
Proceedings of the
Linux Symposium

June 27th–30th, 2007
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc.
Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.



Trusted Secure Embedded Linux
From Hardware Root Of Trust To Mandatory Access Control

Hadi Nahari
MontaVista Software, Inc.
hnahari@mvista.com

Abstract

With the ever-increasing presence of Linux implemen-
tations in embedded devices (mobile handsets, set-
top boxes, headless computing devices, medical equip-
ments, etc.), there is a strong demand for defining
the security requirements and augmenting, enhancing,
and hardening the operating environment. Currently
an estimated 70% of new semiconductor devices are
Linux-enabled; such a high growth is accompanied
by inevitable security risks, hence the requirement for
hardware-based trusted and secure computing environ-
ment, enhanced with MAC (Mandatory Access Control)
mechanisms for such devices in order to provide appro-
priate levels of protection. Due to stringent security re-
quirements for resource-constrained embedded devices,
establishing trust-chain on hardware root of trust, and
deploying MAC mechanisms to balance performance
and control are particularly challenging tasks.

This paper presents the status of MontaVista Software’s
efforts to implement such solutions based on ARM cores
that provide separated computing environment, as well
as SELinux (Security Enhanced Linux) to provide MAC
for embedded devices. The focus will be on practical as-
pects of hardware integration as well as porting SELinux
to resource-constrained devices.

1 Introduction

The defining line between embedded and non-
embedded systems is becoming more and more blurred
[2]; whether the system has an elaborate UI (User Inter-
face), or if it is operating under a resource-constrained
environment are not sufficiently delineating identifiers
anymore.

The availability of more computing power at a low cost
has also resulted in developers’ and manufacturers’ in-
terest in adding more functionality to devices that were

traditionally either not capable of, or not expected to
have them (smart phones, hand-held computing devices,
complex medical control systems, navigation gear, etc.).
The difficulty in satisfying the security requirements of a
software package is proportional to its design complex-
ity. The default access control method in Linux, that is,
DAC (Discretionary Access Control) is at best consid-
ered insufficient for any security-sensitive implementa-
tion, hence the increase in demand for MAC in recent
years.

HAS (Hardware Assisted Security) has not yet been suf-
ficiently standardized and from the industry adoption
perspective, it is still considered to be in its infancy. Yet
(or however), HAS is one more item in the toolbox of se-
curity architects who need to provide solutions for fun-
damental problems such as establishing TCB (Trusted
Computing Base) using hardware-based root of trust,
managing key material, and security governance of the
system.

In the past years, there has been an increasing growth in
adoption of Linux in various environments. This impor-
tant phenomenon, which is unparalleled by other operat-
ing systems, has resulted in Linux becoming more and
more the de-facto operating system for embedded de-
vices. The recent acceleration of this adoption by said-
devices is partially due to the highly modular architec-
ture of Linux kernel, and partially due to its maturity,
which results in lower COO (Cost Of Ownership.)

One must note, however, that this growth is accompa-
nied by complex and elaborate software solutions build
atop embedded Linux devices to address the ever in-
creasing demands of the market, and hence the complex
security requirements of such devices. This makes im-
plementing a holistic security strategy for Linux more
challenging, especially when one considers the highly
varied selection of embedded devices adopting, or plan-
ning to adopt Linux; from smart phones, hand-held de-

• 79 •



80 • Trusted Secure Embedded Linux

vices, set top boxes, high-end televisions, medical de-
vices, automotive control, navigation systems, assem-
bly line control devices, missile guidance systems, to
the other end of the spectrum such as CGL (Carrier
Grade Linux) in the telecoms industry. Such environ-
ments each possess a very unique set of security char-
acteristics and requirements, and therefore provide dif-
ferent challenges. Figure 1 shows a typical Linux-based
mobile phone architecture.

In this article I will start by describing the most common
security requirements in the embedded industry, and fol-
low it by explaining the design principles and reviewing
the available technologies that were initially considered
viable, both for HAS and MAC, and will propose an ar-
chitecture based on the selected technologies. Where
applicable, I will point out whether the said-method or
technology satisfies a subset of the embedded systems
(mobile handsets and CGL).

The main focus of this article is to provide:

1. A high-level, architectural overview of a design
that provides fundamental and necessary facilities
to establish the trustworthiness of the operating
system services (via connection to a hardware-
based root trust).

2. A mechanism to establish Effective Containment
(that is, a mechanism to prevent an exploited appli-
cation from enabling attacks on another application
possible) via the MAC offered by SELinux.

Security services provided by higher-level software con-
structs, such as middleware and frameworks alike are
not the focus of this article and will not be discussed.

It is also noteworthy to mention that, where the re-
quired security related components exist in the underly-
ing hardware architecture, the proposed design is viable
for non-embedded systems as well.

2 Design Constraints

The following are the most commonly considered con-
straints when designing and developing software com-
ponents for an embedded device:

1. Memory Footprint

2. Performance Trade-off

Memory footprint is important because a big majority
of the embedded devices tend to have limited memory
available at run-time. Any security solution for such de-
vices must therefore have an acceptable and low mem-
ory footprint.

Performance trade-off is important because the comput-
ing power available in an embedded environment is typ-
ically low, due to hardware architecture characteristics,
as well as issues pertaining power management in bat-
tery operated devices. Low power consumption is one
of the fundamental reasons based on which ARM is the
de-facto architecture for such devices.

3 Design Principles

1. Simplicity

2. Modularity

We have made the design as simple as possible. This is
to ensure no unnecessary complexity is introduced into
the system and also the overall security analysis of the
system is easier to perform.

The proposed architecture is modular. This is to en-
sure that the design could also be implemented on hard-
ware architectures that lack the security capabilities in-
troduced, and also environments where the types of at-
tacks, or the security assets of the system would not re-
quire the high degree of protection provided by this de-
sign.

4 Technology Overview

4.1 Secure Boot

Secure Boot (a.k.a. High Assurance Boot) is a technique
for verifying and asserting the integrity of an executable
image prior to passing the control to it. Assuming the
verification mechanism is based on the digital signature
of the image being verified, then the reliability of this
verification is at best as good as the reliability of the pro-
tection mechanism provided in the device for the public
key of the image signer.

The most important assumption here is that the code
which performs the integrity verification process is itself



2007 Linux Symposium, Volume Two • 81

Figure 1: A Typical Linux-based Mobile Phone Architecture

trustworthy. To assert this assumption, the implementa-
tions typically put the public key material, as well as the
verifier code into non-writable areas of memory, which
in turn are protected via a form of hardware protection
mechanism. Figure 2 shows a generic Secure Boot ar-
chitecture.

This design enables the establishment of a chain of trust
by ensuring that the trust, on each layer of the system, is
based on, and is only based on, the trust on the layer(s)
underneath it, all the way down to the hardware secu-
rity component, which serves as the Root Of Trust. If
verification fails to succeed at any given stage, the sys-
tem might be put in a suspended-mode to block possible
attacks.

One must note, however, that this architecture, though
ensuring the integrity of the operating environment
when a hard boot occurs, does not guarantee its in-
tegrity during the runtime; that is, in case of any mali-
cious modification to the operating environment during
the runtime, this architecture will not detect it until the
next hard boot happens.

4.2 Effective Containment

The “Buffer Overflow” class of attacks is practically
impossible to prevent in native environments with no
type- or boundary-checking available at runtime. Exe-
cuting native code in operating environments like Linux
makes it specifically susceptible to this category of at-
tacks. This therefore makes exploiting a buffer over-
flow attack of particular interest to hackers, and success-
fully mounting such an attack is considered a badge of
honor. Effective Containment, in this context, is there-
fore referred to a class of techniques that contain (as
opposed to prevent) such attacks for which there are no
practical prevention mechanism available. This could
be achieved via the use of various software and security
technologies. Applying a MAC mechanism is one way
to implement effective containment.

4.2.1 Embedded SELinux

One method to achieve a MAC is via implementing
RBAC (Role-Based Access Control). NSA’s SELinux,
among other features such as MLS (Multi Level Se-
curity), provides Linux with MAC through RBAC.



82 • Trusted Secure Embedded Linux

Figure 2: A Typical Secure Boot Design

SELinux was not originally designed for the ARM ar-
chitecture, or for embedded devices. There have been,
however, previous and reasonably successful attempts
to port SELinux or parts of it into an embedded device
and on an ARM architecture; the most notable of which
being by Russell Coker [1].

By adding a MAC mechanism such as SELinux on top
of Secure Boot, we will be able to address one of its fun-
damental shortcomings; providing a level of protection
at runtime. Figure 3 shows an architecture, deploying
Secure Boot and MAC mechanisms together.

In this design, not only have we accomplished augment-
ing the Secure Boot mechanism (by way of providing
runtime containment), but have also enabled a way to
expose hardware-security capabilities (e.g. TPM stan-
dard services) to the applications and processes during
the system runtime.

As a side note, it is important to mention that RBAC is
not the only mechanism to implement MAC. Other im-
plementations exist which might also become suitable
for embedded devices; “Tomoyo Linux” and Novell’s
“AppArmor” are both examples of such solutions that
implement a technique called NBAC (Name-Based Ac-
cess Control). LIDS (Linux Intrusion Detection Sys-
tem) is another example. At the time of writing this arti-
cle, however, neither of these implementations seem to
have been able to gain the traction in the industry, nor
by manufacturers of embedded devices to be the default
MAC for such devices. This state, however, may change

in the future as the above-mentioned technologies ma-
ture.

4.2.2 Multi-core and Virtualization

In recent years, the industry has put more focus on
adding more computing power to embedded devices, not
only in adding more processing capabilities to each core,
but also adding to the number of cores available in hard-
ware architectures. One of the objectives of this expan-
sion is have a dedicated hardware resource to each high-
level task, and therefore achieving easier management
of software design and implementation through hard-
ware compartmentalization. This approach has resulted
in recent growth in implementing virtualization tech-
nologies in embedded space. Various types of virtual-
ization techniques exist (hardware- and software-based)
which all provide multiple guest domains, each assum-
ing total access to the underlying hardware, and concep-
tually having no awareness of the other guest domains.
A fundamental element of any virtualization implemen-
tation is a layer called hypervisor, which is responsi-
ble for mediating the interactions among guest domains,
and providing necessary life-cycle management for each
guest domain.

As is in most cases, this technique has existed in
large-scale enterprise systems prior to embedded space;
however, again the implications of this technology in
resource-constrained embedded devices are different



2007 Linux Symposium, Volume Two • 83

Figure 3: Augmenting Secure Boot with Access Control

than those of the enterprise systems. The use cases,
however, remain similar.

Any modern design that attempts to provide a security
solution for embedded space, therefore needs to assume
it might be contained in a virtual, guest domain.

4.2.3 ARM TrustZone Technology

TrustZone is a security technology introduced by ARM
Ltd. in its “ARM 1176” core. TrustZone is a technol-
ogy to provide a hardware-based separation for exe-
cution environment, and divide it into two halves; se-
cure and normal worlds. The security-sensitive appli-
cations are run executed in a separate memory space
which is not accessible to “normal applications.” Trust-
Zone is the first ARM architecture to provide hardware-
based security in its core. Although and if done right
this could potentially provide the operating environ-
ment with an additional level of security, at its core
this could be considered a hardware-based virtualiza-
tion solution, and is conceptually not a new idea. Fur-
thermore compartmentalized-security and separation of
execution environments due to application’s security re-
quirements, along with “separation of concerns,” have
all been well-understood and known concepts in com-
puter science and software engineering for decades [3].

The proposed design in this article considers the avail-
ability of ARM TrustZone technology on the underlying

hardware architecture; however, no parts of this design
rely on such capability. It is also important to mention
that we only assume the TrustZone hardware availablity
in the underlying architecture; analyzing the proprietary
software stacks on top of TrustZone hardware that pro-
vide additional security capabilities to the applications,
is outside the scope of this article.

5 Proposed Architecture

5.1 High-level Analysis

We propose the architecture shown in Figure 4 to ad-
dress the security requirements discussed in this article.

This design is based on a hardware root of trust,
and therefore could provide security as reliable as the
method protecting this root. It implements a MAC
mechanism based on embedded SELinux, and can do
it in a virtualized environment. The proposed design
deploys the security capabilities available in hardware
(that is, TrustZone hardware) to enforce a separation
mechanism among guest domains, via dedicating sep-
arate areas of memory to different processes that exist
in each domain. The overall security management, such
as secure IPC (Inter Process Communication) of such
processes, is the responsibility of the VMM (Virtual
Machine Monitor) which acts as the hypervisor in this
design. This design enables a hardware-enforced sepa-
ration among processes running in each guest domain,



84 • Trusted Secure Embedded Linux

Figure 4: Implementing MAC and Virtualization, Based on Hardware Root Of Trust

with a fine-grained, mandatory access control mech-
anism provided by SELinux infrastructure. The ini-
tial verification of each guest domain happens prior to
bringing it up. After each domain is on-line, ensuring
its health from security perspective is also provided by
the SELinux infrastructure.

It is presumed that due to differences in security re-
quirements during the start-up and runtime, not all the
embedded devices would require all the elements pro-
vided in this design. This, however, does not indicate
a weakness in the architecture, as the main security as-
pects of the design could be implemented/enabled inde-
pendently.

6 Conclusion

We proposed a design that deploys a hardware root of
trust to provide secure execution of applications in a vir-
tualized environment. We also augmented the design by
adding a MAC mechanism to provide enhanced protec-
tion to applications and processes at runtime.

On an system which requires and implements all the ca-
pabilities provided in this architecture, a thorough anal-
ysis must be performed to ensure an appropriate secu-
rity policy is in place to deploy the SELinux capabilities

efficiently; an unnecessarily comprehensive and restric-
tive policy has a potential to hamper the overall runtime
performance, and increase the memory footprint of the
system.

The performance of the hypervisor is also the key in this
design, as it is the layer that arbitrates the interactions
among the processes which exist in separate guest do-
mains. A fast and high-performing hypervisor is the
quintessential key to the successful implementation of
this design.

7 Legal Statement

This work represents the personal views of the author
and is a technical analysis of an architecture; it does not
necessarily represent the views of MontaVista Software,
Inc.

Furthermore, the author is not an attorney and makes
no judgment or recommendation on legal (and specif-
ically GPL) ramifications of the proposed design; such
issues are outside the scope of this article, and should be
dealt with via consulting with a GPL attorney/law prac-
titioner.



2007 Linux Symposium, Volume Two • 85

Linux is the registered trademark of Linus Torvalds in
the United States of America, other countries, or both.
Other company, product, and service names may be
trademarks or service marks of others.

References

[1] Russell Coker. Porting nsa security enhanced linux
to hand-held devices. In Proceedings of the Linux
Symposium. Ottawa Linux Symposium, July 2003.

[2] William R. Hamburgen, Deborah A. Wallach,
Marc A. Viredaz, Lawrence S. Brakmo, Carl A.
Waldspurger, Joel F. Bartlett, Timothy Mann, and
Keith I. Farkas. Itsy: Stretching the Bounds of
Mobile Computing. IEEE Computer, 34(4):28–35,
April 2001.

[3] Jorrit N. Herder, Herbert Bos, Andrew S.
Tenenbaum. A Lightweight Method for Building
Reliable Operating Systems Despite Unreliable
Device Drivers. Technical report, Dept. of
Computer Science, Vrije Universiteit, Amsterdam,
The Netherlands, 2006.



86 • Trusted Secure Embedded Linux


