
Proceedings of the
Linux Symposium

June 27th–30th, 2007
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc.
Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

Semantic Patches
Documenting and Automating Collateral Evolutions in Linux Device Drivers

Yoann Padioleau
EMN

padator@wanadoo.fr

Julia L. Lawall
DIKU

julia@diku.dk

Gilles Muller
EMN

Gilles.Muller@emn.fr

1 Introduction

Device drivers form the glue code between an operat-
ing system and its devices. In Linux, device drivers
are highly reliant for this on the various Linux internal
libraries, which encapsulate generic functionalities re-
lated to the various busses and device types. In recent
years, these libraries have been evolving rapidly, to ad-
dress new requirements and improve performance. In
response to each evolution, collateral evolutions are of-
ten required in driver code, to bring the drivers up to
date with the new library API. Currently, collateral evo-
lutions are mostly done manually. The large number
of drivers, however, implies that this approach is time-
consuming and unreliable, leading to subtle errors when
modifications are not done consistently.

To address this problem, we propose a scripting lan-
guage for specifying and automating collateral evolu-
tions. This language offers a WYSIWYG approach to
program transformation. In the spirit of Linux develop-
ment practice, this language is based on the patch syn-
tax. As opposed to traditional patches, our patches are
not line-oriented but semantics-oriented, and hence we
give them the name semantic patches.

This paper gives a tutorial on our semantic patch lan-
guage, SmPL, and its associated transformation tool,
spatch. We first give an idea of the kind of pro-
gram transformations we target, collateral evolutions,
and then present SmPL using an example based on
Linux driver code. We then present some further exam-
ples of evolutions and collateral evolutions that illustrate
other issues in semantic patch development. Finally, we
describe the current status of our project and propose
some future work. Our work is directed mainly to de-
vice driver maintainers, library developers, and kernel
janitors, but anyone who has ever performed a repetitive
editing task on C code can benefit from it.

2 Evolutions and Collateral Evolutions

The evolutions we consider are those that affect a library
API. Elements of a library API that can be affected in-
clude functions, both those defined by the library and
the callback functions that the library expects to receive
from a driver, global variables and constants, types, and
macros. A library may also implicitly specify rules for
using these elements. Many kinds of changes in the API
can result from an evolution that affect one of these el-
ements. For example, functions or macros can change
name or gain or lose arguments. Structure types can be
reorganized and accesses to them can be encapsulated in
getter and setter functions. The protocol for using a se-
quence of functions, such as up and down can change,
as can the protocol for when error checking is needed
and what kind of error values should be returned.

Each of these changes requires corresponding collateral
evolutions, in all drivers using the API. When a func-
tion or macro changes name, all callers need to be up-
dated with the new name. When a function or macro
gains or loses arguments, new argument values have to
be constructed and old ones have to be dropped in the
driver code, respectively. When a structure type is re-
organized, all drivers accessing affected fields of that
structure have to be updated, either to perform the new
field references or to use any introduced getter and setter
functions. Changes in protocols may require a whole se-
quence of modifications, to remove the old code and in-
troduce the new. Many of these collateral evolutions can
have a non-local effect, as, for example, changing a new
argument value may trigger a whole set of new compu-
tations, and changing a protocol may require substantial
code restructuring. The interaction of a driver with the
API may furthermore include some device-specific as-
pects. Thus, these changes have to be mapped onto the
structure of each affected driver file.

We have characterized evoluations and collateral evolu-

• 107 •

108 • Semantic Patches

tions in more detail, including numerous examples, in a
paper at EuroSys 2006 [1].

3 Semantic Patch Tutorial

In this section, we describe SmPL (Semantic Patch Lan-
guage), our language for writing semantic patches. To
motivate the features of SmPL, we first consider a mod-
erately complex collateral evolution that raises many
typical issues. We then present SmPL in terms of this
example.

3.1 The “proc_info” evolution

As an example, we consider an evolution and associated
collateral evolutions affecting the SCSI API functions
scsi_host_hn_get and scsi_host_put. These
functions access and release, respectively, a structure of
type Scsi_Host, and additionally increment and decre-
ment, respectively, a reference count. In Linux 2.5.71, it
was decided that, due to the criticality of the reference
count, driver code could not be trusted to use these func-
tions correctly and they were removed from the SCSI
API [2].

This evolution had collateral effects on the “proc_info”
callback functions defined by SCSI drivers, which call
these API functions. Figure 1 shows a slightly sim-
plified excerpt of the traditional patch file updating
the proc_info function of drivers/usb/storage/

scsiglue.c. Similar collateral evolutions were per-
formed in Linux 2.5.71 in 18 other SCSI driver files in-
side the kernel source tree. To compensate for the re-
moval of scsi_host_hn_get and scsi_host_put,
the SCSI library began in Linux 2.5.71 to pass to these
callback functions a Scsi_Host-typed structure as an
argument. Collateral evolutions were then needed in all
the proc_info functions to remove the calls to scsi_

host_hn_get (line 19 for the scsiglue.c driver),
and scsi_host_put (lines 27 and 42), and to add the
new argument (line 4). Those changes in turn entailed
the removal of a local variable (line 11) and of null-
checking code (line 20-22), as the library is assumed
not to call the proc_info function on a null value. Fi-
nally, one of the parameters of the proc_info function
was dropped (line 6) and every use of this parameter was
replaced by a field access (line 33) on the new structure
argument.

0 --- a/drivers/usb/storage/scsiglue.c
1 +++ b/drivers/usb/storage/scsiglue.c
2 @@ -264,33 +300,21 @@
3 -static int usb_storage_proc_info (
4 +static int usb_storage_proc_info (struct Scsi_Host *hostptr,
5 char *buffer, char **start, off_t offset,
6 - int hostno, int inout)
7 + int inout)
8 {
9 struct us_data *us;
10 char *pos = buffer;
11 - struct Scsi_Host *hostptr;
12 unsigned long f;
13
14 /* if someone is sending us data, just throw it away */
15 if (inout)
16 return offset;
17
18 - /* find our data from the given hostno */
19 - hostptr = scsi_host_hn_get(hostno);
20 - if (!hostptr) {
21 - return -ESRCH;
22 - }
23 us = (struct us_data*)hostptr->hostdata[0];
24
25 /* if we couldn’t find it, we return an error */
26 if (!us) {
27 - scsi_host_put(hostptr);
28 return -ESRCH;
29 }
30
31 /* print the controller name */
32 - SPRINTF(" Host scsi%d: usb-storage\n", hostno);
33 + SPRINTF(" Host scsi%d: usb-storage\n", hostptr->host_no);
34 /* print product, vendor, and serial number strings */
35 SPRINTF(" Vendor: %s\n", us->vendor);
36
37 @@ -318,9 +342,6 @@
38 *(pos++) = ’\n’;
39 }
40
41 - /* release the reference count on this host */
42 - scsi_host_put(hostptr);
43
44 /*
45 * Calculate start of next buffer, and return value.
46

Figure 1: Simplified excerpt of the patch file from Linux
2.5.70 to Linux 2.5.71

Of the possible API changes identified in Section 2, this
example illustrates the dropping of two library functions
and changes in the parameter list of a callback function.
These changes have non-local effects in the driver code,
as the context of the dropped call to scsi_host_hn_

get must change as well, to eliminate the storage of the
result and the subsequent error check, and the value of
the dropped parameter must be reconstructed wherever
it is used.

3.2 A semantic patch, step by step

We now describe the semantic patch that will perform
the previous collateral evolutions, on any of the 19 rel-
evant files inside the kernel source tree, and on any rel-
evant drivers outside the kernel source tree. We first
describe step-by-step various excerpts of this semantic

2007 Linux Symposium, Volume Two • 109

patch, and then present its complete definition in Sec-
tion 3.3.

3.2.1 Modifiers

The first excerpt adds and removes the affected parame-
ters of the proc_info callback function:

proc_info_func (
+ struct Scsi_Host *hostptr,

char *buffer, char **start, off_t offset,
- int hostno,

int inout) { ... }

Like a traditional patch, a semantic patch consists of a
sequence of lines, some of which begin with the modi-
fiers + and - in the first column. These lines are added
or removed, respectively. The remaining lines serve as
context, to more precisely identify the code that should
be modified.

Unlike a traditional patch, a semantic patch must have
the form of a complete C-language term (an expres-
sion, a statement, a function definition, etc.). Here we
are modifying a function, so the semantic patch has the
form of a function definition. Because our only goal
at this point is to modify the parameter list, we do not
care about the function body. Thus, we have represented
it with “...”. The meaning and use of “...” are de-
scribed in more detail in Section 3.2.4.

Because of the wide range of possible collateral evo-
lutions, as described in Section 2, collateral evolutions
may affect almost any C constructs, such as structures,
initializers, function parameters, if statements, in many
different ways. SmPL, for flexibility, allows to write al-
most any C code in a semantic patch and to annotate
freely any part of this code with the + and - modifiers.
The combination of the unannotated context code with
the - code and the combination of the unannotated con-
text code with the + code must, however, each have the
form of valid C code, to ensure that the pattern described
by the former can match against valid driver code and
that the transformation described by the latter will pro-
duce valid C code as a result.

Another difference as compared to a traditional patch is
that the meaning of a semantic patch is insensitive to
newlines, spaces, comments, etc. Thus, the above se-
mantic patch will match and transform driver code that

has the parameters of the proc_info function all on the
same line, spread over multiple lines as in scsiglue.c,
or separated by comments. We have split the seman-
tic patch over four lines only to better highlight what is
added and removed. We could have equivalently written
it as:

- proc_info_func(char *buffer, char **start, off_t offset,
- int hostno, int inout)
+ proc_info_func(struct Scsi_Host *hostptr, char *buffer,
+ char **start, off_t offset, int inout)

{ ... }

To apply this semantic patch, it should be stored in a
file, e.g., procinfo.spatch. It can then be applied to
e.g. the set of C files in the current directory using our
spatch tool:
spatch *.c < procinfo.spatch.

3.2.2 Metavariables

A traditional patch, like the one in Figure 1, describes
a transformation of a specific set of lines in a specific
driver. This specificity is due to the fact that a patch
hardcodes some information, such as the name of the
driver’s proc_info callback function. Thus a separate
patch is typically needed for every driver. The goal of
SmPL on the other hand is to write a generic semantic
patch that can transform all the relevant drivers, accom-
modating the variations among them. In this section and
the following ones we describe the features of SmPL
that make a semantic patch generic.

In the excerpt of the previous section, the reader may
have wondered about the name proc_info_func,
which indeed does not match the name of the scsiglue
proc_info function, as shown in Figure 1, lines 3 and 4,
or the names of any of the proc_info functions in the
kernel source tree. Furthermore, the names of the pa-
rameters are not necessarily buffer, start, etc.; in
particular, the introduced parameter hostptr is some-
times called simply host. To abstract away from these
variations, SmPL provides metavariables. A metavari-
able is a variable that matches an arbitrary term in the
driver source code. Metavariables are declared before
the patch code specifying the transformation, between
two @@s, borrowing the notation for delimiting line
numbers in a traditional patch (Figure 1, lines 2 and
37). Metavariables are designated as matching terms of
a specific kind, such as an identifier, expression,

110 • Semantic Patches

or statement, or terms of a specific type, such as int
or off_t. We call the combination of the declaration of
a set of metavariables and a transformation specification
a rule.

Back to our running example, the previous excerpt is
made into a rule as follows:

@@
identifier proc_info_func;
identifier buffer, start, offset, inout, hostno;
identifier hostptr;
@@

proc_info_func (
+ struct Scsi_Host *hostptr,

char *buffer, char **start, off_t offset,
- int hostno,

int inout) { ... }

This code now amounts to a complete, valid semantic
patch, although it still only performs part of our desired
collateral evolution.

3.2.3 Multiple rules and inherited metavariables

The previous excerpt matches and transforms any func-
tion with parameters of the specified types. A proc_info
function, however, is one that has these properties and
interacts with the SCSI library in a specific way, namely
by being provided by the driver to the SCSI library on
the proc_info field of a SHT structure (for SCSI Host
Template), which from the point of view of the SCSI li-
brary represents the device. To specify this constraint,
we define another rule that identifies any assignment to
such a field in the driver file. SmPL allows a semantic
patch to define multiple rules, just as a traditional patch
contains multiple regions separated by @@. The rules are
applied in sequence, with each of them being applied to
the entire source code of the driver. In our example we
thus define one rule to identify the name of the callback
function and another to transform its definition, as fol-
lows:

@ rule1 @
struct SHT ops;
identifier proc_info_func;
@@

ops.proc_info = proc_info_func;

@ rule2 @
identifier rule1.proc_info_func;
identifier buffer, start, offset, inout, hostno;
identifier hostptr;
@@

proc_info_func (
+ struct Scsi_Host *hostptr,

char *buffer, char **start, off_t offset,
- int hostno,

int inout) { ... }

In the new semantic patch, the metavariable proc_

info_func is defined in the first rule and referenced
in the second rule, where we expect it to have the same
value, which is enforced by spatch. In general, a rule
may declare new metavariables and inherit metavari-
ables from previous rules. Inheritance is explicit, in that
the inherited metavariable must be declared again in the
inheriting rule, and is associated with the name of the
rule from which its value should be inherited (the rule
name is only used in the metavariable declaration, but
not in the transformation specification, which retains the
form of ordinary C code). To allow this kind of inheri-
tance, we must have means of naming rules. As shown
in the semantic patch above, the name of a rule is placed
between the two @@s at the beginning of a metavariable
declaration. A name is optional, and is not needed if the
rule does not export any metavariables.

Note that the first rule does not perform any transforma-
tions. Instead, its only role is to bind the proc_info_
func metavariable to constrain the matching of the sec-
ond rule. Once a metavariable obtains a value it keeps
this value until the end of the current rule and in any sub-
sequent rules that inherit it. Metavariables thus not only
make a semantic patch generic by abstracting away from
details of the driver code, but also allow communicating
information and constraints from one part of the seman-
tic patch to another, e.g., from ’–’ code to ’+’ code, or
from one rule to another.

A metavariable may take on multiple values, if the rule
matches at multiple places in the driver code. If such a
metavariable is inherited, the inheriting rule is applied
once for each possible set of bindings of the metavari-
ables it inherits. For example, in our case, a driver
may set the proc_info field multiple times, to different
functions, in which case rule 2 would be applied multi-
ple times, for the names of each of them.

3.2.4 Sequences

So far, we have only considered the collateral evolutions
on the header of the proc_info function. But collateral
evolutions are needed in its body as well: deleting the

2007 Linux Symposium, Volume Two • 111

calls to scsi_host_hn_get and scsi_host_put,
deleting the local variable holding the result of calling
scsi_host_hn_get and the error checking code on
its value. The affected code fragments are scattered
throughout the body of the proc_info function and are
separated from each other by arbitrary code specific to
each SCSI driver. To abstract away from these irrel-
evant variations, SmPL provides the “...” operator,
which matches any sequence of code. Refining rule2 of
the semantic patch to perform these collateral evolutions
gives:

@ rule2 @
identifier rule1.proc_info_func;
identifier buffer, start, offset, inout, hostno;
identifier hostptr;
@@

proc_info_func (
+ struct Scsi_Host *hostptr,

char *buffer, char **start, off_t offset,
- int hostno,

int inout) {
...

- struct Scsi_Host *hostptr;
...

- hostptr = scsi_host_hn_get(hostno);
...

- if (!hostptr) { ... return ...; }
...

- scsi_host_put(hostptr);
...

}

The second rule of the semantic patch now has the
form of the definition of a function that first contains
a declaration of the hostptr variable, then a call to
the function scsi_host_hn_get, then an error check,
and finally a call to scsi_host_put sometime be-
fore the end. In practice, however, a proc_info func-
tion may e.g. contain many calls to scsi_host_put,
as illustrated by the scsiglue example (Figure 1,
lines 27 and 42). Closer inspection of the original
scsiglue source code, however, shows that at execu-
tion time, the driver only executes one or the other of
these calls to scsi_host_put, as the one on line 27
is only executed in an error case, and the one on line
42 is only executed in a non-error case. This is illus-
trated by Figure 2, which shows part of the control-
flow graph of the scsiglue proc_info function. Be-
cause the execution pattern declare/scsi_host_hn_
get/error-check/scsi_host_put is what must be fol-
lowed by every SCSI proc_info driver, it is this pattern
that the semantic patch should match against. The oper-
ator “...” thus matches paths in the control-flow graph
rather than an arbitrary block of code in the driver source

code. Thus, in practice, a single minus or plus line in
the semantic patch can delete or add multiple lines in
the source code of the driver.

The transformation specified in a rule is applied on
driver code only if the whole rule matches code,
not if only parts of the rule match code. Thus,
here, the rule only matches proc_info callback func-
tions having 5 parameters of the specified types, and
the sequence of instructions declare/scsi_host_hn_
get/error-check/scsi_host_put, and where these in-
structions share the use of the same variable, represented
in the semantic patch by the repeated use of the same
metavariable hostptr.

As said in the previous section, the repeated use of the
same metavariable, here hostptr, can serve multiple
purposes. First, it is used here to constrain some trans-
formations by forcing two pieces of code to be equal
in the driver code. So, for example, not all conditionals
will be removed in the driver, only those testing the local
structure returned by scsi_host_hn_get. Metavari-
ables are also used to move code from one place to an-
other. Here hostptr is used to move the matched local
variable name into the parameter list. Metavariables de-
clared as expression or statement can be used to
move more complex terms.

3.2.5 Nested Sequences

The last transformation concerning the proc_info func-
tion is the replacement of every reference to the dropped
hostno parameter by a field access. SmPL provides
the <... ...> operator to perform such universal
replacements. This operator is analogous to the /g op-
erator of Perl. In order to avoid having to consider how
references to hostno may interleave with the calls to
scsi_host_hn_get and scsi_host_put, etc., we
define a third rule that simply makes this transformation
everywhere it applies:

@ rule3 @
identifier rule1.proc_info_func;
identifier rule2.hostno;
identifier rule2.hostptr;
@@

proc_info_func(...) {
<...

- hostno
+ hostptr->host_no

...>
}

112 • Semantic Patches

...
��

hostptr = scsi_host_hn_get(hostno);

��
if (!hostptr)

ssfffffffffffffff
,,YYYYYYYYYYYY

,,
{

��
us = hostptr→...;

����
return -ESRCH;

��
if(!us)

rr ��
}

--

{

��
SPRINTF(...);

��
scsi_host_put(hostptr);

��

scsi_host_put(hostptr);

��
return -ESRCH;

��

...

oo

}

��
}

Figure 2: Simplified control-flow graph for part of Figure 1

Note that the operator “...” can be used to represent
any kind of sequence. Here, in the function header, it is
used to represent a sequence of parameters. It can also
be used to provide flexible matching in initializers and
structure definitions.

3.2.6 Isomorphisms

We have already mentioned that a semantic patch is in-
sensitive to spacing, indentation and comments. More-
over, by defining sequences in terms of control-flow
paths, we abstract away from the various ways of se-
quencing instructions that exist in C code. These fea-
tures help make a semantic patch generic, allowing the
patch developer to specify only a few scenarios, while
spatch handles other scenarios that are semantically
equivalent.

Other differences that we would like to abstract away
from include variations within the use of specific C con-
structs. For example, if x is any expression that has
pointer type, then !x, x == NULL, and NULL == x
are all equivalent. For this, we provide a variant of the
SmPL syntax for defining isomorphisms, sets of syntac-
tically different terms that have the same semantics. The
null pointer-test isomorphism is defined in this variant of
SmPL as follows:

// iso file, not a semantic patch
@@ expression *X; @@
X == NULL <=> !X <=> NULL == X

Given this specification, the pattern if(!hostptr) in
the semantic patch matches a conditional in the driver
code that tests the value of hostptr using any of the
listed variants.

In addition to a semantic patch, spatch accepts a file
of isomorphisms as an extra argument. A file of iso-
morphisms is provided with the spatch distribution,
which contains 30 equivalences commonly found in
driver code. Finally, it is possible to specify that a single
rule should use only the isomorphisms in a specific file,
file, by annotating the rule name with using file.

3.3 All Together Now

The complete semantic patch for the proc_info collat-
eral evolutions is shown below. As compared to the
rules described above, this semantic patch contains an
additional rule, rule4, which adjusts any calls to the
proc_info function from within the driver. Note that in
this rule, the metavariables that were declared as identi-
fiers in rule2 to represent the parameters of the proc_info
function are redeclared as expressions, to represent
the proc_info function’s arguments.

The second rule has also been slightly modified, in that
two lines have been annotated with the “?” operator
stating that those lines may or may not be present in
the driver. Indeed, many drivers forget to check the re-
turn value of scsi_host_hn_get or forget to release

2007 Linux Symposium, Volume Two • 113

the structure before exiting the function. As previously
noted, the latter omission is indeed what motivated the
proc_info evolution.

Note that there is no rule for updating the prototype of
the proc_info function, if one is contained in the file.
When the type of a function changes, spatch auto-
matically updates its prototype, if any.

@ rule1 @
struct SHT ops;
identifier proc_info_func;
@@

ops.proc_info = proc_info_func;

@ rule2 @
identifier rule1.proc_info_func;
identifier buffer, start, offset, inout, hostno;
identifier hostptr;
@@

proc_info_func (
+ struct Scsi_Host *hostptr,

char *buffer, char **start, off_t offset,
- int hostno,

int inout) {
...

- struct Scsi_Host *hostptr;
...

- hostptr = scsi_host_hn_get(hostno);
...

?- if (!hostptr) { ... return ...; }
...

?- scsi_host_put(hostptr);
...

}

@ rule3 @
identifier rule1.proc_info_func;
identifier rule2.hostno;
identifier rule2.hostptr;
@@

proc_info_func(...) {
<...

- hostno
+ hostptr->host_no

...>
}

@ rule4 @
identifier rule1.proc_info_func;
identifier func;
expression buffer, start, offset, inout, hostno;
identifier hostptr;
@@

func(..., struct Scsi_Host *hostptr, ...) {
<...

proc_info_func(
+ hostptr,

buffer, start, offset,,
- hostno,

inout)
...>

}

On the 30 isomorphisms we have written, 3 of them “ap-
ply” to this semantic patch, accommodating many varia-

tions among the 19 drivers inside the kernel source tree.
We have already mentioned the different ways to write
a test such as if(!hostptr) in the previous section.
There is also the various ways to assign a value in a field,
which can be written ops.proc_info = fn as in our
semantic patch, or written ops->proc_info = fn in
some drivers, or written using a global structure initial-
izer. Indeed, the last case was used for the scsiglue.c
driver as shown by the following excerpt of this driver:

struct SHT usb_stor_host_template = {
/* basic userland interface stuff */
.name = "usb-storage",
.proc_name = "usb-storage",
.proc_info = usb_storage_proc_info,
.proc_dir = NULL,

Finally, braces are not needed in C code when a branch
contains only one statement. So, the pattern { ..

. return ...; } in rule2 also matches a branch con-
taining only the return statement.

It takes 23 seconds to spatch given the whole seman-
tic patch to correctly update the 19 relevant drivers. If
run on all the 2404 driver files inside the kernel source
tree, it takes spatch 3 minutes to correctly update the
same 19 drivers.

4 More Features, More Examples

So far we have written and tested 49 semantic patches
for collateral evolutions found in the Linux 2.5 and
Linux 2.6. By comparing the results produced by the
semantic patch to the results produced by the traditional
patch, we have found that spatch updates 92% of
the driver files affected by these collateral evolutions
correctly. In the remaining cases, there is typically a
problem parsing the driver code, or needed informa-
tion is missing because spatch currently does not parse
header files. Parsing the driver code is a particular
problem in our case, because our goal is to perform a
source-to-source transformation, which means that we
have chosen not to expand macros and preprocessor di-
rectives, and instead parse them directly.

In this section, we consider some other examples from
our test suite, to illustrate some typical issues in seman-
tic patch development.

114 • Semantic Patches

4.1 Replacing one function name by another

In Linux 2.5.22, the function end_request was given
a new first argument, of type struct request *. In
practice, the value of this argument should be the next
request from one of the driver’s queue, as represented
by a reference to the macro CURRENT. This collateral
evolution affected 27 files spread across the directories
acorn, block, cdrom, ide, mtd, s390, sbus.

The following semantic patch implements this collateral
evolution:

@@ expression X; @@
- end_request(X)
+ end_request(CURRENT,X)

This semantic patch updates the 27 affected files in the
Linux source tree correctly.

This example may seem almost too simple to be worth
writing an explicit specification, as one can e.g. write a
one-line sed command that has the same effect. Never-
theless, such solutions are error prone: we found that
in the file drivers/block/swim_iop.c, the trans-
formation was applied to the function swimiop_send_
request, which has no relation to this collateral evolu-
tion. We conjecture that this is the result of applying a
sed command, or some similar script, that replaces calls
to end_request without checking whether this string
is part of a more complicated function name. spatch
enforces the syntactic structure of semantic patch code,
allowing matches on identifier, expression, statement,
etc. boundaries, rather than simply accepting anything
that a superstring of the given pattern.

4.2 Collecting scattered information

In Linux 2.5.7, the function video_generic_ioctl,
later renamed video_usercopy, was introduced to en-
capsulate the copying to and from user space required
by ioctl functions. Ioctl functions allow the user
level to configure and control a device, as they accept
commands from the user level and perform the corre-
sponding action at the kernel level. Without video_
usercopy, an ioctl function has to use functions such as
copy_from_user or get_user to access data passed
in with the command, and functions such as copy_to_
user or put_user to return information to the user

level. With video_usercopy, the ioctl function re-
ceives a pointer to a kernel-level data structure contain-
ing the user-level arguments and can modify this data
structure to return any values to user level.

Making an ioctl function video_usercopy-ready in-
volves the following steps:

• Adding some new parameters to the function.

• Eliminating calls to copy_from_user, put_

user, etc.

• Changing the references to the local structure used
by these functions to use the pointer prepared by
video_usercopy.

The last two points are somewhat complex, because the
various commands interpreted by the ioctl function may
each have their own requirements with respect to the
user-level data. A command may or may not have a
user-level argument, and it may or may not return a re-
sult to the user level. In the case where there is no use
or returned value then no transformation should be per-
formed; in the other cases, the structure containing the
user-level argument or result should be converted to a
pointer. Furthermore, there are multiple possible copy-
ing functions, and there are multiple forms that the ref-
erences to the copied data can take.

Figure 3 shows a semantic patch implementing this
transformation, under the simplifying assumption that
the kernel-level representation of the user-level data is
stored in a locally declared structure. This semantic
patch consists of a single rule that changes the proto-
type of this function (adding some new variables, as in-
dicated by fresh identifier), changes the types of
the local structures, and removes the copy functions.

The many variations in an ioctl function noted above
are visible in this rule. To express multiple possibili-
ties, SmPL provides a disjunction operator, which be-
gins with an open parenthesis in column 0, contains a
list of possible patterns separated by a vertical bar in
column 0, and then ends with a close parenthesis in col-
umn 0. Most of the body of the ioctl function pattern
is represented as one large disjunction that considers the
possibility of there being both a user-level argument and
a user-level return value (lines 14-39), the possibility
of there being a user-level argument but no user-level

2007 Linux Symposium, Volume Two • 115

1 @@
2 identifier ioctl, dev, cmd, arg, v, fld;
3 fresh identifier inode, file;
4 expression E, E1, e1,e2,e3;
5 type T;
6 @@
7 ioctl(
8 - struct video_device *dev,
9 + struct inode *inode, struct file *file,
10 unsigned int cmd, void *arg) {
11 + struct video_device *dev = video_devdata(file);
12 ...
13 (
14 - T v;
15 + T *v = arg;
16 ...
17 (
18 - if (copy_from_user(&v,arg,E)) { ... return ...; }
19 |
20 - if (get_user(v,(T *)arg)) { ... return ...; }
21)
22 <...
23 (
24 - v.fld
25 + v->fld
26 |
27 - &v
28 + v
29 |
30 - v
31 + *v
32)
33 ...>
34 (
35 - if (copy_to_user(arg,&v,E1)) { ... return ...; }
36 |
37 - if (put_user(v,(T *)arg)) { ... return ...; }
38)
39 ...
40 |
41 // a copy of the above pattern with the copy_to_user/put_user
42 // pattern dropped
43 |
44 // a copy of the above pattern with the copy_from_user/get_user
45 // pattern dropped
46 |
47 ... when != \(copy_from_user(e1,e2,e3)\|copy_to_user(e1,e2,e3)
48 \|get_user(e1,e2)\|put_user(e1,e2)\)
49)
50 }

Figure 3: Semantic patch for the video_ usercopy
collateral evolution

return value (elided in comments on line 41), the pos-
sibility of there being a user-level return value but no
user-level argument (elided in comments on line 41-42),
and there being neither a user-level argument nor a user-
level return value (line 44-45). These possibilities are
considered from top to bottom, with only the first one
that matches being applied. This strategy is convenient
in this case, because e.g. code using both a user-level
argument and a user-level return value also matches all
of the other patterns. The last cases uses “...” with
the construct when. The when construct indicates a pat-
tern that should not be matched anywhere in the code
matched by the associated “...”.

Within each of the branches of the outermost disjunc-
tion, there are several nested disjunctions. First, another
disjunction is used to account for the two kinds of copy

functions, copy_from_user or get_user. This case
does not rely on the top-to-bottom strategy, because the
patterns are disjoint. Next, between any copying, there
is a nest (see Section 3.2.5) replacing the different vari-
ations on how to refer to a structure by the pointer-based
counterpart. Here again, the ordering of the disjunction
is essential, as the final case, v, should only be used
when the variable is not used in a field access or address
expression. Finally, there is a third disjunction allowing
either copy_to_user or put_user.

Like the proc_info semantic patch, this semantic patch
relies on isomorphisms. Specifically, the calls to the
copy functions may appear alone in a conditional test
as shown, or may be compared to 0, and as in the
proc_info case, the return pattern in each of the con-
ditional branches can match a single return statement,
without braces.

4.3 Collecting scattered information

In Linux 2.6.20, the strategy for creating work queues
and setting and invoking their callback functions
changed as follows:

• Previously, all work queues were declared with
some variant of INIT_WORK, and then could
choose between delayed or undelayed work dy-
namically, by using either some variant of
schedule_work or some variant of schedule_
delayed_work. Since the changes in Linux
2.6.20, the choice between delayed or undelayed
work has to be made statically, by creating the
work queue with either INIT_DELAYED_WORK or
INIT_WORK, respectively.

• Previously, creation of a work queue took as argu-
ments a queue, a callback function, and a pointer
to the value to be passed as an argument to the
callback function. Since 2.6.20, the third argu-
ment is dropped, and the callback function is sim-
ply passed the work queue as an argument. From
this, it can access the local data structure contain-
ing the queue, which can itself store whatever in-
formation was required by the callback function.

For simplicity, we consider only the case where the work
queue is created using INIT_WORK, where it is the field
of a local structure, and where the callback function

116 • Semantic Patches

passed to INIT_WORK expects this local structure as an
argument.

Figure 4 shows the semantic patch. In this semantic
patch, we name all of the rules, to ease the presen-
tation, but only those with descriptive names, such as
is_delayed, are necessary.

The semantic patch is divided into two sections, the first
for the case where the work queue is somewhere used
with a delaying function such as schedule_delayed_
work and the second for the case where such a func-
tion is not used on the work queue. Both cases can
occur within a single driver, for different work queues.
The choice between these two variants is made at the
first rule, is_delayed, using a trick based on metavari-
able binding. This rule matches all calls to schedule_

delayed_work and other functions indicating delayed
work, for any work queue &device->fld and arbi-
trary task E. The next five rules, up to the commented
dividing line, refer directly or indirectly to the type
of the structure containing the matched work queue
&device->fld, and thus these rules are only applied
to work queues for which the match in is_delayed

somewhere succeeds. The remaining three rules, at the
bottom of the semantic patch, do not depend on the rule
is_delayed, and thus apply to work queues for which
there is no call to any delaying function.

In the first half of the semantic patch, the next task is to
convert any call to a non-delaying work queue function
to a delaying one, by adding a delay of 0 (rule2). The
rule delayed_fn then changes calls to INIT_WORK

to calls to INIT_DELAYED_WORK and adjusts the argu-
ment lists such that the cast on the second argument (the
work queue callback function) is dropped and the third
argument is dropped completely. Note that the casts
on the second and third arguments need not be present
in the driver code, thanks to an isomorphism. Next
(rule4), the work queue is changed from having type
work_struct to having type delayed_work. The last
two rules of this section, rule5 and rule5a, update the
callback functions identified in the call to INIT_WORK.
The first, rule5, is for the case where the current pa-
rameter type is void * and the second, rule5a, is for
the case where the parameter type is the type of the lo-
cal structure containing the work queue. In both cases,
the parameter is given the type struct work_struct,
and then code using the macro container_of is added
to the body of the function to reconstruct the original ar-
gument value.

@ is delayed @
type local type; local type *device; expression E,E1;
identifier fld;
@@
(schedule_delayed_work(&device->fld,E)
| cancel_delayed_work(&device->fld)
| schedule_delayed_work_on(E1,&device->fld,E)
| queue_delayed_work(E1,&device->fld,E)
)

@ rule2 @
is delayed.local type *device;
identifier is delayed.fld; expression E1;
@@
(
- schedule_work(&device->fld)
+ schedule_delayed_work(&device->fld,0)
|
- schedule_work_on(E1,&device->fld)
+ schedule_delayed_work_on(E1,&device->fld,0)
|
- queue_work(E1,&device->fld)
+ queue_delayed_work(E1,&device->fld,0)
)

@ delayed fn @
type T,T1; identifier is delayed.fld, fn;
is delayed.local type *device;
@@
- INIT_WORK(&device->fld, (T)fn, (T1)device);
+ INIT_DELAYED_WORK(&device->fld, fn);

@ rule4 @
type is delayed.local type; identifier is delayed.fld;
@@
local type { ...
- struct work_struct fld;
+ struct delayed_work fld;

... };

@ rule5 @
identifier data, delayed fn.fn, is delayed.fld;
type T, is delayed.local type; fresh identifier work;
@@
- fn(void *data) {
+ fn(struct work_struct *work) {

<...
- (T)data
+ container_of(work,local type,fld.work)

...>
}

@ rule5a @
identifier data, delayed fn.fn, is delayed.fld;
type is delayed.local type; fresh identifier work;
@@
- fn(local type *data) {
+ fn(struct work_struct *work) {
+ local type *data = container_of(work,local type,fld.work);

...
}

//--
@ non delayed fn @
type local type, T,T1; local type *device; identifier fld, fn;
@@
- INIT_WORK(&device->fld, (T)fn, (T1)device);
+ INIT_WORK(&device->fld, fn);

@ rule7 @
identifier data, non delayed fn.fn, non delayed fn.fld;
type T, non delayed fn.local type; fresh identifier work;
@@
- fn(void *data) {
+ fn(struct work_struct *work) {

<...
- (T)data
+ container_of(work,local type,fld)

...>
}

@ rule7a @
identifier data, non delayed fn.fn, non delayed fn.fld;
type non delayed fn.local type; fresh identifier work;
@@
- fn(local type *data) {
+ fn(struct work_struct *work) {
+ local type *data = container_of(work,local type,fld);

...
}

Figure 4: Semantic patch for the INIT_WORK collateral
evolution

2007 Linux Symposium, Volume Two • 117

In the second section, calls to INIT_WORK for non-
delayed work queues have their second and third ar-
guments transformed as in the delayed case. The rules
rule7 and rule7a then update the callback functions
analogously to rules rule5 and rule5a.

Using the Linux 2.6 git repository [3], we have identi-
fied 245 driver files that use work queues. Of these, 45%
satisfy the assumptions on which this semantic patch is
based. This semantic patch applies correctly to 91% of
them. The remaining cases are due to some constructs
that are not treated adequately by our approach, to inter-
file effects, and to some optimizations made by the pro-
grammer that are too special-purpose to be reasonable
to add to a generic transformation rule.

5 Conclusion

In this paper we have presented SmPL, our scripting
language to automate and document collateral evolu-
tions in Linux device drivers. This language is based
on the patch syntax, familiar to Linux developers, but
accommodates many variations among drivers. As op-
posed to a traditional patch, a single semantic patch can
update hundreds of drivers at thousands of code sites
because of the features of SmPL, including the use of
metavariables, isomorphisms, and control-flow paths,
which makes a semantic patch generic. We hope that
the use of semantic patches will make collateral evolu-
tions in Linux less tedious and more reliable. We also
hope that it will help developers with drivers outside the
kernel source tree to better cope with the fast evolution
of Linux.

Until now we have tried to replay what was already done
by Linux programmers. We would like now to inter-
act with the Linux community and really contribute to
Linux by implementing or assisting library developers
in performing new evolutions and collateral evolutions.
As a first step we have subscribed to the janitors ker-
nel mailing list and planned to contribute by automating
some known janitorings [4]. We would also like to in-
vestigate if SmPL could be used to perform collateral
evolutions in other Linux subsystems such as filesys-
tems or network protocols or to perform other kinds of
program transformations.

Finally, introducing semantic patches in the develop-
ment process may lead to new processes, or new tools.
For instance, how can semantic patches be integrated

in versioning tools such as git. We could imagine a
versioning tool aware of semantic patches and of the se-
mantics of C, that could for example automatically up-
date new drivers coming from outside the kernel source
tree with respect to some recent semantic patches. Se-
mantic patches, due to their degree of genericity, can
also help with the problem of conflicts between multi-
ple patches that are developed concurrently and affect
some common lines of code, but in an orthogonal way.
Finally, for the same reason, semantic patches should be
more portable from one Linux version to the next, in the
case of a patch that is not immediately accepted into the
Linux kernel source tree.

All the semantic patches we have written, as well as a bi-
nary version of spatch, are available on our website:
http://www.emn.fr/x-info/coccinelle. Read-
ing those semantic patches can give a better feeling of
the expressivity of SmPL. They can also be used as a
complement to this tutorial.

References

[1] “Understanding Collateral Evolution in Linux
Device Drivers.” Yoann Padioleau, Julia L.
Lawall, and Gilles Muller. Proceedings of the
ACM SIGOPS EuroSys 2006 Conference, Leuven,
Belgium, April, 2006, pages 59–71.

[2] http://lwn.net/Articles/36311/.

[3] http://git.kernel.org/git/?p=linux/

kernel/git/torvalds/linux-2.6.git;a=

summary.

[4] http://kernelnewbies.org/
KernelJanitors/Todo.

118 • Semantic Patches

