
Proceedings of the
Linux Symposium

June 27th–30th, 2007
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc.
Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

Performance and Availability Characterization for Linux Servers

Vasily Linkov
Motorola Software Group

Vasily.Linkov@motorola.com

Oleg Koryakovskiy
Motorola Software Group

Oleg.Koryakovskiy@motorola.com

Abstract

The performance of Linux servers running in mission-
critical environments such as telecommunication net-
works is a critical attribute. Its importance is growing
due to incorporated high availability approaches, espe-
cially for servers requiring five and six nines availability.
With the growing number of requirements that Linux
servers must meet in areas of performance, security, re-
liability, and serviceability, it is becoming a difficult task
to optimize all the architecture layers and parameters to
meet the user needs.

Other Linux servers, those not operating in a mission-
critical environment, also require different approaches
to optimization to meet specific constraints of their op-
erating environment, such as traffic type and intensity,
types of calculations, memory, and CPU and IO use.

This paper proposes and discusses the design and imple-
mentation of a tool called the Performance and Avail-
ability Characterization tool, PAC for short, which op-
erates with over 150 system parameters to optimize over
50 performance characteristics. The paper discusses the
PAC tool’s architecture, multi-parametric analysis algo-
rithms, and application areas. Furthermore, the paper
presents possible future work to improve the tool and ex-
tend it to cover additional system parameters and char-
acteristics.

1 Introduction

The telecommunications market is one of the fastest
growing industries where performance and availabil-
ity demands are critical due to the nature of real-time
communications tasks with requirement of serving thou-
sands of subscribers simultaneously with defined quality
of service. Before Y2000, telecommunications infras-
tructure providers were solving performance and avail-
ability problems by providing proprietary hardware and

software solutions that were very expensive and in many
cases posed a lock-in with specific vendors. In the cur-
rent business environment, many players have come to
the market with variety of cost-effective telecommuni-
cation technologies including packed data technologies
such as VoIP, creating server-competitive conditions for
traditional providers of wireless types of voice commu-
nications. To be effective in this new business environ-
ment, the vendors and carriers are looking for ways to
decrease development and maintenance costs, and de-
crease time to market for their solutions.

Since 2000, we have witnessed the creation of several
industry bodies and forums such as the Service Avail-
ability Forum, Communications Platforms Trade As-
sociation, Linux Foundation Carrier Grade Linux Ini-
tiative, PCI Industrial Computer Manufacturers Group,
SCOPE Alliance, and many others. Those industry
forums are working on defining common approaches
and standards that are intended to address fundamental
problems and make available a modular approach for
telecommunication solutions, where systems are built
using well defined hardware specifications, standards,
and Open Source APIs and libraries for their middle-
ware and applications [11] (“Technology Trends” and
“The .org player” chapters).

The Linux operating system has become the de facto
standard operating system for the majority of telecom-
munication systems. The Carrier Grade Linux initia-
tive at the Linux Foundation addresses telecommunica-
tion system requirements, which include availability and
performance [16].

Furthermore, companies as Alcatel, Cisco, Ericsson,
Hewlett-Packard, IBM, Intel, Motorola, and Nokia use
Linux solutions from MontaVista, Red Hat, SuSE, and
WindRiver for such their products as softswitches, tele-
com management systems, packet data gateways, and
routers [13]. Examples of existing products include Al-
catel Evolium BSC 9130 on the base of the Advanced
TCA platform, and Nortel MSC Server [20], and many

• 263 •

264 • Performance and Availability Characterization for Linux Servers

more of them are announced by such companies as Mo-
torola, Nokia, Siemens, and Ericsson.

As we can see, there are many examples of Linux-based,
carrier-grade platforms used for a variety of telecommu-
nication server nodes. Depending on the place and func-
tionality of the particular server node in the telecommu-
nication network infrastructure, there can be different
types of loads and different types of performance bot-
tlenecks.

Many articles and other materials are devoted to ques-
tions like “how will Linux-based systems handle per-
formance critical tasks?” In spite of the availability
of carrier-class solutions, the question is still important
for systems serving a large amount of simultaneous re-
quests, e.g. WEB Servers [10] as Telecommunication-
specific systems.

Telecommunication systems such as wireless/mobile
networks have complicated infrastructures imple-
mented, where each particular subsystem solves its spe-
cific problem. Depending on the problem, the critical
systems’ resource could be different. For example, Dy-
namic Memory Allocation could become a bottleneck
for Billing Gateway, Fraud Control Center (FCC), and
Data Monitoring (DMO) [12] even in SMP architecture
environment. Another example is WLAN-to-WLAN
handover in UMTS networks where TCP connection re-
establishment involves multiple boxes including HLR,
DHCP servers and Gateways, and takes significant time
(10–20 sec.) which is absolutely unacceptable for VoIP
applications [15]. A similar story occurred with TCP
over CDMA2000 Networks, where a bottleneck was
found in the buffer and queue sizes of a BSC box [17].
The list of the examples can be endless.

If we consider how the above examples differ, we would
find out that in most cases performance issues appear to
be quite difficult to deal with, and usually require rework
and redesign of the whole system, which may obviously
be very expensive.

The performance improvement by itself is quite a well-
known task that is being solved by the different ap-
proaches including the Clustering and the Distributed
Dynamic Load Balancing (DDLB) methods [19]; this
can take into account load of each particular node (CPU)
and links throughput. However, a new question may
arise: “Well. We know the load will be even and dy-
namically re-distributed, but what is the maximum sys-
tem performance we can expect?” Here we are talking

not about performance problems, but about performance
characterization of the system. In many cases, people
working on the new system development and fortunately
having performance requirements agreed up front use
prototyping techniques. That is a straightforward but
still difficult way, especially for telecommunication sys-
tems where the load varies by types, geographic loca-
tion, time of the day, etc. Prototyping requires creation
of an adequate but inexpensive model which is problem-
atic in described conditions.

The authors of this paper are working in telecommu-
nication software development area and hence tend to
mostly consider problems that they face and solve in
their day-to-day work. It was already said that perfor-
mance issues and characterization are within the area of
interest for a Linux-based system developer. Character-
ization of performance is about inexpensive modeling
of the specific solution with the purpose of predicting
future system performance.

What are the other performance-related questions that
may be interesting when working in telecommunica-
tions? It isn’t just by chance we placed the word Per-
formance close to Availability; both are essential char-
acteristics of a modern telecommunication system. If
we think for a moment about the methods of achiev-
ing of some standard level of availability (let’s say the
five- or six- nines that are currently common industry
standards), we will see that it is all about redundancy,
reservation, and recovery. Besides specific requirements
to the hardware, those methods require significant soft-
ware overhead functionality. That means that in addi-
tion to system primary functions, it should provide al-
gorithms for monitoring failure events and providing ap-
propriate recovery actions. These algorithms are obvi-
ously resource-consuming and therefore impact overall
system performance, so another problem to consider is
a reasonable tradeoff between availability and produc-
tivity [8], [18].

Let’s consider some more problems related to telecom-
munication systems performance and availability char-
acterization that are not as fundamental as those de-
scribed above, but which are still important (Figure 1).

Performance profiling. The goal of performance pro-
filing is to verify that performance requirements have
been achieved. Response times, throughput, and other
time-sensitive system characteristics should be mea-
sured and evaluated. The performance profiling is ap-

2007 Linux Symposium, Volume One • 265

Performance
profiling

Load
testing

Stress
testing

Performance
issues investigation

Performance
tuning

TARGET
PROBLEMS

Figure 1: Performance and Availability Characterization
target problems

plicable for release-to-release testing.

Load testing. The goal of load testing is to determine
and ensure that the system functions properly beyond
the expected maximum workload. The load testing sub-
jects the system to varying workloads to evaluate the
performance behaviors and ability of the system to func-
tion properly under these different workloads. The load
testing also could be applicable on design stage of a
project to choose the best system architecture and ensure
that requirements will be achieved under real/similar
system workloads [21], [22].

Stress testing. The goal of stress testing is to find per-
formance issues and errors due to low resources or com-
petition for resources. Stress testing can also be used to
identify the peak workload that the system can handle.

Performance issue investigation. Any type of perfor-
mance testing in common with serious result analysis
could be applicable here. Also in some cases, snap-
shot gathering of system characteristics and/or profiling
could be very useful.

Performance Tuning. The goal of performance tuning
is to find optimal OS and Platform/Application settings,
process affinity, and schedule policy for load balancing
with the target of having the best compromise between
performance and availability. The multi-objective op-
timization algorithm can greatly reduce the quantity of
tested input parameter combinations.

This long introduction was intended to explain why we
started to look at performance and availability character-
ization problems and their applications to Linux-based,
carrier-grade servers. Further along in this paper, we
will consider existing approaches and tools and share

one more approach that was successfully used by the
authors in their work.

2 Overview of the existing methods for Perfor-
mance and Availability Characterization

A number of tools and different approaches for perfor-
mance characterization exist and are available for Linux
systems. These tools and approaches target different
problems and use different techniques for extracting
system data to be analyzed as well, and support differ-
ent ways to represent the results of the analysis. For the
simplest cases of investigating performance issues, the
standard Linux tools can be used by anyone. For exam-
ple, the GNU profiler gprof provides basic information
about pieces of code that are consuming more time to
be executed, and which subprograms are being run more
frequently than others. Such information offers under-
standing where small improvements and enhancements
can give significant benefits in performance. The cor-
responding tool kprof gives an opportunity to analyze
graphical representation gprof outputs in form of call-
trees, e.g. comprehensive information about the system
can be received from /proc (a reflection of the system in
memory). Furthermore, for dealing with performance
issues, a variety of standard debugging tools such as in-
strumentation profilers (oprofile which is a system-wide
profiler), debuggers kdb and kgdb, allowing kernel de-
bugging up to source code level as well as probes crash
dumps and many others are described in details in pop-
ular Linux books [3]. These tools are available and pro-
vide a lot of information. At the same time a lot of work
is required to filter out useful information and to analyze
it. The next reasonable step that many people working
on performance measurement and tuning attempt to do
is to create an integrated and preferably automated so-
lution which incorporates in it the best features of the
available standalone tools.

Such tools set of benchmarks and frameworks have ap-
peared such as the well known package lmbench, which
is actually a set of utilities for measurement of such
characteristics as memory bandwidth, context switch-
ing, file system, process creating, signal handling la-
tency, etc. It was initially proposed and used as a univer-
sal performance benchmarking tool for Unix-based sys-
tems. There were several projects intended to develop
new microbenchmark tools on the basis of lmbench in
order to improve measurement precision and applica-
bility for low-latency events by using high-resolution

266 • Performance and Availability Characterization for Linux Servers

timers and internal loops with measurement of the av-
erage length of events calculated through a period of
time, such as Hbench-OS package [4]. It is notice-
able that besides widely used performance benchmarks,
there are examples of availability benchmarks that are
specifically intended to evaluate a system from the high
availability and maintainability point of view by simu-
lating failure situations over a certain amount of time
and gathering corresponding metrics [5].

Frameworks to run and analyze the benchmarks were
the next logical step to customize this time-consuming
process of performance characterization. Usually a
framework is an automated tool providing additional
customization, automation, representation, and analysis
means on top of one or several sets of benchmarks. It
makes process of benchmarking easier, including auto-
mated decision making about the appropriate amount of
cycles needed to get trustworthy results [23].

Therefore, we can see that there are a number of tools
and approaches one may want to consider and use to
characterize a Linux-based system in terms of perfor-
mance. Making the choice we always keep in mind the
main purpose of the performance characterization. Usu-
ally people pursue getting these characteristics in order
to prove or reject the assumption that a particular system
will be able to handle some specific load. So if you are
working on a prototype of a Linux-based server for use
as a wireless base site controller that should handle e.g.
one thousand voice and two thousand data calls, would
you be happy to know from the benchmarks that your
system is able to handle e.g. fifty thousand TCP connec-
tions? The answer isn’t trivial in this case. To make
sure, we have to prepare a highly realistic simulated en-
vironment and run the test with the required number of
voice and data calls. It is not easy, even if the system is
already implemented, because you will have to create or
simulate an external environment that is able to provide
an adequate type and amount of load, and which behaves
similarly to a live wireless infrastructure environment.
In case you are in the design phase of your system, it
is just impossible. You will need to build your conclu-
sion on the basis of a simplified system model. Fortu-
nately, there is another approach—to model the load, not
the system. Looking at the architecture, we can assume
what a specific number of voice and data calls will en-
tail in the system in terms of TCP connections, memory,
timers, and other resources required. Having this kind
of information, we can use benchmarks for the iden-

tified resources and make the conclusion after running
and analyzing these benchmarks on the target HW/SW
platform, without the necessity of implementing the ap-
plication and/or environment. This approach is called
workload characterization [2].

Looking back to the Introduction section, we see that
all the target questions of Performance and Availability
characterization are covered by the tools we have briefly
looked through above. At the same time there is no sin-
gle universal tool that is able to address all these ques-
tions. Further in the paper we are introducing the Perfor-
mance and Availability Characterization (PAC) tool that
combines the essential advantages of all the approaches
considered in this chapter and provides a convenient
framework to perform comprehensive Linux-based plat-
forms characterization for multiple purposes.

3 Architectural Approach

3.1 Experimental Approach

Anyone who is trying to learn about the configuration of
Linux servers running in mission-critical environments
and running complex applications systems will have to
address the following challenges:

• An optimal configuration, suitable for any state of
environmental workload, does not exist;

• Systems are sophisticated: Distributed, Multipro-
cessor, Multithreaded;

• Hundreds or even thousands of configuration pa-
rameters can be changed;

• Parameters can be poorly documented, so the result
of a change for a group of parameters or even single
parameter can be totally unpredictable.

Based on the above described conditions, an analytical
approach is scarcely applicable, because a system model
is not clear. An empirical approach could be more appli-
cable to find optimal configuration of a system, but only
experimental evaluation can be used to validate the cor-
rectness of optimal configuration on a real system. The
heart of PAC is the concept of the experimentation. A
single experiment consists of the following parts:

2007 Linux Symposium, Volume One • 267

• Input parameters: let us call them Xs. Input pa-
rameters are all that you want to set up on a target
system. Typical examples here are Linux kernel
variables, loader settings, and any system or appli-
cation settings.

• Output parameters: let us call them Ys. Output pa-
rameters are all that you want to measure or gather
on a target system: CPU and Memory utilization,
any message throughput and latency, system ser-
vices bandwidth, and more. Sources for Ys could
be: /proc file system, loaders output, profiling
data, and any other system and application output.

• Experiment scenarios: An experiment scenario is a
description of actions which should be executed on
target hosts.

Typical experiment scenario follows a sequence of ac-
tion: setup Xs that can’t be applied on-the-fly (includ-
ing execution required actions to apply such Xs like
restart node or processes, down and up network inter-
faces, etc.), then setup Xs that can be applied on-the-fly
and loader’s Xs, start loaders, next setup Xs like: sched-
ule policy, priority, CPU binding etc., finally collect Ys
such as CPU/Memory usage, stop loaders, and overall
statistics.

Every scenario file may use preprocessor directives and
S-Language statements. S-Language is a script lan-
guage which is introduced specifically for the project.
Both preprocessor and S-Language are described in
more detail following. One of the important parts of the
scenario executor is a dynamic table of variables. Vari-
able is a pair-variable name and variable value. There
are two sources of the variables in the dynamic table:

• Xs (Input variables). They are coming from an ex-
periment.

• Ys (Collected variables). They are coming from
remote hosts.

In the case of input variables, the names of the variables
are provided by the XML-formatted single experiment
file. In the case of collected variables, the names of
the variables are provided by scripts or other executa-
bles on the target hosts’ side. Whenever the same exe-
cutable could be run on many different hosts, a names-
pace mechanism is introduced for the variable names.
A host identifier is used as a namespace of the variable
name.

3.2 Overview of PAC Architecture

Host 1

Test Case

XML

Scenario

SKL

Results

XML

Test Case Processor

ELF

Single Experiment

XML

Experiment Results

XML

Preprocessor
& substitution logic

ELF

Scenario
Executor

ELF

Scenario Processor

PAC Engine

Logs

Host 2

Host N

Figure 2: PAC Architecture

A test case consists of a set of experiments. Each ex-
periment is essentially a set of Xs that should be used
while executing a scenario. Set of Xs within one Test
Case boundaries is constant and only values of these Xs
are variable. Each experiment is unambiguously linked
to a scenario. A scenario resides in a separate file or
in a group of files. The PAC engine overall logic is as
follows:

• Takes a test case file;

• For each experiment in the test case, performs the
steps below;

• Selects the corresponding scenario file;

• Executes all the scenario instructions using settings
for fine tuning the execution logic;

• Saves the results into a separate result file;

268 • Performance and Availability Characterization for Linux Servers

• Saves log files where the execution details are
stored.

Test Cases The basic unit of test execution is an experi-
ment. A single experiment holds a list of variables, and
each variable has a unique name. Many experiments
form a test case. The purpose of varying Xs’ values de-
pends on a testing goal. Those Xs’ names are used in
scenarios to be substituted with the values for a certain
experiment.

Scenarios A scenario is a description of actions which
should be executed on target hosts in a sequence or in
parallel in order to set up Xs’ values in accordance with
Test Case/Experiments and gather the values of Ys. The
solution introduces a special language for writing sce-
narios. The language simplifies description of actions
that should be executed in parallel on many hosts, data
collection, variable values, substitution, etc.

Results The results files are similar to Test Case files.
However, they contain set of Ys coming from target
hosts and from input experiment variables (Xs).

The scenario processor consists of two stages, as de-
picted in the figure above. At the bottom line there is a
scenario executor which deals with a single scenario file.
From the scenario executor’s point of view, a scenario is
a single file; however, it is a nice feature to be able to
group scenario fragments into separate files. To support
this feature the preprocessor and substitution logic is in-
troduced in the first stage. The standard C programming
language preprocessor is used at this stage, so anything
which is supported by the preprocessor can be used in a
scenario file. Here is a brief description of the C prepro-
cessor features which is not a complete one and is given
here for reference purposes only:

• Files inclusion;

• Macro substitutions;

• Conditional logic.

Summarizing, the complete sequence of actions is as
follows: The single experiment from the Test Case is ap-
plied to the scenario file. It assumes macro substitutions
of the experiment values (Xs), file inclusions, etc. The
scenario executor follows instructions from the scenario
file. While executing the scenario some variables (Ys)

are collected from target hosts. At the end of the sce-
nario execution, two files are generated: a log file and a
results file. The log file contains the report on what was
executed and when, on which host, as well as the return
codes of the commands. The results file contains a set
of collected variables (Xs and Ys).

The main purpose of the introduced S-Language is to
simplify a textual description of the action sequences
which are being executed consecutively and/or in par-
allel on many hosts. Figure 3 shows an example task
execution sequence.

Task 2

Task 5

Task 4

Task 3

Task 1

(a) Block diagram
TITLE ‘‘Scenario example’’

#include "TestHosts.incl"
#include "CommonDef.incl"

/* Task1 */

WAIT ssh://USER:PASSWD @ {X_TestHost} "set_kernel_tun.sh SEM \
{X_IPC_SEM_KernelSemmni} {X_IPC_SEM_KernelSemopm}"

PARALLEL
{

/* Task2 */
COLLECT @ X_TestHost "sem_loader -d {X_Duration} \
-r {X_IPC_SEM_NumPVOps} -t {X_IPC_SEM_LoaderNumThreads}"

SERIAL
{

/* Task3&4 */
COLLECT @ {X_TestHost} "get_overall_CPUusage.pl -d

{X_Duration}"
COLLECT [exist(Y_Memory_Free)] @ {X_TestHost} \
"get_overall_Memoryusage.pl -d X_Duration"
}

}
/* Task5 */
NOWAIT [IPC_iteration >1] @ {X_TestHost} ‘‘cleanup_timestamps.sh’’

(b) S-Language Code

Figure 3: Scenario Example

ExecCommand is a basic statement of the S-Language.
It instructs the scenario executor to execute a command
on a target host. The non-mandatory Condition ele-
ment specifies the condition on when the command is to
be executed. There are five supported command mod-
ifiers: RAWCOLLECT, COLLECT, WAIT, NOWAIT,
and IGNORE. The At Clause part specifies on which

2007 Linux Symposium, Volume One • 269

host the command should be executed. The At Clause is
followed by a string literal, which is the command to be
executed. Substitutions are allowed in the string literal.

3.3 PAC Agents

We are going to refer to all software objects located
on a target system as PAC agents. The server side of
PAC does not contain any Performance and Availability
specifics, but it is just intended to support any type of
complex testing and test environment. Everybody can
use PAC itself to implement their own scenario and tar-
get agents in order to solve their own specific problem
related to the system testing and monitoring.

PAC agents, which are parts of the PAC tool, are the
following:

• Linux service loaders;

• Xs adjusting scripts;

• Ys gathering scripts.

In this paper, we consider only loaders as more inter-
esting part of PAC agents. The diagram in Figure 4 is
intended to show the common principle of the loader
implementation. Every loader receives a command line

sleep

Base Interval

time

Does not meet

rate requirements

F ()
{
 for (NumberOfCycles)
 {
 RequiredFunctionality();
 }
}

F ()

Time taken

by F()
Time

slice

F (functionality):
the function that performs a load;
depends on loader type
(file operations, queue operations, ...)

Rate:
number of time slices
per base interval

F ()

Figure 4: Loader Implementation

argument which provides the number of time slices a
base interval (usually one second) is going to be divided
into. For example: <loader> --rate 20 means
that a one-second interval will be divided into 20 slices.

At the very beginning of each time slice, a loader calls
a function which performs a required functionality/load.

The functionality depends on a loader type. For exam-
ple, the file system loader performs a set of file opera-
tions, while the shared memory loader performs a set of
shared memory operations, and so on. If the required
functionality has been executed before the end of the
given time slice, a loader just sleeps until the end of
the slice. If the functionality takes longer than a time
slice, the loader increments the corresponding statistic’s
counter and proceeds.

There are several common parameters for loaders.

Input:

• The first one is a number of threads/processes. The
main thread of each loader’s responsibility is to
create the specified number of threads/processes
and wait until they are finished. Each created
thread performs the loader-specific operations with
the specified rate.

• The second common thing is the total loader work-
ing time. This specifies when a loader should stop
performing operations.

• Loaders support a parameter which provides the
number of operations per one “call of F() function-
ality.” For example, a signal loader takes an argu-
ment of how many signals should be sent per time
slice. This parameter, together with the number of
threads, rate, and number of objects to work with
(like number of message queues), gives the actual
load.

• Besides that, each loader accepts specific parame-
ters (shared memory block size in kilobytes, mes-
sage size, and signal number to send, and so on).

Output:

• Number of fails due to the rate requirement not be-
ing met.

• Statistics—figures which are specific for a loader
(messages successfully sent, operations success-
fully performed, etc.)

The loaders implementation described above allows not
only the identification of Linux service breakpoints, but
also—with help of fine rate/load control—the discovery
of the service behavior at different system loads and set-
tings. The following loaders are available as part of PAC
tool:

270 • Performance and Availability Characterization for Linux Servers

• IPC loaders:

– Shared memory loader;

– Semaphore loader;

– Message queues loader;

– Timer loader.

• CPU loaders:

– CPU loader;

– Signal loader;

– Process loader.

• IP loaders:

– TCP loader;

– UDP loader.

• FS loader (File & Storage);

• Memory loader.

One more PAC agent is PPA (Precise Process Ac-
counting). PPA is a kernel patch that has been con-
tributed by Motorola. PPA enhances the Linux ker-
nel to accurately measure user/system/interrupt time
both per-task and system wide (all stats per CPU).
It measures time by explicitly time-stamping in the
kernel and gathers vital system stats such as system
calls, context switches, scheduling latency, and ad-
ditional ones. More information on PPA is avail-
able from the PPA SourceForge web site: http://
sourceforge.net/projects/ppacc/.

4 Performance and Availability Characteriza-
tion in Use

Let us assume that you already have the PAC tool and
you have decided to use it for your particular task. First
of all, you will have to prepare and plan your experi-
ments:

• Identify list of input parameters (Xs) that you
would like to set up on the target. That could be
kernel parameters, a loader setting like operational
rate, number of processes/threads, CPU binding,
etc.

• Identify list of output parameters (Ys) that you
would like to measure during an experiment: ev-
erything you want to learn about the system when
it is under a given load.

If we are talking about Linux systems, you are lucky
then, because you can find in the PAC toolset all the
necessary components for the PAC agent that have been
already implemented: set scripts for Xs, get scripts for
Ys, and predefined scenarios for Linux’s every service.

If you are not using Linux, you can easily implement
your own scripts, scenarios, and loaders. When you
have identified all the parameters that you want to set up
and measure, you can move on to plan the experiments
to run.

We will start with some semaphore testing for kernels
2.4 and 2.6 on specific hardware. Let’s consider the first
test case (see Table 1). Every single line represents a
single experiment that is a set of input values. You can
see some variation for number of semaphores, operation
rate, and number of threads for the loader; all those val-
ues are Xs. A test case also has names of the values that
should be collected—Ys.

As soon as the numbers are collected, let’s proceed to
the data analysis. Having received results of the experi-
ments for different scenarios, we are able to build charts
and visually compare them. Figure 5 shows an example
of semaphore charts for two kernels: 2.4 on the top, and
2.6 on the bottom. The charts show that kernel 2.4 has a
lack of performance in the case of many semaphores. It
is not easy to notice the difference between the kernels
without having a similar tool for collecting performance
characteristics. The charts in Figure 6 are built from
the same data as the previous charts; however, a CPU
measurement parameter was chosen for the vertical axis.
The charts show that the CPU consumption is consider-
ably less on 2.6 kernel in comparison with 2.4. In the
Introduction section, we presented some challenges re-
lated to performance and availability. In this section, we
will cover how we face these challenges by experiment
planning and appropriate data analysis approach.

Performance Profiling

• Set up predefined/standard configuration for the
kernel and system services.

• Setup loaders to generate the workload as stated in
your requirements.

2007 Linux Symposium, Volume One • 271

T
C

_I
D

E
xp

er
im

en
t_

ID

X
_I

PC
_S

E
M

_K
er

ne
lS

em
m

ni

X
_I

PC
_S

E
M

_K
er

ne
lS

em
m

ns

X
_I

PC
_S

E
M

_K
er

ne
lS

em
op

m

X
_I

PC
_S

E
M

_L
oa

de
rN

um
Se

m
s

X
_I

PC
_S

E
M

_N
um

PV
O

ps

X
_I

PC
_S

E
M

_L
oa

de
rN

um
T

hr
ea

ds

Y
_C

PU
_P

er
ce

nt
ag

e_
cp

u1

Y
_C

PU
_P

er
ce

nt
ag

e_
cp

u2

Y
_C

PU
_P

er
ce

nt
ag

e_
cp

u3

Y
_C

PU
_P

er
ce

nt
ag

e_
cp

u4

Y
_M

E
M

O
RY

_F
re

e

Y
_I

PC
_S

E
M

_N
um

Se
m

s

Y
_I

PC
_S

E
M

_L
dr

L
oc

kO
p

Y
_I

PC
_S

E
M

_L
dr

U
nl

oc
kO

p

Y
_I

PC
_S

E
M

_L
dr

R
at

eF
ai

le
d

30 18 32000 800 1024 300 170 8 1 3 0 0 8061550592 300 52132.7 52132.7 0.0666667
30 19 32000 800 1024 300 300 8 3 0 1 0 8055160832 300 89916.8 89916.8 0
30 20 32000 800 1024 300 800 8 0 3 9 3 8053686272 300 233750 233750 0
30 21 32000 800 1024 300 1700 8 7 0 6 0 8054013952 300 494471 494471 0
30 22 32000 800 1024 300 2000 8 7 14 7 14 8059387904 300 584269 584269 0.0777778
30 23 32000 800 1024 300 2300 8 16 0 8 8 8058470400 300 674156 674156 0.0333333
30 24 32000 800 1024 300 2700 8 19 10 0 9 8062369792 300 791193 791193 0.0666667
30 25 32000 800 1024 1 10000 20 1 0 0 0 8045821952 1 9712.8 9712.8 0
30 26 32000 800 1024 1 50000 20 0 0 0 4 8059224064 1 48474.1 48474.1 0
30 27 32000 800 1024 1 100000 20 8 0 0 0 8068726784 1 96912.2 96912.2 0
30 28 32000 800 1024 1 250000 20 0 21 0 0 8060928000 1 242340 242340 0
30 29 32000 800 1024 1 500000 20 0 41 0 0 8052441088 1 484651 484651 0
30 30 32000 800 1024 1 600000 20 2 47 0 0 8070725632 1 581599 581599 0
30 31 32000 800 1024 1 700000 20 0 57 0 0 8054112256 1 678266 678266 0
30 32 32000 800 1024 1 800000 20 59 0 0 0 8082391040 0 775435 775435 0
30 33 32000 800 1024 100 100 20 0 0 0 0 8063451136 100 9991.11 9991.11 0
30 34 32000 800 1024 100 500 20 1 1 0 0 8058863616 100 50958.4 50958.4 0
30 35 32000 800 1024 100 1000 20 0 0 1 0 8046870528 100 98917.5 98917.5 0
30 36 32000 800 1024 100 2500 20 4 1 3 4 8058142720 100 242667 242667 0
30 37 32000 800 1024 100 5000 20 11 0 0 3 8047525888 100 485289 485289 0
30 38 32000 800 1024 100 6000 20 8 9 0 9 8052932608 100 584133 584133 0

Table 1: Table of Experiments

• Perform experiments.

• Check whether the measured data shows that re-
quirements are met.

Load Testing

• Set up predefined/standard configuration for the
kernel and system services.

• Use a long experiment duration.

• Mix the workload for all available services.

• Vary workloads.

• Vary the number of threads and instances for the
platform component.

• Analyze system behavior.

• Check that Ys are in valid boundaries.

Stress Testing

• Use a high workload.

• Operate by the loader with the target to exhaust
system resources like CPU, memory, disk space,
etc.

• Analyze system behavior.

• Check that all experiments are done and Ys are in
valid boundaries.

Performance tuning

• Plan your experiments from a workload perspec-
tive with the target to simulate a real load on the
system.

• Vary Linux settings, process affinity, schedule po-
lice, number of threads/instances, etc.

• Analyze the results in order to identify the optimal
configuration for your system. Actually we believe
a multi-objective optimization can be very useful
for that. This approach is described in more detail
later on.

System Modeling

• Take a look at your design. Count all the system
objects that will be required from an OS perspec-
tive, like the number of queues, TCP/UDP link,
timers, semaphores, shared memory segment, files,
etc.

• Examine your requirements in order to extrapolate
this on every OS service workload.

• Prepare test case(s).

272 • Performance and Availability Characterization for Linux Servers

(a) kernel 2.4

(b) kernel 2.6

Figure 5: Semaphore chart

• Analyze the obtained results to understand whether
your hardware can withstand your design.

5 Future Plans for Further Approaches Devel-
opment

In its current version, the PAC tool allows us to reach
the goals we set for ourselves, and has a lot of poten-
tial opportunities for further improvements. We realize
a number of areas where we can improve this solution
to make it more and more applicable for a variety of
performance- and availability-related testing.

Through real applications of the PAC tool to existing
telecommunication platforms, we realized that this ap-
proach from the experimental perspective could be very
fruitful. However, we noticed that results may vary de-
pending on the overall understanding and intuition of
the person performing the planning of the experiments.
If a person using PAC does not spend enough time to
investigate the nature of the system, she/he may need
to spend several cycles of experiments-planning before

(a) kernel 2.4

(b) kernel 2.6

Figure 6: CPU usage chart

she/he identifies right interval of system parameters—
i.e., where to search for valuable statistical results. This
is still valuable, but requires the boring sorting of a sig-
nificant amount of statistical information. In reality,
there may be more than one hundred tunable parame-
ters. Some of them will not have any impact on certain
system characteristics; others will certainly have impact.
It is not always easy to predict it just from common per-
spective. An even more difficult task is to imagine and
predict the whole complexity of the inter-relationships
of parameters. Automation of this process seems to be
reasonable here and there is a math theory devoted to
this task that we believe could be successfully applied.

We are talking about multi-parametric optimization. It
is a well described area of mathematics, but many
constraints are applied to make this theory applica-
ble for discrete and non-linear dependencies (which is
true for most of dependencies we can meet in sys-
tem tunable parameters area). We are currently look-
ing for numeric approaches for these kinds of multi-
parametric optimizations—e.g., NOMAD (Nonlinear

2007 Linux Symposium, Volume One • 273

Optimization for Mixed variables and Derivatives) [1],
GANSO (Global And Non-Smooth Optimization) [7],
or ParEGO Hybrid algorithm [14]. A direct search
for the optimal parameters combination would take too
much time (many years) to sort out all possible combi-
nations, even with fewer than one hundred parameters.
Using math theory methods, we will cut the number of
experiments down to a reasonable number and shorten
the test cycle length in the case of using PAC for load
and stress testing purposes.

Our discussion in the previous paragraph is about per-
formance tuning, but it is not the only task that we per-
form using the PAC tool. Another important thing where
the PAC tool is very valuable is the investigation of per-
formance and availability issues. Currently, we perform

In
te

rf
ac

e

A
ut

om
at

io
n

M
at

h
fu

nc
tio

na
lit

y

St
ab

ili
ty

C
om

pa
tib

ili
ty

Fl
ex

ib
ili

ty

Pr
oj

ec
ta

ct
iv

ity

Kst 7 5 5 7 8 8 8
Grace 6 7 8 7 8 6 7
LabPlot 8 2 7 7 8 8 7
KDEedu (KmPlot) 7 2 2 7 2 2 8
Metagraf-3D - - - 2 - - 6
GNUPLOT 6 7 5 8 4 6 4
Root 6 7 8 8 8 8 9

Table 2: Visualization tools

analysis of the results received manually through the use
of packages such as MiniTAB, which in many case is
time consuming. Our plan is to incorporate statistical
analysis methods in the PAC tool in order to allow it to
generate statistical analysis reports and to perform re-
sults visualization automatically by using GNU GSL or
similar packages for data analysis, and such packages as
GNUPLOT, LabPlot, or Root for visualization [9][6].

6 Conclusion

In this paper, we have provided an overview of specific
performance and availability challenges encountered in
Linux servers running on telecommunication networks,
and we demonstrated a strong correlation between these
challenges and the current trend from Linux vendors to
focus on improving the performance and availability of
the Linux kernel.

We have briefly described the existing means to address
basic performance and availability problem areas, and

presented the reason why in each particular case the
set of tools used should be different, as well as men-
tioned that in general the procedure of performance and
availability characterization is very time- and resource-
consuming.

We presented on the need to have a common integrated
approach, i.e., the PAC tool. We discussed the tool ar-
chitecture and used examples that significantly simplify
and unify procedures of performance and availability
characterization and may be used in any target problem
areas starting from Linux platform parameters tuning,
and finishing with load/stress testing and system behav-
ior modeling.

7 Acknowledgements

We would like to the members of the PAC team—
namely Sergey Satskiy, Denis Nikolaev, and Alexander
Velikotny—for their substantial contributions to the de-
sign and development of the tool. We appreciate the
review and feedback from of Ibrahim Haddad from Mo-
torola Software Group. We are also thankful to the
team of students from Saint-Petersburg State Polytech-
nic University for their help in investigating possible ap-
proaches to information characterization. Finally, we
would like to offer our appreciation to Mikhail Cher-
norutsky, Head of Telecommunication Department at
Motorola Software Group in Saint-Petersburg, for his
contributions in facilitating and encouraging the work
on this paper.

Ed. Note: the Formatting Team thanks Máirín Duffy for
creating structured graphics versions of Figures 1, 2, 3,
and 4 with Inkscape.

References

[1] Charles Audet and Dominique Orbany. Finding
optimal algorithmic parameters using a mesh
adaptive direct search, 2004.
http://www.optimization-online.
org/DB_HTML/2004/12/1007.html.

[2] Alberto Avritzer, Joe Kondek, Danielle Liu, and
Elaine J. Weyuker. Software Performance Testing
Based on Workload Characterization. In
Proceedings of the 3rd international workshop on
Software and performance, 2002.
http://delivery.acm.org/10.1145/
590000/584373/p17-avritzer.pdf.

274 • Performance and Availability Characterization for Linux Servers

[3] Steve Best. Linux R©Debugging and Performance
Tuning: Tips and Techniques. Prentice Hall PTR,
2005. ISBN 0-13-149247-0.

[4] Aaron B. Brown. A Decompositional Approach
to Computer System Performance Evaluation,
1997. http://www.flashsear.net/fs/
prof/papers/
harvard-thesis-tr03-97.pdf.

[5] Aaron B. Brown. Towards Availability and
Maintainability Benchmarks: A Case Study of
Software RAID Systems. Computer science
division technical report, UC Berkeley, 2001.
http://roc.cs.berkeley.edu/
papers/masters.pdf.

[6] Rene Brun and Fons Rademakers. ROOT - An
Object Oriented Data Analysis Framework. In
Proceedings of AIHENP conference in
Laussanne, 1996. http://root.cern.ch/
root/Publications.htm.

[7] CIAO. GANSO. Global And Non-Smooth
Optimization. School of Information Technology
and Mathematical Sciences, University of
Ballarat, 2005. Version 1.0 User Manual.
http://www.ganso.com.au/ganso.pdf.

[8] Christian Engelmann and Stephen L. Scott.
Symmetric Active/Active High Availability for
High-Performance Computing System Services.
JOURNAL OF COMPUTERS, December 2006.
http://www.academypublisher.com/
jcp/vol01/no08/jcp01084354.pdf.

[9] Mark Galassi, Jim Davies, James Theiler, Brian
Gough, Gerard Jungman, Michael Booth, and
Fabrice Rossi. GNU Scientific Library. Free
Software Foundation, Inc., 2006. Reference
Manual. Edition 1.8, for GSL Version 1.8.
http://sscc.northwestern.edu/
docs/gsl-ref.pdf.

[10] Ibrahim Haddad. Open-Source Web Servers:
Performance on a Carrier-Class Linux Platform.
Linux Journal, November 2001.
http://www2.linuxjournal.com/
article/4752.

[11] Ibrahim Haddad. Linux and Open Source in
Telecommunications. Linux Journal, September

2006. http://www.linuxjournal.com/
article/9128.

[12] Daniel Haggander and Lars Lundberg. Attacking
the Dynamic Memory Problem for SMPs. In the
13th International Conference on Parallel and
Distributed Computing System (PDCS’2000).
University of Karlskrona/Ronneby Dept. of
Computer Science, 2000. http:
//www.ide.hk-r.se/~dha/pdcs2.ps.

[13] Mary Jander. Will telecom love Linux?, 2002.
http://www.networkworld.com/
newsletters/optical/01311301.html.

[14] Joshua Knowles. ParEGO: A Hybrid Algorithm
with On-line Landscape Approximation for
Expensive Multiobjective Optimization Problems.
In Proceedings of IEEE TRANSACTIONS ON
EVOLUTIONARY COMPUTATION, VOL. 10,
NO. 1, 2005. http://ieeexplore.ieee.
org/iel5/4235/33420/01583627.pdf.

[15] Jouni Korhonen. Performance Implications of the
Multi Layer Mobility in a Wireless Operator
Networks, 2004. http://www.cs.
helsinki.fi/u/kraatika/Courses/
Berkeley04/KorhonenPaper.pdf.

[16] Rick Lehrbaum. Embedded Linux Targets
Telecom Infrastructure. LINUX Journal, May
2002. http://www.linuxjournal.com/
article/5850.

[17] Karim Mattar, Ashwin Sridharan, Hui Zang,
Ibrahim Matta, and Azer Bestavros. TCP over
CDMA2000 Networks : A Cross-Layer
Measurement Study. In Proceedings of Passive
and Active Measurement Conference (PAM 2007).
Louvain-la-neuve, Belgium, 2007. http:
//ipmon.sprint.com/publications/
uploads/1xRTT_active.pdf.

[18] Kiran Nagaraja, Neeraj Krishnan, Ricardo
Bianchini, Richard P. Martin, and Thu D. Nguyen.
Quantifying and Improving the Availability of
High-Performance Cluster-Based Internet
Services. In Proceedings of the ACM/IEEE
SC2003 Conference (SCŠ03). ACM, 2003.
http://ieeexplore.ieee.org/iel5/
10619/33528/01592930.pdf.

2007 Linux Symposium, Volume One • 275

[19] Neeraj Nehra, R.B. Patel, and V.K. Bhat. A
Framework for Distributed Dynamic Load
Balancing in Heterogeneous Cluster. Journal of
Computer Science v3, 2007.
http://www.scipub.org/fulltext/
jcs/jcs3114-24.pdf.

[20] Nortel. Nortel MSC Server. The GSM-UMTS
MSC Server, 2006.
http://www.nortel.com/solutions/
wireless/collateral/nn117640.pdf.

[21] Hong Ong, Rajagopal Subramaniyan, and
R. Scott Studham. Performance Implications of
the Multi Layer Mobility in a Wireless Operator
Networks, 2005. Performance Modeling and
Application Profiling Workshop,
SDSC,http://xcr.cenit.latech.edu/
wlc/papers/openwlc_sd_2005.pdf.

[22] Sameer Shende, Allen D. Malony, and Alan
Morris. Workload Characterization using the TAU
Performance System, 2007. http://www.cs.
uoregon.edu/research/paracomp/
papers/talks/para06/para06b.pdf.

[23] Charles P. Wright, Nikolai Joukov, Devaki
Kulkarni, Yevgeniy Miretskiy, and Erez Zadok.
Towards Availability and Maintainability
Benchmarks: A Case Study of Software RAID
Systems. In proceedings of the 2005 Annual
USENIX Technical Conference, FREENIX Track,
2005. http://www.am-utils.org/docs/
apv2/apv2.htm.

276 • Performance and Availability Characterization for Linux Servers

