
Proceedings of the
Linux Symposium

June 27th–30th, 2007
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc.
Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.



KvmFS: Virtual Machine Partitioning For Clusters and Grids

Andrey Mirtchovski
Los Alamos National Laboratory

andrey@lanl.gov

Latchesar Ionkov
Los Alamos National Laboratory

lionkov@lanl.gov

Abstract

This paper describes KvmFS, a synthetic file system
that can be used to control one or more KVM virtual
machines running on a computer. KvmFS is designed
to provide its functionality via an interface that can
be exported to other machines for remote configuration
and control. The goal of KvmFS is to allow a multi-
CPU, multi-core computer to be partitioned externally
in a fashion similar to today’s computational nodes on
a cluster. KvmFS is implemented as a file server using
the 9P protocol and its main daemon can be mounted lo-
cally via the v9fs kernel module. Communication with
the KvmFS occurs through standard TCP sockets. Vir-
tual machines are controlled via commands written to
KvmFS’ files. Status information about KVM virtual
machines is obtained by reading KvmFS. KvmFS al-
lows us to build clusters in which more than one ap-
plication can share the same SMP/Multi-core node with
minimalistic full system images tailored specifically for
the application.

1 Introduction

The tendency in high-performance computing is to-
wards building processors with many computational
units, or cores, with the goal of parallelizing compu-
tation so that many units are performing work at the
same time. Dual and quad-core processors are already
on the market, and manufacturers are hinting at 8, 32,
or even 80 cores for a single CPU, with a single com-
putational node composed of two, four, or more CPUs.
This will result in applications running and contending
for resources on large symmetric multiprocessor sys-
tems (SMPs) composed of hundreds of computational
units.

There is a problem with this configuration, however:
since clusters are currently the dominant form of node
organization in the HPC world (as seen in the latest

breakdown by machine type on the Top 500 list of su-
percomputers), most applications are designed to either
run on a single 2- or 4-core machine, or so that separate
parts of the program will run on separate 2- or 4-core
nodes, and will communicate via some message-passing
framework such as MPI. This has resulted in most of
the applications running here, at Los Alamos National
Laboratory, scaling to at most 8 CPUs on a single node.
Furthermore, many applications assume that they are the
only ones running on a single node and will not have
to contend for resources. To satisfy the requirements
of such applications, large SMP computers will have to
be partitioned so that applications are ensured dedicated
resources without contention. Fail-over and resilience,
two very hot topics in High Performance Computing,
also require the means to transfer an application from
one machine to another in the case of hardware or soft-
ware component failures on the original computer.

One solution for partitioning hardware and providing
resilience has gained widespread adoption and is con-
sidered feasible for the HPC world: virtualization us-
ing hypervisors. Borrowing from the mainframe, it al-
lows separate instances of an operating system (or in-
deed separate operating systems) to be run on the same
hardware or parts thereof. The two major CPU manu-
facturers have added support for virtualization to their
newest offerings, which provides even greater perfor-
mance gains than previously thought.

KVM has recently emerged as a fast and reliable (with
the hardware support on modern processors) subsystem
for virtualizing the hardware on a computer. Our goal
with KvmFS is to enable KVM to be remotely con-
trolled by either system operators or schedulers and to
allow it to be used for partitioning on clusters composed
of large SMP machines, such as the ones already being
proposed here at LANL.

Virtualization benefits the system administrator, as
well as programmers and scientists running high-
performance code on large clusters. One benefit is the

• 59 •



60 • KvmFS: Virtual Machine Partitioning For Clusters and Grids

full control over the operating system installation that
an application requires. For example, it is not neces-
sary to have all support libraries and software installed
on all machines of a cluster, instead, the application is
run in an OS instance that already contains all that is re-
quired. This greatly simplifies installations in the case
where conflicting libraries and support software may be
required by different applications. Another possibility is
to run a completely different operating system under vir-
tualization, something impossible in current monolithic
cluster environments.

With the fast and reliable means of running applications
on their own slice of a SMP, it is convenient to be able
to extend the control of partitioning and virtualization
across the cluster to a control or a head node. This is the
niche that KvmFS fills: it provides the fast and secure
means to control VMs across a cluster, or indeed a grid
environment.

1.1 KVM

KVM [14] is a hypervisor support module in the Linux
kernel which utilizes hardware-assisted x86 virtualiza-
tion on modern Intel processors with Intel Virtualiza-
tion technology or AMD’s Secure Virtual Machine. By
adding virtualization capabilities to a standard Linux
kernel, KVM provides the benefits of the optimizations
that exist in a standard kernel to virtualized programs,
greatly increasing performance over “full hypervisors”
such as Xen [1] or VMWare [9]. Under the KVM model,
every virtual machine is a regular Linux process sched-
uled by the standard Linux scheduler. Its memory is
allocated by the Linux memory allocator.

KVM works in conjunction with QEMU to deliver the
processor’s virtualization capabilities to the end user.

1.2 QEMU

QEMU [2] is a machine emulator which can run an
unmodified target operating system (such as Windows
or Linux) and all its applications in a virtual machine.
QEMU runs on several host operating systems such as
Linux, Windows, and Mac OSX.

The primary usage of QEMU is to run one operating
system on another, such as Windows on Linux or Linux
on Windows. Another usage is debugging, because the
virtual machine can be easily stopped, and its state can

be inspected, saved, and restored. Moreover, specific
embedded devices can be simulated by adding new ma-
chine descriptions and new emulated devices.

Although the host and target operating systems can be
different, our software will focus on Linux as the host
system since Linux is the primary OS on all of our re-
cent clusters at LANL and is widely adopted for HPC
environments. Also, KVM currently exists only for the
Linux kernel.

2 Design

KvmFS was created allow its users to run and control
virtual machines in a heterogeneous networked environ-
ment. As such, KvmFS was designed to fulfill the fol-
lowing tasks:

functionality provide an interface that allows manage-
ment of VMs on a cluster

scalability provide the ability for fast creation of multi-
ple identical VMs on different nodes connected via
a network

checkpoint and restart provide the ability to suspend
virtual machines and resume their execution, po-
tentially on a different node

The design of KvmFS follows the well established
model of providing functionality in the form of synthetic
file systems which clients operate on using standard I/O
commands such as read and write. This method has
proven successful in various operating systems descen-
dant from UNIX. The /proc [7] file system is a very
well established example. The “Plan 9” operating sys-
tem further extends this concept. It presents the net-
work communication subsystem as mountable files [13]
or even the graphics subsystem and the window man-
ager written on top of it, as a file system.

Implementations such as the above suggest that the con-
cept is feasible and that implementing interfaces to re-
sources in the form of a file system and exporting them
to other machines is a very good way to quickly al-
low access to them from remote machines, especially
since files are the single most exported resource in a net-
worked environment such as a cluster.

KvmFS is structured as a two-tiered file server to which
clients connect either from the local machine or across



2007 Linux Symposium, Volume Two • 61

the network. The file server allows them to copy image
files and boot virtual machines using those image files.
The file server also allows controlling running virtual
machines (start, stop, freeze), as well as migrating them
from one computer to another.

The top-level directory KvmFS serves contains two files
providing information about the architecture of the ma-
chine as well as starting a new session for a new VM.
Each session already started is presented as a num-
bered subdirectory. The subdirectory itself presents files
which can be used to control the execution of the VM,
as well as a subdirectory which allows arbitrary image
files to be copied to it and used by the VM. The KvmFS
filesystem is presented in detail in section 3.

3 The KVM File System

KvmFS presents a synthetic file system to its clients.
The file system can be used for starting and controlling
all aspects of the runtime of the virtual machines run-
ning on the machine on which kvmfs is running.

clone
arch
vm#/

ctl
info
id
fs/

3.1 Top-level files

Arch is a read-only file; reading from it returns the ar-
chitecture of the compute node in a format operating-
system/processor-type.

Clone is a read-only file. When it is opened, KvmFS
creates a new session and the corresponding session di-
rectory in the filesystem.

Reading from the file returns the name of the session
directory.

Vm# is a directory corresponding to a session created
by a KvmFS client. Even though a session may not be
running, Vm# will exist as long as that client keeps the
clone file open. If the virtual machine corresponging
to a session is running the clone file may be closed
without causing the Vm# file to disappear.

3.2 Session-level files

These files are contained in the session directory which
is created when a client opens the clone file of a
KvmFS server.

Ctl is used to execute and control a session’s main pro-
cess. Reading from the file returns the main process pid
if the process is running, and –1 otherwise. The opera-
tions on the session are performed by writing to it.

Reading from info returns the current memory and de-
vice configuration of the virtual machine. The format of
the information is identical to the commands written to
ctl file.

Id is used to set and get the user-specified VM identi-
fier.

The fs directory points to the temporary storage created
for the virtual machine. The user can copy disk images
and saved VM state files that can be used in the VM
configuration.

4 KvmFS Commands

The following section describes the set of commands
available for controlling KvmFS instances:

dev name image Specifies the device image for a spe-
cific device. Name is one of hda, hdb, hdc, hdd. If
image is not an absolute path, it should point to a
file that is copied in the fs directory. An optional
boot parameter can be provided to specify that the
device should be used to boot from.

net id mac Creates a network device with ID id and
MAC mac.

loadvm file Loads a saved VM state from file file. If
file is not an absolute path, it should point to a file
in the fs directory.

storevm file Stores the state of the VM to file file. If
file is not an absolute path, the file is created in the
fs directory.

power on|off Turns VM power on or off.

freeze Suspends the execution of the VM.

unfreeze Resumes the execution of the VM.



62 • KvmFS: Virtual Machine Partitioning For Clusters and Grids

clone max-vms address-list Creates copies of the VM
on the nodes specified by address-list. Copies the
content of the fs directory to the remote VMs and
configures the same device configuration. If the
virtual machine is already running, stores the cur-
rent VM state (as in storevm) and loads it in the
remote VMs. If max-vms is greater than zero,
and the number of the specified sessions is bigger
than max-vms, clone pushes its content to up
to max-sessions and issues clone commands to
some of them to clone themselves to the remaining
VMs from the list.

The format of the address-list is:

address-list = \
1*(vm-address ‘,’’)

vm-address = node-name \
[‘!’’port]

‘/’’ vm-id
node-name = ANY
port = NUMBER
vm-id = ANY

5 Implementation

There are two ways of implementing accesses to pro-
grams or system resources as files in Linux, either us-
ing Fuse [3] or the 9P [8] protocol. We chose the 9P
protocol because it is better suited for communicating
with file systems over networks. 9P has also been in use
for the past twenty years and is sufficiently hardened to
be able to handle various workloads on environments
ranging from a single machine to thousands of cluster
nodes [5]. Furthermore, our team is well familiarized
with 9P through the implementation of V9FS, the kernel
module allowing 9P servers to be mounted on a Linux
filesystem [10] [4]. It is important to point out, how-
ever, that there is no significant barrier to implementing
KvmFS using FUSE.

5.1 9P

Representing operating system resources as files is a rel-
atively old concept exploited to some extent in the orig-
inal UNIX operating system, but it matured extensively
with the development and release of the “Plan 9 from
Bell-Labs” operating system [12].

“Plan 9 from Bell-Labs” uses a simple, yet very pow-
erful communication protocol to facilitate communica-
tion between different parts of the system. The protocol,

named “9P” [8], allows heterogeneous resource sharing
by allowing servers to build a hierarchy of files corre-
sponding to real or virtual system resources, which then
clients access via common (POSIX-like) file operations
by sending and receiving 9P messages. The different
types of 9P messages are described in Table 1.

There are several benefits of using the 9P protocol:

Simplicity The protocol has only a handful of messages
which encompass all major file operations, yet it
can be implemented (including the co-routine code
explained above) in around 2,000 lines of C code.

Robustness 9P has been in use in the Plan 9 operating
system for over 15 years.

Architecture independence 9P has been ported to and
used on all major computer architectures.

Scalability Our Xcpu [11] suite uses 9P to control and
execute programs on thousands of nodes at the
same time.

A 9P session between a server and its clients consists
of requests by the clients to navigate the server’s file
and directory hierarchy and responses from the server to
those requests. The client initiates a request by issuing
a T-message, the server responds with an R-messages.
A 9P transaction is the combined act of transmitting a
request of particular type by the client and receiving a
reply from the server. There may be more than one re-
quest outstanding; however, each request requires a re-
sponse to complete a transaction. There is no limit on
the number of transactions in progress for a single ses-
sion.

Each 9P message contains a sequence of bytes repre-
senting the size of the message, the type, the tag (trans-
action id), control fields depending on the message type,
and a UTF-8 encoded payload. Most T-messages con-
tain a 32-bit unsigned integer called Fid, used by the
client to identify the “current file” on the server, i.e.,
the last file accessed by the client. Each file in the file
system served by our library has an associated element
called Qid used to uniquely identify it in the file system.

5.2 KvmFS

KvmFS is implemented in C using the SPFS and Sp-
client [6] libraries for writing 9P2000-compliant user-
space file servers and accessing them over a network.



2007 Linux Symposium, Volume Two • 63

9P type Description
version identifies the version of the pro-

tocol and indicates the maximum
message size the system is pre-
pared to handle

auth exchanges auth messages to estab-
lish an authentication fid used by
the attach message

error indicates that a request (T-
message) failed and specifies the
reason for the failure

flush aborts all outstanding requests
attach initiates a connection to the server
walk causes the server to change the cur-

rent file associated with a fid
open opens a file
create creates a new file
read reads from a file
write writes to a file
clunk frees a fid that is no longer needed
remove deletes a file
stat retrieves information about a file
wstat modifies information about the file

Table 1: Message types in the 9P protocol

It is a single-threaded code which uses standard net-
working via the socket() routines. Although our
implementation is in C, both 9P2000 and KvmFS are
language-agnostic and can be reimplemented in any
other programming language that has access to network-
ing.

OS Image files used by virtual machines can grow to be
quite large (sometimes up to the size of a complete sys-
tem installation: several gigabytes) and can take a long
time to be transferred to a remote node. To start a sin-
gle VM on all the nodes of a cluster can potentially take
upwards of an hour for large clusters, with literally a
hundred percent of the time being spent transferring the
disk images of the VM either from a head node or from
a networked file system such as NFS. To alleviate this
problem we can employ tree-based spawning of virtual
machines via cloning. During tree-spawning, if an end
node has received the complete image (or in some cases
a partial image), that node can retransmit the image to
another node, potentially located only a hop away on the
network. To allow tree-spawns each KvmFS server can
also serve as a client to another server by implement-

ing routines which connect over 9P, create new sessions,
set-up and start a new VM with the image from the lo-
cal session. This reduces logarithmically the amount of
fetches that need to occur from the head node and signif-
icantly increases the scale at which KvmFS can be de-
ployed. We have tested tree-spawn algorithms for small
images on several thousand nodes on LANL’s clusters.

The total number of lines for KvmFS, not including the
SPFS libraries, is less than two thousand lines of code.
SPFS itself is 5,158 lines of code, and Spclient is an-
other 2,381 lines of code.

6 Sample Sessions

Several examples of using KvmFS follow. The exam-
ples show systems mounted remotely using the v9fs [4]
kernel module and consequently being accessed via
common shell commands. In the examples below, the
names n1, n2, etc., are names of nodes on our cluster.

6.1 Create a virtual machine

This example creates a virtual machine using two files
copied from the home directory. Disk.img is set to
correspond to hard drive hda and vmstate is used as
a previously saved virtual machine.

mount -t 9p n1 /mnt/9
cd /mnt/9
tail -f clone &
cd 0
cp ~/disk.img fs/disk.img
cp ~/vmstate fs/vmstate
echo dev hda disk.img > ctl
echo net 0 00:11:22:33:44:55 > ctl
echo power on freeze > ctl
echo loadvm vmstate > ctl
echo unfreeze > ctl

6.2 Migrate a virtual machine to another node

This example shows the migration of a virtual machine
from one node to another.

mount -t 9p n1 /mnt/9/1
mount -t 9p n2 /mnt/9/2
tail -f /mnt/9/2/clone &
cd /mnt/9/1/0
echo freeze > ctl
echo ‘clone 0 n2!7777/0’ > ctl
echo power off > ctl



64 • KvmFS: Virtual Machine Partitioning For Clusters and Grids

6.3 Create clones of a virtual machine

This example shows the cloning of a virtual machine
onto a new computer.

mount -t 9p n1 /mnt/9
cd /mnt/9/0
echo ‘clone 2 n2!7777/0,\

n3!7777/0,\
n4!7777/0‘ > ctl

7 Conclusions And Future Work

We have described the KvmFS file system which
presents an interface to virtual machines running on
Linux in the form of files accessible locally or remotely.
KvmFS allows us to extend the control of the partition-
ing and running of virtual machines on a computer be-
yond the system on which the virtual machines are run-
ning and onto a networked environment such as a cluster
or a computational grid. KvmFS benefits large cluster
environments such as the ones in use here, at the Los
Alamos National Laboratory, by enabling fine-grained
control over the software running on them from a cen-
tralized location. Status information regarding the pa-
rameters on currently running VMs can also easily be
obtained from computers other than the ones they are
executing on. Our system also allows checkpointing and
migration of VMs to be controlled from a centralized
source, thus enabling partitioning schedulers to be built
on top of KvmFS.

Future work we have planned for KvmFS is in the area
of fine-grained control of the execution parameters of
virtual machines running under KvmFS such as their
CPU affinity. Also, we plan to integrate KvmFS with
existing schedulers at LANL to provide a seamless way
of partitioning our clusters.

Another interesting issue we are exploring is exporting
the resources of running virtual machines, such as their
/proc filesystem, through the KvmFS interface so that
processes running under the VM can be controlled ex-
ternally or even over a network.

References

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, and R. Neugebauer. Xen and the
art of virtualization. 2004.

[2] F. Bellard. Qemu, a fast and portable dynamic
translator. USENIX 2005 Annual Technical
Conference, FREENIX Track, 2005.

[3] FUSE. Filesystems in userspace.
http://fuse.sourceforge.net/.

[4] Eric Van Hensbergen and Latchesar Ionkov. The
v9fs project.
http://v9fs.sourceforge.net.

[5] Eric Van Hensbergen and Ron Minnich. Grave
robbers from outer space: Using 9p2000 under
linux. In Freenix Annual Conference, pages
83–94, 2005.

[6] L. Ionkov. Library for writing 9p2000 compliant
user-space file servers. http:
//sourceforge.net/projects/npfs/.

[7] T.J. Killian. Processes as files. USENIX Summer
1984 Conf. Proc., 1984.

[8] AT&T Bell Laboratories. Introduction to the 9p
protocol. Plan 9 Programmer’s Manual, 3, 2000.

[9] R. Meushaw and D. Simard. Nettop: Commercial
technology in high-assurance applications.
http://www.vmware.com, 2000.

[10] R. Minnich. V9fs: A private name space system
for unix and its uses for distributed and cluster
computing.

[11] R. Minnich and A. Mirtchovski. Xcpu: a new,
9p-based, process management system for
clusters and grids. In Cluster 2006, 2006.

[12] R. Pike, D. Presotto, S. Dorward, B. Flandrena,
K. Thompson, H. Trickey, and P. Winterbottom.
Plan 9 from Bell Labs. Computing Systems,
8(3):221–254, Summer 1995.

[13] D. Presotto and P. Winterbottom. The
organization of networks in plan 9. USENIX
Winter 1993 Conf. Proc., pages 43–50, 1993.

[14] Qumranet. Kvm: Kernel-based virtualization
driver. http://kvm.qumranet.com/
kvmwiki/Documents.


