
Proceedings of the
Linux Symposium

June 27th–30th, 2007
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc.
Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

Frysk 1, Kernel 0?

Andrew Cagney
Red Hat Canada, Inc.
cagney@redhat.com

Abstract

Frysk is a user-level, always-on, execution analysis and
debugging tool designed to work on large applications
running on current Linux kernels. Since Frysk, inter-
nally, makes aggressive use of the utrace, ptrace,
and /proc interfaces, Frysk is often the first tool to
identify regressions and problems in those areas. Con-
sequently, Frysk, in addition to its GNOME application
and command line utilities, includes a kernel regression
test-suite as part of its installation.

This paper will examine Frysk’s approach to testing, in
particular the development and inclusion of unit tests di-
rectly targeted at kernel regressions. Examples will in-
clude a number of recently uncovered kernel bugs.

1 Overview

This paper will first present an overview of the Frysk
project, its goals, and the technical complexities or risks
of such an effort.

The second section will examine in more detail one
source of technical problems or risk—Linux’s ptrace
interface—and the way that the Frysk project has ad-
dressed that challenge.

In the concluding section, several specific examples of
problems (both bugs and limitations) in the kernel that
identified will be discussed.

2 The Frysk Project

The principal goal of the Frysk Project is to develop a
suite of always-on, or very-long-running, tools that al-
low the developer and administrator to both monitor and
debug complex modern user-land applications. Further,
by exploiting the flexibility of the underlying Frysk ar-
chitecture, Frysk also makes available a collection of
more traditional debugging utilities.

Figure 1: Frysk’s Monitor Tool

In addition, as a secondary goal, the Frysk project is en-
deavoring to encourage the advancement of debug tech-
nologies, such as kernel-level monitoring and debug-
ging interface (e.g., utrace), and debug libraries (e.g.,
libdwfl for DWARF debug info), available to Linux
users and developers.

2.1 Frysk’s Tool Set

A typical desktop or visual user of Frysk will use the
monitoring tool to watch their system, perhaps focusing
on a specific application (see Figure 1).

When a problem is noticed Frysk’s more traditional de-
bugging tool can be used to drill down to the root-cause
(see Figure 2).

For more traditional command-line users, there are
Frysk’s utilities, which include:

• fstack – display a stack back-trace of either a
running process or a core file;

• fcore – create a core file from a running program;

• 87 •

88 • Frysk 1, Kernel 0?

$ fcatch /usr/lib/frysk/funit-stackframe
fcatch: from PID 17430 TID 17430:
SIGSEGV detected - dumping stack trace for TID 17430
#0 0x0804835c in global_st_size () from: \ldots/funit-stackframe.S#50
#1 0x08048397 in main () from: \ldots/funit-stackframe.S#87
#2 0x00c2d4e4 in __libc_start_main ()
#3 0x080482d1 in _start ()

Figure 3: Running the fcatch utility

$ fstep -s 1 ls
[3299] 0xbfb840 mov %esp,%eax
[3299] 0xbfb842 call 0xbfbf76
[3299] 0xbfbf76 push %ebp
[3299] 0xbfbf77 mov %esp,%ebp
[3299] 0xbfbf79 push %edi
[3299] 0xbfbf7a push %esi
....

Figure 4: Running the fstep utility

Figure 2: Frysk’s Debugger Tool

• fstep – instruction-step trace a running program
(see Figure 4);

• fcatch – catch a program as it is crashing, and
display a stack back-trace of the errant thread (see
Figure 3);

and of course the very traditional:

• fhpd – command-line debugger.

3 The Frysk Architecture

Internally, Frysk’s architecture consists of three key
components:

• kernel interface – handles the reception of system
events (e.g., clone, fork, exec) reported to Frysk by
the kernel; currently implemented using ptrace.

• the core – the engine that uses the events supplied
by the kernel to implement an abstract model of the
system.

• utilities and GNOME interface – implemented us-
ing the core.

4 Project Risks

From the outset, a number of risks were identified with
the Frysk project. Beyond the technical complexities
of building a monitoring and debugging tool-set, the
Frysk project has additional “upstream” dependencies
that could potentially impact on the project’s effort:

• gcj – the Free GNU Java compiler; Frysk chose
to use gcj as its principal compiler.

• Java-GNOME bindings – used to implement a true
GNOME interface; Frysk is recognized as an early
adopter of the Java-GNOME bindings.

• Kernel’s ptrace and /proc interfaces – cur-
rently used by Frysk to obtain system information;

2007 Linux Symposium, Volume One • 89

it was recognized that Frysk would be far more ag-
gressive in its use of these interfaces than any ex-
isting clients and hence was likely to uncover new
problems and limitations.

• Kernel’s utrace interface – the maturing frame-
work being developed to both replace and extend
ptrace

The next two sections will review the Frysk–Kernel in-
terface, problems that were encountered, and the actions
taken to address those problems.

5 Managing Project Stability—Testing

One key aspect of a successful project is its overall sta-
bility, to that end the quality of testing is a key factor.
This section will identify development processes that
can both help and hinder that goal, with specific refer-
ence to the kernel and its ptrace and /proc inter-
faces.

5.1 Rapid Feedback—Linux Kernel

Modify
Kernel

Build
Kernel

Crash
Kernel

Figure 5: Short Feedback Cycle—Kernel

Linux’s rapid progress is very much attributed to its
open-source development model. In addition, and as
illustrated by Figure 5, the Linux developer and the
project’s overall stability also benefits from very short
testing and release cycles—just the act of booting the
modified kernel is a significant testing step. Only occa-
sionally do problems escape detection in the initial test-
ing and review phases.

5.2 Slow Feedback—ptrace Component Clients

In contrast, as illustrated by Figure 6, the short develop-
ment and testing cycle fails when a component is only

occasionally exposed to use by its clients. The long
lead-in time and the great number of changes that occur
before an under-used kernel component is significantly
tested greatly increases the risk that the kernel compo-
nent will contain latent problems.

The ptrace interface provides a good illustration of
this problem. Both changes directly to that module,
such as a new implementation like utrace, or indi-
rectly, such as modifications to the exec code, can lead
to latent problems or limitations that are only detected
much later when the significantly modified kernel is de-
ployed by a distribution. Specific examples of this are
discussed further in the third section.

5.3 Quickening the Feedback

Frysk, being heavily dependent on both the existing
ptrace interface and the new utrace interface, rec-
ognized its exposure very early on in its development.
To mitigate the risk of that exposure, Frysk implemented
automated testing at three levels:

1. Integration test (Frysk) – using Dogtail (a test
framework for GUI applications) and ExpUnit (an
expect framework integrated into JUnit), test
the user-visible functionality of Frysk.

2. Unit test (Frysk) – applying test-driven develop-
ment ensured the rapid creation of automated tests
that exercised Frysk’s internal interfaces and ex-
ternal functionality; the unit tests allow Frysk de-
velopers to quickly isolate a new problem down to
a sub-system and then, possibly, that sub-system’s
interaction with the kernel.

3. Regression test (“upstream”) – where the root
cause of a problem was determined to be an “up-
stream” or system component on which Frysk de-
pended (e.g., kernel, compiler, library), a stan-
dalone automated test demonstrating the specific
upstream problem was implemented.

Further, to encourage the use of these test suites, and
ensure their likely use by even kernel developers, these
test suites were included in the standard Frysk installa-
tion (e.g., in Fedora the frysk-devel RPM contains
all of Frysk’s test suites).

90 • Frysk 1, Kernel 0?

Modify
Kernel

Build
Kernel

Import
Kernel

Release
Distro

Crash
Kernel

Run
Frysk

Figure 6: Long Feedback Cycle—ptrace interface

$ /usr/lib/frysk/fsystest
SKIP: frysk2595/ptrace_after_forked_thread_exits
PASS: frysk2595/ptrace_after_exec
....
PASS: frysk3525/exit47
PASS: frysk3595/detach-multi-thread
PASS: frysk2130/strace-clone-exec.sh
XFAIL: frysk2595/ptrace_peek_wrong_thread

Figure 7: Running Frysk’s fsystest

Figure 7 illustrates the running of Frysk’s “upstream” or
system test suite using fsystest, and Figure 8 illus-
trates the running of Frysk’s own test suite, implemented
using the JUnit test framework.

6 Problems Identified by Frysk

In this final section, two specific tests included in
Frysk’s “upstream” test suite will be described.

6.1 Case 1: Clone-Exec Crash

In applying test-driven development, Frysk developers
first enumerate, and then implement all identifiable se-
quences of a given scenario. For instance, to ensure that
exec can be correctly handled, the Frysk test suite se-
quences many scenarios including the following:

• 32-bit program exec’ing a 64-bit program

• main thread exec’ing

• non-main thread exec’ing

The last case, as illustrated in Figure 9, has proven
to be especially interesting. When first implemented,

fork()

ptrace()
TRACEME

exec()

clone()

exec()

exit()

"hi"

waitpid()

Figure 9: Clone Exec Crash

2007 Linux Symposium, Volume One • 91

$ /usr/lib/frysk/funit
Running testAssertEOF(frysk.expunit.TestExpect) ...PASS
Running testTimeout(frysk.expunit.TestExpect) ...PASS
Running testEquals(frysk.expunit.TestExpect) ...PASS
Running testIA32(frysk.sys.proc.TestAuxv) ...PASS
Running testAMD64(frysk.sys.proc.TestAuxv) ...PASS
Running testIA64(frysk.sys.proc.TestAuxv) ...PASS
Running testPPC32(frysk.sys.proc.TestAuxv) ...PASS
Running testPPC64(frysk.sys.proc.TestAuxv) ...PASS
....

Figure 8: Running Frysk’s funit

it was found that the 2.6.14 kernel had a regres-
sion causing Frysk’s unit-test to fail—the traced pro-
gram would core dump. Consequently, a standalone
test strace-clone-exec.sh was added to Frysk’s
“upstream” test suite demonstrating the problem, and
the fix was pushed upstream.

Then later with the availability of the 2.6.18 ker-
nels with the utrace patch, it was found that
running Frysk’s test suite could trigger a kernel
panic. This was quickly isolated down to the same
strace-clone-exec.sh test, but this time running
the test caused a kernel panic. Since the test was already
widely available, a fix could soon be written and incor-
porated upstream.

6.2 Case 2: Threaded ptrace Calls

Graphical debugging applications, such as Frysk, are of-
ten built around two or more threads:

• an event-loop thread handling process start, stop,
and other events being reported by the kernel.

• a user-interface thread that responds to user re-
quests such as displaying the contents of a stopped
process’ memory, while at the same time ensuring
that the graphical display remains responsive.

As illustrated in Figure 10, Linux restricts all
ptrace requests to the thread that made the initial
PTRACE_ATTACH. Consequently, any application us-
ing ptrace is forced to route all calls through a dedi-
cated thread. In the case of Frysk, initially a dedicated
ptrace thread was created, but later that thread’s func-
tionality was folded into the event-loop thread.

The “upstream” test ptrace_peek_wrong_thread

was added to illustrate this kernel limitation.

Event
Loop

Thread

User
Interface
Thread

ptrace()
ATTACH

waitpid()

ptrace()
PEEK

Figure 10: Multi-threaded ptrace

7 Conclusion

As illustrated by examples such as the Exec Crash bug
described in Section 6.1, Frysk, by both implementing
an “upstream” test suite (focused largely on the kernel)
and including that test suite in a standard install, has
helped to significantly reduce the lag between a kernel
change affecting a debug-interface on which it depends
(such as ptrace) and that change been detected and
resolved.

And the final score? Since Frysk’s stand-alone test suite
is identifying limitations and problems in the existing
ptrace and /proc interfaces and the problems in the
new utrace code, this one can be called a draw.

92 • Frysk 1, Kernel 0?

8 Acknowledgments

Special thanks to the Toronto Windsurfing Club Hatteras
Crew for allowing me to write this, and not forcing me
to sail.

References

The Frysk Project,
http://sourceware.org/frysk

Clone-exec Crash Bug, http://sourceware.org/
bugzilla/show_bug.cgi?id=2130

Threaded ptrace Calls Bug, http://sourceware.
org/bugzilla/show_bug.cgi?id=2595

Roland McGrath, utrace Patches,
http://people.redhat.com/roland/utrace/

The JUnit Project,
http://www.junit.org/index.htm

The Java-GNOME Project,
http://java-gnome.sourceforge.net/

GCJ, http://gcc.gnu.org/java/

ExpUnit, http:
//sourceware.org/frysk/javadoc/public/
frysk/expunit/package-summary.html

Dogtail,
http://people.redhat.com/zcerza/dogtail/

expect, http://expect.nist.gov/

