
Proceedings of the
Linux Symposium

June 27th–30th, 2007
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc.
Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.



Hybrid-Virtualization—Enhanced Virtualization for Linux*

Jun Nakajima and Asit K. Mallick
Intel Open Source Technology Center

jun.nakajima@intel.com, asit.k.mallick@intel.com

Abstract

We propose hybrid-virtualization that combines para-
virtualization and hardware-assisted virtualization. It
can achieve equivalent or better performance than
software-only para-virtualization, taking the full advan-
tage of each technology. We implemented a hybrid-
virtualization Linux with para-virtualization, which
required much fewer modifications to Linux, and
yet achieved equivalent or better performance than
software-only XenLinux.

The hybrid-virtualization employs para-virtualization
for I/O, interrupt controllers, and timer to simplify the
system and optimize performance. For CPU virtualiza-
tion, it allows one to use the same code as in the original
kernel.

The other benefits are: One, it can run on broader ranges
of VMMs, including Xen and KVM; and Two, it takes
full advantage of all the future extensions to hardware
including virtualization technologies.

This paper assumes basic understanding of the Linux
kernel and virtualization technologies. It provides in-
sights to how the para-virtualization can be extended
with hardware assists for virtualization and take advan-
tage of future hardware extension.

1 Introduction

Today x86 Linux already has two levels of para-
virtualization layers, including paravirt_t and VMI that
communicate with the virtual machine monitor (VMM)
to improve performance and efficiency. However, it
is true that such (ever-changing) extra interfaces com-
plicate code maintenance of the kernel and create in-
evitable confusions. In addition, it can create differ-
ent kernel binaries, potentially for each VMM, such
as Xen*, KVM, VMware, etc. Today, paravirt_ops al-
ready has 76 operations for x86, and it would grow and

change over the time. In fact, patches already have been
sent to update them while we are writing this paper!

One of the main sources of such growth and modifica-
tion seems to be different hypervisor implementations
in support of para-virtualization.

Para-Virtualization

The para-virtualization is a virtualization technique that
presents a software interface to virtual machines that is
similar but not identical to that of the underlying hard-
ware. This technique is often used to obtain better per-
formance of guest operating systems running inside a
virtual machine.

Para-virtualization can be applicable even to hardware-
assisted virtualization as well. Historically, para-
virtualization in the Linux community was used to mean
modifications to the guest operating system so that
it can run in a virtual machine without requiring the
hardware-assisted virtualization features. In this paper,
we use software-only para-virtualization to mean “para-
virtualization that obviates hardware-assisted virtualiza-
tion.”

The nature of the modifications used by para-
virtualization to the kernel matters. We experienced sig-
nificant complexity of software-only para-virtualization
when we ported x86-64 Linux to Xen [4]. The root
cause of such complexity is that software-only para-
virtualization forces the kernel developers to handle the
virtual CPU that has significant limitations and different
behaviors from the native CPU.

For example, such virtual CPU has completely differ-
ent systems state such as, it does not have GDT, IDT,
LDT, or TSS; completely new interrupt/exception mech-
anism; or different protection mechanism. And the vir-
tual CPU does not support any privileged instructions,
requiring them to be executed by hypercalls.

• 87 •



88 • Hybrid-Virtualization—Enhanced Virtualization for Linux

The protection mechanism often has problems with hav-
ing a shared kernel address space as there is no ring-
level protection when both user and kernel are running
at ring 3. This creates an additional overhead of stitch-
ing address space between any transition between the
application and the kernel.

Additionally, system calls are first intercepted by the
Xen (ring 0), and are injected to the guest kernel. Once
the guest kernel completes the service, then it needs to
go back to the user executing a hypercall (and page table
switch because of the reason above).

Benefiting from Para-Virtualization

We also found para-virtualization really simplified
and optimized the system. In fact there are still
significant cases where the native or software-only
para-virtualization outperforms full-virtualization us-
ing hardware-assisted virtualization especially with I/O
or memory intensive workloads (or both).

In this paper we first discuss the advantages and disad-
vantages of para-virtualization, full-virtualization, and
hardware-assisted virtualization. Note that some of
these advantages and disadvantages can be combined
and complimentary. Second, we discuss the hybrid-
virtualization for Linux proposal. Unlike software-
only para-virtualization, hybrid-virtualization employs
hardware-assisted virtualization, and it needs much
fewer para-virtualization operations. Third, we discuss
the design and implementation. Finally we present some
examples of performance data.

2 Para-Virtualization

2.1 Advantages

Obviously para-virtualization is employed to achieve
high performance and efficiency. Since para-
virtualization typically uses a higher level of APIs that
are not available on the underlying hardware, efficiency
is also improved.

Time and Idle Handling

“Time” is a notable example. Even in a virtual system,
the user expects that the virtual machine maintain the

real time, not virtual time! As most operating systems
rely on timer interrupts to maintain its time, the system
expects timer interrupts even when idle. If timer inter-
rupts are missed, it can affect the time keeping of the op-
erating system. Without para-virtualization, the VMM
needs to continue injecting timer interrupts or to inject
back-to-back timer interrupts when the guest operating
system is scheduled back to run. This is not a reliable or
scalable way of virtualization. With para-virtualization,
a typical modification is to change the idle code to re-
quest the VMM to notify itself in a specified time period.
Then time is re-calculated and restored in the guest.

SMP Guests Handling

SMP guest handling is another example. In x86 or x86-
64, local APIC is required to support SMP especially
because the operating systems need to send IPI (Inter-
Processor Interrupt). Figure 1 shows the code for send-
ing IPI on the x86-64 native systems using the flat mode.
As you see, the code needs to access the APIC registers
a couple of times. Each access to the APIC registers
needs to be intercepted for virtualization, causing over-
head (often a transition to the VMM).

Para-virtualization can replace such multiple implicit re-
quests with a single explicit hypercall, achieving faster,
simpler, and more efficient implementations.

I/O Device Handling

Writing software that emulates a complete computer,
for example, is complex and labor-intensive because
various legacy and new devices need to be emulated.
With para-virtualization the operating system can oper-
ate without such devices, and thus the implementation
of the VMM can be simpler.

From the guest operating system’s point view, the
impacts of such modifications would be limited be-
cause the operating system already has the infrastruc-
ture that supports layers of I/O services/devices, such as
block/character device, PCI device, etc.

2.2 Disadvantages

There are certain advantages of para-virtualization as
mentioned above but there are certain disadvantages in
Linux.



2007 Linux Symposium, Volume Two • 89

static void flat_send_IPI_mask(cpumask_t cpumask, int vector)
{
...

/*
* Wait for idle.

*/
apic_wait_icr_idle();
/*
* prepare target chip field

*/
cfg = __prepare_ICR2(mask);
apic_write(APIC_ICR2, cfg);
/*
* program the ICR

*/
cfg = __prepare_ICR(0, vector, APIC_DEST_LOGICAL);
/*
* Send the IPI. The write to APIC_ICR fires this off.

*/
apic_write(APIC_ICR, cfg);

...
}

Figure 1: Sending IPI on the native x86-64 systems (flat mode)

Modified CPU Behaviors

One of the fundamental problems, however, is that
software-only para-virtualization forces the kernel de-
velopers to handle the virtual CPU that has significant
limitations and different behaviors from the native CPU.
And such virtual CPU behaviors can be different on dif-
ferent VMMs because the semantics of the virtual CPU
is defined by the VMM. Because of that, kernel devel-
opers don’t feel comfortable when the kernel code also
needs to handle virtual CPUs because they may break
virtual CPUs even if the code they write works fine for
native CPUs.

Figure 2 shows, for example, part of paravirt_t struc-
ture in x86 Linux 2.6.21(-rcX as of today). As you can
see, it has operations on TR, GDT, IDT, LDT, the ker-
nel stack, IOPL mask, etc. It is barely possible for a
kernel developer to know how those operations can be
safely used without understanding the semantics of the
virtual CPU, which is defined by each VMM. It also is
not guaranteed that the common code between the na-
tive and virtual CPU can be cleanly written.

A notable issue is the CPUID instruction because it is
available in user mode as well, thus software-only para-
virtualization inherently requires modifications to the
operating system. The CPUID instruction is often used

to detect the CPU capabilities available on the proces-
sor. If a user application does so, it may not be possible
to modify the application if provided in a binary object.

2.2.1 Overheads

Although para-virtualization is intended to achieve high
performance, ironically the protection mechanism tech-
nique used by software-only para-virtualization can of-
ten cause overhead. For example, system calls are first
intercepted by the Xen (ring 0), and are injected to the
guest kernel. Once the guest kernel completes the ser-
vice, then it needs to go back to the user executing a
hypercall with the page tables switched to protect the
guest kernel from the user processes. This means that it
is impossible to implement fast system calls.

The same bouncing mechanism is employed when han-
dling exceptions, such as page faults. They are also first
intercepted by Xen even if generated purely by user pro-
cesses.

The guest kernel also loses the global pages for its ad-
dress translation to protect Xen from the guest kernel.

Note that this overhead can be eliminated in hardware-
assisted virtualization because hardware-assisted virtu-



90 • Hybrid-Virtualization—Enhanced Virtualization for Linux

struct paravirt_ops
{
...

void (*load_tr_desc)(void);
void (*load_gdt)(const struct Xgt_desc_struct *);
void (*load_idt)(const struct Xgt_desc_struct *);
void (*store_gdt)(struct Xgt_desc_struct *);
void (*store_idt)(struct Xgt_desc_struct *);
void (*set_ldt)(const void *desc, unsigned entries);
unsigned long (*store_tr)(void);
void (*load_tls)(struct thread_struct *t, unsigned int cpu);
void (*write_ldt_entry)(void *dt, int entrynum,

u32 low, u32 high);
void (*write_gdt_entry)(void *dt, int entrynum,

u32 low, u32 high);
void (*write_idt_entry)(void *dt, int entrynum,

u32 low, u32 high);
void (*load_esp0)(struct tss_struct *tss,

struct thread_struct *thread);
void (*set_iopl_mask)(unsigned mask);

...
};

Figure 2: The current paravirt_t structure (only virtual CPU part of 76 operations) for x86

alization can provide the same CPU behavior as the na-
tive without modifications to the guest operating system.

3 Full-Virtualization

3.1 Advantages

The full-virtualization requires no modifications to the
guest operating systems. This attribute itself clearly
brings significant value and advantage.

3.2 Disadvantages

Full-virtualization requires one to provide the guest op-
erating systems with an illusion of a complete virtual
platform seen within a virtual machine behavior same
as a standard PC/server platform. Today, both Xen and
KVM need Qemu for PC platform emulation with the
CPU being native. For example, its system address
space should look like a standard PC/server system ad-
dress map, and it should support standard PC platform
devices (keyboard, mouse, real time clock, disk, floppy,
CD-ROM drive, graphics, 8259 programmable interrupt
controller, 8254 programmable interval timer, CMOS,
etc.), guest BIOS, etc. In addition, we need to pro-
vide those virtual devices with the DMA capabilities to

obtain optimized performance. Supporting SMP guest
OSes further complicates the VMM design and imple-
mentation.

In addition, as new technologies emerge, the VMM
needs to virtualize more devices and features to min-
imize functional/performance gaps between the virtual
and native systems.

4 Hardware-Assisted Virtualization

The hardware-assisted virtualization is orthogonal to
para or full virtualization, and it can be used for the both.

4.1 Advantages

The hardware-assisted virtualization provides virtual
machine monitors (VMM) with simpler and robust im-
plementation.

Full-virtualization can be implemented by software only
[1], as we see such products such as VMware as well
as Virtual PC and Virtual Server from Microsoft to-
day. However, hardware-assisted virtualization such
as Intel R© Virtualization Technology (simply Intel R© VT
hereafter) can improve the robustness, and possibly per-
formance.



2007 Linux Symposium, Volume Two • 91

4.2 Disadvantages

Obviously hardware-assisted virtualization requires a
system with the feature, but it is sensible to assume that
hardware-assisted virtualization is available on almost
all new x86-64-based systems.

Para-virtualization under hardware-assisted virtualiza-
tion needs to use a certain instruction(s) (such as
VMCALL on Intel R© VT), which is more costly than
the fast system call (such as SYSENTER/SYSEXIT,
SYSCALL/SYSRET) used under software-only para-
virtualization. However, the cost of such instructions
will be lower in the near future.

The hardware-assisted virtualization today does not in-
clude I/O devices, thus it still needs emulation of I/O de-
vices and possibly para-virtualization of performance-
critical I/O devices to reduce frequent interceptions for
virtualization.

5 Hybrid-Virtualization for Linux

Hardware-assisted virtualization does simplify the
VMM design and allows use of the unmodified Linux
as a guest.

There are, however, still significant cases where
software-only para-virtualization outperforms full-
virtualization using hardware-assisted virtualization es-
pecially with I/O or memory intensive workloads (or
both), which are common among enterprise applica-
tions. Those enterprise applications matter to Linux.

For I/O intensive workloads, such performance gaps
have been mostly closed by using para-virtualization
drivers for network and disk. Those drivers are shared
with software-only para-virtualization.

For memory intensive workloads, the current produc-
tion processors with hardware-assisted virtualization
does not have capability to virtualize MMU, and the
VMM needs to virtualize MMU in software [2]. This
causes visible performance gaps between the native or
software-only para-virtualization and hardware-assisted
full-virtualization (See [7], [8]).

5.1 Overview of Hybrid-Virtualization

Hybrid-virtualization that we propose is technically
para-virtualization for hardware-assisted virtualization.

However, we use this terminology to avoid any con-
fusions caused by the connotation from software-only
para-virtualization. And the critical difference is that
hybrid-virtualization is simply a set of optimization
techniques for hardware-assisted full-virtualization.

5.2 Pseudo Hardware Features

The hybrid-virtualization capabilities are detected and
enabled as by the standard Linux for the native as if
they were hardware features, i.e. pseudo hardware fea-
ture, i.e. visible as hardware from the operating system’s
point of view.

We use the CPUID instruction to detect certain CPU
capabilities on the native system, and we include the
ones for hybrid-virtualization without breaking the na-
tive systems. The CPUID instruction is intercepted by
hardware-assisted virtualization so that the VMM can
virtualize the CPUID instruction. In other words, the
kernel does not know whether the capabilities are im-
plemented in software (i.e., VMM) or hardware (i.e.,
silicon).

In order to avoid maintenance problems caused by the
paravirt layer, the interfaces must be in the lowest level
in the Linux that makes the actual operations on the
hardware. If a particular VMM needs a higher level or
new interface in the kernel, it should be detected and
enabled as pseudo hardware feature as well, rather than
extending or modifying the paravirt layer.

5.3 Common Kernel Binary for the Native and
VMMs

One of the goals of hybrid-virtualization is to have
the common kernel binary for the native and various
VMMs, including the Xen hypervisor, KVM [6], etc.
For example, the kernel binary for D0, G, H can be all
same in Figure 3.

With the approach above and the minimal paravirt layer,
we can achieve the goal.

5.4 Related Works

Ingo Molnar also added simple paravirt ops support (us-
ing the shadow CR3 feature of Intel R© VT) to improve
the context switch of KVM [3]. This technique can be
simply incorporated in our hybrid-virtualization.



92 • Hybrid-Virtualization—Enhanced Virtualization for Linux

 

Hybrid-
Virtualization 

Support 
Hypervisor 

 
 
 
 
 

Privilege Linux 
(D0) 

 
Linux 

Guest (G) 
Qemu I/O 

 
Linux 

Guest (G) 

 
Normal 

User 
Process 

Linux Kernel (H) 
KVM Driver Hybrid-

Virtualization 
Support 

 
Normal 

User 
Process 

 
Linux 

Guest (G) 

Qemu I/O 

 
Linux 

Guest (G) 

Qemu I/O 

Figure 3: Same Kernel Binary for a hypervisor (D0 and G), KVM (G) and the native (H)

6 Design and Implementation

6.1 Areas for Para-Virtualization

Based of the performance data available in the com-
munity and our experiences with x86-64 Linux port-
ing to Xen, we identified the major areas to use para-
virtualization, while maintaining the same CPU behav-
ior as the native:

• I/O devices, such as network and disk

• Timer – with para-virtualization, the kernel can
have better accounting because of the stolen time
for other guests.

• Idle handling – the latest kernel has no idle ticks,
but the kernel could even specify the time period

for which it will be idle so that the VMM can use
the time for other VMs.

• Interrupt controllers

• MMU

• SMP support – the hypervisor also knows which
physical CPUs actually have (real) TLBs with in-
formation that needs to be flushed. A guest with
many virtual CPUs can send many unnecessary
IPIs to virtual CPU running other guests. This area
is included by the interrupt controller.

In fact all the areas except MMU are straightforward to
support in Linux as it already has the proper infrastruc-
tures to handle without depending on para-virtualization
or virtualization-specific modifications:



2007 Linux Symposium, Volume Two • 93

• I/O devices – obviously Linux needs to han-
dle various I/O devices today, and various para-
virtualization drivers are already available in com-
mercial VMMs.

• Timer – Linux supports various time sources, such
as PIT, TSC, HPET,

• Idle handling – Linux already has a mechanism to
select the proper idle routine.

• Interrupt controller – the genapic (in x86-64) is a
good example.

6.2 MMU Para-Virtualization

This is the outstanding area where Linux benefits
significantly today from para-virtualization even with
hardware-assisted virtualization.

For our implementation, we used the direct page tables
employed by Xen (See [5], [4]). Unlike the shadow page
table mode that builds additional (duplicated) page ta-
bles for the real translation, the direct page tables are
native page tables. The guest operating system use the
hypercalls to request the VMM to update the page tables
entries.

The paravirt_t layer in x86 already has such operations,
and we ported the subset of paravirt operations to x86-
64, extending them to the 4-level page tables as shown
in Figure 4.

6.2.1 Efficient Page Fault Handling

Although hybrid-virtualization uses the direct page table
mode today, it is significantly efficient compared with
the one on software-only para-virtualization because the
page faults can be selectively delivered to guest directly
in hardware-assisted virtualization. For example, VMX
provides page-fault error-code mask and match fields in
the VMCS to filter VM exits due to page-faults based
on their cause (reflected in the error-code). We use this
functionality so that the guest kernel directly get page
faults from user processes without causing a VM exit.
Note that the majority of page faults are from user pro-
cesses under practical workloads.

In addition, now the kernel runs in the ring 0 as the na-
tive, all the native protection and efficiency, including
paging-based protection and global pages, have been re-
turned back to the guest kernel.

6.2.2 Other Optimization Techniques

Since we can run the kernel in ring 0, all the optimiza-
tion techniques used by the native kernel have been back
to the kernel in hybrid-virtualization, including fast sys-
tem call.

6.3 Detecting Hybrid-Virtualization

The kernel needs to detect whether hybrid-virtualization
is available or not (i.e., on the native or unknown VMM
that does not support hybrid-virtualization). As we dis-
cussed, we use the CPUID (leaf 0x40000000, for exam-
ple) instruction. The leaf 0x40000000 is not defined on
the real hardware, and the kernel can reliably detect the
presence of hybrid-virtualization only in a virtual ma-
chine because the VMM can implement the capabilities
of the leaf 0x40000000.

6.4 Hypercall and Setup

Once the hybrid-virtualization capabilities are detected,
the kernel can inform the VMM of the address of the
page that requires the instruction stream for hypercalls
(called “hypercall page”). The request to the VMM is
done by writing the address to an MSR returned by the
CPUID instruction. Then the VMM actually writes the
instruction stream to the page, and then hypercalls will
be available via jumping to the hypercall page with the
arguments (indexed by the hypercall number).

6.5 Booting and Initialization

The hybrid-virtualization Linux uses the booting code
identical to the native at early boot time. It then switches
to the direct page table mode if hybrid-virtualization
is present. Until that point, the guest kernel needs to
use the existing shadow page table mode, and then it
switches to the direct page table mode upon a hypercall.

We implemented the SWITCH_MMU hypercall for
this purpose. Upon that hypercall, the VMM updates the
guest page tables so that they can contain host physical
address (rather than guest physical address) and write-
protect them. Upon completion of the hypercall, the
guest needs to use the set of hypercalls to update its page
tables, and those are seamlessly incorporated by the par-
avirt layer.



94 • Hybrid-Virtualization—Enhanced Virtualization for Linux

struct paravirt_ops
{
...

unsigned long (*read_cr3)(void);
void (*write_cr3)(unsigned long);

void (*flush_tlb_user)(void);
void (*flush_tlb_kernel)(void);
void (*flush_tlb_single)(unsigned long addr);

void (*alloc_pt)(unsigned long pfn);
void (*alloc_pd)(unsigned long pfn);

void (*release_pt)(unsigned long pfn);
void (*release_pd)(unsigned long pfn);

void (*set_pte)(pte_t *ptep, pte_t pteval);
void (*set_pte_at)(struct mm_struct *mm, ...
pte_t (*ptep_get_and_clear)(struct mm_struct *mm, ...

void (*set_pmd)(pmd_t *pmdp, pmd_t pmdval);
void (*set_pud)(pud_t *pudp, pud_t pudval);
void (*set_pgd)(pgd_t *pgdp, pgd_t pgdval);

void (*pte_clear)(struct mm_struct *mm, ...
void (*pmd_clear)(pmd_t *pmdp);
void (*pud_clear)(pud_t *pudp);
void (*pgd_clear)(pgd_t *pgdp);

unsigned long (*pte_val)(pte_t);
unsigned long (*pmd_val)(pmd_t);
unsigned long (*pud_val)(pud_t);
unsigned long (*pgd_val)(pgd_t);

pte_t (*make_pte)(unsigned long pte);
pmd_t (*make_pmd)(unsigned long pmd);
pud_t (*make_pud)(unsigned long pud);
pgd_t (*make_pgd)(unsigned long pgd);

};

Figure 4: The current paravirt_t structure for x86-64 hybrid-virtualization

6.6 Prototype

We implemented hybrid-virtualization x86-64 Linux
in Xen, starting from full-virtualization in hardware-
assisted virtualization, porting the x86 paravirt (with
significant reduction).

We used the existing Xen services for the following:

• I/O devices – virtual block device and network de-
vice front-end drivers.

• Timer

• Idle handling

• Interrupt controller

Since the x86-64 Linux uses 2MB pages for the ker-
nel mapping and the current Xen does not support large
pages, we needed to add the level 1 pages (page tables)
in the kernel code so that SWITCH_MMU hypercall
can work.

We also reused the code for x86-64 XenLinux virtual
MMU code for the paravirt MMU.



2007 Linux Symposium, Volume Two • 95

0

2

4

6

8

10

12

nu
ll c

al
l

nu
ll I

/O sta
t

op
en

/cl
os

e

sig
 in

st

sig
 h
nd

l

u
se

c

para domU

hybrid

KVM

 
 
 

0

1000

2000

3000

4000

5000

6000

7000

fork proc exec proc sh proc

u
se

c

para domU

hybrid

KVM

Figure 5: Preliminary Micro-benchmark Results (lm-
bench)

7 Performance

Although the cost of hypercalls are slightly higher in
hybrid-virtualization, hybrid-virtualization is more effi-
cient than software-only para-virtualization because of
the retained optimization techniques in the native ker-
nel. In fact, hybrid-virtualization showed the equivalent
performance with kernel build, compared with software-
only para-virtualization, which has near-native perfor-
mance for that workload.

For micro-benchmarks, hybrid-virtualization showed

visible performance improvements. Figure 5 shows pre-
liminary results. “para-domU” is x86-64 XenLinux with
software-only para-virtualization, and “hybrid” is the
one with hybrid-virtualization. “KVM” is x86-64 Linux
running on the latest release (kvm-24, as of today). The
smaller are the better, and the absolute numbers are not
so relevant.

As of today, we are re-measuring the performance us-
ing the latest processors, where we believe the cost of
hypercalls are even lower.

8 Conclusion

The hybrid-virtualization is able to combine advantages
from both the hardware assisted full virtualization and
software-only para-virtualization. The initial prototype
results also show performance close to software-only
para-virtualization. This also provides the added ben-
efit that the same kernel can run under native machines.

Acknowledgment

We would like to thank Andi Kleen and Ingo Molnar for
reviewing this paper and providing many useful com-
ments.

Xin Li and Qing He from Intel also have been working
on the development of hybrid-virtualization Linux.

References

[1] Virtual Machine Interface (VMI) Specifications.
http://www.vmware.com/interfaces/
vmi_specs.html.

[2] Y. Dong, S. Li, A. Mallick, J. Nakajima, K. Tian,
X. Xu, F. Yang, and W. Yu. Extending Xen with
Intel R©Virtualization Technology. Auguest 2006.
http://www.intel.com/technology/
itj/2006/v10i3/.

[3] Ingo Molnar. KVM paravirtualization for Linux.
2007.
http://lkml.org/lkml/2007/1/5/205.

[4] Jun Nakajima, Asit Mallick, Ian Pratt, and Keir
Fraser. X86-64 XenLinux: Architecture,
Implementation, and Optimizations. In Preedings
of the Linux Symposium, July 2006.



96 • Hybrid-Virtualization—Enhanced Virtualization for Linux

[5] Ian Pratt, Keir Fraser, Steven Hand, Christian
Limpach, Andrew Warfield, Dan Magenheirmer,
Jun Nakajima, and Asit Mallick. Xen 3.0 and the
Art of Virtualization. In Preedings of the Linux
Symposium, July 2005.

[6] Qumranet. KVM: Kernel-based Virtualization
Driver. 2006. http:
//www.qumranet.com/wp/kvm_wp.pdf/.

[7] VMware. A Performance Comparison of
Hypervisors. 2007.
http://www.vmware.com/pdf/
hypervisor_performance.pdf/.

[8] XenSource. A Performance Comparison of
Commercial Hypervisors. 2007.
http://www.xensource.com/files/
hypervisor_performance_comparison_
1_0_5_with_esx-data.pdf/.

This paper is copyright c© 2007 by Intel. Redistribution rights
are granted per submission guidelines; all other rights are re-
served.

*Other names and brands may be claimed as the property of
others.


