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Abstract

Para-virtualization presents a wide variety of issues to
Operating Systems. One of these is presenting virtual
devices to the para-virtualized operating system, as well
as the device drivers which handle these devices. With
the increase of virtualization in the Linux kernel, there
has been an influx of unique drivers to handle all of these
new virtual devices, and there are more devices on the
way. The current state of Linux has four in-tree versions
of a virtual network device (IBM pSeries Virtual Eth-
ernet, IBM iSeries Virtual Ethernet, UML Virtual Net-
work Device, and TUN/TAP) and numerous out-of-tree
versions (one for Xen, VMware, 3leaf, and many oth-
ers). Also, there are a similar number of block device
drivers.

This paper will go into why there are so many, and the
differences and commonalities between them. It will
go into the benefits and drawbacks of combining them,
their requirements, and any design issues. It will discuss
the changes to the Linux kernel to combine the virtual
network and virtual block devices into two common de-
vices. We will discuss how to adapt the existing virtual
devices and write drivers to take advantage of this new
interface.

1 Introduction to I/O Virtualization

Virtualization is the ability of a system through hard-
ware and/or software to run multiple instances of Oper-
ating Systems simultaneously. This is done through ab-
stracting the physical hardware layer through a software
layer, known as a hypervisor. Virtualzation is primarily

implemented through two distinct ways: Full Virtualiza-
tion and Para-virtualization.

Full Virtualization is a method that fully simulates hard-
ware devices through emulating physical hardware com-
ponents in software. This simulation of hardware allows
the OS and other components to run their software un-
modified. In this technique, all instructions are trans-
lated through the hypervisor into hardware system calls.
The hypervisor controls the devices and I/O, and simu-
lated hardware devices are exported to the virtual ma-
chine. This hardware simulation does have a signifi-
cant performance penalty when compared to running the
same software on native hardware, but allows the user
to run multiple instances of a VM (virtual machine) si-
multaneously (thus allowing a higher utilization of the
hardware and I/O). Examples of this type of virtualiza-
tion are QEMU and VMware.

Para-virtualization is a method that modifies the OS run-
ning inside the VM to run under the hypervisor. It is
modified to support the hypervisor and avoid unneces-
sary use of privileged instructions. These modifications
allow the performance of the system to be near native.
However, this type of virtualization requires that vir-
tual devices be exposed for access to the underlying I/O
hardware. UML and Xen are examples of such virtu-
alization implimentations. The scope of this paper is
in considering only para-virtualized virtual machine ab-
stractions; this is where virtual device implementations
have proliferated.

To have better I/O performance in a virtual machine, the
VMs have virtual devices exported to them and have the
native device located in another VM or in the hypervi-
sor. These virtual devices have virtual device drivers for
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them to appear in the VM as if they were native, physi-
cal devices. These virtual device drivers allow the data
to be passed from the VM to the physical hardware. This
hardware then does the required work, and may or may
not return information to the virtual device driver. This
level of abstraction allows for higher performance I/O,
but the underlying procedure to perform the requested
operation differs on each para-virtualzation implemen-
tation.

2 Linux Virtualization support

There are many Linux-centered virtualization imple-
mentations, both in the kernel and outside the kernel.
The implementations that are currently in the Linux ker-
nel have been there for some time and have matured
over that time to be robust. Those implementations are
UML, IBM’s POWER virtualization, and the tun/tap de-
vice driver. Those implementations that are currently
living outside the kernel tree are gaining popularity, and
may one day be included in the mainline kernel. The
implementations of note are Xen and 3leaf Systems vir-
tualization (though many others exist).

2.1 In-tree Linux Virtualization support

2.1.1 User Mode Linux

User Mode Linux (UML) provides virtual block and
network interfaces with a couple of predominant drivers.

Briefly, the network drivers recommended for UML are
TUN/TAP. These are described in a later section. The
virtual devices created can be used with other virtual
devices on other VMs or with systems on the external
network. To configure for forwarding to other VMs,
UML comes with a switch daemon that allows user-
level forwarding of packets. UML supports hot plug
devices: new virtual devices can be configured dynam-
ically while the system is up. As long as a multicast-
capable NIC is available on the host, UML supports
multicast devices and it is possible to multicast to all
the VMs.

UML’s virtual storage solution consists of exporting a
file from a filesystem on storage known by the host to
the guest. That storage can be used directly through
reads and writes or with a feature called IO memory em-
ulation that allows a file to be mapped as an IO region.

From the kernel address space the driver can use for user
processes to mmap to their own address spaces.

All the guest reads and writes go through an API to the
host and are translated to host reads and writes. As such,
these operations are using the buffer cache on the host.
This causes a disproportionate amount of memory to be
consumed by the UMLs without limits as to how much
they can utilize. As is characteristic to Linux, flushing
modified buffers back to disk will be done when appro-
priate, based upon memory pressure in the host.

Another feature of UML virtual block device is supports
“copy on write” (COW) partitions. COW partitions al-
low a common image of a root device to be shared
among many instances of UML. Writes to blocks on the
COW partition are kept in a unique device for that UML
instance. This is more convenient than the Xen recom-
mendation for using the LVM to provide COW function-
ality.

UML provides a number of APIs for file IO. These APIs
hook into native versions largely unmodified Linux
code. These APIs provides the virtual interface to the
physical device on the host. Examples of these in-
terfaces are os_open_file, os_read_file, and
os_write_file.

2.1.2 IBM POWER virtualization

IBM’s PowerPC-based iSeries and pSeries hardware
provides a native hypervisor in system firmware, allow-
ing the system to be easily virtualized. The user-level
tools allow the underlying hardware to be assigned to
specific virtual machines, and in certain cases no I/O
hardware at all. In the latter case, one virtual machine
is assigned the physical adapters and manages all I/O to
and from those adapters. The hypervisor then exposes
virtual devices to the other virtual machines. The virtual
devices are presented to the OS via the system’s Open
Firmware device tree, and from the OS’s perspective ap-
pear to be on a system bus [4]. Currently, the hypervisor
supports virtual SCSI, ethernet, and TTY devices.

For the virtual ethernet device, the hypervisor imple-
ments a system-wide, VLAN-capable switch [4]. This
enables a virtual ethernet device in one VM to have a
connection to another VM via its virtual ethernet device.
This virtual switch can be connected to the external net-
work only by connecting a virtual ethernet device to a
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physical device in one of the VMs. In Linux, this would
be done via the kernel level ethernet bridging code.

For the virtual SCSI device, the connection is based
on a client-server model [4]. The SCSI virtual client
device works like most SCSI host controllers. It han-
dles the SCSI commands via the SCSI mid-layer and
issues SCSI commands to those devices. The SCSI vir-
tual server device receives all SCSI commands and is
responsible for handling them. The virtual SCSI inter-
partition communication protocol is the SCSI RDMA
Protocol.

2.1.3 TUN/TAP driver

The tun/tap driver has two basic funtions, a network
tap and a network tunnel. The network tap simulates a
ethernet device, and encapsulates incoming data inside
an ethernet frame. The network tunnel simulates an IP
layer device, and encapsulates the incoming data in an
IP packet. It can be viewed as a simple Point-to-Point or
Ethernet device, which instead of sending and receiving
packets from a physical media, sends and receives them
from user-space programs [5].

This enables virtualization programs running in user
space (for example UML) access to the network with-
out needing exclusive access to a network device, or any
additional network configuration or OS kernel changes.

2.2 Out-of-tree Linux Virtualization support

2.2.1 Xen

Xen provides an architecture for device driver isolation
using a split driver architecture. The virtual device func-
tionality is provided by front-end and back-end device
drivers. The front-end driver runs in the unprivileged
“guest” domain, and the back-end runs in a “privileged”
domain with access to the real device hardware. For
block devices, these drivers are called blkfront and blk-
back; and for the network devices, netfront and netback.
On the front end, the virtual device appears as a physical
device and receives IO requests from the guest kernel.

The front-end driver must issue requests to the back-end
driver since it doesn’t have access to physical hardware.
The back-end verifies that the request is safe and issues

it to the real device. The back-end appears to the hy-
pervisor as a normal user of in-kernel IO functionality.
When the IO completes, the back-end notifies the front-
end that its data is ready. The front-end driver reports IO
completions to its own kernel. The back-end is respon-
sible for translating device addresses and verifying that
requests are correct and do not violate isolation guaran-
tees.

Xen accomplishes device virtualization through a set of
clean and simple device abstractions. IO data is trans-
ferred to and from each domain via grant tables using
shared-memory, asynchronous buffer-descriptor rings.
These are said to provide a high-performance commu-
nication mechanism for passing buffer information ver-
tically through the system, while allowing Xen to ef-
ficiently perform validation checks—for example, of
a domain’s credits. This shared-memory interface is
the fundamental mechanism supporting the split device
drivers for network and block IO.

Each domain has its own grant table. This data structure
is shared with the hypervisor, allowing the domain to
tell Xen what kinds of permissions other domains have
on its pages. Entries in the grant table are identified by a
grant reference, an integer, which indexes into the grant
table. It acts as a capability which the grantee can use
to perform operations on the granter’s memory. This
mechanism allows shared-memory communications be-
tween unprivileged domains. A grant reference also en-
capsulates the details of a shared page, removing the
need for a domain to know the real machine address of a
page it is sharing. This makes it possible to share mem-
ory correctly among domains running in fully virtual-
ized memory.

Grant table manipulation, the creation and destruction
of grant references, is done by direct access to the grant
table. This removes the need to involve the hypervisor
when creating grant references, changing access permis-
sions, etc. The grantee domain invokes hypercalls to use
the grant reference.

Xen uses event-delivery mechanism for sending asyn-
chronous notifications to a domain, similar to a hard-
ware interrupt. These notifications are made by updat-
ing a bitmap of pending event types, and optionally call-
ing an event handler specified by the guest. The events
can be held off at the discretion of the guest.

Xenstore is the mechanism by which these event chan-
nels are set up, along with the shared memory frame.
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It is used for setting up shared memory regions and
event channels for use with the split device drivers. The
store is arranged as a hierarchical collection of key-
value pairs. Each domain has a directory structure con-
taining data related to its configuration.

The setup protocol for a device channel should consist
of entering the configuration data into the Xenstore area.
The store allows device discovery without requiring the
relevant device structure to be loaded. The probing code
in the guest should see the Xen “bus.”

Once communications is established between a pair of
front- and back-end drivers, the two can communicate
by directly placing requests/responses into shared mem-
ory and then on the event channel. This separation al-
lows for message batching, making for efficient device
access.

Xen Network IO

As mentioned, the shared memory communication area
is shared between front-end and back-end domains.
From the point of view of other domains, the back-end
is viewed as a virtual ethernet switch, with each domain
having one or more virtual network interfaces connected
to it.

From the reference point of the back-end domain, the
network driver on the back end consists of a number of
ethernet devices. Each of these has a connection to a
virtual network device in another domain. This allows
the back-end domain to route, bridge, firewall, etc. all
traffic from and to the other domains using the usual
Linux mechanisms.

The back end is responsible for:

• Validation of data. The back end ensures the front
ends do not attempt to generate invalid traffic. The
back end may look at headers to validate MAC or
IP addresses, making sure they match the interface
they have been sent from.

• Scheduling. Since a number of domains can share
the same physical NIC, the back end must sched-
ule between domains that can have packets queued
for transmission, or that may have ingress traf-
fic. The back end is capable of traffic-shaping or
rate-limiting schemes. Logging/Accounting on the
back end can be configured to track/record events.

Ingress packets from the network are received by
the back end. The back end simply acts as a demul-
tiplexer, forwarding incoming packets to the cor-
rect front end via the appropriate virtual interface.

The asynchronous shared buffer rings described earlier
are used for the network interface to implement trans-
mit and receive rings. Each descriptor ring identifies a
block of contiguous machine memory allocated to the
domain. The transmit ring carries packets to transmit
from the guest to the back-end domain. The return path
of this ring carries messages indicating contents have
been transmitted. This signals that the back-end driver
does not need the pages of memory associated with that
request.

To receive packets, the guest puts descriptors for unused
pages of memory on the receive ring. The back end ex-
changes these pages in the domain’s memory with new
pages containing the received packet and passing back
descriptors regarding the new packets in the ring. This
is a zero-copy approach, allowing the back end to main-
tain a pool of free pages to receive packets into, deliv-
ering them to the associated domains after reading their
headers. This is known as page flipping.

A domain that doesn’t keep its receive ring filled with
empty buffers will have dropped packets. This is seen
as an advantage by Xen because it limits live-lock prob-
lems because the overloaded domain will stop receiv-
ing further data. Similarly, on the transmit path, it pro-
vides the application the feedback on the rate at which
the packets can leave the system.

Flow control on the rings is managed by an independent
mechanism from the flow of data on the transmit/receive
rings. In this way the ring is divided into two message
queues, one in each direction.

Xen Block IO

All disk access uses the virtual block device interface. It
allows domains access to block storage devices visible
to the block back-end device. The virtual block device is
a split driver, like the network interface. A single shared
memory ring is used between the front and back end for
each virtual device. This memory ring handles all IO
requests and responses for that virtual device.

Many storage types can be exported by the back-end do-
main for use by the front end—various network-based
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block devices such as iSCSI, or NBD, as well as loop-
back and multipath devices. These devices get mapped
to a device node on the front end in a static way defined
by the guest’s startup configuration.

The ring used by block IO supports two message types,
read and write. For a read, the front end identifies the
device and location to read from and attaches pages for
data to be copied into. The back end acknowledges
completed reads after the data is transferred from the
device into the buffer, typically the underlying physical
device’s DMA engine. Writes are analogous to reads,
except data moves from the front end to the back end.

Xen IO Configuration

Domains with physical device access (i.e., driver do-
mains) receive access to certain PCI devices on a lim-
ited basis, acquiring access to interrupts and bus ad-
dress space. Many guests attempt to determine the PCI
configuration by accessing the PCI BIOS. Xen forbids
such access and provides a hypercall, physdev_op to
set/query configuration details.

2.2.2 3leaf Virtualization

3leaf Systems provides virtual storage and network in-
terfaces built on top of typical Linux APIs. Their de-
vices span physical machine boundaries so that front-
end drivers can be on one system and the back-end
drivers hosted where the physical devices reside.

Their front-end drivers communicate to the back-end
drivers through a transport-agnostic interface that lends
itself to running on any number of transports that meet
some minimal set of requirements.

Front-end network devices look like a normal ether-
net interface for the purposes of the front-end applica-
tion/user. Such devices have their own MAC addresses
randomly generated. Egress packets get wrapped with
header information before being passed to the lower lay-
ers of the transport. This header is used for demulti-
plexing. The corresponding virtual NIC on the back end
passes the packet to the bridge, where the packet gets
forwarded to its recipient.

The storage front end looks like a SCSI device, usually
having a SCSI device backing the back-end driver. The
front-end registers with the block device layer so the

SCSI mid-layer can pass off requests with scatterlists.
These get wrapped with header information before be-
ing passed to the lower layers of transport. This header
is used for demultiplexing on the back end where the
request is forwarded to the SCSI device. Completions
come back to the back end where they are wrapped with
the header information for the return trip through the
transport to the front end. The front-end driver forwards
the completion to the SCSI midlayer.

The 3leaf stack can manage multiple devices, and hot-
plug events, but can entail software queuing at differ-
ent levels, especially the networking stack. Interac-
tions between front and back ends are mitigated through
thoughtful use of scatter-gather lists to chain requests.
3leaf services do not rely on an operating system be-
ing fully or para-virtualized; it is more of a distributed
IO services mechanism. In some ways the hardware
where the back-end runs is analogous to a hypervisor,
whereas the front-end systems can be many and serve
as the guests in the model of the virtual IO services sur-
veyed here.

3Leaf virtual storage virtualization supports a number of
useful features for providing diskless front-end clients
with controlled, high-availability, high-performance ac-
cess to storage. It also includes tools for assisting cen-
tralized provisioning to these distributed clients.

Following is a list of capabilities supported by this stor-
age virtualization implementation. Each capability will
be followed by a brief description of its implementation.

Features supported include:

• Multiple redundant access paths to storage. A typi-
cal configuration has two or more back-end servers,
each with redundant paths to storage on a fibre
channel SAN. The fail-over and fail-back between
redundant fibre channel paths on the back-end re-
dundant paths is managed by the Linux device
mapper multipathing. A front end then has paths to
storage through two or more back-end servers. The
front-end and back-end storage software manages
fail over and fail back between back-end servers.

• Block or SCSI storage devices. The virtual storage
devices can appear on the front-end clients as either
block or SCSI devices.

• Name persistence. The Linux hotplug software
also includes mechanisms that can be used give



14 • Unifying Virtual Drivers

storage devices persistent names. For example,
these names can be based on the UUID of the
physical storage device. This mechanism requires
some intervention on the front-end client to estab-
lish these mappings. The hotplug mechanism is
still available for use on the 3leaf front-end clients.
But the 3leaf virtual storage software also main-
tains its own stable naming mechanism. This can
be administered centrally from the back-end stor-
age server.

• Boot support for diskless front-end clients. The
front-end client is able to load its operating system
from the back-end server and then use a virtual disk
as its root device. Access to this root device will
also be highly available using the redundant paths
provided by the storage virtualization.

• COW virtual devices. As with UML, the 3leaf
COW devices are especially useful for root disks.
It allows several client front ends to share a com-
mon root file system, allocating additional storage
only for each client’s modifications to that shared
image.

• NPIV. N-port interface virtualization is another
mechanism which allows the owner of the SAN to
regulate access to devices on that SAN by individ-
ual front-end clients. This is based upon a virtual
host bus adapter model, where the SAN adminis-
trator can associate sets of storage devices with vir-
tual HBAs and then associate individual VHBAs
with different client machines.

• Centralized provisioning. The back-end servers in-
teract with a distributed set of tools to specify the
virtual storage environment for the storage client.
Storage devices can be added or removed from the
client’s environment, generating hotplug events to
update the client’s storage name space.

The 3leaf virtual storage implementation is conceptually
similar to the Xen storage device implementation. Both
are based on an efficient and reliable means for passing
messages and DMA data transfers between the “guest”
or front-end clients, and the “host” or back-end servers.

The messaging mechanism is used to implement an
rpc-like communication between the back-end servers
and the front-end clients. This rpc mechanism is used
to simulate SCSI/Fibre channel behavior when needed,

and to support the creation/deletion of virtual disks, the
construction of COW devices, and VHBAs.

When the underlying transport supports it (e.g., infini-
band RDMA), the transfer of disk data is transferred us-
ing RDMA read and RDMA write operations. RDMA
read and write operations are initiated on the client.
The RDMA operations use “opaque” handles to iden-
tify memory on the back-end servers that are the source
or target of RDMA reads and writes, respectively. The
client memory to be used is identified by a scatter/gather
list.

These opqaue rdma handles are generated on the back-
end servers as part of registering portions of the server’s
physical memory to be used for RDMA operations. In
the case of infiniband, these handles are encoded in so
that they cannot be forged. This provides some isolation
between client front ends, making it difficult for clients
to maliciously generate RDMA handles to memory they
should not have access to. The opaque memory han-
dles are transmitted from the back end server nodes to
the front end’s servers using the RPC mechanism. Each
client is given a set of RDMA handles for segments of
server memory. These memory segments sets are not
shared between clients. Thus there is no chance of mis-
directed RDMA operations. Each client has ownership
and control of its set of RDMA handles until it releases
them. To perform a disk IO transfer, a client allocates an
RDMA handle from the set given to it by the destination
server. In the case of a write, it first transfers data using
RDMA into the server’s client memory. Then issues an
rpc call to the server instructing it to write that memory
to a disk device. In the case of a disk read, the client first
sends an rpc to the server instructing it to read data from
disk into the server’s memory. It then uses its RDMA
handle for that memory to transfer that data from the
server’s memory to the client’s.

The rest of the virtual disk implementation is built upon
these messaging and RDMA primitives. On the client,
the virtual disk implementation appears to the Linux op-
erating system’s block layer and SCSI mid-layer as just
another disk driver. The driver accepts either SCSI re-
quests or block request structures, and translates them
into rpc messages and RDMA operations targeted to-
wards one of the servers providing access to disk stor-
age. If the targeted server fails, these operations will be
re-directed to one of the redundant servers for that stor-
age.
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On the server side, the disk virtualization is logically at
the same level in the Linux disk software stack as the
Linux page cache. The client and server’s virtualization
software manages its own pool of memory for RDMA
operations. RPC requests from the client cause block
requests to be submitted to the server’s block layer to
cause disk read and write operations. In this way, disk
data transfers are performed without any copying of disk
data by the CPUs on either the clients or the servers.

2.2.3 Non-local memory transport of data via IB

OpenFabrics.org is another player in the fabric of virtual
IO solutions. Their solutions use infiniband as the trans-
port to provide network and storage solutions to low-
cost, front-end machines that run with their drivers and
commodity HCA cards.

In this paradigm, virtual network interfaces are provided
over the HCA ports with a protocol built on the verbs/
access layer called the IPoIB module. This uses the two
physical interfaces for each HCA; however, the MAC
used is the GUID, which means it becomes difficult to
put these packets on ipv4 networks. The ethernet header
then needs to be massaged before transmitted packets
can go out. When the virtual device’s MAC is tied to the
hardware, it becomes difficult to migrate virtual devices
to other ports. The packets have to be bridged from the
IB network to the ethernet network, much as packets
from other solutions.

The storage solution provided is a module based on
SCSI Request Protocol (SRP) initiator. It provides ac-
cess to IB-based SRP storage targets.

3 Virtualized I/O

3.1 Virtualized Networking

The need for unified virtual ethernet drivers are many.
First, the multitude of pre-existing code, and the poten-
tial for more in the future. The partial addition of fea-
tures in an uncoordinated effort when many of the rest
could also benefit from these features. UML provides
switching from a user-level daemon which will have less
performance than a kernel module. Not all implemen-
tations support hot-plug additions of virtual devices to
the VM. Self-virtualizing devices are soon to be on the
market and a common architecture should be adapted to
take advantage of that functionality in the NICs.

3.2 Virtualized Storage

The need for unification of virtualized storage drivers is
several fold. First, file-based partitions are slow. While
convenient for desktop users, they do not meet the needs
of an enterprise-scaled organization. It is well doc-
umented that read/write performance in the interfaces
UML uses are slow. Additionally, file-based partitions
also suffer from unchecked buffer cache growth on the
host system. That tends to help performance, keeping
much of the disk/partition resident in memory; however,
as the number of disks group, it can cause inequities as
to which VM has the lion’s share of memory tied up.
Attempted solutions to resolve that have been contro-
versial and seem too specialized for the particular hy-
pervisor running. mmap performance is not much better
as an alternative, as some experiences indicate.

Inconsistent CoW implemenatations. The market has
shown the need to have a single master root drive that is
read-only, backed by a writable device to manage VM-
based configuration differences which CoW provides a
per-block mechanism for satisfying. Using the Linux
Volume Manager as a solution goes beyond its original
design; likewise there are limitations in using a bitmap
implementation exclusively.

As far as disk-based partitions vs. file-based partitions,
a disk gives a better unit of granularity that SAN stor-
age providers have deployed with. It makes concepts
like zoning and n-port virtualization much more achie-
veable.

SCSI-based devices seem a familiar and dependable
mechanism to build a framework under. This mecha-
nism is used by many other drivers and is itself a de-
pendable framework supporting multiple device types.
SCSI request blocks are already a well defined way to
format requests and completions. A flexible back end
should support all device types; however, for the scope
of this document the discussion will be focused on SCSI
disks. Such disks could be SAS (serial attached scsi) or
storage that is allocted from a SAN fabric through an
HBA (host bus adapter).

Lastly, a single flexible implementation will be better
supported by the Linux community.

4 Design requirements and open issues

Abstracting the existing virtual drivers into a generic im-
plementation raises interesting design requirements and
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issues. Regardless of how the underlying virtualization
actually works, there are a few basic interfaces for the
network transport layer to interlock with the virtual eth-
ernet driver, and the storage transport layer to interlock
with the virtual SCSI driver.

4.1 Net

All the virtual ethernet device drivers described above
contain certain basic features which are common,
though the underlying methods of transfer the data from
one point to another differs. All virtual network de-
vice drivers have functions which create and delete the
device, start and stop the network stack, and transmit
and receive data. These basic functions can be created
in a generic virtual ethernet driver, which would then
be supplemented by a specific module that handles any
transport-specific calculations and transports the data
from one point to another.

By providing a veth_ops data structure, with the
pointers to the transport layer “helper” functions, this
division of labor can greatly increase the ability to sep-
arate the existing virtual ethernet driver into a generic
and transport layer.

For example in Xen, the packet to be transmitted has a
few transport-specific calculations that need to be done
(like insertion into the grant table and calculation for the
number of pages the skb fits into). Those can be pushed
down into a transmit transport layer, to which the skb is
handed for transmission. In contrast, the tun/tap driver
simply queues the packet onto a skb queue.

veth_ops−>tx(struct sk_buff ∗skb,
struct net_device ∗netdev);

This enables generic error checking and setup that all
data transmission routes need in the generic tx stub, and
the transport-specific work can be done in the function
pointed to by the veth_ops.

For receiving, things can be significantly simplier us-
ing NAPI. Registering a generic poll routine on device
open, and providing a skb queue to pull from, makes this
very generic. The transport layer populates the queue as
packets are pulled off its transport layer (via interrupt,
etc.).

Open and close will need generic and transport-layer
constructs to set up the virtual device to transmit and

receive data, as well as destroy any resources allocated.
While some of these functions are specific to the trans-
port layer (like creating buffer pools), most of the drivers
require the very basic setup of zeroing statistics and
starting the transmit queue.

veth_ops->open(struct net_device

*netdev);
veth_ops->close(struct net_device

*netdev);

Unfortunately, driver probe and create are very depen-
dent on how the attributes are passed to the driver. Since
some are passed via hcall and others are provided by
the user-space tools, there really is no abstract way to do
this.

There are other generic functions that can easily be
made generic. Specificly, functions to change the MTU,
transmit timeout, and get statistics are all generic and
really do not need any hooks in them to work for all
virtualization implementations.

There are currently some offloading technologies which
have been implemented in some of the drivers via
software, and which have not been proliferated into
all of the existing drivers. For example, GSO and
checksum offloads. Integrating these functions into
existing implementations might be easy; they are
very implementation-dependent and should only be ab-
stracted after further investigation.

Our current implementation uses the API defined above
to communicate between the generic virtual ethernet
driver and a few generic transport layers. Specificly, we
generalized the Xen network to behave in the above way,
as well as UML and 3leaf.

4.2 Disk

We propose virtualization-aware devices using a unified
generic stub. This allows for a transport/virtualization-
specific layer. If a transport were to be connected
through the generic stubs, the front end and back end
would not have to be co-located on the same piece of
hardware.

By providing a vstore_ops structure, with the struc-
ture elements being pointers to transport layer “helper”
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functions, one can separate existing virtual storage
drivers into a generic and transport layer.

In Xen the IO request results in pages inserted into the
grant table for the blkback driver for reads and writes.
They can be pushed down to the transport layer in a way
that shields the upper layers from the transport. In con-
trast, UML with its UBD driver does reads and writes
to the host operating system, largely driven through the
os_* interfaces. These are block device interfaces, but
the pertinent information is available from the ioreq
struct. The 3leaf front-end driver can accomodate both.
Writes and reads have the same prototypes:

vstore_ops−>dma_write(struct scatterlist

local_buf_list[],

int nbuf, int size);

vstore_ops−>dma_read(struct scatterlist

local_buf_list[],

int nbuf, int size);

Open and release of block devices are generic enough
that the transport-specific portion is easily isolated. The
open causes caches of buffers to be allocated and data
structure initialization. The release causes those re-
sources to be freed.

vstore_ops−>open(struct inode ∗inode,
struct file ∗filp);

vstore_ops−>release(struct inode ∗inode,
struct file ∗filp);

The auto-provisioning in the 3leaf model is preferable
for many reasons. There needs to be a way for a VM to
probe for devices; this callback fills that requirement,
not unlike Xen—when it reads its configuration, it’s
technically accessing the Xen bus.

5 Roadmap/Future work

We plan on extending this work into all virtualization
implementations mentioned in this paper. However, due
to certain logistical limitations, we have not been able
to do this. For example, there was no access to IBM
POWER-enabled hardware.

Self-virtualizing devices which can be offloaded with
certain virtualization functionality are becoming more
prevalent. These devices require that one physical de-
vice appear as multiple devices, each VM having a semi-
programmable device exclusively for its own. Exporting

the generic driver to these devices could be quite bene-
ficial.

A performance analysis of the merged drivers, with a
contrast to the existing drivers, should be done prior to
any merging into mainline.

The driver should be expanded to accomodate block de-
vices as well as scsi, using the 3leaf model for support-
ing both types.

Features in the 3leaf solution should be addressed, in-
cluding multiple redundant paths to storage, name per-
sistence, and centralized provisioning.

6 Conclusion

We implemented a generic virtual device driver with
implementation-specific transportation layer for UML,
Xen, and 3leaf Systems. We have shown a breadth of
virtualization technologies that would benefit from us-
ing this, and the generic API which can be used to do
this.

We will continue to clean and extend the usage of this
implementation in Linux. Hopefully, by the time this is
read, it will be submitted for inclusion into the Linux
kernel.

7 Terms

front end, back end
One class of distributed computer system in which the
computers are divided into two types: back-end comput-
ers and front-end computers. Front-end computers typ-
ically have minimal peripheral hardware (e.g., storage
and ethernet) and interact with users and their applica-
tions. Back-end computers provide the front ends with
access to expensive peripheral devices or services (e.g.,
a database), so as to share the cost of those peripherals
across the front ends.

Also: client, server.

bridge
A mechanism to forward network packets between ports
or interfaces.

VM (virtual machine)
Software that provides a virtual environment on top of
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the hardware platform. This virtual environment pro-
vides services for creating and managing virtual IO de-
vices such as disks and network interfaces.

CoW (Copy on Write)
A technique for efficiently sharing the un-modified con-
tents of a disk or file system whose contents are “read
mostly”—for example, a root file system. Writes to this
shared content are re-directed to a write-able device that
is unique to each user.

DMA (Direct Memory Access)
A hardware mechanism used by peripheral devices to
transfer data between the pre-determined locations in
computer memory and the peripheral device, without
using the computer’s cpu to copy that data.

RDMA (Remote Direct Memory Access)
An extension of DMA where data is transferred between
pre-determined memory locations on two computer sys-
tems over a network connection, without utilizing cpu
cycles to copy data.

MAC (Media Acess Control) address
A unique identifier associated with a network adapter.

GUID (Globally Unique Identifier)
A 128-bit number, unique identifier that is associated
with an infiniband HCA.

IPoIB (Internet Protocol over InfiniBand)
An implementation of the internet protocol on the In-
finiband network fabric.

SRP (SCSI RDMA Protocol)
A combination of the SCSI protocol with Infiniband
RDMA, providing SAN storage.

UML (User Mode Linux)
A virtual machine implementation where one or more
guest Linux operating systems run in user-mode Linux
processes.

hypvervisor (also, virtual machine monitor)
The software that provides the virtual machine mecha-
nisms to support guest operating systems.

infiniband
A point-to-point communications link used to provide
high performance data and message transfer between
computer nodes.

NIC (Network Interface Controller)
A hardware device that allows computers to communi-
cate over a network.

page cache, buffer cache
A cache of disk-backed memory pages. The Linux op-
erating system uses a page cache for holding process
memory pages as well as file data.

scatterlist
A list (typically an array) of physical memory addresses
and lengths used to specify the source or destination for
a DMA transfer.

RPC (Remote Procedure Call)
A protocol where software on one computer can invoke
a function on a remote computer.

SCSI (Small Computer System Interconnect)
A standard for physically connecting and transferring
data between computer systems and peripheral storage
devices.

API (Application Programming Interface)
A software interface definition for providing services.

HCA (Host Channel Adapter)
A hardware device for connecting a computer system to
an infiniband communications link.

HBA (Host Bus Adapter)
A hardware device that connecting a computer system
to a SCSI or Fibre Channel link.

hotplug (hot plugging)
A method for adding or removing devices from a com-
puter system while that computer system is operating.

N-Port (Node Port)
a Fibre Channel node connection.

Fibre Channel
A network implementation that is used mostly for ac-
cessing storage.

SAN (Storage Area Network)
A network architecture for attaching remote storage to a
server computer.

Volume Manager
Software for managing and allocating storage space.
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8 Legal Statement

All statements regarding future direction and intent are sub-
ject to change or withdrawal without notice, and represent
goals and objectives only. Information is provided “AS IS”
without warranty of any kind. This article could include tech-
nical inaccuracies and typographical errors. Improvements
and/or changes in the product(s) and/or the program(s) de-
scribed in this publication may be made at any time without
notice. This paper represents the view of its authors and not
necessarily the view of 3leaf Systems. Other company, prod-
uct, or service names may be the trademarks of others. Void
where prohibited.
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