of the ACPI critical trip
point. Depending on the device, the policy manager may
decide that either the device or the entire system must be
shut down in response to a critical trip point.

This proposal also retains the ACPI 2.0 support for a
passive trip point associated with a processor, and in-
kernel thermal throttling of the processor device.

However, the main use of ACPI in this proposal is sim-
ply as a conduit that associates interesting temperature
change events with thermal zones.

What is missing from ACPI is a way for the policy man-
ager to tell the firmware via ACPI what events are inter-
esting.

As a result, the EC must have built-in knowledge about
what temperature change events are interesting across
the operating range of the device.

However, it would be more flexible if the policy con-
trol application could simply dictate what granularity of
temperature change events it would like to see surround-
ing the current temperature.

For example, when the temperature is 20C, the pol-
icy application may not care about temperature change

events smaller than 5C. But when the temperature is
higher, change events of 0.5C may be needed for fine
control of the throttling algorithm.

4 Conclusion

On handheld computers it is viable for a platform-
specific control application to manage the thermal pol-
icy. With the policy moved to user-space, the kernel
component of the solution is limited to delivering events
and exposing device-specific throttling controls.

This approach should be viable on a broad range of sys-
tems, both with and without ACPI support.

References

[ACPI] Hewlett-Packard, Intel, Microsoft, Phoenix,
Toshiba, Advanced Configuration and Power
Interface 3.0b, October, 2006
http://www.acpi.info

[LORCH] J. Lorch and A.J. Smith. Software Strategies
for Portable Computer Energy Management,
IEEE Personal Communications Magazine,
5(3):60-73, June 1998.

[VAHDAT] Vahdat, A., Lebeck, A., and Ellis, C.S.
2000. Every joule is precious: the case for
revisiting operating system design for energy
efficiency, Proceedings of the 9th Workshop on
ACM SIGOPS European Workshop: Beyond the
PC: New Challenges For the Operating System,
Kolding, Denmark, September 17–20, 2000. EW
9. ACM Press, New York, NY, 31–36. http://
doi.acm.org/10.1145/566726.566735

