
Proceedings of the
Linux Symposium

June 27th–30th, 2007
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc.
Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

My bandwidth is wider than yours
Ultra Wideband, Wireless USB, and WiNET in Linux*

Iñaky Pérez-González
Open source Technology Center, Intel Corporation

inaky.perez-gonzalez@intel.com

Abstract

Imagine a radio technology that gives you 480 Mbps at
short range. Imagine that you don’t have to keep all
those cables around to connect your gadgets. Make it
low-power, too. You even want to be able to stream con-
tent from your super-duper cell phone to your way-too-
many inches flat TV. Top it off, make it an open stan-
dard.

It’s not just a dream: we have it and is called Ultra-
Wide-Band, and it comes with many toppings of your
choice (Wireless USB and WiNET; Bluetooth and 1394
following) to help remove almost every data cable that
makes your day miserable. And Linux already supports
it.

1 What is all this?

UWB is a high speed, short range radio technology in-
tended to be the common backbone for higher level pro-
tocols. It aims to replace most of the data cables in desk-
top systems, home theaters, and other kinds of PAN-like
interconnects. It has been defined by the WiMedia con-
sortium after a long fight in IEEE over the underlying
implementation and now it is ECMA-368 and is back in
IEEE for further standardization.

It provides all the blocks (delivery of payloads, neigh-
borhood and bandwidth management, encryption sup-
port, {broad,multi,uni}cast, etc.) needed by higher level
protocols to build on top without any central infrastruc-
ture.

Wireless USB sits on top of UWB, where it allocates
bandwidth and establishes a virtual cable; WUSB de-
vices connect to the host in the same master-slave fash-
ion as wired USB. The security of the cable is replaced
with strong encryption and an authentication process to

rule out snooping and man-in-the-middle attacks. Back-
wards compatibility is maintained, so we can reuse all
of our drivers with slight modifications in the core host
stack.

WiNET snaps an Ethernet frame over a UWB payload
and adds a few protocols for bridging; devices cluster in
different WiNET networks (similar to WIFI ad-hoc) and
also includes authentication and strong encryption.

Other high level protocols can build on top of UWB
(Bluetooth 3.0 is planning to do so, for example).

2 Ultra Wide Band

This protocol is designed for being low-power (as in lit-
tle usage and efficient), with good facilities for QoS and
streaming (mainly centered in audio and video) and pro-
viding strong cryptography on the transport to compen-
sate for the open medium.

Figure 1: UWB’s spectrum usage

Ultra-Wide-Band operates over the unlicensed 3.1 to
10.6 GHz band, transferring at data rates from 53Mbps
to 480Mbps;1 high rates reach up to 3 meters; lower
rates, all the way to 10 meters. These are split in four-
teen 528 Mhz bands; these are grouped in five band

153.3, 80, 106.7, 160, 200, 320, 400, and 480 Mbps, not all
mandatory.

128 • My bandwidth is wider than yours

Figure 2: Division of time in UWB (credit: ECMA-368 Fig 3)

groups (channels) (composed of three bands each ex-
cept the last one, which are two). Data is encoded MB-
OFDM2 over 122 sub-carriers (100 data, 10 guard, 12
pilot).

The power emission is as low as the maximum specified
in the FCC Part 15 limit for interference: −41dBm/Mhz
(0.074µW/MHz), being the practical radiated power
about 100µW/band (−10dBm). This is more or less
three thousand times less than a cell phone3 and allows
UWB to appear as noise to other devices.

Time is divided in superframes (see Figure 2), com-
posed of 256 media allocation slots (MAS), 256µs each.
Thus a superframe is about 65ms. The MAS is the basic
bandwidth allocation unit.

The superframe starts with the beacon period, which
is divided in 85µs beacon slots (96 maximum, about
32 MAS slots). The first beacon slots are used for sig-
nalling; when a new device wants to join it senses for it
to be empty and transmits its beacon until it is assigned
another empty slot.

It is important to note that devices don’t have a common
concept of start of the superframe. There might be an
offset and devices coordinate among themselves to syn-
chronize in a common start of superframe. That is called
a beacon group, a group of devices that beacon during
a shared beacon period at the beginning of the same su-
perframe. This becomes a complication for a device B

2Multiband Orthogonal Frequency Division Modulation.
3Roughly calculated, about five orders of magnitude less than

WIFI.

Figure 3: Hidden neighbours

that can hear beacons from A and C without A and C
being able to listen to each other.

If A and B are beaconing in the same beacon group and
C gets in range of B (Figure 3), C might be beaconing
at a time different to that of A and B.4 B recognizes C’s
beacon as an alien beacon and tells A about which slots
C is using; thus A and B don’t try to use those slots
to transmit (as their tranmission would get mixed with
C’s).

The rules for use of the media are extremely simple. A
device might only transmit:

• Its beacon, during the beacon slot assigned to it.
4Especially if it has a beacon group formed with device D, for

example.

2007 Linux Symposium, Volume Two • 129

Figure 4: Full WiNET topology

• Data, during the MAS slots reserved by it. This
is called Distributed Reservation Protocol (DRP),
basically a TDMA model. It involves a negotiation
among the devices on which devices own which
MAS slots. Each device can define a maximum
of eight static streams (or allocations) with this
method. They are fixed (as in reserved bandwidth)
until dropped.

• Data, when the media is not being used. Called Pri-
oritized Contention Access, it is a CSMA technol-
ogy: sense the carrier and if empty, transmit. Eight
different priority levels are defined for which de-
vices contend based on the prioritization they give
to their data.

UWB aims to provide a secure enough media, tamper-
and snoop-proof. It is implemented using AES-
128/CCM, one-time pads, and 4-way handshakes for
devising pair-wise and group-wise temporal keys (se-
cret establishment/authentication to avoid man-in-the-
middle attacks is left to the higher level protocols).

Consideration is given to power saving. Devices can
switch off their radio until they have to transmit/receive
(beacon or data), even advertising to each other that they
are suspending beaconing for an amount of time. Trans-
mission rates and emission power can be adjusted to de-
crease consumption of energy, for example, for devices
in close proximity.

In general, UWB becomes a flexible low-level protocol
for building on top. It offers enough flexibility for all
kinds of media and data, and almost no restrictions in
mobility (other than range) and usage models.

3 WiNET: IP over UWB

WiNET slaps an Ethernet payload over UWB frame to
achieve the same functionality that is possible with Eth-
ernet: IP, bridging, etc.

In concept, it is very similar to WIFI, except for the short
range (10m max; a brick wall will stop it short5) and the
nonexistence of access points (all is ad-hoc). It is faster
and more power-efficient for PAN usage models.

WiNET-capable devices group in WiNET Service Sets
(WSSs).6 Devices may belong to more than one at the
same time.

Security is provided using UWB’s framework,7 which
provides data integrity and privacy; there are associa-
tion methods to avoid man-in-the-middle attacks when
establishing a trust relationship (using numeric compar-
ison or simple password comparison).

5Which is an advantage in many usage models
6Roughly equivalent to the ESSID in WIFI terms.
7AES-128/CCM, 4-way handshakes to generate pair and group

wise keys, one time pads.

130 • My bandwidth is wider than yours

QoS is achieved by reserving fixed point-to-point
streams allocated with the UWB Dynamic Reservation
Protocol (for example, the bandwidth required to stream
audio to the living room speakers is known ahead of
time) or by mapping IP traffic prioritization into the
UWB Prioritized Channel Access traffic levels.

As well, 802.1D bridging services are provided (see
Figure 4) to allow different WiNET segments to be
bridged. This is useful, for example, for providing
wireless network connectivity in high density urban
dwellings, where the high number of apartments would
make a WIFI access point on each unfeasible. Under
this model, an Ethernet backbone connects WiNET ac-
cess points that mobile devices connect to while roam-
ing through the apartment without losing connectivity.

4 Wireless USB

Wireless USB by itself is very simple: remove the ca-
ble from USB 2.0, put in its place an UWB radio. The
rest (at the high level) remains the same; with a few
modifications to the USB core stack we can (in theory)
reuse most of our already written drivers for mass stor-
age, video, audio, etc.

WUSB still maintains the master/slave model of the
wired version (even if UWB is peer to peer). The WUSB
host creates a static bandwidth allocation with the Dis-
tributed Reservation Protocol, and in there it creates a
WUSB Channel. Devices that connect to that channel
define (along with the host) a WUSB Cluster.

Figure 5: A WUSB Channel (credit: WUSB1.0 Fig 4-4)

At the beginning of each allocated period of time,
the host emits an MMC (Microscheduled Management
Command). This is a data structure composed of in-
formation elements (IEs) that specifies the length of the
allocated period, which devices can transmit and when,

gives time for devices to query the host (device notifi-
cations, DNs8), and provides a link to the next MMC,
which prefixes another allocation period.

This model allows WUSB devices to be simplified, as
they don’t have to understand (unless desired) UWB,
beaconing, DRP, or PCA. They just look for MMCs and
follow the links, getting their I/O control information
from them.

Cable-based concepts, such as reset, connect, and dis-
connect are implemented via signalling in the device no-
tification time slots (for device to host) and in the MMC
information elements (host to device).

4.1 Wireless USB security

WUSB security builds on top of UWB’s security frame-
work.9

The trust relationships are established via a Connection
Context, which is composed of a Connection Host ID
(CHID), Connection Device ID (CDID), and Connec-
tion Key (CK). The CHID uniquely identifies the host,
the CDID the device, and the CK is the shared secret.
Both host and device keep the same CC as proof of trust.

Establishing the secure connection is done via the 4-way
handshake process. When a device is directed by the
user to connect to the host, it looks for the CHID broad-
casted by it, and then looks up in its internal CC tables
for the CDID it was assigned by that host. Then host and
device prove to each other that they have the CK without
actually exchanging it and derive a pair-wise temporal
key. The host issues a new group key and issues it to all
devices, including the new one. As well, all keys expire
after a certain number of messages have been encoded
with them, time at which new ones are renegotiated us-
ing another 4-way handshake.

When there is no Connection Context established,
WUSB specifies methods for the authentication/pairing
process:

• Cable Based Association: For devices that can
connect with a cable, it is used to establish trust by
transmitting the connection context using a Cable-
Based Association Framework [USB] interface.

8Unlike wired USB, in WUSB devices can initiate transactions
to the host.

9AES-128/CCM, 4-way handshakes, pair and group wise keys,
one time pads.

2007 Linux Symposium, Volume Two • 131

• Numeric Association: Use Diffie-Hellman to cre-
ate a temporary secure channel and avoid man-in-
the middle attacks by having the device and the
host present a short (two to four digits) number to
the user. If they match, the user confirms the pair-
ing. Limited range and explicit user conditioning
make up for the lack of strength in a four-digit dec-
imal hash.

Devices can keep more than one Connection Context
in non-volatile memory, so that there is no need for re-
authenticating when moving a device from one host to
another.

5 The hardware

Hardware comes in the shape of a UWB Radio Con-
troller (RC) with support on top for the higher level pro-
tocols. There is specialization, however: a low-power
device might sacrifice some functionality to save power;
a PC-side controller would offer full support.

We will concentrate mostly on the host side, as we just
want to use the devices.

5.1 USB dongles: HWAs or Host Wire Adapters

Defined by the Wireless USB specification, HWAs con-
sist of a UWB radio controller and a WUSB host con-
troller all connected via USB to the host system. Other
extra interfaces are possible (for example, for WiNET).

WUSB traffic to/from WUSB devices is piped through
wired USB. Imagine a USB controller connected via
USB instead of PCI.

Its main intent is to enable legacy systems to get seam-
less UWB and WUSB connectivity. The drawback is
the high overhead of piping USB traffic over USB.

5.2 Wireless USB hubs: DWAs or Device Wire
Adapters

Defined by the Wireless USB specification, a DWA is
composed of a hub for USB wired devices whose up-
stream connection is wireless USB. Similarly to the
HWA, think of a USB host controller that is connected
to the system via Wireless USB, not PCI.

This is intended to connect your wired devices to your
Wireless-USB-enabled laptop; as well, legacy applica-
tions will use much of this. Take an existing USB
chipset for some kind of device, put in front a DWA
adapter, and suddenly your device is “wireless.”10

It has the same drawbacks as HWA regarding perfor-
mance.

5.3 PCI (and friends) connected adapters: WHCI

Defined by the Wireless Host Controller Interface, the
brother of EHCI. It is a Wireless USB host controller
plugged straight to the PCI bus, which, as HWA, might
contain other interfaces (again, such as a WiNET inter-
face).

This is intended for new systems or those where a PCI or
mini-PCI card can be deployed easily. It gives the best
performance, as there is no extra overhead for delivering
the final data to its destination (as in HWA/DWA).

Exercise for the reader: what happens when you connect
a WUSB printer to a HWA, the HWA to a DWA, and the
DWA to a WHCI, finally to your PC?

6 Linux support

Full-featured Linux support for UWB, Wireless USB,
and WiNET will consist of:

• A UWB Stack to provide radio neighborhood and
bandwidth management.

• Drivers for HWA (USB dongle) and WHCI (PCI)
UWB Radio Controllers plugging into the UWB
stack.

• A Wireless USB stack providing two abstractions
used by the three different kinds of host con-
trollers (Wireless USB Host Controller and Wire
Adapter). It also includes security, authorization/
pairing management, and seamless integration into
the main USB stack.

• Drivers for HWA (USB dongle) and WHCI (PCI)
Wireless USB host controllers, as well as for the
DWA (Wireless USB hub) host controller.

10And yes, if you connect twenty of these, you’ll have twenty
USB hosts in your machine.

132 • My bandwidth is wider than yours

Figure 6: Linux’s support for UWB/WUSB/WiNET

• Driver for WUSB Cable-Based Association, as
well as support for WUSB numeric association.

• WiNET drivers: Our efforts are also to implement,
using the Intel R© Wireless UWB Link 1480, net-
work device drivers for the USB and PCI form fac-
tors.

This adds up to two stacks and six drivers; eight, if we
count the WiNET drivers (Figure 6).

6.1 Current status

In general, the driver set is quite stable and usable with
the available hardware (which is very scarce).

The Linux UWB stack has implemented most of the
basic management features, allowing the discovery of
remote devices and a Distributed Reservation Protocol
bandwidth negotiator. It can work with devices imple-
menting WUSB 1.0 and WHCI 0.95.11 Radio control
drivers have been implemented for HWA (hwa-rc) and
WHCI (whc-rc).

As of April 2007, only the HWA Wireless USB host
controller is implemented, in a limited fashion; only
control, bulk, and interrupt transfers work. However,
it is possible to use an AL-4500 mass storage evaluation

11Both specs are mostly identical; however, as WHCI is develop-
ing on aspects that were not yet known when WUSB 1.0 was final-
ized, errata will be issued to correct them.

device made by Alereon. Authorization/pairing is being
implemented, making the low-level Cable-Based Asso-
ciation driver complete (user space glue is now done
manually).

We have also developed drivers for the Intel 1480 Wire-
less UWB Link WiNET interface, which are quite stable
as of now.

In general, there is still a lot of work to be done. The
UWB stack still needs to handle a lot of complex sit-
uations, like alien beacons, suspend and resume han-
dling in the UWB media, selection of ideal rate and
power transmission parameters, and fine tuning of the
bandwidth allocator. The Wireless USB stack requires
a complete transfer scheduler and implementation of
isochronous support. The driver for DWA needs to be
put together (with pieces from HWA) and a driver for
the WHCI WUSB host controller has to be created.

6.2 Sample usage scenarios

All interaction between the user and the local radio con-
trollers happens through sysfs:

cd /sys
ls -N bus/uwb/devices/
uwb0/
ls -N class/uwb_rc/
uwb0/

2007 Linux Symposium, Volume Two • 133

The radio is kept off by default; we could start beacon-
ing to announce ourselves to others in one of the sup-
ported channels12 on station A:

A# cd /sys/class/uwb_rc
A# echo 13 0 > uwb0/beacon

If now a user starts scanning on station B:

B# echo 13 0 > uwb0/scan

It will find station A’s beacon and will be announced by
the kernel; entries will be created in sysfs:

B# tail /var/log/kern.log
...
uwb-rc uwb0: uwb device \
(mac 00:14:a5:cb:6f:54 dev f8:5c)\
connected to usb 1-4.4:1.0

...
B# ls -N /sys/bus/uwb/devices/
uwb0/
f8:5c/

This indicates that a remote UWB device with address
f8:5c has been detected. At this point, the devices
are not connected, but just B is listening for A’s beacon.
For them to be able to exchange information, B needs
to also beacon so A knows about it—they need to be
linked in the same beacon group. That we accomplish
by asking B to beacon against A’s beacon (in the same
beacon period):

B# echo f8:5c > uwb0/beacon

Now we’ll see in station B a similar message (uwb
device (...) connected) as well as an entry with
its 16-bit address in /sys/bus/uwb/devices. In
the case of the Intel 1480 Wireless UWB Link (USB
form factor), we could now load the WiNET driver
(i1480u-winet) and configure network connections
on both sides:

modprobe i1480u-winet
ifconfig winet0 192.168.2.1

12Most hardware known to our team supports channels 13, 14,
and 15.

Connecting Wireless USB devices

If we had any Wireless USB devices, we would have to
tell the WUSB controller to create a WUSB Channel;
assuming controller usb6 is the one corresponding to
our radio controller:

cd /sys/class/usb_host/usb_host6
echo <16 byte CHID> \

0001 \
mylinux-wusb-01 \

> wusb_chid

With this we have given a 16-byte CHID to the driver,
which has configured it into the host so it broadcasts
a WUSB channel named mylinux-wusb-01. Now
devices that have been paired with this CHID before will
request connection to the host when we ask them to (for
now we allow all of them to connect):

new variable speed Wireless USB \
device using hwa-hc and address 2

From now on, this behaves like yet another USB device.
There are still no controls for selecting rate or power.

If no transactions are done to the device or the device
doesn’t ping back to the host’s keep-alives, then it will
be disconnected. The timeout is specified in a per-
host basis in file /sys/class/usb_host/X/wusb_

trust_timeout. Most devices we’ve seen until now
don’t implement keep-alives, so this value has to be set
high to avoid their disconnection.

7 Conclusion

We have done a quick description of Ultra Wideband,
Wireless USB, and WiNET, a set of technologies that
aim at replacing all the cables that clutter desktops and
living rooms. Designed with streaming and power effi-
ciency in mind, they also provide security comparable
to that of the cable.

We have also described how Linux implements support
for it, its current status, and how to use it. There is basic
support working, but a lot is still to be done.

We expect a huge increase of consumer electronics de-
vices of all kinds (cellphones, cameras, computing, au-
dio, video. . .) supporting this set of technologies in up-
coming years. And with Linux playing an all-the-time

134 • My bandwidth is wider than yours

more important role in those embedded applications, as
well as in the desktop, it is key that it supports them as
soon as they hit the streets en masse.

References

[linuxuwb.org] Linux UWB/WUSB/WiNET,
http://linuxuwb.org

[WiMedia] WiMedia Alliance,
http://wimedia.org

[ECMA368] Ecma International, ECMA-368 High
Rate Ultra Wideband PHY and MAC standard,
1.0,
http://www.ecma-international.org

[WiMedia] WiMedia Alliance, WiNET specification
(still not publicly available)
http://wimedia.org

[WUSB1.0] USB Implementors Forum, Wireless USB
1.0 specification, http://usb.org

[WAM1.0] USB Implementors Forum, Association
Models supplement to the Certified Wireless
Universal Serial Bus Specification, 1.0,
http://usb.org

[WHCI] Intel Corporation, Wireless Host Controller
Interface, 0.95, http://intel.com

c©2007 by Intel Corporation.

*Linux is a registered trademark of Linus Torvalds. Other
names and brands may be claimed as the property of others.

